1
|
Do urocortins have a role in treating cardiovascular disease? Drug Discov Today 2019; 24:279-284. [DOI: 10.1016/j.drudis.2018.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/20/2018] [Accepted: 09/05/2018] [Indexed: 02/02/2023]
|
2
|
Natural and synthetic peptides in the cardiovascular diseases: An update on diagnostic and therapeutic potentials. Arch Biochem Biophys 2018; 662:15-32. [PMID: 30481494 DOI: 10.1016/j.abb.2018.11.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/31/2018] [Accepted: 11/21/2018] [Indexed: 02/07/2023]
Abstract
Several peptides play an important role in physiological and pathological conditions into the cardiovascular system. In addition to well-known vasoactive agents such as angiotensin II, endothelin, serotonin or natriuretic peptides, the vasoconstrictor Urotensin-II (Uro-II) and the vasodilators Urocortins (UCNs) and Adrenomedullin (AM) have been implicated in the control of vascular tone and blood pressure as well as in cardiovascular disease states including congestive heart failure, atherosclerosis, coronary artery disease, and pulmonary and systemic hypertension. Therefore these peptides, together with their receptors, become important therapeutic targets in cardiovascular diseases (CVDs). Circulating levels of these agents in the blood are markedly modified in patients with specific CVDs compared with those in healthy patients, becoming also potential biomarkers for these pathologies. This review will provide an overview of current knowledge about the physiological roles of Uro-II, UCN and AM in the cardiovascular system and their implications in cardiovascular diseases. It will further focus on the structural modifications carried out on original peptide sequences in the search of analogues with improved physiochemical properties as well as in the delivery methods. Finally, we have overviewed the possible application of these peptides and/or their precursors as biomarkers of CVDs.
Collapse
|
3
|
Domínguez-Rodríguez A, Mayoral-Gonzalez I, Avila-Medina J, de Rojas-de Pedro ES, Calderón-Sánchez E, Díaz I, Hmadcha A, Castellano A, Rosado JA, Benitah JP, Gomez AM, Ordoñez A, Smani T. Urocortin-2 Prevents Dysregulation of Ca 2+ Homeostasis and Improves Early Cardiac Remodeling After Ischemia and Reperfusion. Front Physiol 2018; 9:813. [PMID: 30018568 PMCID: PMC6037857 DOI: 10.3389/fphys.2018.00813] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/11/2018] [Indexed: 12/02/2022] Open
Abstract
Aims: Urocortin-2 (Ucn-2) is a potent cardioprotector against Ischemia and Reperfusion (I/R) injuries. However, little is known about its role in the regulation of intracellular Ca2+ concentration ([Ca2+]i) under I/R. Here, we examined whether the addition of Ucn-2 in reperfusion promotes cardioprotection focusing on ([Ca2+]i handling. Methods and Results: Cardiac Wistar rat model of I/R was induced by transient ligation of the left coronary artery and experiments were conducted 1 week after surgery in tissue and adult cardiomyocytes isolated from risk and remote zones. We observed that I/R promoted significant alteration in cardiac contractility as well as an increase in hypertrophy and fibrosis in both zones. The study of confocal [Ca2+]i imaging in adult cardiomyocytes revealed that I/R decreased the amplitude of [Ca2+]i transient and cardiomyocytes contraction in risk and remote zones. Interestingly, intravenous infusion of Ucn-2 before heart’s reperfusion recovered significantly cardiac contractility and prevented fibrosis, but it didn’t affect cardiac hypertrophy. Moreover, Ucn-2 recovered the amplitude of [Ca2+]i transient and modulated the expression of several proteins related to [Ca2+]i homeostasis, such as TRPC5 and Orai1 channels. Using Neonatal Rat Ventricular Myocytes (NRVM) we demonstrated that Ucn-2 blunted I/R-induced Store Operated Ca2+ Entry (SOCE), decreased the expression of TRPC5 and Orai1 as well as their interaction in reperfusion. Conclusion: Our study provides the first evidences demonstrating that Ucn-2 addition at the onset of reperfusion attenuates I/R-induced adverse cardiac remodeling, involving the [Ca2+]i handling and inhibiting the expression and interaction between TRPC5 and Orai1.
Collapse
Affiliation(s)
- Alejandro Domínguez-Rodríguez
- Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío, University of Seville, CIBERCV, CSIC, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
| | - Isabel Mayoral-Gonzalez
- Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío, University of Seville, CIBERCV, CSIC, Seville, Spain
| | - Javier Avila-Medina
- Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío, University of Seville, CIBERCV, CSIC, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
| | - Eva S de Rojas-de Pedro
- Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío, University of Seville, CIBERCV, CSIC, Seville, Spain
| | - Eva Calderón-Sánchez
- Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío, University of Seville, CIBERCV, CSIC, Seville, Spain
| | - Ignacio Díaz
- Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío, University of Seville, CIBERCV, CSIC, Seville, Spain
| | - Abdelkrim Hmadcha
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Junta de Andalucia, University of Pablo de Olavide, University of Seville, CSIC, Seville, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
| | - Antonio Castellano
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
| | - Juan A Rosado
- Departamento de Fisiología, Universidad de Extremadura, Cáceres, Spain
| | - Jean-Pierre Benitah
- UMR-S 1180, INSERM, Universite Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Ana M Gomez
- UMR-S 1180, INSERM, Universite Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Antonio Ordoñez
- Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío, University of Seville, CIBERCV, CSIC, Seville, Spain
| | - Tarik Smani
- Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío, University of Seville, CIBERCV, CSIC, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
4
|
Rademaker MT, Richards AM. Urocortins: Actions in health and heart failure. Clin Chim Acta 2017; 474:76-87. [DOI: 10.1016/j.cca.2017.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/04/2017] [Indexed: 01/21/2023]
|
5
|
Burford NG, Webster NA, Cruz-Topete D. Hypothalamic-Pituitary-Adrenal Axis Modulation of Glucocorticoids in the Cardiovascular System. Int J Mol Sci 2017; 18:ijms18102150. [PMID: 29035323 PMCID: PMC5666832 DOI: 10.3390/ijms18102150] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/06/2017] [Accepted: 10/11/2017] [Indexed: 02/06/2023] Open
Abstract
The collective of endocrine organs acting in homeostatic regulation—known as the hypothalamic-pituitary-adrenal (HPA) axis—comprises an integration of the central nervous system as well as peripheral tissues. These organs respond to imminent or perceived threats that elicit a stress response, primarily culminating in the release of glucocorticoids into the systemic circulation by the adrenal glands. Although the secretion of glucocorticoids serves to protect and maintain homeostasis in the typical operation at baseline levels, inadequate regulation can lead to physiologic and psychologic pathologies. The cardiovascular system is especially susceptible to prolonged dysregulation of the HPA axis and glucocorticoid production. There is debate about whether cardiovascular health risks arise from the direct detrimental effects of stress axis activation or whether pathologies develop secondary to the accompanying metabolic strain of excess glucocorticoids. In this review, we will explore the emerging research that indicates stress does have direct effects on the cardiovascular system via the HPA axis activation, with emphasis on the latest research on the impact of glucocorticoids signaling in the vasculature and the heart.
Collapse
Affiliation(s)
- Natalie G Burford
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center, Shreveport, LA 71130-3932, USA.
| | - Natalia A Webster
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center, Shreveport, LA 71130-3932, USA.
| | - Diana Cruz-Topete
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center, Shreveport, LA 71130-3932, USA.
| |
Collapse
|
6
|
Vitale SG, Laganà AS, Rapisarda AMC, Scarale MG, Corrado F, Cignini P, Butticè S, Rossetti D. Role of urocortin in pregnancy: An update and future perspectives. World J Clin Cases 2016; 4:165-171. [PMID: 27458591 PMCID: PMC4945586 DOI: 10.12998/wjcc.v4.i7.165] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/09/2016] [Accepted: 05/27/2016] [Indexed: 02/05/2023] Open
Abstract
The activities of corticotropin-releasing factor (CRF) and related peptides are mediated a number of receptors with seven transmembrane domains that are coupled to the Gs and Gq proteins. These receptors are known as CRF-Rs. In vitro studies have evidenced that urocortin (UCN) and CRF provoke an increase in the contractility of the uterus which is induced by endometrial prostaglandin F2a. Furthermore, through trophoblasts, it stimulates the secretion of adrenocorticotropic hormone (ACTH) and prostaglandin PGE2 and has a vasodilatory effect on the placenta. While it is well known that the placenta produces considerable quantities of CRF, several studies have, however, excluded that the placenta can generate significant quantities of UCN. In the short term, the human fetal adrenal gland produces more cortisol and dehydroepiandrosterone sulfate. The gestational tissues express UCN3 and UCN2 mRNA in cytotrophoblast and syncytiotrophoblast cells, while UCN2 is only to be found in the maternal and fetal vessels and amniotic cells. Nevertheless, gestational tissues express UCN2 and UCN3 differentially and do not stimulate placental ACTH secretion. In term pregnancies, maternal plasma levels of CRF and UCN are lower than at the beginning of pregnancy and are correlated to labor onset. Conversely, they do not decrease in post-term pregnancies. This evidence would seem to indicate that the fine-regulated expression of these neuropeptides is important in determining the duration of human gestation. In this scenario, low concentrations of UCN in the amniotic fluid at mid-term may be considered a sign of predisposition to preterm birth.
Collapse
|
7
|
Yıldırım E, Cengiz M, Yıldırım N, Aslan K, İpek E, Korkmaz AF, Ulusoy FR, Hatem E. The evaluation of the clinical utility of urocortin 1 and adrenomedullin versus proBNP in systolic heart failure. Anatol J Cardiol 2015; 17:184-190. [PMID: 25868038 PMCID: PMC5864977 DOI: 10.5152/akd.2014.5793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Objective: Urocortin 1 (UCN1) has vasodilator, diuretic, and natriuretic effects, and its expression increases in heart failure (HF). Adrenomedullin (ADM) increases cardiac output and lowers blood pressure in healthy men and in patients with heart failure. The aim of the study was to determine UCN1 and ADM levels in patients with HF, to evaluate the relationship of UCN1 and ADM with various clinical parameters, and to assess UCN1 and ADM as diagnostic markers in HF, in comparison with pro-brain natriuretic peptide (pro-BNP). Methods: We investigated serum levels of UCN1, ADM, and pro-BNP in 86 consecutive patients with systolic HF [ejection fraction (EF) ≤45%] and 85 healthy controls. Serum UCN1, ADM, and pro-BNP levels were measured with the ELISA method. Transthoracic echocardiography was performed to determine left ventricular EF and pulmonary artery systolic pressure. Results: UCN1 and ADM levels were higher in HF patients (446.2±145.7 pg/mL, p<0.001; 87.9±4.2 pg/mL, p<0.001 respectively). UCN1 was positively correlated with pro-BNP (r=0.963, p<0.001), ADM (r=0.915, p<0.001), and NYHA (r=0.879, p<0.001); ADM was positively correlated with pro-BNP (r=0.956, p<0.001) and NYHA (r=0.944, p<0.001). Receiver operating characteristic curves yielded an area under the curve of 1.00 (p<0.001) for UCN1, 1.00 (p<0.001) for ADM, and 0.99 (p<0.001) for pro-BNP in the diagnosis of HF. Conclusion: UCN1 and ADM increase with worsening HF and left ventricular dysfunction. They may be used as diagnostic biomarkers in systolic HF, but the incremental value of measuring UCN1 and ADM in patients tested for pro-BNP is questionable.
Collapse
Affiliation(s)
| | - Mahir Cengiz
- Clinic of Cardiology, Erzurum Research and Training Hospital; Erzurum-Turkey.
| | | | | | | | | | | | | |
Collapse
|
8
|
Walther S, Pluteanu F, Renz S, Nikonova Y, Maxwell JT, Yang LZ, Schmidt K, Edwards JN, Wakula P, Groschner K, Maier LS, Spiess J, Blatter LA, Pieske B, Kockskämper J. Urocortin 2 stimulates nitric oxide production in ventricular myocytes via Akt- and PKA-mediated phosphorylation of eNOS at serine 1177. Am J Physiol Heart Circ Physiol 2014; 307:H689-700. [PMID: 25015964 DOI: 10.1152/ajpheart.00694.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Urocortin 2 (Ucn2) is a cardioactive peptide exhibiting beneficial effects in normal and failing heart. In cardiomyocytes, it elicits cAMP- and Ca(2+)-dependent positive inotropic and lusitropic effects. We tested the hypothesis that, in addition, Ucn2 activates cardiac nitric oxide (NO) signaling and elucidated the underlying signaling pathways and mechanisms. In isolated rabbit ventricular myocytes, Ucn2 caused concentration- and time-dependent increases in phosphorylation of Akt (Ser473, Thr308), endothelial NO synthase (eNOS) (Ser1177), and ERK1/2 (Thr202/Tyr204). ERK1/2 phosphorylation, but not Akt and eNOS phosphorylation, was suppressed by inhibition of MEK1/2. Increased Akt phosphorylation resulted in increased Akt kinase activity and was mediated by corticotropin-releasing factor 2 (CRF2) receptors (astressin-2B sensitive). Inhibition of phosphatidylinositol 3-kinase (PI3K) diminished both Akt as well as eNOS phosphorylation mediated by Ucn2. Inhibition of protein kinase A (PKA) reduced Ucn2-induced phosphorylation of eNOS but did not affect the increase in phosphorylation of Akt. Conversely, direct receptor-independent elevation of cAMP via forskolin increased phosphorylation of eNOS but not of Akt. Ucn2 increased intracellular NO concentration ([NO]i), [cGMP], [cAMP], and cell shortening. Inhibition of eNOS suppressed the increases in [NO]i and cell shortening. When both PI3K-Akt and cAMP-PKA signaling were inhibited, the Ucn2-induced increases in [NO]i and cell shortening were attenuated. Thus, in rabbit ventricular myocytes, Ucn2 causes activation of cAMP-PKA, PI3K-Akt, and MEK1/2-ERK1/2 signaling. The MEK1/2-ERK1/2 pathway is not required for stimulation of NO signaling in these cells. The other two pathways, cAMP-PKA and PI3K-Akt, converge on eNOS phosphorylation at Ser1177 and result in pronounced and sustained cellular NO production with subsequent stimulation of cGMP signaling.
Collapse
Affiliation(s)
- Stefanie Walther
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois
| | - Florentina Pluteanu
- Institute of Pharmacology and Clinical Pharmacy, Biochemical and Pharmacological Centre Marburg, Philipps-University of Marburg, Marburg, Germany
| | - Susanne Renz
- Department of Cardiology and Pneumology, University Medicine Göttingen, Göttingen, Germany
| | - Yulia Nikonova
- Institute of Pharmacology and Clinical Pharmacy, Biochemical and Pharmacological Centre Marburg, Philipps-University of Marburg, Marburg, Germany
| | - Joshua T Maxwell
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois
| | - Li-Zhen Yang
- Molecular Neuroendocrinology Group of the Max Planck Institute for Experimental Medicine, Göttingen, Germany, and Specialized Neuroscience Research Program 2, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii; Division of Endocrinology, Department of Internal Medicine, Shanghai Ninth People's Hospital of Shanghai Jiaotong University, Shanghai, China
| | - Kurt Schmidt
- Institute of Pharmaceutical Sciences, Pharmacology and Toxicology, Karl-Franzens-University of Graz, Graz, Austria
| | - Joshua N Edwards
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois
| | - Paulina Wakula
- Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Klaus Groschner
- Ludwig-Boltzmann-Institute for Translational Heart Failure Research, Graz, Austria; Institute of Biophysics, Medical University of Graz, Graz, Austria
| | - Lars S Maier
- Department of Cardiology and Pneumology, University Medicine Göttingen, Göttingen, Germany; Clinic and Policlinic for Internal Medicine II, University Clinics Regensburg, Regensburg, Germany; and
| | - Joachim Spiess
- Molecular Neuroendocrinology Group of the Max Planck Institute for Experimental Medicine, Göttingen, Germany, and Specialized Neuroscience Research Program 2, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii; Sanford Burnham Medical Research Institute, La Jolla, California
| | - Lothar A Blatter
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois
| | - Burkert Pieske
- Division of Cardiology, Medical University of Graz, Graz, Austria; Ludwig-Boltzmann-Institute for Translational Heart Failure Research, Graz, Austria
| | - Jens Kockskämper
- Institute of Pharmacology and Clinical Pharmacy, Biochemical and Pharmacological Centre Marburg, Philipps-University of Marburg, Marburg, Germany;
| |
Collapse
|
9
|
Voltolini C, Petraglia F. Neuroendocrinology of pregnancy and parturition. HANDBOOK OF CLINICAL NEUROLOGY 2014; 124:17-36. [PMID: 25248577 DOI: 10.1016/b978-0-444-59602-4.00002-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
During pregnancy, the maternal brain drives a series of adaptive mechanisms that are fundamental for allowing fetal growth and development, protecting both mother and fetus from adverse programming and timing of parturition. This neuroendocrine concept is even more complex as fetal brain and placenta also participate as regulators of maternal-placental-fetal physiology. The placenta is now seen as a neuroendocrine organ, acting as a source of several neuroactive factors that may exert their biologic effects either locally or by entering maternal and fetal circulation, thus acting in an autocrine, paracrine, and endocrine manner. A variety of hypothalamic neurohormones (GnRH, GHRH, somatostatin, CRH, oxytocin) are expressed in the placenta. When stress occurs during pregnancy, the maternal, fetal, and placental hypothalamic-pituitary-adrenal (HPA) axes are activated to stimulate a series of responses contributing to maintain physiologic conditions while at the same time avoiding the adverse effects of stress on the mother and offspring. However, when stress is excessive, a number of obstetric complications may occur, such as preterm birth, pre-eclampsia and intrauterine growth restriction, related to an impairment of the placental adaptive response.
Collapse
Affiliation(s)
- Chiara Voltolini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Felice Petraglia
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy.
| |
Collapse
|
10
|
Urocortin 2 autocrine/paracrine and pharmacologic effects to activate AMP-activated protein kinase in the heart. Proc Natl Acad Sci U S A 2013; 110:16133-8. [PMID: 24043794 DOI: 10.1073/pnas.1312775110] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Urocortin 2 (Ucn2), a peptide of the corticotropin-releasing factor (CRF) family, binds with high affinity to type 2 CRF receptors (CRFR2) on cardiomyocytes and confers protection against ischemia/reperfusion. The mechanisms by which the Ucn2-CRFR2 axis mitigates against ischemia/reperfusion injury remain incompletely delineated. Activation of AMP-activated protein kinase (AMPK) also limits cardiac damage during ischemia/reperfusion. AMPK is classically activated by alterations in cellular energetics; however, hormones, cytokines, and additional autocrine/paracrine factors also modulate its activity. We examined the effects of both the endogenous cardiac Ucn2 autocrine/paracrine pathway and Ucn2 treatment on AMPK regulation. Ucn2 treatment increased AMPK activation and downstream acetyl-CoA carboxylase phosphorylation and glucose uptake in isolated heart muscles. These actions were blocked by the CRFR2 antagonist anti-sauvagine-30 and by a PKCε translocation-inhibitor peptide (εV1-2). Hypoxia-induced AMPK activation was also blunted in heart muscles by preincubation with either anti-sauvagine-30, a neutralizing anti-Ucn2 antibody, or εV1-2. Treatment with Ucn2 in vivo augmented ischemic AMPK activation and reduced myocardial injury and cardiac contractile dysfunction after regional ischemia/reperfusion in mice. Ucn2 also directly activated AMPK in ex vivo-perfused mouse hearts and diminished injury and contractile dysfunction during ischemia/reperfusion. Thus, both Ucn2 treatment and the endogenous cardiac Ucn2 autocrine/paracrine pathway activate AMPK signaling pathway, via a PKCε-dependent mechanism, defining a Ucn2-CRFR2-PKCε-AMPK pathway that mitigates against ischemia/reperfusion injury.
Collapse
|
11
|
Wang S, Zhu X, Cong B, You X, Wang Y, Wang W, Ni X. Estrogenic action on arterial smooth muscle: permissive for maintenance of CRHR2 expression. Endocrinology 2012; 153:1915-24. [PMID: 22315451 DOI: 10.1210/en.2011-1939] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Urocortin (Ucn), a member of CRH family, has been implicated to be one of the endogenous regulators in the cardiovascular system and exerts its effects locally via an autocrine/paracrine fashion. Previous studies have shown the gender difference in CRH-induced vasodilation in human skin, which is related to the concentration of estrogens during the menstrual cycle. The aim of this study was to investigate whether estrogens modulate Ucn/CRH receptor type 2 (CRHR2) expression in vascular smooth muscle, thereby leading to vasodilation. We performed sham operation or bilateral ovariectomy (OVX) on female Sprague Dawley rats. OVX rats were sc administered 17β-estradiol (E₂) at a dose of 30 μg/kg·d or with placebo for 12 wk. Primary smooth muscle cells of aorta were used for the in vitro study. It was found that the Ucn-induced vasodilation and CRHR2 expression were decreased in OVX rats and restored by E₂ replacement treatment for 12 wk. E₂ increased the expression of CRHR2 in cultured smooth muscle cells, which was blocked by estrogen receptor-β antagonist. Ucn significantly suppressed the phenylephrine-induced phospholipase Cβ3 activation, inositol 1,4,5-trisphosphate (IP₃) production, and intracellular Ca²⁺ elevation. Ucn stimulated the expression of active GTP-bound Gαs protein and cAMP production. The suppressive effects of Ucn on phenylephrine-induced IP₃ production and intracellular Ca²⁺ elevation were blocked by the inhibitors of adenylate cyclase and protein kinase A. Our results demonstrate that estrogen maintains the expression of CRHR2 in aorta smooth muscle, thereby enhancing vasodilator actions of Ucn. Ucn exerts its vasorelaxant effects via Gαs-cAMP-protein kinase A signaling, leading to down-regulation of the phospholipase Cβ-IP₃-Ca²⁺ signaling pathway.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/cytology
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Calcium Signaling/physiology
- Cells, Cultured
- Estradiol/pharmacology
- Estrogen Receptor beta/antagonists & inhibitors
- Estrogens/pharmacology
- Female
- In Vitro Techniques
- Models, Animal
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Ovariectomy
- Rats
- Rats, Sprague-Dawley
- Receptors, Corticotropin-Releasing Hormone/metabolism
- Signal Transduction/physiology
- Urocortins/metabolism
- Vasodilation/drug effects
- Vasodilation/physiology
Collapse
Affiliation(s)
- Shan Wang
- Department of Physiology and The Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
12
|
Ikeda K, Fujioka K, Manome Y, Tojo K. Clinical perspectives of urocortin and related agents for the treatment of cardiovascular disease. Int J Endocrinol 2012; 2012:198628. [PMID: 22548056 PMCID: PMC3324148 DOI: 10.1155/2012/198628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 02/07/2012] [Accepted: 02/07/2012] [Indexed: 11/29/2022] Open
Abstract
The effects of corticotropin-releasing hormone, also known as corticotropin-releasing factor (CRF), on the cardiovascular system have been intensively researched since its discovery. Moreover, the actions of urocortin (Ucn) I on the cardiovascular system have also been intensively scrutinized following the cloning and identification of its receptor, CRF receptor type 2 (CRFR2), in peripheral tissues including the heart. Given the cardioprotective actions of CRFR2 ligands, the clinical potential of not only Ucn I but also Ucn II and III, which were later identified as more specific ligands for CRFR2, has received considerable attention from researchers. In addition, recent work has indicated that CRF type 1 receptor may be also involved in cardioprotection against ischemic/reperfusion injury. Here we provide a historical overview of research on Ucn I and related agents, their effects on the cardiovascular system, and the clinical potential of the use of such agents to treat cardiovascular diseases.
Collapse
Affiliation(s)
- Keiichi Ikeda
- Department of Molecular Cell Biology, Institute of DNA Medicine, Research Center for Medical Sciences, Jikei University School of Medicine, Tokyo 105-8461, Japan
- *Keiichi Ikeda:
| | - Kouki Fujioka
- Department of Molecular Cell Biology, Institute of DNA Medicine, Research Center for Medical Sciences, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Yoshinobu Manome
- Department of Molecular Cell Biology, Institute of DNA Medicine, Research Center for Medical Sciences, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Katsuyoshi Tojo
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan
| |
Collapse
|
13
|
Urocortin-induced cardiomyocytes hypertrophy is associated with regulation of the GSK-3β pathway. Heart Vessels 2011; 27:202-7. [PMID: 21505854 DOI: 10.1007/s00380-011-0141-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 03/25/2011] [Indexed: 01/13/2023]
Abstract
Urocortin-1 (UCN), a member of the corticotropin-releasing factor, is a cardioprotective peptide, and is also involved in cardiac hypertrophy. The involvement of GSK-3β, a pivotal kinase in cardiac hypertrophy, in response to UCN is not yet documented. Cardiomyocytes from adult rats were stimulated for 48 h with UCN. Cell size, protein, and DNA contents were determined. Phosphorylated and total forms GSK-3β and the total amount of β-catenin were quantified by Western immunoblots. The effects of astressin, a UCN competitive receptor antagonist, were also evaluated. UCN increased cell size and the protein-to-DNA ratio, in accordance with a hypertrophic response. This effect was associated with increased phosphorylation of GSK-3β and marked accumulation of β-catenin, a downstream element to GSK-3β. All these effects were prevented by astressin and LY294002, an inhibitor of the phosphatidyl-inositol-3-kinase. UCN-induced cardiomyocytes hypertrophy is associated with regulation of GSK-3β, a pivotal kinase involved in cardiac hypertrophy, in a PI3K-dependent manner. Furthermore, the pharmacological blockade of UCN receptors was able to prevent UCN-induced hypertrophy, which leads to inhibition of the Akt/GSK-3β pathway.
Collapse
|
14
|
Abstract
The complex mechanisms controlling human parturition involves mother, fetus, and placenta, and stress is a key element activating a series of physiological adaptive responses. Preterm birth is a clinical syndrome that shares several characteristics with term birth. A major role for the neuroendocrine mechanisms has been proposed, and placenta/membranes are sources for neurohormones and peptides. Oxytocin (OT) is the neurohormone whose major target is uterine contractility and placenta represents a novel source that contributes to the mechanisms of parturition. The CRH/urocortin (Ucn) family is another important neuroendocrine pathway involved in term and preterm birth. The CRH/Ucn family consists of four ligands: CRH, Ucn, Ucn2, and Ucn3. These peptides have a pleyotropic function and are expressed by human placenta and fetal membranes. Uterine contractility, blood vessel tone, and immune function are influenced by CRH/Ucns during pregnancy and undergo major changes at parturition. Among the others, neurohormones, relaxin, parathyroid hormone-related protein, opioids, neurosteroids, and monoamines are expressed and secreted from placental tissues at parturition. Preterm birth is the consequence of a premature and sustained activation of endocrine and immune responses. A preterm birth evidence for a premature activation of OT secretion as well as increased maternal plasma CRH levels suggests a pathogenic role of these neurohormones. A decrease of maternal serum CRH-binding protein is a concurrent event. At midgestation, placental hypersecretion of CRH or Ucn has been proposed as a predictive marker of subsequent preterm delivery. While placenta represents the major source for CRH, fetus abundantly secretes Ucn and adrenal dehydroepiandrosterone in women with preterm birth. The relevant role of neuroendocrine mechanisms in preterm birth is sustained by basic and clinic implications.
Collapse
Affiliation(s)
- Felice Petraglia
- University of Siena, Policlinico, Division of Obstetrics and Gynecology, Department of Pediatrics, Obstetrics, and Reproductive Medicine, Viale Bracci, 53100 Siena, Italy.
| | | | | |
Collapse
|
15
|
Venkatasubramanian S, Newby DE, Lang NN. Urocortins in heart failure. Biochem Pharmacol 2010; 80:289-96. [DOI: 10.1016/j.bcp.2010.03.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 03/25/2010] [Accepted: 03/26/2010] [Indexed: 11/30/2022]
|
16
|
Dalzell JR, Jackson CE, McDonagh TA, Gardner RS. Novel biomarkers in heart failure: an overview. Biomark Med 2010; 3:453-63. [PMID: 20477516 DOI: 10.2217/bmm.09.42] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Heart failure is a complex systemic syndrome resulting from significant impairment of cardiac function. A vast array of biological pathways is now known to be involved in heart failure, including deleterious pathways promoting its development and progression, as well as compensatory cardioprotective pathways. Some of the components of these pathways are now recognized as biomarkers of this condition, and can aid diagnosis, prognostication and guide management. As the understanding of the pathophysiology of heart failure progresses, further candidate biomarkers are being identified. This article reviews the literature regarding the more recently identified biomarkers and outlines areas requiring further study.
Collapse
Affiliation(s)
- Jonathan R Dalzell
- British Heart Foundation Cardiovascular Research Centre, University of Glasgow, Glasgow, G12 8TA, UK.
| | | | | | | |
Collapse
|
17
|
Jonathan R Dalzell, Colette E Jackson. Novel neurohormonal insights with therapeutic potential in chronic heart failure. Future Cardiol 2010; 6:361-72. [DOI: 10.2217/fca.10.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Despite considerable therapeutic advances over recent years, chronic heart failure remains associated with significant morbidity and mortality. Further improvements in the treatment of this syndrome are therefore needed and this will require advances in the understanding of its underlying pathophysiology. This article reviews the literature regarding recently identified neurohormonal pathways that are declaring themselves as potential therapeutic targets in chronic heart failure.
Collapse
|
18
|
Davidson SM, Yellon DM. Urocortin: a protective peptide that targets both the myocardium and vasculature. Pharmacol Rep 2009; 61:172-82. [PMID: 19307705 DOI: 10.1016/s1734-1140(09)70019-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 01/22/2009] [Indexed: 11/19/2022]
Abstract
The urocortins are a family of endogenously produced peptide hormones that show great promise as potential drugs for the treatment of heart disease. They can increase contractility and cardiac output without causing changes in mean arterial blood pressure. As expected, the receptor for these peptides is present in cardiomyocytes, and they can bind and protect these cells from simulated ischemia and reperfusion in vitro. The receptor is present, however, in much higher density in the endothelial cells that form a continuous lining of the coronary vasculature. Functionally, the urocortin peptides have been shown to have potent local vasodilatory effects, and may affect other aspects of vascular function. In this review, we will attempt to distinguish the "cardio" from the "vascular" effects of urocortin and its homologues, including the archetypal family member, corticotrophin releasing hormone.
Collapse
Affiliation(s)
- Sean M Davidson
- The Hatter Cardiovascular Institute, University College London Hospital and Medical School, London, UK
| | | |
Collapse
|
19
|
Inada Y, Ikeda K, Tojo K, Sakamoto M, Takada Y, Tajima N. Possible involvement of corticotropin-releasing factor receptor signaling on vascular inflammation. Peptides 2009; 30:365-72. [PMID: 19026699 DOI: 10.1016/j.peptides.2008.10.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 10/06/2008] [Accepted: 10/06/2008] [Indexed: 10/21/2022]
Abstract
Based on the reported anti-inflammatory and anti-stress responses by corticotropin-releasing factor (CRF) receptor signaling, endogenous CRF receptor agonists, CRF, urocortin (UCN) I and its related peptides, may play protective roles against cardiovascular stresses via the CRF receptor signaling. Therefore, the present study was designed to evaluate the involvement of CRF receptor signaling against vascular inflammatory stress using human aortic endothelial cells (HAECs). In addition, due to the possible involvement of CRF receptor signaling in the effects of statin on endothelial cells, the effects of pitavastatin on the expression of UCN-related peptides in HAECs were also evaluated. HAECs expressed all UCNs, CRF type 1 receptor (CRF-R1), and CRF type 2 (CRF-R2)alpha and CRF-R2beta mRNAs. Real time PCR analysis revealed that UCN I mRNA was down-regulated, whereas UCN II mRNA was up-regulated by tumor necrosis factor (TNF)-alpha. Selective blockade of CRF-R1 resulted in significant increase in TNF-alpha-induced expression of vascular adhesion molecule-1 at mRNA level and E-selectin at mRNA and protein levels. Pitavastatin up-regulated UCN I mRNA without TNF-alpha, but co-incubation with pitavastatin and TNF-alpha resulted in decrease in UCN I mRNA. On the contrary, UCN II, CRF-R1, and CRF-R2 mRNAs were markedly increased by co-incubation of pitavastatin and TNF-alpha. These facts indicate that CRF-R1 signaling may have protective role against TNF-alpha-induced vascular inflammation. In addition, because of up-regulation of CRF-R1 mRNA by pitavastatin with or without TNF-alpha, CRF-R1 may be involved in the vasoprotective effects of pitavastatin.
Collapse
Affiliation(s)
- Yuri Inada
- Division of Diabetes and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishishinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Urocortins in heart failure and ischemic heart disease. Int J Cardiol 2008; 127:307-12. [DOI: 10.1016/j.ijcard.2007.11.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 11/17/2007] [Indexed: 11/18/2022]
|
21
|
Charles CJ, Rademaker MT, Richards AM. Urocortin 1 modulates the neurohumoral response to acute nitroprusside-induced hypotension in sheep. Clin Sci (Lond) 2007; 112:485-91. [PMID: 17206936 DOI: 10.1042/cs20060303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In addition to haemodynamic actions, Ucn1 (urocortin 1) has been reported to affect a number of hormonal systems; however, it remains unclear whether Ucn1 modulates circulating hormones under physiological conditions. Accordingly, in the present study, we have examined the effects of Ucn1 on haemodynamics, hormones and renal indices in normal conscious sheep subjected to a nitroprusside-induced hypotensive stimulus designed to alter hormonal levels within the physiological range. Ucn1 administration did not alter the haemodynamic response to nitroprusside-induced hypotension. However, compared with the rise observed on the control day, plasma ANP (atrial natriuretic peptide; P=0.043), BNP (brain natriuretic peptide; P=0.038) and endothelin-1 (P=0.011) levels were reduced following Ucn1 administration. Associated with this significant reduction in natriuretic peptides, the increase in urinary sodium output associated with rising pressures post-nitroprusside was abolished following Ucn1 administration (P=0.048). Ucn1 had no significant effect on the response of hormones of the renin-angiotensin-aldosterone system or the hypothalamo-pituitary-adrenal axis. In conclusion, Ucn1, administered at physiologically relevant levels during nitroprusside-induced hypotension, attenuates the secretion/release of endothelin-1 and the cardiac natriuretic peptides ANP and BNP. Suppression of ANP and BNP probably led to an attenuated natriuretic response to recovery from acute hypotension. The threshold for the action of Ucn1 on the natriuretic peptides and endothelin-1 appears to be below that of other actions of Ucn1.
Collapse
Affiliation(s)
- Christopher J Charles
- Christchurch Cardioendocrine Research Group, Christchurch School of Medicine and Health Sciences, PO Box 4345, Christchurch, New Zealand.
| | | | | |
Collapse
|
22
|
Fekete ÉM, Zorrilla EP. Physiology, pharmacology, and therapeutic relevance of urocortins in mammals: ancient CRF paralogs. Front Neuroendocrinol 2007; 28:1-27. [PMID: 17083971 PMCID: PMC2730896 DOI: 10.1016/j.yfrne.2006.09.002] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Revised: 09/05/2006] [Accepted: 09/06/2006] [Indexed: 12/13/2022]
Abstract
Urocortins, three paralogs of the stress-related peptide corticotropin-releasing factor (CRF) found in bony fish, amphibians, birds, and mammals, have unique phylogenies, pharmacologies, and tissue distributions. As a result and despite a structural family resemblance, the natural functions of urocortins and CRF in mammalian homeostatic responses differ substantially. Endogenous urocortins are neither simply counterpoints nor mimics of endogenous CRF action. In their own right, urocortins may be clinically relevant molecules in the pathogenesis or management of many conditions, including congestive heart failure, hypertension, gastrointestinal and inflammatory disorders (irritable bowel syndrome, active gastritis, gastroparesis, and rheumatoid arthritis), atopic/allergic disorders (dermatitis, urticaria, and asthma), pregnancy and parturition (preeclampsia, spontaneous abortion, onset, and maintenance of effective labor), major depression and obesity. Safety trials for intravenous urocortin treatment have already begun for the treatment of congestive heart failure. Further understanding the unique functions of urocortin 1, urocortin 2, and urocortin 3 action may uncover other therapeutic opportunities.
Collapse
Affiliation(s)
- Éva M. Fekete
- Molecular and Integrative Neurosciences Department, The Scripps
Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
- Pécs University Medical School, 7602 Pécs,
Hungary
| | - Eric P. Zorrilla
- Molecular and Integrative Neurosciences Department, The Scripps
Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
- Harold L. Dorris Neurological Research Institute, The Scripps
Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|
23
|
Tao J, Zhang Y, Soong TW, Li S. Expression of urocortin 2 and its inhibitory effects on intracellular ca2+ via L-type voltage-gated calcium channels in rat pheochromocytoma (PC12) cells. Neuropsychopharmacology 2006; 31:2600-9. [PMID: 16760921 DOI: 10.1038/sj.npp.1301123] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Urocortin 2, a new member of the corticotrophin-releasing factor (CRF) neuropeptide family, was reported to be widely expressed in the central nervous system and peripheral tissues. Here, we detected urocortin 2 mRNA in PC12 cells using reverse transcription-polymerase chain reaction (RT-PCR). Furthermore, we observed its effects on intracellular Ca(2+) concentration ([Ca(2+)](i)) using confocal microscopy and flow cytometry and on voltage-gated calcium channel (VGCC) currents using whole-cell patch clamp. Our results showed that urocortin 2 mRNA was coexpressed with CRF, and CRF receptor (CRFR) 2beta in undifferentiated PC12 cells, but not CRFR1 or CRFR2alpha. KCl (40 mM) or Bay K8644 (1 microM), an L-type VGCC activator, increased [Ca(2+)](i). Pretreatment of the cells with urocortin 2 significantly diminished the effect of Bay K8644 or KCl. Urocortin 2 showed no influence on [Ca(2+)](i) in tyrode's solution containing EGTA or Ca(2+)-free tyrode's solution. It reversibly inhibited the VGCC currents in a concentration-dependent manner, but had no apparent effects on the cells treated with nifedipine (1 microM), an L-type VGCC blocker. Urocortin 2 up-shifted the current-voltage curves. No frequency-dependence of urocortin 2 effects on I(Ba) was observed. The inhibitory effects of urocortin 2 on VGCC currents or [Ca(2+)](i) were not affected by astressin 2B, an antagonist of CRFR2. As calcium overload play a key role in some neuronal degenerative diseases such as Alzheimer's and Parkinson's diseases, our results suggest that urocortin 2 may be a potentially interesting agent for the treatment of these diseases.
Collapse
Affiliation(s)
- Jin Tao
- Key Laboratory of Reproductive Medicine, Department of Pharmacology, Nanjing Medical University, Nanjing, PR China
| | | | | | | |
Collapse
|
24
|
Hillhouse EW, Grammatopoulos DK. The molecular mechanisms underlying the regulation of the biological activity of corticotropin-releasing hormone receptors: implications for physiology and pathophysiology. Endocr Rev 2006; 27:260-86. [PMID: 16484629 DOI: 10.1210/er.2005-0034] [Citation(s) in RCA: 266] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The CRH receptor (CRH-R) is a member of the secretin family of G protein-coupled receptors. Wide expression of CRH-Rs in the central nervous system and periphery ensures that their cognate agonists, the family of CRH-like peptides, are capable of exerting a wide spectrum of actions that underpin their critical role in integrating the stress response and coordinating the activity of fundamental physiological functions, such as the regulation of the cardiovascular system, energy balance, and homeostasis. Two types of mammal CRH-R exist, CRH-R1 and CRH-R2, each with unique splicing patterns and remarkably distinct pharmacological properties, but similar signaling properties, probably reflecting their distinct and sometimes contrasting biological functions. The regulation of CRH-R expression and activity is not fully elucidated, and we only now begin to fully understand the impact on mammalian pathophysiology. The focus of this review is the current and evolving understanding of the molecular mechanisms controlling CRH-R biological activity and functional flexibility. This shows notable tissue-specific characteristics, highlighted by their ability to couple to distinct G proteins and activate tissue-specific signaling cascades. The type of activating agonist, receptor, and target cell appears to play a major role in determining the overall signaling and biological responses in health and disease.
Collapse
Affiliation(s)
- Edward W Hillhouse
- The Leeds Institute of Genetics, Health and Therapeutics, The University of Leeds, Leeds LS2 9NL, UK.
| | | |
Collapse
|
25
|
Ikeda K, Tojo K, Otsubo C, Udagawa T, Hosoya T, Tajima N, Nakao K, Kawamura M. Effects of urocortin II on neonatal rat cardiac myocytes and non-myocytes. Peptides 2005; 26:2473-81. [PMID: 16005543 DOI: 10.1016/j.peptides.2005.05.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Revised: 05/30/2005] [Accepted: 05/30/2005] [Indexed: 11/26/2022]
Abstract
Urocortin (Ucn) II and III, homologous peptides of Ucn that are specific ligands for corticotropin-releasing hormone (CRH) type 2 receptor (CRH-R2), have recently been identified. The present study was designed to elucidate the effects of Ucn II, which is predominantly expressed in rodent heart, on neonatal rat cardiac myocytes (MCs) and cardiac non-myocytes (NMCs). Ucn II increased the incorporation of [3H]-leucine into MCs, as well as the accumulation of cAMP and the secretion of atrial natriuretic peptide. However, no significant changes were demonstrated in NMCs or an MC/NMC co-culture system. The effects of Ucn II were attenuated by astressin2-B, a specific antagonist of CRH-R2, and/or H89, an inhibitor of protein kinase A (PKA). These results indicate that Ucn II may be another endogenous cardiovascular substance that acts via CRH-R2 and the cAMP-dependent PKA pathway.
Collapse
Affiliation(s)
- Keiichi Ikeda
- Department of Pharmacology (I), Jikei University School of Medicine, 3-25-8 Nishishinbashi, Tokyo 105-8461, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Tao J, Li S. Effects of urocortin via ion mechanisms or CRF receptors? Biochem Biophys Res Commun 2005; 336:731-6. [PMID: 16061206 DOI: 10.1016/j.bbrc.2005.07.078] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Accepted: 07/11/2005] [Indexed: 12/18/2022]
Abstract
Urocortin (UCN), a newly isolated peptide related to hypothalamic corticotrophin releasing factor (CRF) family, had been reported to play biologically diverse roles in several systems such as cardiovascular, reproductive, appetite, stress, and inflammatory responses, etc. It was thought previously to be an endogenous agonist, producing the several actions previously attributed to CRF. But, recently, it was shown to directly reduce L-type calcium currents of acute isolated cardiac myocytes and T-type calcium currents in mouse spermatogenic cells via inhibiting calcium channel instead of binding first to its CRF-R2 receptors. UCN could also reduce the intracellular calcium in vascular smooth muscle cells via inhibiting calcium channel directly. Furthermore, UCN could increase the gene expression of ATP-sensitive potassium channels (K(ATP)) and activate sarcolemmal ATP-sensitive potassium current during normal or hypoxia, which could be inhibited by glibenclamide, a specific K(ATP) blocker. This review will highlight the current novel findings on the ionic mechanisms by which UCN may exert its several actions.
Collapse
Affiliation(s)
- Jin Tao
- Key Laboratory of Reproductive Medicine, Center of Human Functional Genomics, Nanjing 210029, PR China
| | | |
Collapse
|
27
|
Tao J, Chen J, Wu Y, Li S. Urocortin reduces the viability of adult rat vascular smooth muscle cells via inhibiting L-type calcium channels. Peptides 2005; 26:2239-45. [PMID: 15970357 DOI: 10.1016/j.peptides.2005.03.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2005] [Revised: 03/16/2005] [Accepted: 03/17/2005] [Indexed: 10/25/2022]
Abstract
The newly isolated peptide, urocortin (UCN), is a member of the corticotropin-releasing factor (CRF)-related peptides that has been found to have potent cardiovascular protective effects. In order to investigate the effect of UCN on the viability of adult rat vascular smooth muscle cells (VSMC) and the relevant mechanisms, we exposed the VSMC to UCN to observe the change in cell viability using MTT assay and intracellular calcium concentration using confocal laser scanning microscope methods. Our results showed that UCN (10(-7)M) inhibited the viability of VSMC by about 26% (P<0.05, compared to control). The effect was concentration-dependent, but it was not dependent on the affecting time. Glybenclamide (Gly, 10(-5)M), the ATP-sensitive potassium channel (K(ATP) channel) blocker, and astressin (10(-6)M), a competitive antagonist of CRF receptors, had no influence on this inhibition. Bay K8644 (10(-6)M), a special L-type calcium channel activator, increased the viability of VSMC. Pre-treatment of the cells with UCN diminished the effect of Bay K8644 (n=6, P<0.05). UCN was also observed to reduce the intracellular Ca2+ increase induced by KCl and Bay K8644. There was no significant difference in nitrite accumulation between UCN groups and the control. In conclusion, UCN reduced the viability of VSMC through L-type calcium channels. These interesting results might suggest that UCN may be a new vasoactive agent involved in hindering vascular remodeling in combination with previous reports about UCN's hypotensive effects.
Collapse
Affiliation(s)
- Jin Tao
- Department of Pharmacology, Nanjing Medical University, Hanzhong Road 140, Nanjing 210029, PR China
| | | | | | | |
Collapse
|
28
|
Davis ME, Pemberton CJ, Yandle TG, Lainchbury JG, Rademaker MT, Nicholls MG, Frampton CM, Richards AM. Effect of urocortin 1 infusion in humans with stable congestive cardiac failure. Clin Sci (Lond) 2005; 109:381-8. [PMID: 15882144 DOI: 10.1042/cs20050079] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In sheep with HF (heart failure), Ucn1 (urocortin 1) decreases total peripheral resistance and left atrial pressure, and increases cardiac output in association with attenuation of vasopressor hormone systems and enhancement of renal function. In a previous study, we demonstrated in the first human studies that infusion of Ucn1 elevates corticotropin (‘ACTH’), cortisol and ANP (atrial natriuretic peptide), and suppresses the hunger-inducing hormone ghrelin in normal subjects. In the present study, we examined the effects of Ucn1 on pituitary, adrenal and cardiovascular systems in the first Ucn1 infusion study in human HF. In human HF, it is proposed that Ucn1 would augment corticotropin and cortisol release, suppress ghrelin and reproduce the cardiorenal effects seen in animals with HF. On day 3 of a controlled metabolic diet, we studied eight male volunteers with stable HF (ejection fraction <40%; New York Heart Association Class II–III) on two occasions, 2 weeks apart, receiving 50 μg of Ucn1 or placebo intravenously over 1 h in a randomized time-matched cross-over design. Neurohormones, haemodynamics and urine indices were recorded. Ucn1 infusion increased plasma Ucn1, corticotropin (baseline, 5.9±0.9 pmol/l; and peak, 7.2±1.0 pmol/l) and cortisol (baseline, 285±42 pmol/l; and peak, 310±41 pmol/l) compared with controls (P<0.001, 0.008 and 0.047 respectively). The plasma Ucn1 half-life was 54±3 min. ANP and ghrelin were unchanged, and no haemodynamic or renal effects were seen. In conclusion, a brief intravenous infusion of 50 μg of Ucn1 stimulates corticotropin and cortisol in male volunteers with stable HF.
Collapse
Affiliation(s)
- Mark E Davis
- Christchurch Cardioendocrine Research Group, Christchurch School of Medicine and Health Sciences, Christchurch 8001, New Zealand.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Tao J, Li S. Urocortin: a cardiac protective peptide? Biochem Biophys Res Commun 2005; 332:923-6. [PMID: 15949465 DOI: 10.1016/j.bbrc.2005.04.076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Accepted: 04/13/2005] [Indexed: 11/21/2022]
Abstract
Urocortin (UCN), a member of the corticotropin-releasing hormone (CRH)-related peptides, has been reported to play biologically diverse roles in several systems such as cardiovascular, reproductive, appetite, stress, inflammatory responses, etc. In heart, it was reported to have protective effects. On the other hand, it was also reported to have cardiac inotropic and hypertrophic effects and hence to cause cardiac remodeling. This paper will review the effects of UCN in cardiac system.
Collapse
Affiliation(s)
- Jin Tao
- Department of Cardiovascular Pharmacology, Nanjing Medical University, Nanjing 210029, PR China
| | | |
Collapse
|
30
|
Davidson SM, Townsend PA, Carroll C, Yurek-George A, Balasubramanyam K, Kundu TK, Stephanou A, Packham G, Ganesan A, Latchman DS. The transcriptional coactivator p300 plays a critical role in the hypertrophic and protective pathways induced by phenylephrine in cardiac cells but is specific to the hypertrophic effect of urocortin. Chembiochem 2005; 6:162-70. [PMID: 15593114 DOI: 10.1002/cbic.200400246] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Anacardic acid is an alkylsalicylic acid obtained from cashew-nut-shell liquid, and is a potent inhibitor of p300 histone acetyl-transferase (HAT) activity. We have used anacardic acid to prevent the induction of hypertrophy in isolated neonatal rat cardiomyocytes. Hypertrophy was detected as an increase in cell size, the rearrangement of sarcomeres into a striated pattern, and the induction of embryonic genes beta-MHC and ANF. p300 inhibition was equally effective at preventing hypertrophy whether it was induced by treatment with the alpha1-adrenergic agonist, phenylephrine, or by treatment with urocortin, a member of the corticotrophin-releasing-factor family, which stimulates specific G protein-coupled receptors. Spiruchostatin A is a natural-product inhibitor of histone deacetylases (HDAC) similar to the depsipeptide FK228 molecule. We have recently synthesized spiruchostatin A and now show that, although HDACs act in opposition to HATs, spiruchostatin A has the same effect as anacardic acid, that is, it prevents the induction of hypertrophy in response to phenylephrine or urocortin. Pretreatment with either phenylephrine or urocortin reduced the extent of death observed after the exposure of isolated cardiomyocytes to simulated ischaemia and reoxygenation. Inhibition of p300 or HDAC activity eliminated the protection conferred by phenylephrine; however, it did not affect the protection conferred by urocortin. Therefore, it might eventually be possible to use chemical inhibitors such as these in a therapeutic setting to dissociate the protective effect and hypertrophic effect of urocortin, enhancing the survival of cardiomyocytes exposed to transient ischemia, while inhibiting the hypertrophic pathway that would otherwise be induced concurrently.
Collapse
Affiliation(s)
- Sean M Davidson
- Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Rademaker MT, Charles CJ, Espiner EA, Frampton CM, Lainchbury JG, Richards AM. Endogenous urocortins reduce vascular tone and renin-aldosterone/endothelin activity in experimental heart failure. Eur Heart J 2005; 26:2046-54. [PMID: 15821006 DOI: 10.1093/eurheartj/ehi227] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS To investigate the role of the endogenous urocortin peptides in heart failure (HF) through blockade of the corticotropin-releasing factor receptor 2 (CRF-R2). METHODS AND RESULTS Eight sheep were administered the CRF-R2 antagonist CRF(9-41) (1.5 mg bolus) before (Normal) and after development of pacing-induced HF. Compared with controls, CRF(9-41) in HF significantly increased mean arterial pressure (MAP) (71+/-2 vs. 75+/-2 mmHg, P=0.0024) and calculated total peripheral resistance (CTPR) (33.3+/-5.2 vs. 39.4+/-5.9 mmHg/L/min, P=0.0455). Similar trends were observed in the Normal state (MAP 87+/-1 vs. 89+/-2 mmHg, P=0.0689; CTPR 21.9+/-2.0 vs. 24.4+/-2.4 mmHg/L/min, P=0.0731). Left atrial pressure was elevated similarly in both states (Normal P=0.0013; HF P=0.0298), whereas cardiac output tended to be reduced (Normal P=0.0614). CRF(9-41) increased plasma urocortin-I (Normal 10.3+/-0.8 vs. 19.8+/-1.3 pmol/L, P<0.001; HF 14.4+/-0.9 vs. 25.3+/-0.8 pmol/L, P<0.001), renin (Normal 0.34+/-0.06 vs. 0.41+/-0.02 nmol/L/hr, P=0.013; HF 1.14+/-0.29 vs. 1.57+/-0.36 nmol/L/hr, P=0.0326), aldosterone (Normal 370+/-62 vs. 563+/-99 pmol/L, P=0.0813; HF 662+/-141 vs. 1024+/-209 pmol/L, P=0.095), and endothelin-1 (HF 3.18+/-0.18 vs. 4.74+/-1.04 pmol/L, P=0.0087). MAP, CTPR, renin, and endothelin-1 responses to CRF-R2 antagonism were significantly greater in HF than in the Normal state (P=0.049, 0.0427, 0.0311, and 0.0412, respectively). CONCLUSION These data suggest that the endogenous urocortin peptides contribute to the suppression of vascular tone and renin-angiotensin-aldosterone/endothelin activation in HF and thus, play a protective compensatory role in this disorder.
Collapse
Affiliation(s)
- Miriam T Rademaker
- Christchurch Cardioendocrine Research Group, Department of Medicine, The Christchurch School of Medicine, PO Box 4345, Christchurch, New Zealand.
| | | | | | | | | | | |
Collapse
|
32
|
Chanalaris A, Lawrence KM, Townsend PA, Davidson S, Jamshidi Y, Jashmidi Y, Stephanou A, Knight RD, Hsu SY, Hsueh AJW, Latchman DS. Hypertrophic effects of urocortin homologous peptides are mediated via activation of the Akt pathway. Biochem Biophys Res Commun 2005; 328:442-8. [PMID: 15694367 DOI: 10.1016/j.bbrc.2005.01.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2004] [Indexed: 11/21/2022]
Abstract
The UCN homologues SCP and SRP bind specifically to the CRFR2 receptor, whereas UCN binds to both CRFR1 and CRFR2. We have previously demonstrated that all three peptides are cardioprotective, and both the Akt and MAPK p42/44 pathways are essential for this effect. Here we tested the hypertrophic effects of these peptides. We examined the effects of the peptides on cell area, protein synthesis, and induction of the natriuretic peptides ANP and BNP. All three peptides were able to increase all the markers of hypertrophy examined, with SCP being the most potent of the three, followed by UCN and SRP last. In addition, we provide a mechanism of action for the three peptides and show that Akt phosphorylation is important for their hypertrophic action, whereas MAPK p42/44 is not involved in this effect.
Collapse
Affiliation(s)
- Anastasios Chanalaris
- Medical Molecular Biology Unit, Institute of Child Health, University College London, London WC1N 1EH, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Tao J, Wu Y, Chen J, Zhu H, Li S. Effects of urocortin on T-type calcium currents in mouse spermatogenic cells. Biochem Biophys Res Commun 2005; 329:743-8. [PMID: 15737649 DOI: 10.1016/j.bbrc.2005.02.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2005] [Indexed: 11/25/2022]
Abstract
Urocortin (UCN), a newly isolated peptide, has been found to play an important role mainly in female reproductive system. In order to investigate the effect of UCN on T-type calcium currents (I(Ca,T)), exploring the mechanisms of UCN's role in male reproductive system, especially in acrosome reaction, we directly measured the I(Ca,T) in mouse spermatogenic cells exposed to UCN using standard whole-cell patch-clamp recording technique. Our results showed that UCN reversibly inhibited the T-type Ca(2+) currents in the cells in a concentration-dependent manner. The current density was inhibited by about 19% after exposure of the cells to UCN (0.1 microM) for 5 min, from the control value of 6.75+/-1.17 to 5.26+/-0.82pA/pF. UCN up-shifted the current-voltage (I-V) curve. Frequency-dependence of UCN's effects on I(Ca,T) was also observed. Moreover, UCN at 0.1 microM did not markedly affect the activation of I(Ca,T) but shifted the inactivation curve of I(Ca,T) to the left. The inhibitory effect of UCN on the T-type Ca(2+) current was not affected by Astressin, the CRF receptor blocker. Since T-type calcium channels are a key component in acrosome reaction, our data suggest that UCN might be a significant factor in male reproductive action and a potential contraceptive agent.
Collapse
Affiliation(s)
- Jin Tao
- Laboratory of Reproductive Medicine, Department of Pharmacology, Nanjing Medical University, Nanjing 210029, PR China
| | | | | | | | | |
Collapse
|
34
|
Choy MY, Leung TN, Leung PS, Lau TK. Effect of hypoxia on urocortin production in human gestational trophoblasts in vitro. Am J Reprod Immunol 2005; 52:118-23. [PMID: 15274651 DOI: 10.1111/j.1600-0897.2004.00200.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PROBLEM Urocortin is produced by the placenta throughout pregnancy but its regulation remains unknown. The effect of hypoxia on placental urocortin production is not known. The aim of this study was to determine the effect of in vitro hypoxia on human trophoblastic urocortin production. METHOD OF STUDY Placental explants and primary cultures were incubated in anaerobe hypoxic bags for 24 h in a humidified incubator. Urocortin peptide secretion and mRNA (messenger RNA) production was determined by enzyme-linked immunosorbent assay and reverse transcription-polymerase chain reaction, respectively. Morphological and functional integrity was verified by immunohistochemical analysis of urocortin expression. Vascular endothelial growth factor expression was used to verify the generation of cellular hypoxia in our in vitro system. RESULTS Hypoxia did not affect urocortin secretion or mRNA expression in explant and single-cell cultures. Production was greater from first trimester than term explants and from single-cell primary cultures more than from explant cultures. CONCLUSIONS Hypoxia does not influence human placental urocortin secretion or mRNA expression in vitro.
Collapse
Affiliation(s)
- Mei Y Choy
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| | | | | | | |
Collapse
|
35
|
Weisinger RS, Blair-West JR, Burns P, Denton DA, Purcell B, Vale W, Rivier J, Weisinger HS, May CN. Cardiovascular effects of long-term central and peripheral administration of urocortin, corticotropin-releasing factor, and adrenocorticotropin in sheep. Endocrinology 2004; 145:5598-604. [PMID: 15319360 DOI: 10.1210/en.2004-0432] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The neuroendocrine hormones ACTH and corticotropin- releasing factor (CRF), which are involved in the stress response, have acute effects on arterial pressure. New evidence indicates that urocortin (UCN), the putative agonist for the CRF type 2 receptor, has selective cardiovascular actions. The responses to long-term infusions of these hormones, both peripherally and centrally, in conscious animals have not been studied. Knowledge of the long-term effects is important because they may differ considerably from their acute actions, and stress is frequently a chronic stimulus. The present experiments investigated the cardiovascular effects of CRF, UCN, and ACTH in conscious sheep. Infusions were made either into the lateral cerebral ventricles (i.c.v.) or i.v. over 4 d at 5 microg/h. UCN infused i.c.v. or i.v. caused a prolonged increase in heart rate (HR) (P < 0.01) and a small increase in mean arterial pressure (MAP) (P < 0.05). CRF infused i.c.v. or i.v. progressively increased MAP (P < 0.05) but had no effect on HR. Central administration of ACTH had no effect, whereas systemic infusion increased MAP and HR (P < 0.001). In conclusion, long-term administration of these three peptides associated with the stress response had prolonged, selective cardiovascular actions. The striking finding was the large and sustained increase in HR with i.c.v. and i.v. infusions of UCN. These responses are probably mediated by CRF type 2 receptors because they were not reproduced by infusions of CRF.
Collapse
Affiliation(s)
- R S Weisinger
- Howard Florey Institute of Experimental Physiology and Medicine, University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Tao J, Xu H, Yang C, Liu CN, Li S. Effect of urocortin on L-type calcium currents in adult rat ventricular myocytes. Pharmacol Res 2004; 50:471-6. [PMID: 15458766 DOI: 10.1016/j.phrs.2004.05.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2004] [Indexed: 01/17/2023]
Abstract
The newly isolated peptide, urocortin (UCN) has been found to have potent cardioprotective effects. In order to investigate the effect of UCN on L-type calcium currents (I(Ca,L)), exploring the mechanisms of UCN's cardioprotective effects, we directly measured the I(Ca,L) in the adult rat cardiac myocytes exposed to UCN using standard whole-cell patch-clamp recording technique. Our results showed that UCN exerted decreasing effects on the I(Ca,L) of the single adult rat cardiac myocytes. The current density was inhibited by about 35% after exposure of the cells to UCN (0.1 micromol L(-1)) for 10 min, from the control value of 7.19 +/- 1.44 pA/pF to 4.74 +/- 0.75 pA/pF (n = 5, P < 0.05). This I(Ca,L)-inhibiting action of UCN was concentration dependent. Moreover, no frequency dependence of UCN effects on I(Ca,L) was observed. In combination with previous reports, our results suggest that there might be a close relationship between the cardioprotective effects of UCN and L-type calcium channels.
Collapse
Affiliation(s)
- Jin Tao
- Department of Pharmacology, Nanjing Medical University, Nanjing 210029, China
| | | | | | | | | |
Collapse
|
37
|
Suda T, Kageyama K, Sakihara S, Nigawara T. Physiological roles of urocortins, human homologues of fish urotensin I, and their receptors. Peptides 2004; 25:1689-701. [PMID: 15476936 DOI: 10.1016/j.peptides.2004.03.027] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2004] [Accepted: 03/29/2004] [Indexed: 12/15/2022]
Abstract
Urocortin 1, a human homologue of fish urotensin I, together with its related-compounds (urocortins 2 and 3), comprises a distinct family of stress peptides. Urocortin 1 has a high affinity for both corticotropin-releasing factor (CRF) type 1 receptor (CRF1) and CRF type 2 receptor (CRF2), and urocortins 2 and 3 have a high affinity for CRF2, while CRF has a low affinity for CRF2 and a high affinity for CRF1. These differences of the binding affinity with receptors make the biological actions of these peptides. Besides the binding affinity with receptors, the limited overlap of the distribution of CRF and urocortins may also contribute to the differences of physiological roles of each peptide. Urocortins show 'stress-coping' responses such as anxiolysis and dearousal in the brain. In the periphery, recent studies show the potent effects of urocortins on the cardiovascular and immune systems. In this review article, we take a look over the series of peptides included in this family, especially in terms of the versatility of biological actions, along with the various characters of the receptors.
Collapse
Affiliation(s)
- Toshihiro Suda
- The Third Department of Internal Medicine, Hirosaki University School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan.
| | | | | | | |
Collapse
|
38
|
Abstract
Urocortin, a 40 amino acid peptide, is a corticotropin-releasing factor (CRF) related peptide, and can bind to all three types of CRF receptors (CRF type 1, type 2a and type 2b receptors) with higher affinities for these receptors than CRF. Immunoreactivity of urocortin is widely distributed in central nervous, digestive, cardiovascular, reproductive, immune and endocrine systems. Urocortin plays important roles in appetite-suppression, immunomodulation, steroidogenesis in the ovary, maintenance of the placental function, labor, and cardioprotection via CRF receptors. Although urocortin has potent adrenocorticotropin (ACTH) releasing activity in vitro, endogenous urocortin does not act on pituitary ACTH secretion in vivo.
Collapse
Affiliation(s)
- Yutaka Oki
- Department of Medicine, Second Division, School of Medicine, Hamamatsu University, 1-20-1 Handayama, Hamamatsu 431-3192, Japan.
| | | |
Collapse
|
39
|
Hashimoto K, Nishiyama M, Tanaka Y, Noguchi T, Asaba K, Hossein PN, Nishioka T, Makino S. Urocortins and corticotropin releasing factor type 2 receptors in the hypothalamus and the cardiovascular system. Peptides 2004; 25:1711-21. [PMID: 15476938 DOI: 10.1016/j.peptides.2004.05.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Accepted: 05/01/2004] [Indexed: 10/26/2022]
Abstract
In addition to urocortin (Ucn I), Ucn II and Ucn III were identified as endogenous ligands for corticotropin-releasing factor type 2 receptor (CRF2 receptor). CRF2 receptor is abundantly located in central hypothalamic ventromedial nucleus (VMH) and in peripheral cardiovascular system. In this mini-review, we focused on the roles of these urocortins and CRF2 receptor in the hypothalamus and the cardiovascular system. Ucn II mRNA was increased in the parvocellular part or the magnocellular part of the hypothalamic paraventricular nucleus (PVN) following immobilization stress or 3 days of water deprivation, respectively. Therefore, it is thought that Ucn II may modulate CRF and vasopressin synthesis in the PVN in a paracrine or autocrine fashion through PVN CRF2 receptor. The early and later phases of Ucn I-mediated feeding suppression may be CRF1 and CRF2 receptor-mediated events, respectively. Ucn II decreases food intake at a later phase, beyond 4 h post injection. A large dose of corticosterone increased plasma leptin and insulin levels as well as the levels of CRF2 receptor mRNA. Adrenalectomy, starvation, and immobilization each lowered plasma leptin and insulin levels and were associated with decrements in CRF2 receptor mRNA levels in the VMH. Peripheral injection of leptin increased VMH CRF2 receptor mRNA, as can induce reductions of food intake and body weight, indicating that circulating leptin is involved in the regulation of VMH CRF2 receptor mRNA expression. Therefore, it is also plausible that VMH CRF2 receptor transduces the anorexogenic effects of leptin as well as those of urocortins. The systemic administration of Ucn II decreases mean arterial pressure (arterial vascular tone) and causes tachycardia via vascular CRF2 receptor in rats, similar to the effects of Ucn I. Thus, CRF2 receptor seems to mediate cardioprotective effects of urocortins.
Collapse
Affiliation(s)
- Kozo Hashimoto
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Okoh-cho, Nankoku, Kochi 783-8505, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Takahashi K, Totsune K, Murakami O, Shibahara S. Urocortins as cardiovascular peptides. Peptides 2004; 25:1723-31. [PMID: 15476939 DOI: 10.1016/j.peptides.2004.04.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2004] [Accepted: 04/14/2004] [Indexed: 11/21/2022]
Abstract
Urocortins (Ucn) 1, 2 and 3, human homologues of fish urotensin I, form the corticotropin-releasing factor (CRF) family, together with CRF, urotensin I and sauvagine. Ucn 3 is a novel member of this family and is a specific ligand for CRF type 2 receptor. CRF type 2 receptor is thought to mediate the stress-coping responses, such as anxiolysis, anorexia, vasodilatation, a positive inotropic action on myocardium and dearousal. Endogenous ligands for the CRF type 2 receptor expressed in the cardiovascular tissues, such as the myocardium, have long been unknown. We have shown expression of Ucn 3 as well as Ucn 1 in the human heart. Ucn 3 is also expressed in the kidney, particularly distal tubules. Studies in various rat tissues showed that high concentrations of immunoreactive Ucn 3 were found in the pituitary gland, adrenal gland, gastrointestinal tract, ovary and spleen in addition to the brain, heart and kidney. These observations suggest that Ucn 3 is expressed in various tissues including heart and kidney, and may regulate the circulation in certain aspects of stress and diseases, such as inflammation. Ucn 1 and 3 appear to have important pathophysiological roles in some cardiovascular diseases.
Collapse
Affiliation(s)
- Kazuhiro Takahashi
- Department of Molecular Biology and Applied Physiology, Tohoku University School of Medicine, Aoba-ku, Sendai, Miyagi 980-8575, Japan.
| | | | | | | |
Collapse
|
41
|
Ikeda K, Tojo K, Tokudome G, Ohta M, Sugimoto KI, Tamura T, Tajima N, Mochizuki S, Kawakami M, Hosoya T. Cardiac expression of urocortin (Ucn) in diseased heart; preliminary results on possible involvement of Ucn in pathophysiology of cardiac diseases. Mol Cell Biochem 2004; 252:25-32. [PMID: 14577573 DOI: 10.1023/a:1025551305777] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Recently, several studies reported that urocortin (Ucn) had beneficial effects on cardiovascular system and was expressed both in the normal heart and in the heart of dilated cardiomyopathy (DCM), yet the relationship between high expression of Ucn and pathophysiology of Ucn in diseased heart has been discussed. Thus, the present study was designed to elucidate the expression of Ucn in the diseased heart by immunohistochemical approach using endomyocardial biopsy specimens. The involvement of immunoreactive Ucn in pathophysiology of cardiac disease was evaluated using endomyocardial biopsy specimens obtained from the patients with some heart diseases, including DCM and hypertrophic cardiomyopathy (HCM). Ucn was detected in all endomyocardial biopsy specimens of ventricular tissue obtained from the patients with such cardiac diseases, a specimens of atrial tissue, and normal heart specimens obtained from autopsy cases. In DCM patients, left ventricular end-diastolic pressure significantly elevated in severely stained group. On the contrary, in HCM patients, left ventricular ejection fraction was higher in the severely stained group. Ucn was expressed more abundantly in the diseased heart, especially in HCM and DCM, than in the normal heart. In conclusion, such close relationship between Ucn expression in the heart and cardiac function indicated that clinical features of Ucn resembled those of norepinephrine and Ucn could play a certain pathophysiological roles in the cardiac diseases.
Collapse
Affiliation(s)
- Keiichi Ikeda
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Takahashi K. Translational medicine in fish-derived peptides: from fish endocrinology to human physiology and diseases. Endocr J 2004; 51:1-17. [PMID: 15004403 DOI: 10.1507/endocrj.51.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Recent studies have revealed the importance of fish-derived peptide hormones to human endocrinology. These peptides include melanin-concentrating hormone (MCH), urocortins (human urotensin-I), and urotensin-II. MCH, a hypothalamic peptide, is a potent stimulator on appetite. Urocortins, e.g. urocortin 1 and urocortin 3 (stresscopin), are endogenous ligands for the corticotropin-releasing factor (CRF) receptors, particularly CRF type 2 receptor, that mediates a vasodilator action, a positive inotropic action and a central appetite-inhibiting action. These actions mediated by CRF type 2 receptor may ameliorate the stress response. Human urotensin-II is a potent vasoconstrictor peptide, while it acts as a vasodilator on some arteries. Human urotensin-II is expressed in various types of cells and tissues, including cardiovascular tissues, as well as many types of tumor cells. Thus, these fish-derived peptides appear to play important roles in human physiology, such as appetite regulation, stress response and cardiovascular regulation, and also in diseases, for example, obesity, cardiovascular diseases and tumors. Development of antagonists/agonists against the receptors for these peptides may open new strategies for the treatment of various diseases, including obesity-related diseases, hypertension, heart failure and malignant tumors.
Collapse
Affiliation(s)
- Kazuhiro Takahashi
- Department of Molecular Biology and Applied Physiology, Tohoku University School of Medicine, Miyagi, Japan
| |
Collapse
|
43
|
Gordon JM, Dusting GJ, Woodman OL, Ritchie RH. Cardioprotective action of CRF peptide urocortin against simulated ischemia in adult rat cardiomyocytes. Am J Physiol Heart Circ Physiol 2003; 284:H330-6. [PMID: 12388260 DOI: 10.1152/ajpheart.01121.2001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The major objective of this study was to determine whether urocortin, a member of the corticotrophin-releasing factor (CRF) family, protects adult rat cardiomyocytes from ischemia that has been simulated by glucose deprivation and acidosis. When it was present during simulated ischemia, urocortin (0.1 microM) markedly attenuated the cellular injury, which was assessed by increases in creatine kinase and lactate dehydrogenase levels. This effect was comparable with that observed with adenosine (10 microM). The cardioprotective effect of urocortin was markedly attenuated by the protein kinase C inhibitor chelerythrine and by 5-hydroxydecanoate, an inhibitor of ATP-sensitive K(+) channels. Cardiomyocytes were also protected from injury by pretreatment with urocortin, either by incubation for 5 min with a subsequent 10-min recovery or incubation for 20 min with a 20-h recovery before simulated ischemia. Similar cardioprotective effects were observed with ischemic preconditioning protocols during both immediate and delayed phases. In conclusion, in adult cardiomyocytes, urocortin has immediate and delayed cardioprotective actions that mimic ischemic preconditioning. These actions are mediated via protein kinase C and ATP-sensitive K(+) channels.
Collapse
Affiliation(s)
- Jennifer M Gordon
- Howard Florey Institute and Department of Pharmacology, University of Melbourne, Victoria 3010, Australia
| | | | | | | |
Collapse
|
44
|
Rademaker MT, Charles CJ, Espiner EA, Fisher S, Frampton CM, Kirkpatrick CMJ, Lainchbury JG, Nicholls MG, Richards AM, Vale WW. Beneficial hemodynamic, endocrine, and renal effects of urocortin in experimental heart failure: comparison with normal sheep. J Am Coll Cardiol 2002; 40:1495-505. [PMID: 12392842 DOI: 10.1016/s0735-1097(02)02170-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVES The goal of this study was to determine the bioactivity of urocortin (Ucn) in experimental heart failure (HF). BACKGROUND Urocortin may participate in cardiovascular function and pressure/volume homeostasis. Its effects in HF are unknown. METHODS Eight normal sheep and eight sheep with pacing-induced HF received ovine Ucn (10, 50, and 100 mg intravenous boluses at 2-h intervals) in vehicle-controlled studies. RESULTS Urocortin boluses dose-dependently increased plasma Ucn (p < 0.001). Pharmacokinetics were similar in normal and HF sheep with half-lives approximating 1.3 and 19.5 h for the first and second phases, respectively. In HF, cardiac output increased (twofold), while peripheral resistance, left atrial pressure (both 50% falls: p < 0.001), and mean arterial pressure (p < 0.05) fell. In normal sheep, changes in peripheral resistance and atrial pressure were blunted and in arterial pressure were directionally opposite. Urocortin induced persistent, dose-dependent falls (30% to 50%) in plasma vasopressin, renin activity, aldosterone, natriuretic peptides (all p < 0.001), and endothelin-1 (p < 0.05) in HF sheep, while adrenocorticotrophic hormone and cortisol levels rose acutely (both p < 0.001). In comparison, Ucn in normal sheep resulted in a similar rise in cortisol and fall in aldosterone, no significant effects on plasma renin activity and natriuretic peptides, and a rise in vasopressin. Urocortin produced dose-dependent, sustained increases in urine volume (twofold, p < 0.01), sodium excretion (>9-fold rise, p < 0.001), and creatinine clearance (p < 0.001) in HF sheep. No significant renal effects were observed in normal sheep. CONCLUSIONS Urocortin has profound and sustained hemodynamic, hormonal, and renal effects in experimental HF. Urocortin may have a role in pressure/volume homeostasis in HF and may provide a novel therapeutic approach to this disease.
Collapse
Affiliation(s)
- Miriam T Rademaker
- Christchurch Cardioendocrine Research Group, Christchurch School of Medicine, Christchurch, New Zealand.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Urocortin (Ucn) is a member of the corticotropin-releasing hormone (CRH)-related peptides that has been reported to have cardiac inotropic and hypertrophic effects. In addition, Ucn mRNA was expressed in cardiac myocytes (MCs) and Ucn was suggested to have cardioprotective effects. Recently, it was reported that Ucn mRNA was expressed in cardiac non-myocytes (NMCs). Based on these facts, Ucn is assumed to affect not only MCs but also NMCs in an autocrine fashion. The present study was designed to elucidate a pathophysiological role of Ucn on NMCs. NMCs were prepared by the discontinuous Percoll gradient and adhesion method. Ucn increased [(3)H]-thymidine uptake into NMCs. Ucn also enhanced endothelin-1-induced increase of [(3)H]-thymidine uptake into NMCs. Effects of Ucn on [(3)H]-thymidine uptake into NMCs were significantly abolished by the protein kinase A inhibitor, H89 (10(-5) M), but not by a competitive antagonist of CRH receptors, astressin (10(-5) M). Ucn also increased intracellular cAMP accumulation more potently than CRH on a molar basis. Finally, both MCs and NMCs also secreted Ucn. Together with the recent findings, at least in NMCs, these data suggest that Ucn could exert its own actions via the cAMP signaling pathway, but not through known CRH type 2 receptors, in an autocrine fashion. In conclusion, the present study indicated that Ucn was secreted not only from MCs but also from NMCs and that the primary source of Ucn acting on heart was the heart itself. On the other hand, Ucn could proliferate NMCs as well as MCs, suggesting that Ucn could be involved in cardiac hypertrophy and fibrosis, i.e., cardiac remodeling, in spite of its putative cardioprotective actions.
Collapse
Affiliation(s)
- Keiichi Ikeda
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, 3-25-8, Nishishinbashi, Minatoku, Tokyo 105-8461, Japan
| | | | | | | |
Collapse
|
46
|
Scarabelli TM, Pasini E, Stephanou A, Comini L, Curello S, Raddino R, Ferrari R, Knight R, Latchman DS. Urocortin promotes hemodynamic and bioenergetic recovery and improves cell survival in the isolated rat heart exposed to ischemia/reperfusion. J Am Coll Cardiol 2002; 40:155-61. [PMID: 12103270 DOI: 10.1016/s0735-1097(02)01930-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES This study evaluates the hemodynamic, bioenergetic and cytoprotective effects of urocortin (Ucn) in the isolated rat heart exposed to ischemia (I)/reperfusion (R). BACKGROUND We have previously demonstrated that administration of exogenous Ucn reduces infarct size in ischemic-reperfused rat hearts. METHODS Urocortin 10(-8)M was added to the perfusate before I, before I and during R, and during R alone in the isolated pulsed rat heart exposed to 35 min I followed by 60 min R. RESULTS Partial to complete recovery of diastolic pressure and developed pressure was seen irrespective of when Ucn was perfused. In particular, beneficial effects are observed when Ucn is only given during R. Urocortin given only before I, and before I and over R, although not during R alone, also produces significant recovery of high-energy phosphate pools. In each group, improvement in ventricular function is associated with reduction both in myocardial damage, assessed by creatine phosphokinase release, and in endothelial cell and cardiomyocyte apoptosis, assessed by caspase 3 activity and fluorescent-based terminal deoxynucleotidyl transferase mediated nick end labelling enhanced with counterstains. These improvements in ventricular performance, bioenergetics and cell survival are not secondary to any inotropic effects of Ucn. CONCLUSIONS This is the first report to show enhanced cardiac function induced by Ucn during I/R. Because the cytoprotective and functional benefits are still produced when Ucn is given only at R, these data suggest that Ucn may be useful clinically in the management of myocardial infarction.
Collapse
Affiliation(s)
- Tiziano M Scarabelli
- Medical Molecular Biology Unit, Institute of Child Health and Great Ormond Street Hospital, University College London, London, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Railson JE, Liao Z, Brar BK, Buddle JC, Pennica D, Stephanou A, Latchman DS. Cardiotrophin-1 and urocortin cause protection by the same pathway and hypertrophy via distinct pathways in cardiac myocytes. Cytokine 2002; 17:243-53. [PMID: 12027405 DOI: 10.1006/cyto.2001.1011] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiotrophin-1 (CT-1) is an Interleukin-6 family cytokine with known hypertrophic and protective effects in cardiac cells. CT-1 and the corticotrophin releasing hormone-like hormone urocortin protect cardiac myocytes by the same p42/44 mitogen activated protein kinase (p42/44 MAPK) dependent pathway. We investigated whether urocortin is also hypertrophic in cardiac myocytes and whether it shares a common pathway with CT-1 for this effect. Moreover, we also investigated, for the first time whether CT-1 and urocortin can induce hypertrophy in cultured adult as opposed to neonatal cardiac cells. Urocortin and CT-1 caused hypertrophy (as measured by an increase in cell area and enhanced protein: DNA ratio) in both adult and neonatal rat cultured cardiac myocytes. The hypertrophic effect of CT-1 was dependent on the signal transducer and activator of transcription 3 (STAT3) pathway but the hypertrophic effect of urocortin was independent of this pathway. In contrast, inhibition of the protective p42/p44 MAPK pathway has no effect on the hypertrophic effect of CT-1 or urocortin. Additionally, inhibition of the STAT3 pathway has no effect on the protective effect of CT-1 or urocortin. These results identify urocortin as a novel hypertrophic and protective agent whose hypertrophic effect is mediated by a distinct pathway to that activated by CT-1, although the two factors mediate protection via the same pathway.
Collapse
Affiliation(s)
- Julia E Railson
- Medical Molecular Biology Unit, University College London, 30 Guilford Street, London, WC1N 1EH, UK.
| | | | | | | | | | | | | |
Collapse
|
48
|
Huang Y, Chan FL, Lau CW, Tsang SY, He GW, Chen ZY, Yao X. Urocortin-induced endothelium-dependent relaxation of rat coronary artery: role of nitric oxide and K+ channels. Br J Pharmacol 2002; 135:1467-76. [PMID: 11906960 PMCID: PMC1573252 DOI: 10.1038/sj.bjp.0704587] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. The mechanisms underlying the vasodilator response to urocortin are incompletely understood. The present study was designed to examine the role of endothelial nitric oxide and Ba(2+)-sensitive K(+) channels in the endothelium-dependent component of urocortin-induced relaxation in the rat left anterior descending coronary artery. 2. Urocortin induced both endothelium-dependent and -independent relaxation with respective pD(2) of 8.64+/-0.03 and 7.90+/-0.10. Removal of endothelium reduced the relaxing potency of urocortin. In rings pretreated with 10(-4) M N(G)-nitro-L-arginine methyl ester, 10(-5) M methylene blue or 10(-5) M ODQ, the urocortin-induced relaxation was similar to that observed in endothelium-denuded rings. L-Arginine (5x10(-4) M) antagonized the effect of N(G)-nitro-L-arginine methyl ester. 3. The relaxant response to urocortin was reduced in endothelium-intact rings preconstricted by 3.5x10(-2) M K(+) and abolished when extracellular K(+) was raised to 5x10(-2) M. Pretreatment with 10(-4) M BaCl(2) significantly inhibited urocortin-induced relaxation. Combined treatment with 10(-4) M BaCl(2) plus 10(-4) M N(G)-nitro-L-arginine methyl ester did not cause further inhibition. In urocortin (10(-8) M)-relaxed rings, BaCl(2) induced concentration-dependent reversal in vessel tone. Tertiapin-Q (10(-6) M) also attenuated urocortin-induced relaxation. In contrast, BaCl(2) did not alter urocortin-induced relaxation in endothelium-denuded rings. 4. In endothelium-denuded rings, hydroxylamine- and nitroprusside-induced relaxation was inhibited by 10(-4) M BaCl(2), but not by 10(-6) M tertiapin-Q. 5. The endothelium of the coronary artery was moderately stained with the antiserum against urocortin. 6. Taken together, the present results indicate that the urocortin-induced endothelium-dependent relaxation of rat coronary arteries is likely attributable to endothelial nitric oxide and subsequent activation of Ba(2+)- or tertiapin-Q-sensitive K(+) channels. The urocortin-induced endothelium-dependent relaxation appears to be mediated by cyclic GMP-dependent mechanisms.
Collapse
Affiliation(s)
- Yu Huang
- Department of Physiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Urocortin is a potent regulator of cardiac function, with actions that are prolonged in experimental animals. These changes are mediated via binding to CRH receptors found in peripheral tissues. The diversity of actions of urocortin on behaviour, appetite, inflammation and the cardiovascular system suggest that this peptide may be an endogenous factor mediating actions previously attributed to CRH. The present review will focus on the recent understanding of mechanisms mediating the cardiovascular actions of urocortin and CRH reported to date.
Collapse
Affiliation(s)
- D G Parkes
- Amylin Pharmaceuticals Inc., 9373 Towne Centre Drive, San Diego, CA 92121, USA.
| | | | | |
Collapse
|
50
|
Nishikimi T, Miyata A, Horio T, Yoshihara F, Nagaya N, Takishita S, Yutani C, Matsuo H, Matsuoka H, Kangawa K. Urocortin, a member of the corticotropin-releasing factor family, in normal and diseased heart. Am J Physiol Heart Circ Physiol 2000; 279:H3031-9. [PMID: 11087261 DOI: 10.1152/ajpheart.2000.279.6.h3031] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present study we investigated the form of expression, action, second messenger, and the cellular location of urocortin, a member of the corticotropin-releasing factor (CRF) family, in the heart. Urocortin mRNA, as shown by quantitative RT-PCR analysis, is expressed in the cultured rat cardiac nonmyocytes (NMC) as well as myocytes (MC) in the heart, whereas CRF receptor type 2beta (CRF-R2beta), presumed urocortin receptor mRNA, is predominantly expressed in MC compared with NMC. Urocortin mRNA expression is higher in left ventricular (LV) hypertrophy than in normal LV, whereas CRF-R2beta mRNA expression is markedly depressed in LV hypertrophy compared with normal LV. Urocortin more potently increased the cAMP levels in both MC and NMC than did CRF, and its effect was more potent in MC than in NMC. Urocortin significantly increased protein synthesis by [(14)C]Phe incorporations and atrial natriuretic peptide secretion in MC and collagen and increased DNA synthesis by [(3)H]prolin and [(3)H]Thy incorporations in NMC. An immunohistochemical study revealed that urocortin immunoreactivity was observed in MC in the normal human heart and that it was more intense in the MC of the human failing heart than in MC of the normal heart. These results, together with the recent evidence of urocortin for positive inotropic action, suggest that increased urocortin in the diseased heart may modulate the pathophysiology of cardiac hypertrophy or failing heart, at least in part, via cAMP signaling pathway.
Collapse
Affiliation(s)
- T Nishikimi
- Research Institute, National Cardiovascular Center, Suita, Osaka 565, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|