1
|
Wu S, Fu J, Dong Y, Yi Q, Lu D, Wang W, Qi Y, Yu R, Zhou X. GOLPH3 promotes glioma progression via facilitating JAK2-STAT3 pathway activation. J Neurooncol 2018; 139:269-279. [PMID: 29713848 DOI: 10.1007/s11060-018-2884-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/23/2018] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Our recent work reported that GOLPH3 promotes glioma progression via inhibiting endocytosis and degradation of EGFR. The current study aimed to explore the potential regulating mechanism of GOLPH3 on JAK2-STAT3 signaling, a downstream effector of EGFR, in glioma progression. METHODS The expression of JAK2, STAT3 and GOLPH3 in glioma tissues was detected by western blotting, tissue microarray and immunohistochemistry. The U251 and U87 cells with GOLPH3 down-regulation or over-expression were generated by lentivirus system. The effects of GOLPH3 on the activity of JAK2 and STAT3 were detected by western blotting and reverse transcription polymerase chain reaction. Co-immunoprecipitation was used to detect the association of GOLPH3 with JAK2 and STAT3. Cell proliferation was detected by CCK8 and EdU assay. RESULTS The level of JAK2, STAT3 and GOLPH3 were significantly up-regulated and exhibited pairwise correlation in human glioma tissues. The level of p-JAK2 and p-STAT3, as well as the mRNA and protein levels of cyclin D1 and c-myc, two target genes of STAT3, decreased after GOLPH3 down-regulation, while they increased after GOLPH3 over-expression both in U251 and U87 cells. Interestingly, GOLPH3, JAK2 and STAT3 existed in the same protein complex and GOLPH3 affected the interaction of JAK2 and STAT3. Importantly, down-regulation of STAT3 partially abolished cell proliferation induced by GOLPH3 over-expression. CONCLUSIONS GOLPH3 may act as a scaffold protein to regulate JAK2-STAT3 interaction and then its activation, which therefore mediates the effect of GOLPH3 on cell proliferation.
Collapse
Affiliation(s)
- Shishuang Wu
- The Graduate School, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Jiale Fu
- The Graduate School, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Yu Dong
- The Graduate School, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Qinghao Yi
- The Graduate School, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Dong Lu
- Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou, 221002, Jiangsu, People's Republic of China.,Brain Hospital, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Weibing Wang
- The Graduate School, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Yanhua Qi
- The Graduate School, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China.,Emergency Center of the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Rutong Yu
- Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou, 221002, Jiangsu, People's Republic of China. .,Brain Hospital, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, People's Republic of China.
| | - Xiuping Zhou
- Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou, 221002, Jiangsu, People's Republic of China. .,Brain Hospital, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, People's Republic of China.
| |
Collapse
|
2
|
Kuge H, Ohashi K, Yokoyama T, Kanehiro H, Hisanaga M, Koyama F, Bumgardner GL, Kosai KI, Nakajima Y. Genetic Modification of Hepatocytes towards Hepatocyte Transplantation and Liver Tissue Engineering. Cell Transplant 2017; 15:1-12. [DOI: 10.3727/000000006783982214] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cell-based therapies, including liver tissue engineering following hepatocyte transplantation, have therapeutic potential for several types of liver diseases. Modifications in the methodology to manipulate the donor hepatocytes in a more simple and timely manner prior to transplantation would enhance the therapeutic efficacy of this procedure. Conventional approach for vector-mediated gene transduction to the isolated hepatocytes has been performed under primary culture conditions that routinely require several days to complete. In our study, we have established a clinically feasible approach that requires only 1 h of infection time with an adenoviral vector system that results in an extremely efficient transduction efficiency (>80%). To optimize transduction efficiency and sustain normal cellular function, we determined that the isolated hepatocytes should be maintained in UW solution as a suspension medium and infected with adenoviral vectors (Ad) for no more than 1 h at a MOI of 1. To establish if the isolated hepatocytes could be used as a source for cell-based therapies, we transplanted the Ad-transduced hepatocytes into the liver or under the kidney capsule. When the cells were transplanted into the liver, Ad-transduced hepatocytes cultured in suspension conditions were found to have a significantly higher survival rate (p < 0.01) than Ad-transduced hepatocytes cultured under standard conditions. We also confirmed that these Ad-transduced hepatocytes have ability to survive long term and were able to engineer a biologically active hepatic tissue under the kidney capsule. Finally, we obtained high level of transduction into canine, porcine, and human isolated hepatocytes in a suspension solution mixed with Ad. In conclusion, the present studies demonstrate that isolated hepatocytes could be genetically modified using Ad when kept in a suspension solution. For this reason, this cell-modified technique could be used for the treatment of liver-targeted diseases and/or disorders.
Collapse
Affiliation(s)
- Hiroyuki Kuge
- Department of Surgery, Nara Medical University, Nara, Japan
| | - Kazuo Ohashi
- Department of Surgery, Nara Medical University, Nara, Japan
| | | | | | | | | | - Ginny L. Bumgardner
- Department of Surgery, Ohio State University Medical Center, Columbus, OH, USA
| | - Ken-Ichiro Kosai
- Division of Gene Therapy and Regenerative Medicine, Cognitive and Molecular Research Institute for Brain Diseases, Kurume University, Kurume, Japan
| | | |
Collapse
|
3
|
Desai SS, Tung JC, Zhou VX, Grenert JP, Malato Y, Rezvani M, Español-Suñer R, Willenbring H, Weaver VM, Chang TT. Physiological ranges of matrix rigidity modulate primary mouse hepatocyte function in part through hepatocyte nuclear factor 4 alpha. Hepatology 2016; 64:261-75. [PMID: 26755329 PMCID: PMC5224931 DOI: 10.1002/hep.28450] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 01/07/2016] [Indexed: 12/13/2022]
Abstract
UNLABELLED Matrix rigidity has important effects on cell behavior and is increased during liver fibrosis; however, its effect on primary hepatocyte function is unknown. We hypothesized that increased matrix rigidity in fibrotic livers would activate mechanotransduction in hepatocytes and lead to inhibition of liver-specific functions. To determine the physiologically relevant ranges of matrix stiffness at the cellular level, we performed detailed atomic force microscopy analysis across liver lobules from normal and fibrotic livers. We determined that normal liver matrix stiffness was around 150 Pa and increased to 1-6 kPa in areas near fibrillar collagen deposition in fibrotic livers. In vitro culture of primary hepatocytes on collagen matrix of tunable rigidity demonstrated that fibrotic levels of matrix stiffness had profound effects on cytoskeletal tension and significantly inhibited hepatocyte-specific functions. Normal liver stiffness maintained functional gene regulation by hepatocyte nuclear factor 4 alpha (HNF4α), whereas fibrotic matrix stiffness inhibited the HNF4α transcriptional network. Fibrotic levels of matrix stiffness activated mechanotransduction in primary hepatocytes through focal adhesion kinase. In addition, blockade of the Rho/Rho-associated protein kinase pathway rescued HNF4α expression from hepatocytes cultured on stiff matrix. CONCLUSION Fibrotic levels of matrix stiffness significantly inhibit hepatocyte-specific functions in part by inhibiting the HNF4α transcriptional network mediated through the Rho/Rho-associated protein kinase pathway. Increased appreciation of the role of matrix rigidity in modulating hepatocyte function will advance our understanding of the mechanisms of hepatocyte dysfunction in liver cirrhosis and spur development of novel treatments for chronic liver disease. (Hepatology 2016;64:261-275).
Collapse
Affiliation(s)
- Seema S. Desai
- Department of Surgery, University of California, San Francisco
| | - Jason C. Tung
- Department of Surgery, University of California, San Francisco,Center for Bioengineering and Tissue Regeneration, University of California, San Francisco
| | - Vivian X. Zhou
- Department of Surgery, University of California, San Francisco
| | - James P. Grenert
- Department of Pathology, University of California, San Francisco,Liver Center, University of California, San Francisco
| | - Yann Malato
- Department of Surgery, University of California, San Francisco
| | - Milad Rezvani
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco
| | - Regina Español-Suñer
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco
| | - Holger Willenbring
- Department of Surgery, University of California, San Francisco,Liver Center, University of California, San Francisco,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco
| | - Valerie M. Weaver
- Department of Surgery, University of California, San Francisco,Center for Bioengineering and Tissue Regeneration, University of California, San Francisco
| | - Tammy T. Chang
- Department of Surgery, University of California, San Francisco,Liver Center, University of California, San Francisco
| |
Collapse
|
4
|
Abstract
Liver regeneration is perhaps the most studied example of compensatory growth aimed to replace loss of tissue in an organ. Hepatocytes, the main functional cells of the liver, manage to proliferate to restore mass and to simultaneously deliver all functions hepatic functions necessary to maintain body homeostasis. They are the first cells to respond to regenerative stimuli triggered by mitogenic growth factor receptors MET (the hepatocyte growth factor receptor] and epidermal growth factor receptor and complemented by auxiliary mitogenic signals induced by other cytokines. Termination of liver regeneration is a complex process affected by integrin mediated signaling and it restores the organ to its original mass as determined by the needs of the body (hepatostat function). When hepatocytes cannot proliferate, progenitor cells derived from the biliary epithelium transdifferentiate to restore the hepatocyte compartment. In a reverse situation, hepatocytes can also transdifferentiate to restore the biliary compartment. Several hormones and xenobiotics alter the hepatostat directly and induce an increase in liver to body weight ratio (augmentative hepatomegaly). The complex challenges of the liver toward body homeostasis are thus always preserved by complex but unfailing responses involving orchestrated signaling and affecting growth and differentiation of all hepatic cell types.
Collapse
Affiliation(s)
- George K Michalopoulos
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
5
|
Abstract
Liver regeneration is known to be a process involving highly organized and ordered tissue growth triggered by the loss of liver tissue, and remains a fascinating topic. A large number of genes are involved in this process, and there exists a sequence of stages that results in liver regeneration, while at the same time inhibitors control the size of the regenerated liver. The initiation step is characterized by priming of quiescent hepatocytes by factors such as TNF-α, IL-6 and nitric oxide. The proliferation step is the step during which hepatocytes enter into the cell cycle's G1 phase and are stimulated by complete mitogens including HGF, TGF-α and EGF. Hepatic stimulator substance, glucagon, insulin, TNF-α, IL-1 and IL-6 have also been implicated in regulating the regeneration process. Inhibitors and stop signals of hepatic regeneration are not well known and only limited information is available. Furthermore, the effects of other factors such as VEGF, PDGF, hypothyroidism, proliferating cell nuclear antigen, heat shock proteins, ischemic-reperfusion injury, steatosis and granulocyte colony-stimulating factor on liver regeneration are also systematically reviewed in this article. A tissue engineering approach using isolated hepatocytes for in vitro tissue generation and heterotopic transplantation of liver cells has been established. The use of stem cells might also be very attractive to overcome the limitation of donor liver tissue. Liver-specific differentiation of embryonic, fetal or adult stem cells is currently under investigation.
Collapse
Affiliation(s)
- Changku Jia
- Department of Hepatobiliary Surgery, Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China.
| |
Collapse
|
6
|
Lazarevich NL, Fleishman DI. Tissue-specific transcription factors in progression of epithelial tumors. BIOCHEMISTRY (MOSCOW) 2008; 73:573-91. [PMID: 18605982 DOI: 10.1134/s0006297908050106] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Dedifferentiation and epithelial-mesenchymal transition are important steps in epithelial tumor progression. A central role in the control of functional and morphological properties of different cell types is attributed to tissue-specific transcription factors which form regulatory cascades that define specification and differentiation of epithelial cells during embryonic development. The main principles of the action of such regulatory systems are reviewed on an example of a network of hepatocyte nuclear factors (HNFs) which play a key role in establishment and maintenance of hepatocytes--the major functional type of liver cells. HNFs, described as proteins binding to promoters of most hepatospecific genes, not only control expression of functional liver genes, but are also involved in regulation of proliferation, morphogenesis, and detoxification processes. One of the central components of the hepatospecific regulatory network is nuclear receptor HNF4alpha. Derangement of the expression of this gene is associated with progression of rodent and human hepatocellular carcinomas (HCCs) and contributes to increase of proliferation, loss of epithelial morphology, and dedifferentiation. Dysfunction of HNF4alpha during HCC progression can be either caused by structural changes of this gene or occurs due to modification of up-stream regulatory signaling pathways. Investigations preformed on a model system of the mouse one-step HCC progression have shown that the restoration of HNF4alpha function in dedifferentiated cells causes partial reversion of malignant phenotype both in vitro and in vivo. Derangement of HNFs function was also described in other tumors of epithelial origin. We suppose that tissue-specific factors that underlie the key steps in differentiation programs of certain tissues and are able to receive or modulate signals from the cell environment might be considered as promising candidates for the role of tumor suppressors in the tissue types where they normally play the most significant role.
Collapse
Affiliation(s)
- N L Lazarevich
- Institute of Carcinogenesis, Blokhin Russian Cancer Research Center, Russian Academy of Medical Sciences, Moscow 115478, Russia.
| | | |
Collapse
|
7
|
Wauthier E, Schmelzer E, Turner W, Zhang L, LeCluyse E, Ruiz J, Turner R, Furth M, Kubota H, Lozoya O, Barbier C, McClelland R, Yao H, Moss N, Bruce A, Ludlow J, Reid L. Hepatic Stem Cells and Hepatoblasts: Identification, Isolation, and Ex Vivo Maintenance. Methods Cell Biol 2008; 86:137-225. [DOI: 10.1016/s0091-679x(08)00008-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Abstract
Nickel is a widely distributed metal that is industrially applied in many forms. Accumulated epidemiological evidence confirms that exposures to nickel compounds are associated with increased nasal and lung cancer incidence, both in mostly occupational exposures. Although the molecular mechanisms by which nickel compounds cause cancer are still under intense investigation, the carcinogenic actions of nickel compounds are thought to involve oxidative stress, genomic DNA damage, epigenetic effects, and the regulation of gene expression by activation of certain transcription factors related to corresponding signal transduction pathways. The present review summarizes our current knowledge on the molecular mechanisms of nickel carcinogenesis, with special emphasis on the role of nickel induced reactive oxygen species (ROS) and signal transduction pathways.
Collapse
Affiliation(s)
- Haitian Lu
- Nelson Institute of Environmental Medicine, School of Medicine, New York University, Tuxedo, New York 10987, USA
| | | | | | | |
Collapse
|
9
|
Ohashi K, Waugh JM, Dake MD, Yokoyama T, Kuge H, Nakajima Y, Yamanouchi M, Naka H, Yoshioka A, Kay MA. Liver tissue engineering at extrahepatic sites in mice as a potential new therapy for genetic liver diseases. Hepatology 2005; 41:132-40. [PMID: 15619229 DOI: 10.1002/hep.20484] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Liver tissue engineering using hepatocyte transplantation has been proposed as an alternative to whole-organ transplantation or liver-directed gene therapy to correct various types of hepatic insufficiency. Hepatocytes are not sustained when transplanted under the kidney capsule of syngeneic mice. However, when we transplanted hepatocytes with the extracellular matrix components extracted from Engelbreth-Holm-Swarm cells, hepatocytes survived for at least 140 days and formed small liver tissues. Liver engineering in hemophilia A mice reconstituted 5% to 10% of normal clotting activity, enough to reduce the bleeding time and have a therapeutic benefit. Conversely, the subcutaneous space did not support the persistent survival of hepatocytes with Engelbreth-Holm-Swarm gel matrix. We hypothesized that establishing a local vascular network at the transplantation site would reduce graft loss. To test this idea, we provided a potent angiogenic agent before hepatocyte transplantation into the subcutaneous space. With this procedure, persistent survival was achieved for the length of the experiment (120 days). To establish that these engineered liver tissues also retained their native regeneration potential in vivo, we induced two different modes of proliferative stimulus to the naive liver and confirmed that hepatocytes within the extrahepatic tissues regenerated with activity similar to that of naive liver. In conclusion, our studies indicate that liver tissues can be engineered and maintained at extrahepatic sites, retain their capacity for regeneration in vivo, and used to successfully treat genetic disorders.
Collapse
Affiliation(s)
- Kazuo Ohashi
- Department of Pediatrics and Genetics, Stanford University Medical Center, Stanford, CA 94305-5208, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hakoda T, Yamamoto K, Terada R, Okano N, Shimada N, Suzuki T, Mizuno M, Shiratori Y. A crucial role of hepatocyte nuclear factor-4 expression in the differentiation of human ductular hepatocytes. J Transl Med 2003; 83:1395-402. [PMID: 14563941 DOI: 10.1097/01.lab.0000092229.93203.57] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Ductular structures are suggested to be bipotential progenitor cells that may differentiate into hepatocytes or biliary epithelial cells (BEC). To better understand the differentiation process, we studied the expression of hepatocyte nuclear factor (HNF) in ductular structures. Matured hepatocytes in normal liver expressed HNF-1, HNF-4alpha, HNF-3beta, and C/EBPalpha in the nucleus. Normal BEC expressed HNF-1 but did not express HNF-4alpha, suggesting an important role of HNF-4alpha in maintaining the phenotype of matured hepatocytes. Ductular structures were classified into ductular cells and ductular hepatocytes. Ductular cells showed glandular or bile duct-like appearance and strongly expressed cytokeratin-7. Ductular hepatocytes showed features between BEC and hepatocytes and heterogeneously expressed cytokeratin-7. Both ductular cells and ductular hepatocytes expressed HNF-4alpha, but the nuclear localization of HNF-4alpha was more prominent in ductular hepatocytes. The expression of HNF-4alpha mRNA in ductular hepatocytes was demonstrated at the single cell level by laser capture microdissection. Regenerative hepatocytes strongly expressed all HNFs in the nucleus, whereas residual hepatocytes in massive necrosis showed low or cytoplasmic expression. These results suggest that HNF-4alpha plays an important role in the differentiation and maintenance of the matured hepatocyte phenotype and that nuclear localization of HNFs is implicated in the accomplishment of their function.
Collapse
Affiliation(s)
- Tomomi Hakoda
- Department of Medicine and Medical Science, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Guren TK, Ødegård J, Abrahamsen H, Thoresen GH, Susa M, Andersson Y, Østby E, Christoffersen T. EGF receptor-mediated, c-Src-dependent, activation of Stat5b is downregulated in mitogenically responsive hepatocytes. J Cell Physiol 2003; 196:113-23. [PMID: 12767047 DOI: 10.1002/jcp.10282] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Signal transducer and activator of transcription (STAT) proteins may be activated by epidermal growth factor (EGF), but their role in EGF receptor-mediated mitogenic signaling is not clear. We previously showed that Stat5b was activated by EGF in rat hepatocytes in primary monolayer culture. In the present study, we found that EGF induced tyrosine phosphorylation of Stat5b both on Tyr-699, which correlated with specific DNA binding activity, and also on other tyrosine residues. The Src tyrosine kinase inhibitor CGP77675 blocked the EGF-induced activation of Stat5b, but did not affect the Stat5b activation by growth hormone (GH) or prolactin (PRL). The Stat5b response to EGF was most pronounced soon (3 h) after plating (early G(1)) and at high cell density (50,000 hepatocytes per cm(2)). However, at this cell density EGF did not stimulate DNA synthesis. In hepatocytes at 24 h of culturing (mid/late G(1)) with 20,000 cells per cm(2), EGF induced strong phosphorylation of the EGF receptor, as well as Shc and ERK, and stimulated DNA synthesis, but did not activate Stat5b, although the Stat5b response to GH or PRL was retained. A strong GH-induced Stat5b activation neither influenced the DNA synthesis alone nor enhanced the mitogenic effect of EGF. The results show that EGF induces tyrosine phosphorylation and DNA-binding activity of Stat5b in a manner different from GH and PRL, apparently by a Src-dependent mechanism. The data also provide further evidence that Stat5b is not required for mitogenic signaling from the EGF receptor.
Collapse
Affiliation(s)
- Tormod K Guren
- Department of Pharmacology, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Wu R, Sun S, Steinberg BM. Requirement of STAT3 activation for differentiation of mucosal stratified squamous epithelium. Mol Med 2003; 9:77-84. [PMID: 12865943 PMCID: PMC1430729 DOI: 10.2119/2003-00001.wu] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
STAT3, a member of the signal transducers and activators of transcription (STAT) family, has been shown to play a key role in promoting proliferation, differentiation, or cell cycle progression, depending on cell type. A number of signaling pathways are altered in laryngeal papillomas, benign tumors induced by human papillomavirus 6/11. Papillomas overexpress the epidermal growth factor receptor and display enhanced MAP kinase and PI-3-kinase activity. They also show reduced activation of Akt and reduced levels of tyrosine-phosphorylated STAT3, due to overexpression of the tumor suppressor, PTEN. As papillomas show abnormalities in terminal differentiation, we examined the potential role of STAT3 in regulating epithelial differentiation. Laryngeal epithelial cells were suspended in supplemented serum-free medium. Differentiation was measured by Western blot analysis of keratin 13. Normal laryngeal epithelial cells were transfected with a constitutively active STAT3 or a dominant negative STAT3. Cells were transferred to suspension culture 24 h after transfection. Increased expression of keratin 13 was accompanied by the activation of STAT3 when differentiation was induced, and expression of a constitutively active STAT3 (STAT3C) enhanced the expression of keratin 13. In contrast, expression of a dominant negative STAT3 (Y705F) inhibited the expression of keratin 13. We conclude that activation of STAT3 is required for the differentiation of normal human stratified squamous epithelium.
Collapse
Affiliation(s)
- Rong Wu
- North Shore-Long Island Jewish Research Institute, New Hyde Park, NY, USA.
| | | | | |
Collapse
|
13
|
Abstract
Liver development is a sequential array of distinct biological events. Each step of differentiation is regulated by intrinsically programmed mechanisms as well as by extracellular signals. The establishment of cell culture systems that recapitulate each stage of liver development has led to the identification of several extracellular signals that affect hepatocytic differentiation. Furthermore, studies on genetically engineered animals, especially knockout and transgenic mice, have highlighted a number of molecules essential for liver development. By applying primary culture techniques to analyses of mutant mice, it is now possible to link extracellular signals to intracellular pathways that provoke cellular responses of differentiation. Improvement in gene transfer technology utilizing viral vectors has further expanded the molecular analysis of liver development. In this review article, we summarize recent advances and attempt to describe the molecular basis of liver development from beginning to end as a sequential event.
Collapse
Affiliation(s)
- Taisei Kinoshita
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo, Japan
| | | |
Collapse
|
14
|
Kamiya A, Kojima N, Kinoshita T, Sakai Y, Miyaijma A. Maturation of fetal hepatocytes in vitro by extracellular matrices and oncostatin M: induction of tryptophan oxygenase. Hepatology 2002; 35:1351-9. [PMID: 12029620 DOI: 10.1053/jhep.2002.33331] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Previously, we described that embryonic day 14.5 (E14.5) mouse fetal hepatocytes differentiate to express tyrosine amino transferase (TAT) and glucose-6-phosphatase, which are expressed in the perinatal liver, in response to oncostatin M (OSM) or in high-cell-density culture. However, under such conditions, fetal hepatic cells failed to express genes for adult liver-specific enzymes, such as tryptophan oxygenase (TO). Although phenobarbital (PB) and dimethylsulfoxide (DMSO) have been known to maintain the functions of adult hepatocytes in vitro, they failed to induce TO expression in fetal hepatic cells. Thus far, no system has been developed that reproduces terminal differentiation of fetal hepatocytes in vitro. Here, we describe that extracellular matrices derived from Engelbreth-Holm-Swarm sarcoma (EHS) in combination with OSM or high-cell-density culture induced expression of TO as well as cytochrome P450 genes that are involved in detoxification. However, EHS alone was insufficient to induce expression of TO, although it induced TAT expression in fetal hepatocytes. In addition, high-density culture further augmented differentiation. In conclusion, the combination of signals by cytokines, cell-cell contact, and cell-matrix interaction is required for induction of adult liver functions in fetal hepatocytes in vitro. This primary culture system will be useful for studying the mechanism of liver development.
Collapse
Affiliation(s)
- Akihide Kamiya
- Stem Cell Regulation Project, Kanagawa Academy of Science and Technology, Miyamae-ku, Kawasaki, Kanagawa, Japan
| | | | | | | | | |
Collapse
|
15
|
Anderson SP, Dunn CS, Cattley RC, Corton JC. Hepatocellular proliferation in response to a peroxisome proliferator does not require TNFalpha signaling. Carcinogenesis 2001; 22:1843-51. [PMID: 11698348 DOI: 10.1093/carcin/22.11.1843] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Rodents exposed to peroxisome proliferator xenobiotics respond with marked increases in hepatocellular replication and growth that results in tumor formation. Recently, tumor necrosis factor-alpha (TNFalpha) was proposed as the central mediator of this maladaptive response. To define the role of TNFalpha signaling in hepatocellular growth induced by peroxisome proliferators we administered three daily gavage doses of the potent peroxisome proliferator, Wy-14 643, to mice nullizygous for TNF-receptor I (TNFR1), TNFR2, or both receptors. We demonstrate here that regardless of genotype the mice responded with almost identical increases in liver to body weight ratios and hepatocyte proliferation. Lacking evidence that TNFalpha signaling mediates these effects, we then examined the possible contribution of alternative cytokine pathways. Semi-quantitative, reverse transcriptase polymerase chain reaction analysis revealed that wild type mice acutely exposed to Wy-14 643 had increased hepatic expression of Il1beta, Il1r1, Hnf4, and Stat3 genes. Moreover, hepatic adenomas from mice chronically exposed to Wy-14 643 had increased expression of Il1beta, Il1r1, Il6, and Ppargamma1. Expression of Il1alpha, Tnfalpha, Tnfr1, Tnfr2, Pparalpha, or C/ebpalpha was not altered by acute Wy-14 643 exposure or in adenomas induced by Wy-14643. These data suggest that the hepatic mitogenesis and carcinogenesis associated with peroxisome proliferator exposure is not mediated via TNFalpha but instead may involve an alternative pathway requiring IL1beta and IL6.
Collapse
Affiliation(s)
- S P Anderson
- CIIT Centers for Health Research, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
16
|
Mizuguchi T, Hui T, Palm K, Sugiyama N, Mitaka T, Demetriou AA, Rozga J. Enhanced proliferation and differentiation of rat hepatocytes cultured with bone marrow stromal cells. J Cell Physiol 2001; 189:106-119. [PMID: 11573209 DOI: 10.1002/jcp.1136] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Liver transplantation is the only clinically effective method of treating acute liver failure. However, wider application of this therapeutic modality is restricted primarily by shortage of donor organs. In the search for alternative methods of liver replacement therapy, investigators have focused on transplantation of normal allogeneic hepatocytes and on the development of liver support systems utilizing isolated hepatocytes. Since all human livers suitable for cell harvest are being used for transplantation, hepatocyte therapy using human tissue would require growing of cells in vitro. Unfortunately, although hepatocytes have tremendous capacity to proliferate in vivo, their ability to grow in culture is severely limited. Stromal cells from bone marrow and other blood-forming organs have been found to support hematopoiesis. In this paper, we show that bone marrow-derived stromal cells (BMSCs) enhance proliferation and support differentiation of rat hepatocytes in culture. Further, we demonstrate that in hepatocyte/BMSC co-cultures, clonal expansion of small hepatocytes (SH) is increased. Using semipermeable membrane cultures, we established that direct cell-cell contact is necessary for stimulation of cell proliferation. We also show that BMSCs which are in direct contact with hepatocytes and SH colonies express Jagged1. This suggests a potential role for Notch signaling in the observed effects. Finally, we present evidence that the expression and activity of liver specific transcription factors, CCAAT/enhancer binding proteins and liver specific key enzymes such as tryptophan 2,3-dioxygenase, are improved in hepatocyte/BMSC co-cultures. In conclusion, results of this study indicate that BMSCs could facilitate proliferation and differentiation of primary rat hepatocytes and their progenitors (SH) in vitro.
Collapse
Affiliation(s)
- T Mizuguchi
- Liver Support Research Laboratory, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, California 90048, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
NISHIO HAJIME, MATSUI KIYOSHI, TSUJI HIROKO, TAMURA AKIYOSHI, SUZUKI KOICHI. Immunolocalisation of the janus kinases (JAK)--signal transducers and activators of transcription (STAT) pathway in human epidermis. J Anat 2001; 198:581-9. [PMID: 11430697 PMCID: PMC1468247 DOI: 10.1046/j.1469-7580.2001.19850581.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The janus kinases (JAK) and signal transducers and activators of the transcription (STAT) pathway have been shown to be activated by a number of cytokines or growth factors and to play significant roles in the differentiation of various cell types. In the present study, we investigated the distribution of the JAK-STAT pathway using immunohistochemistry in the human epidermis. Each element of the pathway showed abundant and differential expression in the epidermis. The differential distribution of the elements was most strikingly observed in the horny keratinised cell and granular layers of the epidermis. JAK2, JAK3, STAT1 and STAT5 were expressed in high amounts, and JAK1, TYK2, STAT2, STAT3, STAT4 and STAT6 to a much lesser extent in the horny cell layer. JAK3, TYK2, STAT2, STAT3, STAT4 and STAT6 were more abundantly expressed in the granular layer than the lower layers of the epidermis. JAK1, STAT1 and STAT5 were expressed at almost the same levels in the various layers of the epidermis. These results show that elements of the JAK-STAT pathway are abundantly and differentially expressed in the epidermis. It is suggested that each element of the pathway may play a role at a distinct stage of keratinocyte differentiation.
Collapse
Affiliation(s)
- HAJIME NISHIO
- Osaka Medical College, Department of Legal Medicine, Takatsuki, Japan
| | - KIYOSHI MATSUI
- Osaka Medical College, Department of Legal Medicine, Takatsuki, Japan
| | - HIROKO TSUJI
- Osaka Medical College, Department of Legal Medicine, Takatsuki, Japan
| | - AKIYOSHI TAMURA
- Osaka Medical College, Department of Legal Medicine, Takatsuki, Japan
| | - KOICHI SUZUKI
- Osaka Medical College, Department of Legal Medicine, Takatsuki, Japan
- Correspondence to Dr Koichi Suzuki, Department of Legal Medicine, Osaka Medical College, 2–7 Daigaku, Takatsuki, 569-8686, Japan. Tel.: +81 726 831221; fax: +81 726 846515; e-mail:
| |
Collapse
|
18
|
Chen J, Clemens DL, Cederbaum AI, Gao B. Ethanol inhibits the JAK-STAT signaling pathway in freshly isolated rat hepatocytes but not in cultured hepatocytes or HepG2 cells: evidence for a lack of involvement of ethanol metabolism. Clin Biochem 2001; 34:203-9. [PMID: 11408018 DOI: 10.1016/s0009-9120(01)00216-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
OBJECTIVES To understand the molecular mechanism underlying alcoholic liver injury, effects of acute ethanol on the Janus kinase-signal transducer and activator transcription factor (JAK-STAT) signaling in hepatic cells were studied. DESIGNS AND METHODS Effects of acute ethanol on the JAK-STAT signaling in freshly isolated, cultured rat hepatocytes, and HepG2 cells were explored. RESULTS Acute ethanol exposure inhibited IL-6- or IFN-activated STAT in freshly isolated hepatocytes but not in cultured hepatocytes, HepG2 cells, or HepG2 cells transfected with alcohol dehydrogenase (ADH) or cytochrome P450(2E1). The inhibitory action of ethanol in freshly isolated hepatocytes was not antagonized by the ADH inhibitor 4-methylpyrazole (4-MP). Acute exposure of hepatocytes to acetaldehyde or hydrogen peroxide did not suppress STAT activation. Further studies indicated that the loss of response to the inhibitory effect of ethanol was not due to hepatocyte proliferation and collagen contact. CONCLUSIONS Freshly isolated hepatocytes are more susceptible to the inhibitory action of ethanol on the JAK-STAT signaling than cultured hepatocytes or HepG2 cells, which may be implicated in pathogenesis and progression of alcoholic liver disease.
Collapse
Affiliation(s)
- J Chen
- Department of Pharmacology & Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | |
Collapse
|
19
|
Gómez-Lechón MJ, Jover R, Donato T, Ponsoda X, Castell JV. Expression of liver specific-genes in hepatocytes cultured in collagen gel matrix. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2001; 25:89-104. [PMID: 10986720 DOI: 10.1007/978-3-642-59766-4_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- M J Gómez-Lechón
- Unidad de Hepatología Experimental, Centro de Investigación, Valencia, Spain
| | | | | | | | | |
Collapse
|
20
|
Borlak J, Thum T. Induction of nuclear transcription factors, cytochrome P450 monooxygenases, and glutathione S-transferase alpha gene expression in Aroclor 1254-treated rat hepatocyte cultures. Biochem Pharmacol 2001; 61:145-53. [PMID: 11163329 DOI: 10.1016/s0006-2952(00)00537-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Aroclor 1254 is a complex mixture of polychlorinated biphenyls and is well known for its potency to induce drug-metabolising enzymes, but little is known about its ability to modulate gene expression of transcription factors, which code for proteins that bind to the regulatory elements of DNA and facilitate transcriptional activation. We therefore investigated the gene expression of the liver-specific transcription factors CCAAT/enhancer-binding protein alpha (c/EBPalpha), hepatic nuclear factor (HNF) 1 and 4, and major cytochrome P450 (CYP) isozymes in addition to glutathione S-transferase alpha 2 (GSTA-2) in cultures of primary rat hepatocytes. We found highly significant and dose-dependent increases of c/EBPalpha (up to 62-fold), HNF-1 (up to 7-fold), HNF-4 (up to 8-fold), and 50- and 4-fold inductions of GSTA-2 and CYP monooxygenases, respectively. Based on the ethoxyresorufin-O-deethylase assay, the gene expression and enzyme activity for CYP1A1 were in good agreement, but for other CYP isozymes similar correlations could not be obtained. In conclusion, the simultaneous induction of liver-specific TFs and of several detoxifying enzymes may point to a coordinate genomic response in cultures of rat hepatocytes upon treatment with Aroclor 1254.
Collapse
Affiliation(s)
- J Borlak
- Fraunhofer Institute of Toxicology and Aerosol Research, Department of Molecular Toxicology and Pharmacokinetics, Hannover, Germany.
| | | |
Collapse
|
21
|
Khalil M, Shariat-Panahi A, Tootle R, Ryder T, McCloskey P, Roberts E, Hodgson H, Selden C. Human hepatocyte cell lines proliferating as cohesive spheroid colonies in alginate markedly upregulate both synthetic and detoxificatory liver function. J Hepatol 2001; 34:68-77. [PMID: 11211910 DOI: 10.1016/s0168-8278(00)00080-5] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND/AIMS Bio-artificial liver support systems for treatment of hepatic failure require maintained expression of hepatocyte function in vitro. We studied cultures of human hepatocyte cell-lines proliferating within alginate beads, investigating the hypothesis that 3-dimensional cohesive colonies of hepatocyte cell-lines would achieve polarity and cell-to-cell contact resulting in upregulation of function. METHODS HepG2 and HHY41 human cell lines in alginate beads were cultured for >20 days. RESULTS Proliferation was maintained for 20 days. Production of albumin, prothrombin, fibrinogen, alpha-1-acid glycoprotein and alpha-1-antitrypsin was maintained throughout, maximal at days 8-10, when upregulation was 300-1100% compared with monolayer cultures at similar cell number per unit volume. Detoxificatory functions: ethoxyresorufin deethylase activity, androstenedione metabolism, and urea synthesis from arginine was also increased several-fold. Function returned to pre-freezing levels within 18 h of thawing after cryopreservation of cells in alginate. Electron microscopy revealed spherical colonies of cells of cuboidal shape, with cell-to-cell contact via desmosomes and junctional complexes, abundant microvilli, and cytoplasmic appearances suggesting transcriptionally active hepatocytes. CONCLUSION Hepatocyte cell-lines, proliferating in alginate express a range of liver-specific functions at levels approaching those found in vivo, relevant to their use in liver support systems.
Collapse
Affiliation(s)
- M Khalil
- Division of Medicine, Imperial College School of Medicine, Hammersmith Hospital, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Gao C, Jokerst R, Gondipalli P, Cai SR, Kennedy S, Flye MW, Ponder KP. Lipopolysaccharide potentiates the effect of hepatocyte growth factor on hepatocyte replication in rats by augmenting AP-1 activity. Hepatology 1999; 30:1405-16. [PMID: 10573519 DOI: 10.1002/hep.510300602] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
The liver regenerates by replication of differentiated hepatocytes after damage or removal of part of the liver. Although several growth factors and signaling pathways are activated during regeneration, it is unclear as to which of these are essential for hepatocyte replication. We show here that low- (1 mg/kg) and high- (10 mg/kg) dose hepatocyte growth factor (HGF) induced replication of 2.1% and 11.1% of hepatocytes in rats, respectively. Lipopolysaccharide (LPS), an inducer of the acute phase response, augmented hepatocyte replication in response to low- and high-dose HGF by 4- and 2-fold, respectively. HGF alone induced moderate levels of c-Jun-N-terminal kinase (JNK) and p44/p42 mitogen-activated protein kinase (MAPK), resulting in moderate levels of AP-1-DNA binding activity. The combination of LPS + HGF increased JNK and AP-1-DNA binding activity more than levels seen with LPS or HGF alone. The activation of Stat3 that was observed after administration of LPS + HGF, but not HGF alone, could contribute to increased transcription of AP-1 components. Because phosphorylation of the c-Jun component of AP-1 by JNK increases its ability to activate transcription, the AP-1 in hepatocytes from animals treated with LPS + HGF may be more active than in rats treated with LPS or HGF alone. LPS may contribute to hepatocyte replication by potentiating the effect of HGF on the activation of both AP-1-DNA binding and transcriptional activity.
Collapse
Affiliation(s)
- C Gao
- Departments of Internal Medicine and Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Runge D, Runge DM, Daskalakis N, Lubecki KA, Bowen WC, Michalopoulos GK. Matrix-mediated changes in the expression of HNF-4alpha isoforms and in DNA-binding activity of ARP-1 in primary cultures of rat hepatocytes. Biochem Biophys Res Commun 1999; 259:651-655. [PMID: 10364473 DOI: 10.1006/bbrc.1999.0848] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recently, we have developed a culture system in which rat hepatocytes dedifferentiate and proliferate and after the addition of EHS-gel redifferentiate. During both developmental stages HNF-4alpha2 mRNA was more abundant than HNF-4alpha1 mRNA. However, Western blot analysis using COS-7 cell-expressed HNF-4alpha1 and HNF-4alpha2 proteins as standards revealed that (i) HNF-4alpha2 protein was not expressed in dedifferentiated hepatocytes and (ii) either HNF-4alpha2 protein or a highly phosphorylated HNF-4alpha1 protein was the dominating isoform in redifferentiated hepatocytes. The changes in HNF4-isoform expression could not be mimicked by DMSO, suggesting them to be matrix specific. Furthermore, DMSO was less efficient than EHS-gel in reinducing liver-specific gene expression. EHS-gel overlay also led to reduction of ARP-1 DNA binding activity, while overall ARP-1 protein levels did not change. These results suggest that EHS-matrix overlay regulates the expression of different HNF-4alpha isoforms on a posttranscriptional level while ARP-1 DNA binding activity is regulated by posttranslational mechanisms.
Collapse
Affiliation(s)
- D Runge
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA
| | | | | | | | | | | |
Collapse
|
24
|
Guren TK, Abrahamsen H, Thoresen GH, Babaie E, Berg T, Christoffersen T. EGF-induced activation of Stat1, Stat3, and Stat5b is unrelated to the stimulation of DNA synthesis in cultured hepatocytes. Biochem Biophys Res Commun 1999; 258:565-571. [PMID: 10329425 DOI: 10.1006/bbrc.1999.0684] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Transcription factors of the STAT family have been implicated in regulation of cell proliferation. EGF activates several STAT proteins in liver. We have studied the relationship between STAT activation and the growth-stimulatory effect of EGF in rat hepatocytes, assessing specific DNA-binding activity of STAT proteins in electrophoretic mobility-shift and supershift assays. In freshly isolated hepatocytes, EGF activated Stat1, Stat3, and, particularly, Stat5b. However, the ability of EGF to produce this activation was rapidly attenuated when the cells were cultured, while the activation by IFN-gamma (Stat1) and IL-6 (Stat3) was sustained. Hepatocytes cultured for 24-48 h are highly sensitive to the stimulatory effect of EGF on S phase entry. In these cells EGF did not detectably activate Stat1, Stat3, or Stat5b but markedly stimulated MAP kinase (Erk1/2). Thus, although EGF has the ability to activate several STAT proteins, this did not seem to be part of the mitogenic mechanisms used by the EGF receptor in hepatocytes.
Collapse
Affiliation(s)
- T K Guren
- Faculty of Medicine, University of Oslo, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
25
|
Runge DM, Bowen WC, Katyal S, Runge D, Suski V, Michalopoulos GK. Expression of the human hepatocyte growth factor cDNA in primary cultures of rat hepatocytes. Biochem Biophys Res Commun 1999; 257:199-205. [PMID: 10092533 DOI: 10.1006/bbrc.1998.9947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Hepatocyte growth factor (HGF) and epidermal growth factor (EGF) are primary mitogens for hepatocytes in culture. hepatocytes express the HGF-receptor MET but not HGF itself. To investigate the influence of autocrine HGF expression on the proliferative potential of hepatocytes, primary cultures were submitted to retrovirus-mediated transduction of the human hgf (huHGF) cDNA. Expression of the transduced cDNA revealed a minimum 2-fold increase in HGF-mRNA, whereas expression of the Escherichia coli beta-galactosidase gene remained even. Estimation of huHGF copy numbers showed there was a minimum 4-fold increase, suggesting an increase in the population of transduced cells. Immunoprecipitation of excreted huHGF and growth bioassays proofed that HGF was present and functional. HGF is excreted into the medium and therefore, by diffusion, available to transduced and non-transduced cells. The increase in huHGF-transduced cells suggests that the autocrine pathway as opposed to the paracrine pathway, which are both present at the same time, confers a growth advantage to these cells.
Collapse
Affiliation(s)
- D M Runge
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | |
Collapse
|
26
|
Abelev GI, Lazarevich NL. Conformational effects of volatile anesthetics on the membrane-bound acetylcholine receptor protein: facilitation of the agonist-induced affinity conversion. Biochemistry 1983; 95:61-113. [PMID: 16860656 DOI: 10.1016/s0065-230x(06)95003-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The rate of the carbamylcholine-induced affinity conversion of the membrane-bound acetylcholine receptor protein from Torpedo californica is enhanced by pretreatment of the membranes under an atmosphere of 3% halothane or 1% chloroform. The enhancement is much more pronounced in the presence of low rather than high concentrations of carbamylcholine since the volatile anesthetics alter the apparent dissociation constant for carbamylcholine from 17 to 3 microM without affecting the first-order rate constant for the ligand-induced conversion (0.07 s-1). These results indicate that the acetylcholine receptor is assuming a conformational form with intermediate affinity for carbamylcholine in addition to the previously described low- and high-affinity forms. The dissociation constants for carbamylcholine obtained from kinetic studies of the carbamylcholine-induced transition are 3-15-fold lower than those obtained as inhibition constants from the rate of 125I-labeled alpha-bungarotoxin binding to the low-affinity conformer of the acetylcholine receptor protein. This pattern, observed in both the presence and absence of anesthetic, provides further evidence that the acetylcholine receptor has nonequivalent ligand binding sites for carbamylcholine.
Collapse
Affiliation(s)
- Garry I Abelev
- Department of Immunochemistry, Institute of Carcinogenesis, N. N. Blokhin Cancer Research Center, Moscow 115478, Russia
| | | |
Collapse
|