1
|
Ma J, Zhou W, Yuan Y, Wang B, Meng X. PSMD12 interacts with CDKN3 and facilitates pancreatic cancer progression. Cancer Gene Ther 2023; 30:1072-1083. [PMID: 37037907 DOI: 10.1038/s41417-023-00609-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 03/07/2023] [Accepted: 03/21/2023] [Indexed: 04/12/2023]
Abstract
Proteasome 26S subunit, non-ATPase 12 (PSMD12) genes have been implicated in several types of malignancies but the role of PSMD12 in pancreatic cancer (PC) remains elusive. Bioinformatics analysis showed that PSMD12 was highly expressed in PC patients and was associated with shorter overall survival. PSMD12 was also shown to be highly expressed in PC tissues and cell lines. Upregulated PSMD12 showed enhanced cell viability, increased colony formation rate and upregulated levels of PCNA and c-Myc, while the inhibition of PSMD12 abated these levels. PSMD12 knockdown promoted cell apoptosis. The results of xenografts in nude mice confirmed that PSMD12 promoted PC tumor growth in vivo. Protein‒protein interaction network and functional enrichment analyses implied that PSMD12 may have a connection with cyclin-dependent kinase inhibitor 3 (CDKN3). Co‑immunoprecipitation and western blot results confirmed that PSMD12 could interact with and abate the ubiquitination level of CDKN3, thus stabilizing the CDKN3 protein. Rescue assays showed that PSMD12 overexpression caused cell proliferation and that knockdown-induced cell apoptosis could be reversed by CDKN3 regulation. This work reveals the essential roles of PSMD12 in the proliferation and apoptosis of PC development. PSMD12 may regulate CDKN3 expression by interacting with and abating the ubiquitination level of CDKN3, thereby participating in the malignant behavior of PC.
Collapse
Affiliation(s)
- Jia Ma
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Wenyang Zhou
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yifeng Yuan
- Pancreatic Endocrinology Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Baosheng Wang
- Pancreatic Endocrinology Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xiangpeng Meng
- Pancreatic Endocrinology Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
2
|
Zhou C, Li H, Han X, Pang H, Wu M, Tang Y, Luo X. Prognostic Value and Molecular Mechanisms of Proteasome 26S Subunit, Non-ATPase Family Genes for Pancreatic Ductal Adenocarcinoma Patients after Pancreaticoduodenectomy. J INVEST SURG 2021; 35:330-346. [PMID: 33525943 DOI: 10.1080/08941939.2020.1863527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Objective: Pancreatic cancer (PC) is an extremely malignant tumor with similar morbidity and mortality and lack of an effective treatment. This study explored the prognostic value and molecular mechanisms of proteasome 26S subunit, non-ATPase (PSMD) family genes in pancreatic ductal adenocarcinoma (PDAC).Methods: Survival analyses were performed to elucidate the relationship between prognosis and the level of PSMD expression. ROC curves and nomograms were constructed to predict the prognosis. A bioinformatics analysis was used to explore the co-expression and complex interaction networks of PSMDs. The potential mechanisms were further explored via gene set enrichment analysis (GSEA).Results: We find high levels of PSMD6, PSMD9, PSMD11, and PSMD14 expression were significantly associated with a poorer OS. High PSMD6 and PSMD11 expression was associated with a poorer relapse-free survival (RFS). A risk score model was constructed based on prognosis-related genes. The area under ROC curves (AUC) was 53.3%, 59.3%, and 62.9% for 1-, 2-, 3 years, respectively.Conclusion: GSEA revealed that PSMD6 and PSMD11 play a role in PDAC through various biological processes and signaling pathways, including TP53, CDKN2A, MYC pathway, DNA repair, KRAS, cell cycle checkpoint, NIK, NF-κB signaling pathway, and proteasomes. This study demonstrated that PSMD6 and PSMD11 could serve as a potential prognostic and diagnostic biomarkers for patients with early-stage PDAC after pancreaticoduodenectomy.
Collapse
Affiliation(s)
- Caifu Zhou
- Research Department, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Haixia Li
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiao Han
- Research Department, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hongbing Pang
- Research Department, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Manya Wu
- Research Department, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yanping Tang
- Research Department, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiaoling Luo
- Research Department, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China.,School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| |
Collapse
|
3
|
Cohen-Kaplan V, Livneh I, Avni N, Cohen-Rosenzweig C, Ciechanover A. The ubiquitin-proteasome system and autophagy: Coordinated and independent activities. Int J Biochem Cell Biol 2016; 79:403-418. [DOI: 10.1016/j.biocel.2016.07.019] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/13/2016] [Accepted: 07/18/2016] [Indexed: 01/10/2023]
|
4
|
Hirota Y, Tanaka Y. A small GTPase, human Rab32, is required for the formation of autophagic vacuoles under basal conditions. Cell Mol Life Sci 2009; 66:2913-32. [PMID: 19593531 PMCID: PMC11115675 DOI: 10.1007/s00018-009-0080-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 06/16/2009] [Accepted: 06/18/2009] [Indexed: 12/26/2022]
Abstract
Here we show that a small GTPase, Rab32, is a novel protein required for the formation of autophagic vacuoles. We found that the wild-type or GTP-bound form of human Rab32 expressed in HeLa and COS cells is predominantly localized to the endoplasmic reticulum (ER), and overexpression induces the formation of autophagic vacuoles containing an autophagosome marker protein LC3, the ER-resident protein calnexin and endosomal/lysosomal membrane protein LAMP-2, even under nutrient-rich conditions. The recruitment of Rab32 to the ER membrane was necessary for autophagic vacuole formation, suggesting involvement of the ER as a source of autophagosome membranes. In contrast, the expression of the inactive form of, or siRNA-specific for, Rab32 caused the formation of p62/SQSTM1 and ubiquitinated protein-accumulating aggresome-like structures and significantly prevented constitutive autophagy. We postulate that Rab32 facilitates the formation of autophagic vacuoles whose membranes are derived from the ER and regulates the clearance of aggregated proteins by autophagy.
Collapse
Affiliation(s)
- Yuko Hirota
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582 Japan
| | - Yoshitaka Tanaka
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582 Japan
| |
Collapse
|
5
|
Konstantinova IM, Tsimokha AS, Mittenberg AG. Role of proteasomes in cellular regulation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 267:59-124. [PMID: 18544497 DOI: 10.1016/s1937-6448(08)00602-3] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The 26S proteasome is the key enzyme of the ubiquitin-dependent pathway of protein degradation. This energy-dependent nanomachine is composed of a 20S catalytic core and associated regulatory complexes. The eukaryotic 20S proteasomes demonstrate besides several kinds of peptidase activities, the endoribonuclease, protein-chaperone and DNA-helicase activities. Ubiquitin-proteasome pathway controls the levels of the key regulatory proteins in the cell and thus is essential for life and is involved in regulation of crucial cellular processes. Proteasome population in the cell is structurally and functionally heterogeneous. These complexes are subjected to tightly organized regulation, particularly, to a variety of posttranslational modifications. In this review we will summarize the current state of knowledge regarding proteasome participation in the control of cell cycle, apoptosis, differentiation, modulation of immune responses, reprogramming of these particles during these processes, their heterogeneity and involvement in the main levels of gene expression.
Collapse
|
6
|
Abstract
BACKGROUND AND PURPOSE Protein unfolding and aggregation are dominant early pathogenic events in neurons after brain ischemia. This study used a transient cerebral ischemia model to investigate whether overproduction of unfolded proteins after brain ischemia is a consequence of proteasome dysfunction. METHODS Proteasome peptidase activity and proteasome subcellular redistribution and assembly were studied by peptidase activity assay, Western blot analysis, and size-exclusion chromatography. RESULTS Proteasome peptidase activity, as determined with the peptide substrate succinyl-LLVY-7-amino-4-methylcoumarin, was moderately decreased, and the 26S proteasome was disassembled during the early period of reperfusion after transient brain ischemia. Furthermore, the proteasome subunits, particularly the 19S components, were deposited into the protein aggregate-containing fraction after an episode of transient cerebral ischemia. CONCLUSIONS These results clearly demonstrate that after an episode of brain ischemia, proteasomes are disassembled and aggregated and thus fail to function normally. Deposition of proteasomes into protein aggregates may also indicate that proteasomes attempt to degrade ubiquitin-conjugated proteins (ubiproteins) overproduced after brain ischemia. However, ubiproteins are too numerous to be degraded and trap some of the proteasomes into their aggregates after brain ischemia.
Collapse
Affiliation(s)
- Pengfei Ge
- Department of Neurosurgery, First Teaching Hospital, Jilin University, Jilin, China
| | | | | | | |
Collapse
|
7
|
Sawada MT, Tamura T, Mitani Y, Kaya M, Ito G, Hashimoto H, Sawada H. Participation of proteasome-associating complex PC500 in starfish oocyte maturation as revealed by monoclonal antibodies. Biochem Biophys Res Commun 2006; 349:694-700. [PMID: 16949555 DOI: 10.1016/j.bbrc.2006.08.080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Accepted: 08/16/2006] [Indexed: 11/25/2022]
Abstract
We previously reported that immature starfish oocytes contain a novel 530-kDa proteasome-associating complex PC500 [previously named PC530; E. Tanaka, M. Takagi Sawada, C. Morinaga, H. Yokosawa, H. Sawada, Isolation and characterization of a novel 530-kDa protein complex (PC 530) capable of associating with the 20S proteasome from star fish oocytes, Arch. Biochem. Biophys. 374 (2000) 181-188]. In the present study, in order to obtain an insight into the biological function of this complex, we investigated the effects of anti-PC500 monoclonal antibodies on oocyte maturation of the starfish Asterina pectinifera. A monoclonal antibody 7C5 strongly inhibited germinal vesicle breakdown (GVBD) in a concentration-dependent manner. In contrast to the inhibitory effect of the 7C5 antibody on GVBD, no inhibition of egg cleavage was observed in a 7C5-antibody-microinjected single blastomere in a 2-cell stage embryo. These results indicate that PC500 plays a key role in starfish oocyte maturation in a meiosis-specific manner.
Collapse
Affiliation(s)
- Michiko Takagi Sawada
- Research Institute of Genome-based Biofactory, National Institute of Advanced Industrial Science and Technology (AIST), Toyohira-ku, Sapporo 062-8517, Japan.
| | | | | | | | | | | | | |
Collapse
|
8
|
Decca MB, Bosc C, Luche S, Brugière S, Job D, Rabilloud T, Garin J, Hallak ME. Protein Arginylation in Rat Brain Cytosol: A Proteomic Analysis. Neurochem Res 2006; 31:401-9. [PMID: 16733816 DOI: 10.1007/s11064-005-9037-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Arginine can be post-translationally incorporated from arginyl-tRNA into the N-terminus of soluble acceptor proteins in a reaction catalyzed by arginyl-tRNA protein transferase. In the present study, several soluble rat brain proteins that accepted arginine were identified after arginine incorporation by two dimensional electrophoresis and mass spectrometry. They were identified as: contrapsin-like protease inhibitor-3, alpha-1-antitrypsin, apolipoprotein E, hemopexin, calreticulin and apolipoprotein A-I. All of these proteins shared a signal sequence for the translocation of proteins across endoplasmic reticulum membranes. After losing the signal peptide, these proteins expose amino acids described as compatible for post-translational arginylation. Although the enzymatic system involved in arginylation is confined mainly in cytosol and nucleus, all the substrates described herein enter to the exocytic pathway co-translationally. Therefore, we postulate that the substrates for arginylation could reach the cytosol by retro-translocation and be then arginylated.
Collapse
Affiliation(s)
- María Belén Decca
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, (UNC-CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Huo LJ, Fan HY, Zhong ZS, Chen DY, Schatten H, Sun QY. Ubiquitin-proteasome pathway modulates mouse oocyte meiotic maturation and fertilization via regulation of MAPK cascade and cyclin B1 degradation. Mech Dev 2004; 121:1275-87. [PMID: 15327787 DOI: 10.1016/j.mod.2004.05.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Revised: 04/22/2004] [Accepted: 05/11/2004] [Indexed: 10/26/2022]
Abstract
Degradation of proteins mediated by ubiquitin-proteasome pathway (UPP) plays important roles in the regulation of eukaryotic cell cycle. In this study, the functional roles and regulatory mechanisms of UPP in mouse oocyte meiotic maturation, fertilization, and early embryonic cleavage were studied by drug-treatment, Western blot, antibody microinjection, and confocal microscopy. The meiotic resumption of both cumulus-enclosed oocytes and denuded oocytes was stimulated by two potent, reversible, and cell-permeable proteasome inhibitors, ALLN and MG-132. The metaphase I spindle assembly was prevented, and the distribution of ubiquitin, cyclin B1, and polo-like kinase 1 (Plk1) was also distorted. When UPP was inhibited, mitogen-activated protein kinase (MAPK)/p90rsk phosphorylation was not affected, but the cyclin B1 degradation that occurs during normal metaphase-anaphase transition was not observed. During oocyte activation, the emission of second polar body (PB2) and the pronuclear formation were inhibited by ALLN or MG-132. In oocytes microinjected with ubiquitin antibodies, PB2 emission and pronuclear formation were also inhibited after in vitro fertilization. The expression of cyclin B1 and the phosphorylation of MAPK/p90rsk could still be detected in ALLN or MG-132-treated oocytes even at 8 h after parthenogenetic activation or insemination, which may account for the inhibition of PB2 emission and pronuclear formation. We also for the first time investigated the subcellular localization of ubiquitin protein at different stages of oocyte and early embryo development. Ubiquitin protein was accumulated in the germinal vesicle (GV), the region between the separating homologous chromosomes, the midbody, the pronuclei, and the region between the separating sister chromatids. In conclusion, our results suggest that the UPP plays important roles in oocyte meiosis resumption, spindle assembly, polar body emission, and pronuclear formation, probably by regulating cyclin B1 degradation and MAPK/p90rsk phosphorylation.
Collapse
Affiliation(s)
- Li-Jun Huo
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Graduate School of the Chinese Academy of Sciences, Beijing 100080, China
| | | | | | | | | | | |
Collapse
|
10
|
Sakai N, Sawada MT, Sawada H. Non-traditional roles of ubiquitin–proteasome system in fertilization and gametogenesis. Int J Biochem Cell Biol 2004; 36:776-84. [PMID: 15006630 DOI: 10.1016/s1357-2725(03)00263-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fertilization and gametogenesis are key events in sexual reproduction. Our recent studies, together with several reports by other authors, demonstrated that the extracellular ubiquitin-proteasome system plays a role in fertilization and gametogenesis in addition to the traditional intracellular ubiquitin-proteasome system. Here, we summarize our recent results showing the importance of the extracellular ubiquitin-proteasome system in the sperm penetration through the vitelline coat of the egg during ascidian fertilization, together with our recent reports implicating the participation of a novel proteasome-associating complex PC530 in starfish oocyte maturation. We also describe the results by other authors showing the participation of the ubiquitin system both in the elimination of defective sperm in epididymis and in the elimination of paternal mitochondria in fertilized eggs. These are evidence of non-traditional extracellular functions of the ubiquitin system.
Collapse
Affiliation(s)
- Naoyuki Sakai
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | | | | |
Collapse
|
11
|
Huo LJ, Fan HY, Liang CG, Yu LZ, Zhong ZS, Chen DY, Sun QY. Regulation of ubiquitin-proteasome pathway on pig oocyte meiotic maturation and fertilization. Biol Reprod 2004; 71:853-62. [PMID: 15115724 DOI: 10.1095/biolreprod.104.028134] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Degradation of proteins mediated by the ubiquitin-proteasome pathway (UPP) plays essential roles in the eukaryotic cell cycle. The main aim of the present study was to analyze the functional roles and regulatory mechanisms of the UPP in pig oocyte meiotic maturation, activation, and early embryo mitosis by drug treatment, Western blot analysis, and confocal microscopy. By using the hypoxanthine-maintained meiotic arrest model, we showed that the meiotic resumption of both cumulus-enclosed oocytes and denuded oocytes was stimulated in a dose- and time-dependent manner by two potent and cell-permeable proteasome inhibitors. Both the mitogen-activated protein kinase (MAPK) kinase inhibitor U0126 and the maturation-promoting factor inhibitor roscovitine overcame the stimulation of germinal vesicle breakdown induced by proteasome inhibitors. The phosphorylation of MAPK and p90rsk and the expression of cyclin B1 increased in a dose- and time-dependent manner when treated with proteasome inhibitors during oocyte in vitro-maturation culture. Both U0126 and roscovitine inhibited the phosphorylation of MAPK and p90rsk, and the synthesis of cyclin B1 stimulated by proteasome inhibitors. When matured oocytes were pretreated with proteasome inhibitors and then fertilized or artificially activated, the second polar body emission and the pronuclear formation were inhibited, and the dephosphorylation of MAPK and p90rsk as well as the degradation of cyclin B1 that should occur after oocyte activation were also inhibited. We also investigated, to our knowledge for the first time, the subcellular localization of 20S proteasome alpha subunits at different stages of oocyte and early embryo development. The 20S proteasome alpha subunits were accumulated in the germinal vesicle, around the condensed chromosomes at prometaphase, with spindle at metaphase I and II, the region between the separating chromosomes, and especially the midbody at anaphase I and telophase I, the pronucleus, and the nucleus in early embryonic cells. In conclusion, our results suggest that the UPP is important at multiple steps of pig oocyte meiosis, fertilization, and early embryonic mitosis and that it may play its roles by regulating cyclin B1 degradation and MAPK/p90rsk phosphorylation.
Collapse
Affiliation(s)
- Li-Jun Huo
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Graduate School of the Chinese Accademy of Sciences, Chinese Academy of Sciences, Beijing 100080, China
| | | | | | | | | | | | | |
Collapse
|
12
|
Affiliation(s)
- Olivier Coux
- CRBM-CNRS, IFR 24, 1919, Route de Mende, 34293 Montpellier, France
| |
Collapse
|
13
|
Abstract
The ubiquitin-dependent proteolytic pathway is thought to be one of the vital systems for cellular regulations, including control of the cell cycle, differentiation and apoptosis. In this pathway, poly-ubiquitinated proteins are selectively degraded by the 26S proteasome, a multisubunit proteolytic machinery. Recognition of the poly-ubiquitin chain by the 26S proteasome should be a key step leading to the selective degradation of target proteins, and the Rpn10 subunit of the 26S proteasome has been shown to preferentially bind the poly-ubiquitin chain in vitro. We previously reported that the mouse Rpn10 mRNA family is generated from a single gene by developmentally regulated, alternative splicing. To determine whether such alternative splicing mechanisms occur in organisms other than the mouse, we searched for Rpn10 isoforms in various species. Here we summarize the gene organization of the Rpn10 in lower species and provide evidence that the competence for generating all distinct forms of Rpn10 alternative splicing has expanded through evolution. Some of the Rpn10 family genes were found to be expressed in distinct developmental stages, suggesting that they have distinct functions during embryogenesis. For example, Rpn10c and Rpn10e were exclusively expressed at specific developmental stages and in specific tissues, while Rpn10a was expressed constitutively. Our experimental results indicate that the respective Rpn10 proteins possess distinct roles in the progression of development. Furthermore, some of the Rpn10 variants specifically interacted with important developmental regulators.
Collapse
Affiliation(s)
- Hiroyuki Kawahara
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
14
|
Abstract
The 26S proteasome constitutes the central proteolytic machinery of the highly conserved ubiquitin/proteasome system, the cell's major tool for extralysosomal protein degradation. Recently, a plethora of cell proteins implicated in the regulation of basic cellular processes, such as proliferation, differentiation, cell cycling, and apoptosis have been discovered to undergo processing and functional limitation by entering the ubiquitin/proteasome pathway with the final destination to be proteolytically degraded by the 26S proteasome. Because both negative and positive regulators of proliferation and apoptosis undergo proteasomal degradation in a tightly regulated and temporally controlled fashion, the 26S proteasome can play opposite roles in the regulation of proliferation and apoptosis. These roles are apparently defined by the cell's environment and proliferative state. Finally, proteasomal protein degradation is deregulated in a number of human diseases, including cancer and neurodegenerative and myodegenerative diseases, which all exhibit an imbalance of proliferation and apoptosis. An improved understanding of the modes of proteasomal action should lead to the development of beneficial therapeutic and diagnostic strategies in the future.
Collapse
Affiliation(s)
- Cord Naujokat
- Institute of Immunology (CN), Department of Transplantation Immunology, University of Heidelberg, Germany.
| | | |
Collapse
|
15
|
Khan MT, Joseph SK. Characterization of Membrane-Associated Proteasomes in WB Rat Liver Epithelial Cells. Arch Biochem Biophys 2001; 385:99-107. [PMID: 11361031 DOI: 10.1006/abbi.2000.2116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although proteasomes are mainly located in the cytosol, it is known that significant amounts are also associated with endoplasmic reticulum (ER) membranes where they may play a role in the degradation of specific ER membrane proteins. The present studies were undertaken to compare ER and cytosolic proteasomal activities in WB rat liver cells. N-Heptyl-beta-thioglucopyranoside (HTG) extracts of membrane or cytosol fractions were chromatographed in glycerol/ATP buffers on size-exclusion and ion-exchange columns and the elution profiles of proteasomal peptidase activity and immunoreactive components of the 20S complex, 19S complex, and PA28 were compared. Cytosol fractions showed a single peak of chymotrypsin-like peptidase activity (Cht-L), which was inhibited completely by 5 microM lactacystin (LC) or SDS (0.03%) and corresponded to 26S proteasomes based upon the presence of both 20S and 19S components. By comparison, membrane fractions contained two major peaks of Cht-L activity. The first peak shared the same properties as the peak activity observed in cytosol fractions. However, the second peak was stimulated by SDS and was LC-insensitive (5 microM) and contained trypsin-like (T-L) and peptide-glutamyl peptidase (PGPH) but no cathepsin or calcium-activated protease activities. PA28 activator protein was present in both membrane and cytosol fractions. Thus, the principal difference between cytosolic and membrane activity was that the latter fractions contained a novel membrane-associated LC-insensitive protease(s) catalyzing three of the major peptidase activities of the proteasome.
Collapse
Affiliation(s)
- M T Khan
- Department of Pathology and Cell Biology, Thomas Jefferson University School of Medicine, Philadelphia, Pennsylvania 19107, USA
| | | |
Collapse
|
16
|
Tanaka E, Takagi Sawada M, Morinaga C, Yokosawa H, Sawada H. Isolation and characterization of a novel 530-kDa protein complex (PC530) capable of associating with the 20S proteasome from starfish oocytes. Arch Biochem Biophys 2000; 374:181-8. [PMID: 10666296 DOI: 10.1006/abbi.1999.1584] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A novel protein complex called PC530 was purified concomitantly with proteasomes from oocytes of the starfish, Asterina pectinifera, by chromatography with DEAE-cellulose, phosphocellulose, Mono Q, and Superose 6 columns. The molecular mass of this complex was estimated to be 530 kDa by Ferguson plot analysis and about 500 kDa by Superose 6 gel filtration. Since the 1500-kDa proteasome fractions contain the PC530 subunits as well as the 20S proteasomal subunits, and also since the purified PC530 and the 20S proteasome were cross-linked with a bifunctional cross-linking reagent, it is thought that PC530 is able to associate with the 20S proteasome. The PC530 comprises six main subunits with molecular masses of 105, 70, 50, 34, 30, and 23 kDa. The 70-kDa subunit showed a sequence similarity to the S3/p58/Sun2/Rpn3p subunit of the 26S proteasome, whereas the other subunits showed little or no appreciable similarity to the mammalian and yeast regulatory subunits. These results indicate that starfish oocytes contain a novel 530-kDa protein complex capable of associating with the 20S proteasome, which is distinctly different from PA700 or the 19S regulatory complex in molecular size and subunit composition.
Collapse
Affiliation(s)
- E Tanaka
- Department of Biochemistry, Hokkaido University, Sapporo, 060-0812, Japan
| | | | | | | | | |
Collapse
|