1
|
Hicks D, Giresh K, Wrischnik LA, Weiser DC. The PPP1R15 Family of eIF2-alpha Phosphatase Targeting Subunits (GADD34 and CReP). Int J Mol Sci 2023; 24:17321. [PMID: 38139150 PMCID: PMC10743859 DOI: 10.3390/ijms242417321] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The vertebrate PPP1R15 family consists of the proteins GADD34 (growth arrest and DNA damage-inducible protein 34, the product of the PPP1R15A gene) and CReP (constitutive repressor of eIF2α phosphorylation, the product of the PPP1R15B gene), both of which function as targeting/regulatory subunits for protein phosphatase 1 (PP1) by regulating subcellular localization, modulating substrate specificity and assembling complexes with target proteins. The primary cellular function of these proteins is to facilitate the dephosphorylation of eukaryotic initiation factor 2-alpha (eIF2α) by PP1 during cell stress. In this review, we will provide a comprehensive overview of the cellular function, biochemistry and pharmacology of GADD34 and CReP, starting with a brief introduction of eIF2α phosphorylation via the integrated protein response (ISR). We discuss the roles GADD34 and CReP play as feedback inhibitors of the unfolded protein response (UPR) and highlight the critical function they serve as inhibitors of the PERK-dependent branch, which is particularly important since it can mediate cell survival or cell death, depending on how long the stressful stimuli lasts, and GADD34 and CReP play key roles in fine-tuning this cellular decision. We briefly discuss the roles of GADD34 and CReP homologs in model systems and then focus on what we have learned about their function from knockout mice and human patients, followed by a brief review of several diseases in which GADD34 and CReP have been implicated, including cancer, diabetes and especially neurodegenerative disease. Because of the potential importance of GADD34 and CReP in aspects of human health and disease, we will discuss several pharmacological inhibitors of GADD34 and/or CReP that show promise as treatments and the controversies as to their mechanism of action. This review will finish with a discussion of the biochemical properties of GADD34 and CReP, their regulation and the additional interacting partners that may provide insight into the roles these proteins may play in other cellular pathways. We will conclude with a brief outline of critical areas for future study.
Collapse
Affiliation(s)
- Danielle Hicks
- Department of Science, Mathematics and Engineering, Modesto Junior College, Modesto, CA 95350, USA
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Krithika Giresh
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Lisa A. Wrischnik
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Douglas C. Weiser
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| |
Collapse
|
2
|
Wang N, Wang S, Yang SL, Liu LP, Li MY, Lai PBS, Chen GG. Targeting ZBP-89 for the treatment of hepatocellular carcinoma. Expert Opin Ther Targets 2018; 22:817-822. [PMID: 30142986 DOI: 10.1080/14728222.2018.1516753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nuozhou Wang
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Shanshan Wang
- Department of Otorhinolaryngology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Sheng-li Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li-ping Liu
- Department of Hepatobiliary and Pancreas Surgery, the Second Clinical Medical College of Jinan University (Shenzhen People’s Hospital), Shenzhen, Guangdong Province, China
| | - Ming-yue Li
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Guangdong, China
| | - Paul B. S. Lai
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - George G. Chen
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Guangdong, China
| |
Collapse
|
3
|
Otsuka R, Harada N, Aoki S, Shirai K, Nishitsuji K, Nozaki A, Hatakeyama A, Shono M, Mizusawa N, Yoshimoto K, Nakaya Y, Kitahata H, Sakaue H. C-terminal region of GADD34 regulates eIF2α dephosphorylation and cell proliferation in CHO-K1 cells. Cell Stress Chaperones 2016; 21:29-40. [PMID: 26318739 PMCID: PMC4679745 DOI: 10.1007/s12192-015-0633-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/05/2015] [Accepted: 08/10/2015] [Indexed: 10/23/2022] Open
Abstract
GADD34 is a member of a growth arrest and DNA damage (GADD)-inducible gene family. Here, we established a novel Chinese hamster ovary (CHO)-K1-derived cell line, CHO-K1-G34M, which carries a nonsense mutation (termed the Q525X mutation) in the GADD34 gene. The Q525X mutant protein lacks the C-terminal 66 amino acids required for GADD34 to bind to and activate protein phosphatase 1 (PP1). We investigated the effects of GADD34 with or without the Q525X mutation on the phosphorylation status of PP1 target proteins, including the α subunit of eukaryotic initiation factor 2 (eIF2α) and glycogen synthase kinase 3β (GSK3β). CHO-K1-G34M cells had higher levels of eIF2α phosphorylation compared to the control CHO-K1-normal cells both in the presence and absence of endoplasmic reticulum stress. Overexpression of the wild-type GADD34 protein in CHO-K1-normal cells largely reduced eIF2α phosphorylation, while overexpression of the Q525X mutant did not produce similar reductions. Meanwhile, neither wild type nor Q525X mutation of GADD34 affected the GSK3β phosphorylation status. GADD34 also did not affect the canonical Wnt signaling pathway downstream of GSK3β. Cell proliferation rates were higher, while expression levels of the cyclin-dependent kinase inhibitor p21 were lower in CHO-K1-G34M cells compared to the CHO-K1-normal cells. The GADD34 Q525X mutant had a reduced ability to inhibit cell proliferation and enhance p21 expression of the CHO-K1-normal cells compared to the wild-type GADD34 protein. These results suggest that the GADD34 protein C-terminal plays important roles in regulating not only eIF2α dephosphorylation but also cell proliferation in CHO-K1 cells.
Collapse
Affiliation(s)
- Ryo Otsuka
- Department of Dental Anesthesiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima City, 770-8504, Japan
| | - Nagakatsu Harada
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima City, 770-8503, Japan.
| | - Shouhei Aoki
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima City, 770-8503, Japan
| | - Kanna Shirai
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima City, 770-8503, Japan
| | - Kazuchika Nishitsuji
- Department of Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima City, 770-8503, Japan
| | - Ayane Nozaki
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima City, 770-8503, Japan
| | - Adzumi Hatakeyama
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima City, 770-8503, Japan
| | - Masayuki Shono
- Support Center for Advanced Medical Sciences, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima City, 770-8503, Japan
| | - Noriko Mizusawa
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima City, 770-8504, Japan
| | - Katsuhiko Yoshimoto
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima City, 770-8504, Japan
| | - Yutaka Nakaya
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima City, 770-8503, Japan
| | - Hiroshi Kitahata
- Department of Dental Anesthesiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima City, 770-8504, Japan
| | - Hiroshi Sakaue
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima City, 770-8503, Japan
| |
Collapse
|
4
|
Negative regulation of GADD34 on myofibroblasts during cutaneous wound healing. BIOMED RESEARCH INTERNATIONAL 2014; 2014:137049. [PMID: 25210702 PMCID: PMC4156997 DOI: 10.1155/2014/137049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 08/04/2014] [Accepted: 08/05/2014] [Indexed: 01/15/2023]
Abstract
The growth arrest and DNA damage-inducible protein, GADD34, has been proved to be involved in TGF-β signaling pathway and correlates with cell death, which are two important mechanisms in regulating myofibroblast differentiation and apoptosis during tissue repair. But roles of GADD34 in myofibroblasts differentiation and apoptosis remain unknown. To investigate the function of GADD34 in these processes, we subjected WT and GADD34−/− mice to dermal wound healing. Here we show that GADD34−/− mice exhibited accelerated wound closure compared with WT mice. In addition, GADD34−/− mice showed increased number of myofibroblasts, elevated collagen production, and decreased cell apoptosis during wound healing. Moreover, we found that GADD34−/− mice showed increased phosphorylation of Smad3 and lower level of cleaved caspase-3. Thus these results indicate that GADD34 appears to suppress myofibroblast differentiation through inhibiting Smad3-dependent TGFβ signal pathway and promote its apoptosis by activating caspase-3 pathway.
Collapse
|
5
|
Buira SP, Dentesano G, Albasanz JL, Moreno J, Martín M, Ferrer I, Barrachina M. DNA methylation and Yin Yang-1 repress adenosine A2A receptor levels in human brain. J Neurochem 2010; 115:283-95. [DOI: 10.1111/j.1471-4159.2010.06928.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Zhang CZY, Chen GG, Lai PBS. Transcription factor ZBP-89 in cancer growth and apoptosis. Biochim Biophys Acta Rev Cancer 2010; 1806:36-41. [PMID: 20230874 DOI: 10.1016/j.bbcan.2010.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 02/25/2010] [Accepted: 03/08/2010] [Indexed: 11/30/2022]
Abstract
ZBP-89, a Krüppel-type zinc-finger transcription factor that binds to GC-rich sequences, is involved in the regulation of cell growth and cell death. It maps to chromosome 3q21 and is composed of 794 residues. Having bifunctional regulatory domains, ZBP-89 may function as a transcriptional activator or repressor of variety of genes such as p16 and vimentin. ZBP-89 arrests cell proliferation through its interactions with p53 and p21(waf1). It is able to stabilize p53 through directly binding and enhance p53 transcriptional activity by retaining it in the nucleus. In addition, ZBP-89 potentiates in butyrate-induced endogenous p21(waf1) up-regulation. ZBP-89 is usually over-expressed in human cancer cells, where it can efficiently induce apoptosis through p53-dependent and -independent mechanisms. Moreover, ZBP-89 is capable of enhancing killing effects of several anti-cancer drugs. Therefore, ZBP-89 may be served as a potential target in cancer therapy.
Collapse
Affiliation(s)
- Chris Z Y Zhang
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T., Hong Kong
| | | | | |
Collapse
|
7
|
Ohneda K, Ohmori S, Ishijima Y, Nakano M, Yamamoto M. Characterization of a functional ZBP-89 binding site that mediates Gata1 gene expression during hematopoietic development. J Biol Chem 2009; 284:30187-99. [PMID: 19723625 DOI: 10.1074/jbc.m109.026948] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
GATA-1 is a lineage-restricted transcription factor that plays essential roles in hematopoietic development. The Gata1 gene hematopoietic enhancer allowed Gata1 reporter expression in erythroid cells and megakaryocytes of transgenic mice. The Gata1 hematopoietic enhancer activity is strictly dependent on a GATA site located in the 5' region of the enhancer. However, the importance of the GC-rich region adjacent to the 3'-end of this GATA site has been also suggested. In this study, we show that this GC-rich region contains five contiguous deoxyguanosine residues (G(5) string) that are bound by multiple nuclear proteins. Interestingly, deletion of one deoxyguanosine residue from the G(5) string (G(4) mutant) specifically eliminates binding to ZBP-89, a Krüppel-like transcription factor, but not to Sp3 and other binding factors. We demonstrate that GATA-1 and ZBP-89 occupy chromatin regions of the Gata1 enhancer and physically associate in vitro through zinc finger domains. Gel mobility shift assays and DNA affinity precipitation assays suggest that binding of ZBP-89 to this region is reduced in the absence of GATA-1 binding to the G1HE. Luciferase reporter assays demonstrate that ZBP-89 activates the Gata1 enhancer depending on the G(5) string sequence. Finally, transgenic mouse studies reveal that the G(4) mutation significantly reduced the reporter activity of the Gata1 hematopoietic regulatory domain encompassing an 8.5-kbp region of the Gata1 gene. These data provide compelling evidence that the G(5) string is necessary for Gata1 gene expression in vivo and ZBP-89 is the functional trans-acting factor for this cis-acting region.
Collapse
Affiliation(s)
- Kinuko Ohneda
- Department of Pharmacy, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki 370-0033, Japan.
| | | | | | | | | |
Collapse
|
8
|
The transcriptional repressor ZBP-89 and the lack of Sp1/Sp3, c-Jun and Stat3 are important for the down-regulation of the vimentin gene during C2C12 myogenesis. Differentiation 2009; 77:492-504. [PMID: 19505630 DOI: 10.1016/j.diff.2008.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 12/08/2008] [Accepted: 12/23/2008] [Indexed: 11/20/2022]
Abstract
Currently, considerable information is available about how muscle-specific genes are activated during myogenesis, yet little is known about how non-muscle genes are down-regulated. The intermediate filament protein vimentin is known to be "turned off" during myogenesis to be replaced by desmin, the muscle-specific intermediate filament protein. Here, we demonstrate that vimentin down-regulation is the result of the combined effect of several transcription factors. Levels of the positive activators, Sp1/Sp3, which are essential for vimentin expression, decrease during myogenesis. In addition, c-Jun and Stat3, two additional positive-acting transcription factors for vimentin gene expression, are also down-regulated. Over-expression via adenoviral approaches demonstrates that the up-regulation of the repressor ZBP-89 is critical to vimentin down-regulation. Elimination of ZBP-89 via siRNA blocks the down-regulation of vimentin and Sp1/Sp3 expression. From these studies we conclude that the combinatorial effect of the down-regulation of positive-acting transcription factors such as Sp1/Sp3, c-Jun and Stat3 versus the up-regulation of the repressor ZBP-89 contributes to the "turning off" of the vimentin gene during myogenesis.
Collapse
|
9
|
Salmon M, Owens GK, Zehner ZE. Over-expression of the transcription factor, ZBP-89, leads to enhancement of the C2C12 myogenic program. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1144-55. [PMID: 19232372 DOI: 10.1016/j.bbamcr.2009.01.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 01/16/2009] [Accepted: 01/20/2009] [Indexed: 11/18/2022]
Abstract
Myogenesis involves the complex interplay between the down-regulation of non-muscle genes and the up-regulation of muscle-specific genes. This interplay is controlled by the myogenic regulatory factors Myf5, MRF4, MyoD and myogenin. To trigger the up-regulation of these muscle-specific factors, certain environmental cues, such as the removal of serum, signal C2C12 myoblast cells to withdraw from cell cycle, fuse and activate muscle-specific genes. Here, the level of ZBP-89 (zfp148), a Krüppel-like transcription factor, has been shown to increase during myogenesis. Over-expression of ZBP-89, via adenoviral infection, led to the enhancement of the myogenic program without requiring the removal of serum. Quantitative real-time PCR and ChIP assays documented that ZBP-89 promoted the down-regulation of Pax7 coupled with the up-regulation of MRF4 and MyoD to regulate C2C12 differentiation in vitro. In addition, ZBP-89 over-expression up-regulated p21 and Rb while promoting the down-regulation of cyclinA and cyclinD1. In converse, the diminution of ZBP-89 by siRNA promoted the retention of myogenic and cell cycle regulators at myoblast levels resulting in a concomitant delay of the myogenic program. From these studies we conclude that the transcription factor ZBP-89 plays an important role in the timing of the myogenic program.
Collapse
Affiliation(s)
- Morgan Salmon
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University Medical Center, Richmond, VA 23298-0614, USA
| | | | | |
Collapse
|
10
|
Wu Y, Zhang X, Salmon M, Zehner ZE. The zinc finger repressor, ZBP-89, recruits histone deacetylase 1 to repress vimentin gene expression. Genes Cells 2007; 12:905-18. [PMID: 17663720 DOI: 10.1111/j.1365-2443.2007.01104.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vimentin, a member of the intermediate filament (IF) protein family, exhibits a complex pattern of tissue- and developmental-specific expression. Although vimentin is widely expressed in the embryo, its expression becomes restricted during terminal differentiation. Moreover, it is often expressed in tissue culture cells despite their embryological origin and is a marker for the metastatic tumor cell. Previously, the vimentin promoter has been shown to contain several positive- and negative-acting cis-elements. The negative elements bind the transcription factor ZBP-89. Interestingly, ZBP-89 can be either an activator or a repressor of gene expression. For instance, ZBP-89 has been shown to activate p21(waf1/cip1) expression by recruiting p300 to the p21 promoter. Here, we have investigated the mechanism of ZBP-89 repression. The histone deacetylase (HDAC) inhibitor TSA enhances vimentin gene expression requiring the proximal promoter region including GC-box 1, a known Sp1/Sp3 binding site. Chromatin immunoprecipitation (ChIP) assays document an increase in the acetylation status of histone H3 on the endogenous vimentin gene concomitant with TSA treatment. However, EMSAs, DNA precipitation, co-immunoprecipitation and ChIP data show that it is not Sp1, but rather ZBP-89, which recruits HDAC1. From these studies we conclude that ZBP-89 functions as a repressor by recruiting HDAC1 to the vimentin promoter.
Collapse
Affiliation(s)
- Yongzhong Wu
- The Department of Biochemistry and the Massey Cancer Center, Medical College of Virginia Campus of Virginia Commonwealth University, Richmond, VA 23298-0614, USA
| | | | | | | |
Collapse
|
11
|
Bai L, Kao JY, Law DJ, Merchant JL. Recruitment of ataxia-telangiectasia mutated to the p21(waf1) promoter by ZBP-89 plays a role in mucosal protection. Gastroenterology 2006; 131:841-52. [PMID: 16952553 DOI: 10.1053/j.gastro.2006.06.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Accepted: 06/02/2006] [Indexed: 01/17/2023]
Abstract
BACKGROUND & AIMS Histone deacetylase inhibitors (HDACi) induce growth arrest, apoptosis, and differentiation, particularly in colon cancer cells where they are potential chemopreventive agents. HDACi induction of the cyclin-dependent kinase inhibitor p21(waf1) has been shown to require ataxia-telangiectasia mutated (ATM). Nevertheless, how ATM participates in p21(waf1) gene expression has not been defined. METHODS In vivo protein complexes forming in response to butyrate were studied using co-immunoprecipitation and mass spectroscopy. DNA elements in the p21(waf1) promoter were analyzed in vivo by chromatin immunoprecipitation and in vitro DNA affinity precipitation assays. The expression of p21(waf1) was analyzed by immunoblots and reporter assays. RESULTS Reduction of ZBP-89 or ATM with small interfering RNAs blocked HDACi-induced p21(waf1) expression. Chromatin immunoprecipitation and DNA affinity precipitation assays showed that both ZBP-89 and ATM are recruited to the GC-rich DNA elements of the p21(waf1) promoter with HDACi treatment. Co-immunoprecipitation revealed that ATM associates with ZBP-89 in an HDACi-dependent manner. Serial deletions revealed that ATM interacts with both the N-terminal and DNA binding domains of ZBP-89. Moreover, we found that immunodepletion of ZBP-89 prevented recruitment of ATM to the p21(waf1) promoter in vitro. Silencing of ZBP-89 expression blocked HDACi-induced phosphorylation of ATM(Ser1981) and p53(Ser15). ATM(Ser1981) phosphorylation in the colons of mutant mice expressing an N-terminally truncated form of ZBP-89 was not observed after ingestion of dextran sodium sulfate and correlated with exacerbation of the mucosal injury. CONCLUSIONS ZBP-89 interacts with ATM in a butyrate-dependent manner and is essential for colonic homeostasis in the setting of acute mucosal injury.
Collapse
Affiliation(s)
- Longchuan Bai
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | |
Collapse
|
12
|
Hoshino I, Matsubara H, Hanari N, Mori M, Nishimori T, Yoneyama Y, Akutsu Y, Sakata H, Matsushita K, Seki N, Ochiai T. Histone deacetylase inhibitor FK228 activates tumor suppressor Prdx1 with apoptosis induction in esophageal cancer cells. Clin Cancer Res 2005; 11:7945-52. [PMID: 16278420 DOI: 10.1158/1078-0432.ccr-05-0840] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The histone deacetylase inhibitor FK228 shows strong activity as a potent antitumor drug but its precise mechanism is still obscure. The purpose of this study is to reveal the effect of FK228 on gene expression in the cell and to determine the mechanism of the antitumor activity of FK228 for further clinical applications. EXPERIMENTAL DESIGN AND RESULTS Microarray analysis was applied to verify the gene expression profiles of 4,608 genes after FK228 treatment using human esophageal squamous cell cancer cell lines T.Tn and TE2. Among them, peroxiredoxin 1 (Prdx1), a member of the peroxiredoxin family of antioxidant enzymes having cell growth suppression activity, as well as p21(WAF1), were significantly activated by FK288. In addition, FK228 strongly inhibited the cell growth of T.Tn and TE2 by the induction of apoptosis. Further, chromatin immunoprecipitation analysis revealed that FK228 induced the accumulation of acetylated histones H3 and H4 in Prdx1 promoter, including the Sp1-binding site. In mouse xenograft models of T.Tn and TE2 cells, FK228 injection resulted in significant tumor regression as well as activated Prdx1 expression in tumor tissues. Prdx1 suppression by RNA interference hindered the antitumor effect of FK228. CONCLUSION Our results indicate that the antitumor effect of FK228 in esophageal cancer cells is shown at least in part through Prdx1 activation by modulating acetylation of histones in the promoter, resulting in tumor growth inhibition with apoptosis induction.
Collapse
Affiliation(s)
- Isamu Hoshino
- Department of Frontier Surgery (M9), Graduate School of Medicine, Chiba University, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Bai L, Yoon SO, King PD, Merchant JL. ZBP-89-induced apoptosis is p53-independent and requires JNK. Cell Death Differ 2005; 11:663-73. [PMID: 14963412 DOI: 10.1038/sj.cdd.4401393] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
ZBP-89 induces apoptosis in human gastrointestinal cancer cells through a p53-independent mechanism. To understand the apoptotic pathway regulated by ZBP-89, we identified downstream signal transduction targets. Ectopic expression of ZBP-89 induced apoptosis through the mitochondrial pathway and was accompanied by activation of all three MAP kinase subfamilies: JNK1/2, ERK1/2 and p38 MAP kinase. ZBP-89-induced apoptosis was markedly enhanced by ERK inhibition with U0126. In contrast, inhibiting JNK with a JNK1-specific peptide inhibitor or dominant-negative JNK2 expression abrogated ZBP-89-mediated apoptosis. The p38 inhibitor SB202190 had no effect on ZBP-89-induced cell death. Protein dephosphorylation assays revealed that ZBP-89 activates JNK via repression of JNK dephosphorylation. Oligonucleotide microarray analyses revealed that ectopic expression of ZBP-89 downregulated expression of the dual-specificity phosphatase MKP6. Overexpression of MKP6 blocked ZBP-89-induced JNK phosphorylation and PARP cleavage. In addition, ectopic expression of ZBP-89 repressed Bcl-xL and Mcl-1 expression, but had no effect on Bcl-2. Silencing ZBP-89 with small interfering RNA enhanced both Bcl-xL and Mcl-1 expression. Taken together, ZBP-89-mediated apoptosis occurs via a p53-independent mechanism that requires JNK activation.
Collapse
Affiliation(s)
- L Bai
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
14
|
Haneda M, Xiao H, Hasegawa T, Kimura Y, Nakashima I, Isobe KI. Regulation of mouse GADD34 gene transcription after DNA damaging agent methylmethane sulfonate. Gene 2004; 336:139-46. [PMID: 15225883 DOI: 10.1016/j.gene.2004.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Revised: 03/23/2004] [Accepted: 04/13/2004] [Indexed: 10/26/2022]
Abstract
The GADD34 gene is transcriptionally induced by growth arrest and DNA damage. However, the mechanisms underlying the transcriptional regulation are still unclear. We analyzed the promoter of mouse GADD34 gene and the methylmethane sulfonate (MMS)-induced transcriptional regulation of this gene. By introducing genome mutants, which were linked to the luciferase reporter, into NIH3T3 cells, we defined a 100-bp fragment upstream of the transcriptional initiating site as the minimal promoter of the GADD34 gene. Subsequent study revealed that CRE-binding site located in this minimal promoter was critical for MMS-induced transcription of the GADD34 gene. In vitro binding experiments showed that phosphorylated c-Jun was contained in the CRE/DNA complex. Overexpression of the dominant negative form of c-Jun led to a decrease of MMS-responsive promoter activity. From these results, we conclude that the CRE site of the GADD34 promoter is indispensable to the MMS-responsive cis-element that c-Jun is the essential transcription factor for MMS-stimulated regulation of GADD34 gene expression and that the upstream signaling is dependent on JNK.
Collapse
Affiliation(s)
- Masataka Haneda
- Department of Basic Gerontology, National Institute for Longevity Sciences, 36-3 Gengo, Morioka-cho, Obu, Aichi 474-8522, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Yagi A, Hasegawa Y, Xiao H, Haneda M, Kojima E, Nishikimi A, Hasegawa T, Shimokata K, Isobe KI. GADD34 induces p53 phosphorylation and p21/WAF1 transcription. J Cell Biochem 2004; 90:1242-9. [PMID: 14635196 DOI: 10.1002/jcb.10711] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recently, others and we have shown that one of the functions of GADD34 is a recovery from a shutoff of protein synthesis induced by endoplasmic reticulum stress. GADD34 has been shown to induce growth arrest and apoptosis. Main protein of apoptosis is p53, especially phosphorylation of p53. And one of the main proteins of growth arrest is p21/WAF1. Here we analyzed the effects of GADD34 on p53 phosphorylation and p21/WAF1 transcription. Transfected Myc-tagged p53 was dose-dependently phosphorylated at Ser15 by increasing the amount of GADD34. Transfection of GADD34 also induced the endogenous phosphorylation of p53 and enhanced p21 protein expression. Transfection of GADD34 induced p21/WAF1 promoter activity. This activity was dependent on p53, because GADD34 transfection to p53-deficient cells produced only a slight increase of p21/WAF1 promoter activity. The p21/WAF1 promoter activity was greatly enhanced by the transfection of p53. Both GADD34 and p53 transfection induced much higher p21/WAF1 promoter activity. The promoter activity of p21/WAF1 was very low in GADD34 deficient MEF. The transfection of GADD34 increased the p21/WAF1 promoter activity in GADD34 deficient MEF.
Collapse
Affiliation(s)
- Ayako Yagi
- Department of Basic Gerontology, National Institute for Longevity Sciences, Morioka-cho, Obu, Aichi 474-8522, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wu Y, Diab I, Zhang X, Izmailova ES, Zehner ZE. Stat3 enhances vimentin gene expression by binding to the antisilencer element and interacting with the repressor protein, ZBP-89. Oncogene 2004; 23:168-78. [PMID: 14712222 DOI: 10.1038/sj.onc.1207003] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Vimentin exhibits a complex pattern of developmental- and tissue-specific expression and is aberrantly expressed in most metastatic tumors. The human vimentin promoter contains multiple DNA elements, some of which enhance gene expression and one that inhibits. A silencer element (at -319) binds the repressor ZBP-89. Further upstream (at -757) is an element, which acts positively in the presence of the silencer element and, thus, is referred to as an antisilencer (ASE). Previously, we showed that Stat1alpha binds to this element upon induction by IFN-gamma. However, substantial binding and reporter gene activity was still present in nontreated cells. Here, we have found that Stat3 binds to the ASE element in vitro. Transfection experiments in COS-1 cells with various vimentin promoter--reporter constructs show that gene activity is dependent upon the cotransfection and activation of Stat3. Moreover, activated Stat3 can overcome ZBP-89 repression. Coimmunoprecipitation studies demonstrate that Stat3 and ZBP-89 can interact and confocal microscopy detects these factors to be colocalized in the nucleus. Moreover, a correlation exists between the presence of activated Stat3 and vimentin expression in MDA-MB-231 cells, which is lacking in MCF7 cells where vimentin is not expressed. In the light of these results, we propose that the interaction of Stat3 and ZBP-89 may be crucial for overcoming the effects of the repressor ZBP-89, which suggests a novel mode for Stat3 gene activation.
Collapse
Affiliation(s)
- Yongzhong Wu
- Department of Biochemistry, Medical College of Virginia Campus of Virginia Commonwealth University, Richmond, VA 23298-0614, USA
| | | | | | | | | |
Collapse
|
17
|
Kojima E, Takeuchi A, Haneda M, Yagi A, Hasegawa T, Yamaki KI, Takeda K, Akira S, Shimokata K, Isobe KI. The function of GADD34 is a recovery from a shutoff of protein synthesis induced by ER stress: elucidation by GADD34-deficient mice. FASEB J 2003; 17:1573-5. [PMID: 12824288 DOI: 10.1096/fj.02-1184fje] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
GADD34 is a protein that is induced by stresses such as DNA damage. The function of mammalian GADD34 has been proposed by in vitro transfection, but its function in vivo has not yet been elucidated. Here we generated and analyzed GADD34 knockout mice. Despite their embryonic stage- and tissue-specific expressions, GADD34 knockout mice showed no abnormalities at fetal development and in early adult life. However, in GADD34-/- mouse embryonic fibroblasts (MEFs), recovery from a shutoff of protein synthesis was delayed when MEFs were exposed to endoplasmic reticulum (ER) stress. The phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2alpha) at Ser51 induced by thapsigargin or DTT was prolonged in GADD34-/- MEF, although following treatment with tunicamycin, the eIF2alpha phosphorylation level did not change in either GADD34+/+ or GADD34-/- cells. ER stress stimuli induced expressions of Bip (binding Ig protein) and CHOP (C/EBP homologous protein) in MEF of wild-type mice. These expressions were strongly reduced in GADD34-/- MEF, which suggests that GADD34 up-regulates Bip and CHOP. These results indicate that GADD34 works as a sensor of ER stress stimuli and recovers cells from shutoff of protein synthesis.
Collapse
Affiliation(s)
- Eiji Kojima
- Department of Basic Gerontology, National Institute for Longevity Sciences, 36-3, Gengo, Morioka-cho, Obu, Aichi 474-8522, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Inducible p53-independent regulation of the cyclin-dependent kinase inhibitor p21(Waf1) transcription is mediated through its proximal GC-rich sites. Prior studies have shown that Sp1, Sp3 and the histone acetyltransferase coactivator p300 are components of the complexes that bind to these sites. Although Sp1 and Sp3 collaborate with p300, a direct interaction between Sp1 and p300 does not occur. Zinc-finger binding protein-89 (ZBP-89, also known as BFCOL1, BERF-1 and ZNF-148) is a Krüppel-type zinc-finger transcription factor that binds to the same GC-rich sequences as Sp1. We sought to determine whether ZBP-89 is a target of p300 during butyrate induction of p21(Waf1). This review summarizes the evidence that supports a crucial role for ZBP-89 in butyrate regulation of p21(Waf1). Adenovirus-mediated expression of ZBP-89 in HT-29 cells reveals that ZBP-89 potentiates butyrate induction of endogenous p21(Waf1) gene expression. DNA-protein interaction assays demonstrate that Sp1, Sp3 and ZBP-89 bind the p21(Waf1) promoter at -245 to -215. Coprecipitation assays reveal that p300 preferentially binds to the N-terminus of ZBP-89. ZBP-89 also induces p21(Waf1) through stabilization of p53. Although ZBP-89 binds mutant and wild-type p53, only wild-type p53 is stabilized. Moreover, mutant p53 shifts the subnuclear location of ZBP-89 to the nuclear periphery, which is a domain rich in heterochromatin. This finding led to the conclusion that mutant p53 exerts a dominant negative effect on ZBP-89. We propose that gene silencing by mutant p53 might be mediated by sequestering ZBP-89 within heterochromatin regions at the nuclear periphery. Overall, ZBP-89 is a butyrate-regulated coactivator of p53 and is able to induce p21(Waf1) gene expression through both p53-dependent and -independent mechanisms to inhibit cell growth.
Collapse
Affiliation(s)
- Juanita L Merchant
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
19
|
Hollander MC, Poola-Kella S, Fornace AJ. Gadd34 functional domains involved in growth suppression and apoptosis. Oncogene 2003; 22:3827-32. [PMID: 12813455 DOI: 10.1038/sj.onc.1206567] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Gadd34 (also known as MyD116) was originally described as a growth arrest and DNA damage-inducible gene. Increased expression of Gadd34 was subsequently found to correlate with apoptosis, and forced overexpression of the protein leads to apoptosis. Gadd34 protein modulates protein phosphatase type 1 activity through both direct binding to the protein, as well as through binding to other proteins that also modulate phosphatase activity. In addition, Gadd34 has a region of homology with the herpes simplex virus type 1 ICP34.5 protein that is involved in the prevention of apoptosis in infected cells. Recently it was reported that a novel rat Gadd34-related gene, PEG-3, was upregulated in transformed cells, and that forced expression of this gene led to increased tumorigenic potential of cells implanted into nude mice and increased angiogenesis of these tumors. We have found, however, that PEG-3 does not exist in normal rat cells, which have a single diploid complement of Gadd34. Sequence analysis of the rat Gadd34 gene and comparison with PEG-3 indicates that PEG-3 is most likely a mutant of Gadd34 that perhaps arose as a result of transformation. This finding suggests that truncated Gadd34 may interfere with normal Gadd34 function in transfected cells. However, human Gadd34 lacking the viral homology domain does not interfere with normal Gadd34-induced apoptosis in cultured cells. This suggests that viral similarity sequences may be required for Gadd34-mediated functions other than apoptosis.
Collapse
Affiliation(s)
- M Christine Hollander
- Basic Research Laboratory, National Cancer Institute, National Institute of Health, Bethesda, MD 20892-4255, USA.
| | | | | |
Collapse
|
20
|
Takeuchi A, Mishina Y, Miyaishi O, Kojima E, Hasegawa T, Isobe KI. Heterozygosity with respect to Zfp148 causes complete loss of fetal germ cells during mouse embryogenesis. Nat Genet 2003; 33:172-6. [PMID: 12524542 DOI: 10.1038/ng1072] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2002] [Accepted: 11/25/2002] [Indexed: 11/08/2022]
Abstract
Zfp148 belongs to a large family of C2H2-type zinc-finger transcription factors. Zfp148 is expressed in fetal germ cells in 13.5-d-old (E13.5) mouse embryos. Germ-line transmission of mutations were not observed in chimeric Zfp148(+/-) mice, and some of these mice completely lacked spermatogonia. The number of primordial germ cells in Zfp148(+/-) tetraploid embryos was normal until E11.5, but declined from E11.5 to E13.5 and continued to decline until few germ cells were present at E18.5. This phenotype was not rescued by wild-type Sertoli or stromal cells, and is therefore a cell-autonomous phenotype. These results indicate that two functional alleles of Zfp148 are required for the normal development of fetal germ cells. Recent studies have shown that Zfp148 activates p53, which has an important role in cell-cycle regulation. Primordial germ cells stop proliferating at approximately E13.5, which correlates with induction of phosphorylation of p53 and its translocation to the nucleus. Phosphorylation of p53 is impaired in Zfp148(+/-) embryonic stem cells and in fetal germ cells from chimeric Zfp148(+/-) embryos. Thus, Zfp148 may be required for regulating p53 in the development of germ cells.
Collapse
Affiliation(s)
- Akihide Takeuchi
- Department of Basic Gerontology, National Institute for Longevity Sciences, 36-3 Gengo, Morioka-cho, Obu-city, Aichi 474-8522, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Sasakawa Y, Naoe Y, Inoue T, Sasakawa T, Matsuo M, Manda T, Mutoh S. Effects of FK228, a novel histone deacetylase inhibitor, on human lymphoma U-937 cells in vitro and in vivo. Biochem Pharmacol 2002; 64:1079-90. [PMID: 12234611 DOI: 10.1016/s0006-2952(02)01261-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
FK228 [(E)-(1S,4S,10S,21R)-7-[(Z)-ethylidene]-4,21-diisopropyl-2-oxa-12,13-dithia-5,8,20,23-tetraazabicyclo-[8,7,6]-tricos-16-ene-3,6,9,19,22-pentanone; FR901228, depsipeptide] is a novel histone deacetylase inhibitor that shows therapeutic efficacy in Phase I trials of patients with malignant lymphoma. However, its mechanism of action has not been characterized. In this study, we examined the in vitro and in vivo effects of FK228 on human lymphoma U-937 cells. FK228 very strongly inhibited the growth of U-937 cells with an IC(50) value of 5.92 nM. In a scid mouse lymphoma model, mice treated with FK228 once or twice a week survived longer than control mice, with median survival times of 30.5 (0.56 mg/kg) and 33 days (0.32 mg/kg), respectively (vs. 20 days in control mice). Remarkably, 2 out of 12 mice treated with FK228 (0.56 mg/kg once or twice a week) survived past the observation period of 60 days. The apoptotic population of U-937 cells time-dependently increased to 37.7% after 48 hr of treatment with FK228. In addition, FK228 induced G1 and G2/M arrest and the differentiation of U-937 cells to the CD11b(+)/CD14(+) phenotype. Expression of p21(WAF1/Cip1) and gelsolin mRNA increased up to 654- and 152-fold, respectively, after 24hr of treatment with FK228. FK228 caused histone acetylation in p21(WAF1/Cip1) promoter regions, including the Sp1-binding sites. In conclusion, (i) FK228 prolonged the survival time of scid mice in a lymphoma model, and (ii) the beneficial effects of FK228 on human lymphoma may be exerted through the induction of apoptosis, cell cycle arrest, and differentiation via the modulation of gene expression by histone acetylation.
Collapse
Affiliation(s)
- Yuka Sasakawa
- Medicinal Biology Research Laboratories, Fujisawa Pharmaceutical Co., Ltd., 2-1-6, Kashima, Yodogawa-Ku, Osaka 532-8514, Japan.
| | | | | | | | | | | | | |
Collapse
|
22
|
Sarkar D, Su ZZ, Lebedeva IV, Sauane M, Gopalkrishnan RV, Valerie K, Dent P, Fisher PB. mda-7 (IL-24) Mediates selective apoptosis in human melanoma cells by inducing the coordinated overexpression of the GADD family of genes by means of p38 MAPK. Proc Natl Acad Sci U S A 2002; 99:10054-9. [PMID: 12114539 PMCID: PMC126623 DOI: 10.1073/pnas.152327199] [Citation(s) in RCA: 258] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2002] [Accepted: 05/31/2002] [Indexed: 12/11/2022] Open
Abstract
Subtraction hybridization identified melanoma differentiation-associated gene-7 (mda-7) as a gene induced during terminal differentiation in human melanoma cells. On the basis of structure, chromosomal localization and cytokine-like properties, mda-7 is classified as IL-24. Administration of mda-7/IL-24 by means of a replication-incompetent adenovirus (Ad.mda-7) induces apoptosis selectively in diverse human cancer cells without inducing harmful effects in normal fibroblast or epithelial cells. The present studies investigated the mechanism underlying this differential apoptotic effect. Infection of melanoma cells, but not normal immortal melanocytes, with Ad.mda-7 induced a time- and dose-dependent increase in expression, mRNA and protein, of a family of growth arrest and DNA damage (GADD)-inducible genes, which correlated with induction of apoptosis. Among the members of the GADD family of genes, GADD153, GADD45 alpha, and GADD34 displayed marked, and GADD45 gamma showed minimal induction. Treatment of melanoma cells with SB203580, a selective inhibitor of the p38 mitogen-activated protein kinase (MAPK) pathway, effectively inhibited Ad.mda-7-induced apoptosis. Additional support for an involvement of the p38 MAPK pathway in Ad.mda-7-mediated apoptosis was documented by using an adenovirus expressing a dominant negative mutant of p38 MAPK. Infection with Ad.mda-7 increased the phosphorylation of p38 MAPK and heat shock protein 27 in melanoma cells but not in normal immortal melanocytes. In addition, SB203580 effectively inhibited Ad.mda-7-mediated induction of the GADD family of genes in a time- and dose-dependent manner, and it effectively blocked Ad.mda-7-mediated down-regulation of the antiapoptotic protein BCL-2. Inhibition of GADD genes by an antisense approach either alone or in combination also effectively blocked Ad.mda-7-induced apoptosis in melanoma cells. These results support the hypothesis that Ad.mda-7 mediates induction of the GADD family of genes by means of the p38 MAPK pathway, thereby resulting in the selective induction of apoptosis in human melanoma cells.
Collapse
Affiliation(s)
- Devanand Sarkar
- Department of Pathology, Herbert Irving Comprehensive Cancer Center, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Myeloid Differentiation (MyD) primary response and Growth Arrest DNA-Damage (Gadd) genes comprise a set of overlapping genes, including known (IRF-1, EGR-1, Jun) and novel (MyD88, Gadd45alpha MyD118/Gadd45beta, GADD45gamma, MyD116/Gadd34) genes, that have been cloned by virtue of there being co-ordinately induced upon the onset of terminal myeloid differentiation. This review delineates the role MyD genes play in blood cell development, where they function as positive regulators of terminal differentiation, lineage specific blood cell development and control of blood cell homeostasis, including growth inhibition and apoptosis.
Collapse
Affiliation(s)
- Dan A Liebermann
- Fels Institute for Cancer Research and Molecular Biology and the Department of Biochemistry, Temple University School of Medicine, Philadelphia, Pennsylvania, PA 19140, USA.
| | | |
Collapse
|
24
|
Liebermann DA, Hoffman B. Myeloid differentiation (MyD)/growth arrest DNA damage (GADD) genes in tumor suppression, immunity and inflammation. Leukemia 2002; 16:527-41. [PMID: 11960329 DOI: 10.1038/sj.leu.2402477] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2001] [Accepted: 01/16/2002] [Indexed: 12/16/2022]
Abstract
Myeloid differentiation (MyD) primary response and growth arrest DNA damage (Gadd) genes comprise a set of overlapping genes, including known (IRF-1, EGR-1, Jun) and novel (MyD88, Gadd45alpha, MyD118/Gadd45beta, GADD45gamma, MyD116/ Gadd34) genes, that have been cloned by virtue of being co-ordinately induced upon the onset of terminal myeloid differentiation and following exposure of cells to stress stimuli. In recent years it has become evident that MyD/Gadd play a role in blood cell development, where they function as positive regulators of terminal differentiation, lineage-specific blood cell development and control of blood cell homeostasis, including growth inhibition and apoptosis. MyD/Gadd are also involved in inflammatory responses to invading micro-organisms, and response to environmental stress and physiological stress, such as hypoxia, which results in ischemic tissue damage. An intricate network of interactions among MyD/GADD genes and gene products appears to control their diverse functions. Deregulated growth, increased cell survival, compromised differentiation and deficiencies in DNA repair are hallmarks of malignancy and its progression. Thus, the role MyD/Gadd play in negative growth control, including cell cycle arrest and apoptosis, and in DNA repair, make them attractive molecular targets for tumor suppression. The role MyD/Gadd play in innate immunity and host response to hypoxia also make these genes and gene products attractive molecular targets to treat immunity and inflammation disorders, such as septic shock and ischemic tissue damage.
Collapse
Affiliation(s)
- D A Liebermann
- Fels Institute for Cancer Research and Molecular Biology and the Department of Biochemistry, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | |
Collapse
|
25
|
Connor JH, Weiser DC, Li S, Hallenbeck JM, Shenolikar S. Growth arrest and DNA damage-inducible protein GADD34 assembles a novel signaling complex containing protein phosphatase 1 and inhibitor 1. Mol Cell Biol 2001; 21:6841-50. [PMID: 11564868 PMCID: PMC99861 DOI: 10.1128/mcb.21.20.6841-6850.2001] [Citation(s) in RCA: 211] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The growth arrest and DNA damage-inducible protein, GADD34, was identified by its interaction with human inhibitor 1 (I-1), a protein kinase A (PKA)-activated inhibitor of type 1 protein serine/threonine phosphatase (PP1), in a yeast two-hybrid screen of a human brain cDNA library. Recombinant GADD34 (amino acids 233 to 674) bound both PKA-phosphorylated and unphosphorylated I-1(1-171). Serial truncations mapped the C terminus of I-1 (amino acids 142 to 171) as essential for GADD34 binding. In contrast, PKA phosphorylation was required for PP1 binding and inhibition by the N-terminal I-1(1-80) fragment. Pulldowns of GADD34 proteins expressed in HEK293T cells showed that I-1 bound the central domain of GADD34 (amino acids 180 to 483). By comparison, affinity isolation of cellular GADD34/PP1 complexes showed that PP1 bound near the C terminus of GADD34 (amino acids 483 to 619), a region that shows sequence homology with the virulence factors ICP34.5 of herpes simplex virus and NL-S of avian sarcoma virus. While GADD34 inhibited PP1-catalyzed dephosphorylation of phosphorylase a, the GADD34-bound PP1 was an active eIF-2alpha phosphatase. In brain extracts from active ground squirrels, GADD34 bound both I-1 and PP1 and eIF-2alpha was largely dephosphorylated. In contrast, the I-1/GADD34 and PP1/GADD34 interactions were disrupted in brain from hibernating animals, in which eIF-2alpha was highly phosphorylated at serine-51 and protein synthesis was inhibited. These studies suggested that modification of the I-1/GADD34/PP1 signaling complex regulates the initiation of protein translation in mammalian tissues.
Collapse
Affiliation(s)
- J H Connor
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
26
|
Abstract
Transcription factor p53 can induce growth arrest and/or apoptosis in cells through activation or repression of downstream target genes. Recently, we reported that ZBP-89 cooperates with histone acetyltransferase coactivator p300 in the regulation of p21(waf1), a cyclin-dependent kinase inhibitor whose associated gene is a target gene of p53. Therefore, we examined whether ZBP-89 might also inhibit cell growth by activating p53. In the present study, we demonstrate that elevated levels of ZBP-89 induce growth arrest and apoptosis in human gastrointestinal cell lines. The ZBP-89 protein accumulated within 4 h, and the p53 protein accumulated within 16 h, of serum starvation without changes in p14ARF levels, demonstrating a physiological increase in the cellular levels of these two proteins. Overexpression of ZBP-89 stabilized the p53 protein and enhanced its transcriptional activity through direct protein-protein interactions. The DNA binding and C-terminal domains of p53 and the zinc finger domain of ZBP-89 mediated the interaction. A point mutation in the p53 DNA binding domain, R273H, greatly reduced ZBP-89-mediated stabilization but not their physical interaction. Furthermore, ZBP-89 formed a complex with p53 and MDM2 and therefore did not prevent the MDM2-p53 interaction. However, heterokaryon assays demonstrated that ZBP-89 retained p53 in the nucleus. Collectively, these data indicate that ZBP-89 regulates cell proliferation in part through its ability to directly bind the p53 protein and retard its nuclear export. Our findings further our understanding of how ZBP-89 modulates cell proliferation and reveals a novel mechanism by which the p53 protein is stabilized.
Collapse
Affiliation(s)
- L Bai
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
27
|
Yamada A, Takaki S, Hayashi F, Georgopoulos K, Perlmutter RM, Takatsu K. Identification and characterization of a transcriptional regulator for the lck proximal promoter. J Biol Chem 2001; 276:18082-9. [PMID: 11278409 DOI: 10.1074/jbc.m008387200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The lck gene encodes a protein-tyrosine kinase that plays a key role in signaling mediated through T cell receptor (TCR) and pre-TCR complexes. Transcription of the lck gene is regulated by two independent promoter elements: the proximal and distal promoters. Previous studies employing transgenic mice demonstrated that the sequence between -584 and -240 from the transcription start site in the mouse lck proximal promoter is required for its tissue-specific expression in the thymus. In this study, we demonstrate that a Krüppel-like zinc finger protein, mtbeta (BFCOL1, BERF-1, ZBP-89, ZNF148), previously cloned as a protein that binds to the CD3delta gene enhancer, binds to the -365 to -328 region of the lck proximal promoter. mtbeta is ubiquitously expressed in various cell lines and mouse tissues. Overexpressed mtbeta is more active in T-lineage cells than B-lineage cells for transactivating an artificial promoter consisting of the mtbeta binding site and a TATA box. Activity of the lck proximal promoter was significantly impaired by mutating the mtbeta binding site or by reducing mtbeta protein expression level by using antisense mRNA. Our results indicate that mtbeta activity is regulated in a tissue-specific manner and that mtbeta is a critical transactivator for the lck proximal promoter.
Collapse
Affiliation(s)
- A Yamada
- Division of Immunology, Department of Microbiology and Immunology, the Institute of Medical Science, the University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Feo S, Antona V, Cammarata G, Cavaleri F, Passantino R, Rubino P, Giallongo A. Conserved structure and promoter sequence similarity in the mouse and human genes encoding the zinc finger factor BERF-1/BFCOL1/ZBP-89. Biochem Biophys Res Commun 2001; 283:209-18. [PMID: 11322790 DOI: 10.1006/bbrc.2001.4753] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have characterized the genomic structure of the mouse Zfp148 gene encoding Beta-Enolase Repressor Factor-1 (BERF-1), a Kruppel-like zinc finger protein involved in the transcriptional regulation of several genes, which is also termed ZBP-89, BFCOL1. The cloned Zfp148 gene spans 110 kb of genomic DNA encompassing the 5'-end region, 9 exons, 8 introns, and the 3'-untranslated region. The promoter region displays the typical features of a housekeeping gene: a high G+C content and the absence of canonical TATA and CAAT boxes consistent with the multiple transcription initiation sites determined by primary extension analysis. Computer-assisted search in the human genome database allowed us to determine that the same genomic structure with identical intron-exon organization is conserved in the human homologue ZNF 148. Functional analysis of the 5'-flanking sequence of the mouse gene indicated that the region from nucleotide -205 to +144, relative to the major transcription start site, contains cis-regulatory elements that promote basal expression. Such sequences and the overall promoter architecture are highly conserved in the human gene. Furthermore, we show that the complex transcription pattern of the Zfp148 gene might be due to a combination of alternative splicing and differential polyadenylation sites utilization.
Collapse
Affiliation(s)
- S Feo
- Dipartimento di Biologia Cellulare e dello Sviluppo, Centro di Oncobiologia Sperimentale, Viale delle Scienze, Palermo, 90128, Italy.
| | | | | | | | | | | | | |
Collapse
|
29
|
Bai L, Merchant JL. Transcription factor ZBP-89 cooperates with histone acetyltransferase p300 during butyrate activation of p21waf1 transcription in human cells. J Biol Chem 2000; 275:30725-33. [PMID: 10899165 DOI: 10.1074/jbc.m004249200] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inducible p53-independent regulation of the cyclin-dependent kinase inhibitor p21(waf1) transcription is mediated through proximal GC-rich sites. Prior studies have shown that Sp1, Sp3, and the histone acetylase co-activator p300 are components of the complexes binding to these sites. Although Sp1 and Sp3 collaborate with p300, a direct interaction between Sp1 and p300 does not occur. This study sought to determine whether ZBP-89 rather than Sp1 is the direct target of p300 during butyrate induction of p21(waf1). ZBP-89 (BFCOL1, BERF-1, ZNF 148) is a Krüppel-type zinc finger transcription factor that binds to GC-rich elements and represses or activates known target genes. Adenoviral-mediated expression of ZBP-89 in HT-29 cells revealed that ZBP-89 potentiates butyrate induction of endogenous p21(waf1) gene expression. Further, cotransfection of a ZBP-89 expression vector with a 2.3-kilobase p21(waf1) reporter recapitulated the potentiation by butyrate. DNase I footprinting analysis of the human p21(waf1) promoter with recombinant ZBP-89 identified a binding site at -245 to -215. Electrophoretic mobility shift assays confirmed that both recombinant and endogenous ZBP-89 and Sp1 bind to this element. The potentiation was abolished in the presence of adenoviral protein E1A. Deletion of the N-terminal domain of ZBP-89 abolished the potentiation mediated by butyrate treatment. This same deletion mutant abolished the ZBP-89 interaction with p300. Cotransfection of p300 with ZBP-89 stimulated the p21(waf1) promoter in the absence of butyrate. p300 co-precipitated with ZBP-89 but not with Sp1, whereas ZBP-89 co-precipitated with Sp1. Together, these findings demonstrate that ZBP-89 also plays a critical role in butyrate activation of the p21(waf1) promoter and reveals preferential cooperation of this four-zinc finger transcription factor with p300.
Collapse
Affiliation(s)
- L Bai
- Howard Hughes Medical Institute and the Departments of Internal Medicine and Physiology, University of Michigan, Ann Arbor, Mighican 48109, USA
| | | |
Collapse
|
30
|
|
31
|
Hasegawa T, Yagi A, Isobe K. Interaction between GADD34 and kinesin superfamily, KIF3A. Biochem Biophys Res Commun 2000; 267:593-6. [PMID: 10631107 DOI: 10.1006/bbrc.1999.1991] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
GADD34 is one of a subset of proteins induced after DNA damage or cell growth arrest. To examine the function of GADD34, we used the yeast two-hybrid system to clone the protein that interacts with the murine GADD34. One cDNA clone was the C-terminal part of KIF3A gene including the tail domain. The interaction between GADD34 and KIF3A was confirmed in the NIH3T3 cells by in vivo two-hybrid analysis. We could detect that GADD34 was induced with methyl methanesulfonate; however, the mRNA induction of KIF3A was not detected.
Collapse
Affiliation(s)
- T Hasegawa
- Department of Basic Gerontology, National Institute for Longevity Sciences, 36-3, Gengo Morioka-cho, Obu, Aichi, 474-8522, Japan
| | | | | |
Collapse
|
32
|
Sambucetti LC, Fischer DD, Zabludoff S, Kwon PO, Chamberlin H, Trogani N, Xu H, Cohen D. Histone deacetylase inhibition selectively alters the activity and expression of cell cycle proteins leading to specific chromatin acetylation and antiproliferative effects. J Biol Chem 1999; 274:34940-7. [PMID: 10574969 DOI: 10.1074/jbc.274.49.34940] [Citation(s) in RCA: 321] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Histone acetylation is emerging as a major regulatory mechanism thought to modulate gene expression by altering the accessibility of transcription factors to DNA. In this study, treatment of human tumor cells with the histone deacetylase inhibitor, trapoxin (TPX), resulted in selective changes in genes that control the cell cycle. TPX activated p21(waf1) transcription that led to elevated p21(waf1) protein levels in three human tumor cell lines without altering the protein levels of cdk2, cdk4, or cyclin B. In addition, TPX increased cyclin E transcription without increasing the levels of Rb, E2F, dihydrofolate reductase, or glyceraldehyde-3-phosphate dehydrogenase. The elevated levels of p21(waf1) protein led to decreased Rb phosphorylation and cdk2 activity. These effects resulted in G(1) and G(2) cell cycle arrest in H1299 human lung and MDA-MB-435 breast carcinoma cells and apoptosis in A549 lung carcinoma cells. Chromatin immunoprecipitation assays revealed that TPX increased the level of chromatin acetylation associated with histone H3 in the trapoxin-responsive region of the p21(waf1) promoter. This study demonstrates that inhibition of HDAC by TPX increases acetylation of H3-associated chromatin and alters gene expression with marked selectivity.
Collapse
|
33
|
Hasegawa T, Isobe K. Evidence for the interaction between Translin and GADD34 in mammalian cells. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1428:161-8. [PMID: 10434033 DOI: 10.1016/s0304-4165(99)00060-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
To examine the function of GADD34, we used the yeast two-hybrid system to clone the protein that interacts with the murine GADD34 gene product. We utilized, as bait, the product of the GADD34 cDNA deletions including the PEST region and the gamma(1)34.5 domain. One of the cDNAs cloned encoded murine Translin which is known to bind to the DNA sequence detected in the DNA translocation. The interaction between GADD34 and Translin was also confirmed by an in vitro binding assay and in vivo two-hybrid analysis in NIH 3T3 cells. Although GADD34 expression was significantly elevated with methyl methanesulfonate treatment, we could not detect the induction of Translin mRNA.
Collapse
Affiliation(s)
- T Hasegawa
- The Department of Basic Gerontology, National Institute for Longevity Sciences, 36-3, Gengo Morioka-cho, Obu, Aichi 474-8522, Japan
| | | |
Collapse
|