1
|
Zimmer S, Goody PR, Oelze M, Ghanem A, Mueller CF, Laufs U, Daiber A, Jansen F, Nickenig G, Wassmann S. Inhibition of Rac1 GTPase Decreases Vascular Oxidative Stress, Improves Endothelial Function, and Attenuates Atherosclerosis Development in Mice. Front Cardiovasc Med 2021; 8:680775. [PMID: 34422919 PMCID: PMC8377253 DOI: 10.3389/fcvm.2021.680775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
Aims: Oxidative stress and inflammation contribute to atherogenesis. Rac1 GTPase regulates pro-oxidant NADPH oxidase activity, reactive oxygen species (ROS) formation, actin cytoskeleton organization and monocyte adhesion. We investigated the vascular effects of pharmacological inhibition of Rac1 GTPase in mice. Methods and Results: We treated wild-type and apolipoprotein E-deficient (ApoE−/−) mice with Clostridium sordellii lethal toxin (LT), a Rac1 inhibitor, and assessed vascular oxidative stress, expression and activity of involved proteins, endothelial function, macrophage infiltration, and atherosclerosis development. LT-treated wild-type mice displayed decreased vascular NADPH oxidase activity and ROS production. Therapeutic LT doses had no impact on behavior, food intake, body weight, heart rate, blood pressure, vascular and myocardial function, differential blood count, and vascular permeability. ApoE−/− mice were fed a cholesterol-rich diet and were treated with LT or vehicle. LT treatment led to decreased aortic Rac1 GTPase activity, NADPH oxidase activity and ROS production, but had no impact on expression and membrane translocation of NADPH oxidase subunits and RhoA GTPase activity. LT-treated mice showed improved aortic endothelium-dependent vasodilation, attenuated atherosclerotic lesion formation and reduced macrophage infiltration of atherosclerotic plaques. Concomitant treatment of cholesterol-fed ApoE−/− mice with LT, the specific synthetic Rac1 inhibitor NSC 23766 or simvastatin comparably reduced aortic Rac1 activity, NADPH oxidase activity, oxidative stress, endothelial dysfunction, atherosclerosis development, and macrophage infiltration. Conclusions: These findings identify an important role of the small GTPase Rac1 in atherogenesis and provide a potential target for anti-atherosclerotic therapy.
Collapse
Affiliation(s)
- Sebastian Zimmer
- Department of Internal Medicine II, Heart Center Bonn, University Hospital Bonn, Bonn, Germany
| | - Philip Roger Goody
- Department of Internal Medicine II, Heart Center Bonn, University Hospital Bonn, Bonn, Germany
| | - Matthias Oelze
- Zentrum für Kardiologie - Kardiologie I, Universitätsmedizin der Johannes Gutenberg-Universität, Mainz, Germany
| | - Alexander Ghanem
- Department of Internal Medicine II - Cardiology and Medical Intensive Care, Asklepius Hospital Nord - Heidberg, Hamburg, Germany
| | - Cornelius F Mueller
- Department of Internal Medicine II, Heart Center Bonn, University Hospital Bonn, Bonn, Germany
| | - Ulrich Laufs
- Department of Cardiology, University Hospital Leipzig, Leipzig, Germany
| | - Andreas Daiber
- Zentrum für Kardiologie - Kardiologie I, Universitätsmedizin der Johannes Gutenberg-Universität, Mainz, Germany
| | - Felix Jansen
- Department of Internal Medicine II, Heart Center Bonn, University Hospital Bonn, Bonn, Germany
| | - Georg Nickenig
- Department of Internal Medicine II, Heart Center Bonn, University Hospital Bonn, Bonn, Germany
| | - Sven Wassmann
- Cardiology Pasing, Munich, Germany.,Department of Inernal Medicine III, Saarlang University Medical Center, Homburg, Germany
| |
Collapse
|
2
|
Gurung P, Dahal S, Chaudhary P, Guragain D, Karmacharya U, Kim JA, Jeong BS. Potent Inhibitory Effect of BJ-3105, a 6-Alkoxypyridin-3-ol Derivative, on Murine Colitis Is Mediated by Activating AMPK and Inhibiting NOX. Int J Mol Sci 2020; 21:ijms21093145. [PMID: 32365634 PMCID: PMC7247564 DOI: 10.3390/ijms21093145] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing inflammation in the gastrointestinal tract. Biological therapeutics and orally available small molecules like tofacitinib (a JAK inhibitor) have been developed to treat IBD, but half of the patients treated with these drugs fail to achieve sustained remission. In the present study, we compared the therapeutic effects of BJ-3105 (a 6-alkoxypyridin-3-ol derivative) and tofacitinib in IBD. BJ-3105 induced activation of AMP-activated protein kinase (AMPK) in the kinase activity measurement and recovery from cytokine-induced AMPK deactivation in HT-29 human colonic epithelial cells. Similar to tofacitinib and D942 (an AMPK activator), BJ-3105 inhibited IL-6-induced JAK2/STAT3 phosphorylation and TNF-α-stimulated activation of IKK/NF-κB, and consequently, stimulus-induced upregulations of inflammatory cytokines and inflammasome components. In addition, unlike tofacitinib or D942, BJ-3105 inhibited NADPH oxidase (NOX) activation and consequent superoxide production induced by activators (mevalonate and geranylgeranyl pyrophosphate) of the NOX cytosolic component Rac. In mice, oral administration with BJ-3105 ameliorated dextran sulfate sodium (DSS)-induced colitis and azoxymethane/DSS-induced colitis-associated tumor formation (CAT) much more potently than that with tofacitinib. Moreover, BJ-3105 suppressed the more severe form of colitis and CAT formation in mice with AMPK knocked-out in macrophages (AMPKαfl/fl-Lyz2-Cre mice) with much greater efficacy than tofacitinib. Taken together, our findings suggest BJ-3105, which exerted a much better anti-colitis effect than tofacitinib through AMPK activation and NOX inhibition, is a promising candidate for the treatment of IBD.
Collapse
Affiliation(s)
| | | | | | | | | | - Jung-Ae Kim
- Correspondence: (J.-A.K.); (B.-S.J.); Tel.: +82-53-810-2816 (J.-A.K.); +82-53-810-2814 (B.-S.J.)
| | - Byeong-Seon Jeong
- Correspondence: (J.-A.K.); (B.-S.J.); Tel.: +82-53-810-2816 (J.-A.K.); +82-53-810-2814 (B.-S.J.)
| |
Collapse
|
3
|
Jiang D, Chen Y, Zhu Y, Fu G, Xu S. Expression of key enzymes in the mevalonate pathway are altered in monocrotaline-induced pulmonary arterial hypertension in rats. Mol Med Rep 2017; 16:9593-9600. [PMID: 29039598 DOI: 10.3892/mmr.2017.7798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 08/31/2017] [Indexed: 11/06/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a serious pulmonary vascular disease. The changes in the structure, function and metabolism of endothelial cells are some of the important features of PAH. Previous studies have demonstrated that the mevalonate pathway is important in cardiovascular remodeling. However, whether the mevalonate pathway is involved in the development of PAH remains to be elucidated. The present study aimed to investigate the expression pattern of mevalonate pathway-related enzymes in monocrotaline (MCT)-induced PAH. F344 rats were randomly divided into two groups (n=6/group): Control group rats were injected with a single dose of saline, and MCT group rats were injected with a single dose of MCT (60 mg/kg). After 4 weeks, the right ventricular systolic pressure (RVSP) was measured, and lung and pulmonary artery tissue samples were collected. It was demonstrated that the RVSP increased and pulmonary vascular remodeling was detected in the PAH group. The expression levels of the enzymes farnesyldiphosphate synthase farnesyltransferase α and geranylgeranyltransferase type I increased in the PAH group, which suggested that the mevalonate pathway may be involved in the pathological development of PAH.
Collapse
Affiliation(s)
- Dongmei Jiang
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Yu Chen
- Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310029, P.R. China
| | - Yuxiang Zhu
- Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310029, P.R. China
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Shiming Xu
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
4
|
Han J, Jiang DM, Ye Y, Du CQ, Yang J, Hu SJ. Farnesyl pyrophosphate synthase inhibitor, ibandronate, improves endothelial function in spontaneously hypertensive rats. Mol Med Rep 2016; 13:3787-96. [PMID: 27035426 PMCID: PMC4838142 DOI: 10.3892/mmr.2016.5025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 02/17/2016] [Indexed: 11/06/2022] Open
Abstract
Reactive oxygen species (ROS), originating predominantly from vascular smooth muscle cells (VSMCs), lead to vascular damage and endothelial dysfunction in rats with hypertension. The downstream signaling pathways of farnesyl pyrophosphate (FPP) synthase, Ras-related C3 botulinum toxin substrate 1 (Rac1) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, mediate the generation of ROS. The present study investigated the effect of the FPP synthase inhibitor, ibandronate, on ROS production, the possible beneficial effect on endothelial dysfunction and the underlying mechanisms in spontaneously hypertensive rats (SHRs). The SHRs were treated with ibandronate for 30 days. Endothelium‑dependent and independent vasorelaxation were measured in isolated aortic rings. Additionally, VSMCs from the SHRs and Wistar‑Kyoto (WKY) rats were cultured. The production of ROS and activation of NADPH oxidase were determined using fluorescence and chemiluminescence, respectively, in vivo and in vitro. Angiotensin II (Ang II) increased ROS production in the cultured VSMCs from the WKY rats and SHRs, in a concentration‑dependent manner. The Ang II‑induced responses were more marked in the SHR VSMCs, compare with those in the WKY VSMCs, however, the response decreased significantly following ibandronate pretreatment. Treatment with ibandronate significantly decreased the production of ROS, translocation of NADPH oxidase subunit p47phox, and activities of NADPH oxidase and Rac1 in the aorta and VSMCs, and improved the impaired endothelium‑dependent vasodilation in the SHRs. Adding geranylgeraniol, but not farnesol or mevalonate, reversed the inhibitory effects of ibandronate. In addition, inhibiting geranylgeranyl-transferase mimicked the effect of ibandronate on the excess oxidative response. Ibandronate exerted cellular antioxidant effects through the Rac1/NADPH oxidase pathway. These effects may have contributed to the vasoprotective effects on the impaired endothelium in SHRs.
Collapse
Affiliation(s)
- Jie Han
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Dong-Mei Jiang
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Yang Ye
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Chang-Qing Du
- Department of Cardiology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Jian Yang
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Shen-Jiang Hu
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
5
|
Duerr GD, Heinemann JC, Arnoldi V, Feisst A, Kley J, Ghanem A, Welz A, Dewald O. Cardiomyocyte specific peroxisome proliferator-activated receptor-α overexpression leads to irreversible damage in ischemic murine heart. Life Sci 2014; 102:88-97. [DOI: 10.1016/j.lfs.2014.03.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 03/01/2014] [Accepted: 03/10/2014] [Indexed: 01/01/2023]
|
6
|
Goette A, Bukowska A, Lillig CH, Lendeckel U. Oxidative Stress and Microcirculatory Flow Abnormalities in the Ventricles during Atrial Fibrillation. Front Physiol 2012; 3:236. [PMID: 22783202 PMCID: PMC3389777 DOI: 10.3389/fphys.2012.00236] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Accepted: 06/11/2012] [Indexed: 11/13/2022] Open
Abstract
Patients with atrial fibrillation (AF) often present with typical angina pectoris and mildly elevated levels of cardiac troponin (non-ST-segment elevation myocardial infarction) during an acute episode of AF. However, in a large proportion of these patients, significant coronary artery disease is excluded by coronary angiography, which suggests that AF itself influences myocardial blood flow. The present review summarizes the effect of AF on the occurrence of ventricular oxidative stress, redox-sensitive signaling pathways and gene expression, and microcirculatory flow abnormalities in the left ventricle.
Collapse
Affiliation(s)
- Andreas Goette
- Department of Cardiology and Intensive Care Medicine, St. Vincenz-Hospital Paderborn Paderborn, Germany
| | | | | | | |
Collapse
|
7
|
Hong J, Resnick M, Behar J, Wands J, DeLellis RA, Cao W. Role of Rac1 in regulation of NOX5-S function in Barrett's esophageal adenocarcinoma cells. Am J Physiol Cell Physiol 2011; 301:C413-20. [PMID: 21525435 DOI: 10.1152/ajpcell.00027.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We have shown that a novel NADPH oxidase isoform, NOX5-S, is the major isoform of NADPH oxidases in an esophageal adenocarcinoma (EA) cell line, FLO, and is overexpressed in Barrett's mucosa with high-grade dysplasia. NOX5-S is responsible for acid-induced reactive oxygen species production. In this study, we found that mRNA levels of NOX5-S were significantly higher in FLO EA cells than in the normal human esophageal squamous cell line HET-1A or in a Barrett cell line, BAR-T. The mRNA levels of NOX5-S were also significantly increased in EA tissues. The data suggest that NOX5-S may be important in the development of EA. Mechanisms of functional regulation of NOX5-S are not fully understood. We show that small G protein Rac1 was present in HET-1A cells, BAR-T cells, and EA cell lines FLO and OE33. Rac1 protein levels were significantly higher in FLO and OE33 cells than in HET-1A or BAR-T cells. Knockdown of Rac1 with Rac1 small interfering RNA significantly decreased acid-induced increase in H(2)O(2) production in FLO EA cells. Overexpression of constitutively active Rac1 significantly increased H(2)O(2) production, an increase that was blocked by knockdown of NOX5-S. By immunofluorescence staining and immunoprecipitation, we found that NOX5-S was present in the cytosol of FLO EA cells and colocalized with Rac1 and SERCA1/2 Ca(2+)-ATPase which is located in the endoplasmic reticulum membrane. We conclude that Rac1 may be important in activation of NOX5-S in FLO EA cells.
Collapse
Affiliation(s)
- Jie Hong
- Department of Medicine, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | | | | | | | | | | |
Collapse
|
8
|
Tell G, Fantini D, Quadrifoglio F. Understanding different functions of mammalian AP endonuclease (APE1) as a promising tool for cancer treatment. Cell Mol Life Sci 2010; 67:3589-608. [PMID: 20706766 PMCID: PMC11115856 DOI: 10.1007/s00018-010-0486-4] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 07/28/2010] [Indexed: 12/27/2022]
Abstract
The apurinic endonuclease 1/redox factor-1 (APE1) has a crucial function in DNA repair and in redox signaling in mammals, and recent studies identify it as an excellent target for sensitizing tumor cells to chemotherapy. APE1 is an essential enzyme in the base excision repair pathway of DNA lesions caused by oxidation and alkylation. As importantly, APE1 also functions as a redox agent maintaining transcription factors involved in cancer promotion and progression in an active reduced state. Very recently, a new unsuspected function of APE1 in RNA metabolism was discovered, opening new perspectives for this multifunctional protein. These observations underline the necessity to understand the molecular mechanisms responsible for fine-tuning its different biological functions. This survey intends to give an overview of the multifunctional roles of APE1 and their regulation in the context of considering this protein a promising tool for anticancer therapy.
Collapse
Affiliation(s)
- Gianluca Tell
- Department of Biomedical Sciences and Technologies, University of Udine, Piazzale Kolbe 4, 33100, Udine, Italy.
| | | | | |
Collapse
|
9
|
Zhao W, Diz DI, Robbins ME. Oxidative damage pathways in relation to normal tissue injury. Br J Radiol 2007; 80 Spec No 1:S23-31. [PMID: 17704323 DOI: 10.1259/bjr/18237646] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Given the increasing population of long-term cancer survivors, the need to mitigate or treat late effects has emerged as a primary area of radiation biology research. Once thought to be irreversible, radiation-induced late effects are now viewed as dynamic multicellular interactions between multiple cell types within a particular program that can be modulated. The molecular, cellular and biochemical pathways responsible for radiation-induced late morbidity remain ill-defined. This review provides data in support of the hypothesis that these late effects are driven, in part, by a chronic oxidative stress. Irradiating late responding normal tissues leads to chronic increases in reactive oxygen/reactive nitrogen oxide species that serve as intracellular signaling species to alter cell function/phenotype, resulting in chronic inflammation, organ dysfunction, and ultimate fibrosis and/or necrosis. Furthermore, we hypothesize that the effectiveness of renin-angiotensin system blockers in preventing or mitigating the severity of radiation-induced late effects reflects, in part, inhibition of reactive oxygen species generation and the resultant chronic oxidative stress. These findings provide a robust rationale for anti-inflammatory-based interventional therapies in the treatment of late normal tissue injury.
Collapse
Affiliation(s)
- W Zhao
- Department of Radiation Oncology, Brain Tumor Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | |
Collapse
|
10
|
Rakotoniaina Z, Guerard P, Lirussi F, Goirand F, Rochette L, Dumas M, Bardou M. The protective effect of HMG-CoA reductase inhibitors against monocrotaline-induced pulmonary hypertension in the rat might not be a class effect: comparison of pravastatin and atorvastatin. Naunyn Schmiedebergs Arch Pharmacol 2006; 374:195-206. [PMID: 17102939 DOI: 10.1007/s00210-006-0112-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Accepted: 10/12/2006] [Indexed: 10/23/2022]
Abstract
Hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, so called statins, improve endothelial function and exert antiproliferative effects on vascular smooth muscle cells of systemic vessels. This study aimed at comparing the protective effects of two statins, pravastatin and atorvastatin, against monocrotaline (MC)-induced pulmonary hypertension in rats. Pravastatin or atorvastatin (PS or AS, 10 mg/kg per day) or vehicle were given orally for 28 days to Wistar male rats injected or not with MC (60 mg/kg intraperitoneally). At 4 weeks, MC-injected rats developed severe pulmonary hypertension, with an increase in right ventricular pressure (RVP) and right ventricle/left ventricle + septum weight ratio associated with a decrease in acetylcholine- or sodium-nitroprusside-induced pulmonary artery dilation observed in vitro. Hypertensive pulmonary arteries exhibited an increase in medial thickness and endothelial cell apoptosis and a decrease of endothelial nitric oxide synthase (eNOS) expression. MC-rat lungs showed a significant decrease of eNOS (P < 0.01) and increase of cleaved caspase-3 (P < 0.05) expression determined by Western blotting. PS (P = 0.02) but not AS (P = 0.30) significantly limited the development of pulmonary hypertension (RVP in mmHg: 30 +/- 3, 36 +/- 4 vs. 45 +/- 4 and 14 +/- 1 for MC + PS, MC + AS, MC, and control groups, respectively). Both statins significantly reduced MC-induced right ventricle hypertrophy [RV/left ventricular (LV) + S, in mg/g: 0.46 +/- 0.04, 0.39 +/- 0.03, 0.62 +/- 0.05 and 0.29 +/- 0.01 for MC + PS, MC + AS, MC, and control groups, respectively; P < 0.05),and reduced MC-induced thickening (61 +/- 6 microm, 82 +/- 5 microm, 154 +/- 4 microm, and 59 +/- 2 microm for MC + PS, MC + AS, MC, and control groups, respectively; P = 0.01) of small intrapulmonary artery medial wall, with MC + AS still being different from the control group. PS but not AS partially restored acetylcholine-induced pulmonary artery vasodilation in MC rats (E(max)=65 +/- 5%, 49 +/- 6%, 46 +/- 3%, and 76 +/- 4% for MC + PS, MC + AS, MC, and control groups, respectively; P < 0.05 for MC + PS vs. other groups). Both statins prevented apoptosis and restored eNOS expression of pulmonary artery endothelial cells as well as in the whole lung with a more pronounced effect with PS compared with AS. In conclusion, despite its effects on eNOS expression, apoptosis, and medial wall thickening, AS was unable to significantly reduce pulmonary hypertension and to restore endothelium-dependent relaxation, suggesting intermolecular differences between the two HMG-CoA reductase inhibitors in the protection against MC-induced hypertension.
Collapse
Affiliation(s)
- Zo Rakotoniaina
- Laboratory of Experimental Cardiovascular Physiopathology and Pharmacology (EA2979), University of Burgundy, BP 87900, 21000, Dijon, France
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Phagocytic leukocytes generate reactive oxygen species important for the killing of invading microorganisms. The source of these oxidants is the NADPH oxidase, a tightly controlled multicomponent enzyme made up of a membrane-associated catalytic moiety and cytosolic regulatory components that must assemble to form the active oxidase. The phagocyte NADPH oxidase was the first mammalian system shown to be directly regulated by a Rac GTPase. We review here our understanding of NADPH oxidase regulation by Rac, as well as the regulation of Rac itself, in phagocytic leukocytes. Rather than viewing Rac as a "cog" in the NADPH oxidase machinery, we argue for a view of Rac GTPases as critical "molecular switches" regulating the formation of ROS by phagocytic leukocytes under physiologic and pathologic conditions.
Collapse
Affiliation(s)
- Gary M Bokoch
- Department of Immunology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA.
| | | |
Collapse
|
12
|
Guerard P, Rakotoniaina Z, Goirand F, Rochette L, Dumas M, Lirussi F, Bardou M. The HMG-CoA reductase inhibitor, pravastatin, prevents the development of monocrotaline-induced pulmonary hypertension in the rat through reduction of endothelial cell apoptosis and overexpression of eNOS. Naunyn Schmiedebergs Arch Pharmacol 2006; 373:401-14. [PMID: 16896805 DOI: 10.1007/s00210-006-0082-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Accepted: 05/29/2006] [Indexed: 01/17/2023]
Abstract
HMG-CoA reductase inhibitors improve endothelial function and exert antiproliferative effects on vascular smooth muscle cells of systemic vessels. This study was aimed to assess the protective effects of pravastatin (an HMG-CoA reductase inhibitor) against monocrotaline-induced pulmonary hypertension in rats. Pravastatin (PS, 10 mg/kg/day) or vehicle were given orally for 28 days to Wistar male rats injected or not with monocrotaline (MC, 60 mg/kg intraperitonealy) and treated or not by N(omega)-nitro-L-arginine methyl ester (L-NAME) 15 mg/kg/day. At 4 weeks, monocrotaline-injected rats developed severe pulmonary hypertension, with an increase in right ventricular pressure (RVP) and right ventricle/left ventricle+septum weight ratio (RV/LV+S), associated with a decrease in pulmonary artery dilation induced either by acetylcholine or sodium nitroprusside. Hypertensive pulmonary arteries exhibited an increase in medial thickness, medial wall area, endothelial cell apoptosis, and a decrease of endothelial nitric oxide synthase (eNOS) expression. Monocrotaline-rat lungs showed a significant decrease of eNOS expression (4080+/-27 vs 12189+/-761 arbitrary density units [ADU] for MC and control groups respectively, P<0.01) and a significant increase of cleaved caspase-3 expression by western blotting (Control=11628+/-2395 vs MC=2326+/-2243 ADU, P<0.05). A non-significant trend toward a reduced mortality was observed with pravastatin (relative risk of death = 0.33; 95% confidence interval [0.08-1.30], P= 0.12 for MC+PS vs MC groups). Pravastatine induced a protection against the development of the pulmonary hypertension (RVP in mmHg: 30+/-3 vs 45+/-4 and RV/LV+S: 0.46+/-0.04 vs 0.62+/-0.05 for MC+PS and MC groups respectively, P<0.05) and was associated with a significant reduction of MC-induced thickening (61+/-6 mum vs 81+/-3 mum for MC+PS and MC groups respectively, P= 0.01) of the medial wall of the small intrapulmonary arteries. Pravastatin partially restored acetylcholine-induced pulmonary artery vasodilation in MC rats (Emax=65+/-5% and 46+/-3% for MC+PS and MC group respectively, P<0.05) but had no effect on acetylcholine-induced pulmonary artery vasodilation in MC+L-NAME rats. It also prevented apoptosis and restored eNOS expression of pulmonary artery endothelial cells, as well as in the whole lung. Pravastatin reduces the development of monocrotaline-induced pulmonary hypertension and improves endothelium-dependent pulmonary artery relaxation, probably through a reduced apoptosis and a restored eNOS expression of endothelial cells.
Collapse
Affiliation(s)
- Pascal Guerard
- Laboratory of Experimental Cardiovascular Physiopathology and Pharmacology (EA2979), IFR 100 Faculty of Medicine, BP 87900, 21000, Dijon, France.
| | | | | | | | | | | | | |
Collapse
|
13
|
Robbins ME, Diz DI. Pathogenic role of the renin-angiotensin system in modulating radiation-induced late effects. Int J Radiat Oncol Biol Phys 2006; 64:6-12. [PMID: 16377409 DOI: 10.1016/j.ijrobp.2005.08.033] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 08/05/2005] [Accepted: 08/10/2005] [Indexed: 11/24/2022]
Affiliation(s)
- Mike E Robbins
- Department of Radiation Oncology, Brain Tumor Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | | |
Collapse
|
14
|
Sheppard FR, Kelher MR, Moore EE, McLaughlin NJD, Banerjee A, Silliman CC. Structural organization of the neutrophil NADPH oxidase: phosphorylation and translocation during priming and activation. J Leukoc Biol 2005; 78:1025-42. [PMID: 16204621 DOI: 10.1189/jlb.0804442] [Citation(s) in RCA: 262] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is part of the microbicidal arsenal used by human polymorphonuclear neutrophils (PMNs) to eradicate invading pathogens. The production of a superoxide anion (O2-) into the phagolysosome is the precursor for the generation of more potent products, such as hydrogen peroxide and hypochlorite. However, this production of O2- is dependent on translocation of the oxidase subunits, including gp91phox, p22phox, p47phox, p67phox, p40phox, and Rac2 from the cytosol or specific granules to the plasma membrane. In response to an external stimuli, PMNs change from a resting, nonadhesive state to a primed, adherent phenotype, which allows for margination from the vasculature into the tissue and chemotaxis to the site of infection upon activation. Depending on the stimuli, primed PMNs display altered structural organization of the NADPH oxidase, in that there is phosphorylation of the oxidase subunits and/or translocation from the cytosol to the plasma or granular membrane, but there is not the complete assembly required for O2- generation. Activation of PMNs is the complete assembly of the membrane-linked and cytosolic NADPH oxidase components on a PMN membrane, the plasma or granular membrane. This review will discuss the individual components associated with the NADPH oxidase complex and the function of each of these units in each physiologic stage of the PMN: rested, primed, and activated.
Collapse
|
15
|
Iwai M, Chen R, Li Z, Shiuchi T, Suzuki J, Ide A, Tsuda M, Okumura M, Min LJ, Mogi M, Horiuchi M. Deletion of Angiotensin II Type 2 Receptor Exaggerated Atherosclerosis in Apolipoprotein E–Null Mice. Circulation 2005; 112:1636-43. [PMID: 16145000 DOI: 10.1161/circulationaha.104.525550] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
The role of angiotensin II (Ang II) type 2 (AT
2
) receptor in atherosclerosis was explored with the use of AT
2
receptor/apolipoprotein E (ApoE)–double-knockout (AT
2
/ApoE-DKO) mice, with a focus on oxidative stress.
Methods and Results—
After treatment with a high-cholesterol diet (1.25% cholesterol) for 10 weeks, ApoE-knockout (KO) mice developed atherosclerotic lesions in the aorta. In AT
2
/ApoE-DKO mice receiving a high-cholesterol diet, the atherosclerotic changes were further exaggerated, without significant changes in plasma cholesterol level and blood pressure. In the atherosclerotic lesion, an increase in superoxide production, NADPH oxidase activity, and expression of p47
phox
was observed. These changes were also greater in AT
2
/ApoE-DKO mice. An Ang II type 1 (AT
1
) receptor blocker, valsartan, inhibited atherosclerotic lesion formation, superoxide production, NADPH oxidase activity, and p47
phox
expression; these inhibitory effects were significantly weaker in AT
2
/ApoE-KO mice. We further examined the signaling mechanism of the AT
2
receptor–mediated antioxidative effect in cultured fetal vascular smooth muscle cells. NADPH oxidase activity and phosphorylation and translocation of p47
phox
induced by Ang II were inhibited by valsartan but enhanced by an AT
2
receptor blocker, PD123319.
Conclusions—
These results suggest that AT
2
receptor stimulation attenuates atherosclerosis through inhibition of oxidative stress and that the antiatherosclerotic effect of valsartan could be at least partly due to AT
2
receptor stimulation by unbound Ang II.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Angiotensin II Type 2 Receptor Blockers
- Animals
- Aorta/drug effects
- Aorta/metabolism
- Aorta/pathology
- Apolipoproteins E/genetics
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/prevention & control
- Cells, Cultured
- Gene Deletion
- Imidazoles/pharmacology
- Mice
- Mice, Knockout
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- NADPH Oxidases/metabolism
- Oxidative Stress
- Phosphoproteins
- Phosphorylation/drug effects
- Proto-Oncogene Proteins c-akt/metabolism
- Pyridines/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptor, Angiotensin, Type 2/drug effects
- Receptor, Angiotensin, Type 2/genetics
- Tetrazoles/pharmacology
- Valine/analogs & derivatives
- Valine/pharmacology
- Valsartan
- rac1 GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
- Masaru Iwai
- Division of Medical Biochemistry and Cardiovascular Biology, Department of Molecular and Cellular Biology, Ehime University School of Medicine, Shitsukawa, Tohon, Ehime 791-0295, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Gao L, Wang W, Li YL, Schultz HD, Liu D, Cornish KG, Zucker IH. Simvastatin therapy normalizes sympathetic neural control in experimental heart failure: roles of angiotensin II type 1 receptors and NAD(P)H oxidase. Circulation 2005; 112:1763-70. [PMID: 16157767 DOI: 10.1161/circulationaha.105.552174] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND In a previous study, we showed that simvastatin (SIM) therapy normalized sympathetic outflow and cardiovascular reflex regulation in chronic heart failure (CHF). However, the precise neural and cellular pathways for these effects are unknown. We hypothesized that SIM exerts its beneficial effect on autonomic function in CHF by downregulating central angiotensin II (Ang II) and superoxide mechanisms. METHODS AND RESULTS Experiments were carried out on 36 male New Zealand White rabbits, 13 normal and 23 CHF. All rabbits were identically instrumented to record mean arterial pressure, heart rate, and renal sympathetic nerve activity (RSNA). Echocardiography was used to monitor cardiac function. Reverse transcription-polymerase chain reaction, Western blotting, and lucigenin-enhanced chemiluminescence were used to measure gene expression of Ang II type 1 receptor and NAD(P)H oxidase subunits and NAD(P)H oxidase activity in the rostral ventrolateral medulla. Compared with the CHF control group, SIM significantly reduced the central Ang II-induced pressor and sympathoexcitatory responses, decreased baseline RSNA (57.3+/-3.2% to 22.4+/-2.1% of maximum, P<0.05), increased baroreflex control of heart rate (gain(max), 1.6+/-0.3 to 4.5+/-0.2 bpm/mm Hg, P<0.05), and increased RSNA (gain(max), 1.7+/-0.2% to 4.9+/-0.6% of maximum/mm Hg, P<0.01). Importantly, SIM improved left ventricular function (EF, 32.4+/-4.1% to 51.7+/-3.2%, P<0.05). SIM also downregulated mRNA and protein expression of Ang II type 1 receptor and NAD(P)H oxidase subunits and inhibited NAD(P)H oxidase activity in the rostral ventrolateral medulla of CHF rabbits. Chronic intracerebroventricular infusion of Ang II completely abolished the aforementioned effects of SIM in CHF rabbits. CONCLUSIONS These data strongly suggest that SIM normalizes autonomic function in CHF by inhibiting central Ang II mechanisms and therefore the superoxide pathway. These data also demonstrate that SIM improves left ventricular function in pacing-induced CHF rabbits.
Collapse
Affiliation(s)
- Lie Gao
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Matute JD, Arias AA, Dinauer MC, Patiño PJ. p40phox: The last NADPH oxidase subunit. Blood Cells Mol Dis 2005; 35:291-302. [PMID: 16102984 DOI: 10.1016/j.bcmd.2005.06.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Accepted: 06/27/2005] [Indexed: 11/20/2022]
Abstract
The phagocytic NADPH-oxidase is a multiprotein system activated during the inflammatory response to produce superoxide anion (O2-), which is the substrate for formation of additional reactive oxygen species (ROS). The importance of this system for innate immunity is established by chronic granulomatous disease (CGD), a primary immunodeficiency caused by defects in the NADPH oxidase. In this review, we present and discuss recent knowledge about p40phox, the last NADPH oxidase component to be identified. Furthermore, its interaction with cellular pathways outside of the NADPH oxidase is discussed. Described in this review is evidence that p40phox participates in NADPH oxidase dynamics within cells, what is known about its role in the oxidase, the possibility that p40phox participates in non-NADPH oxidase processes in phagocytic and non-phagocytic cells and whether p40phox could mediate a similar function in other NADPH oxidases. An improved understanding of p40phox should provide new insights about NADPH oxidase, the physiology of phagocytic cells and the innate immune system.
Collapse
Affiliation(s)
- Juan D Matute
- Grupo de Inmunodeficiencias Primarias, Corporación Biogénesis and Facultad de Medicina, Universidad de Antioquia, Medellín, Antioquia, Colombia
| | | | | | | |
Collapse
|
18
|
Patil S, Bunderson M, Wilham J, Black SM. Important role for Rac1 in regulating reactive oxygen species generation and pulmonary arterial smooth muscle cell growth. Am J Physiol Lung Cell Mol Physiol 2004; 287:L1314-22. [PMID: 15377495 DOI: 10.1152/ajplung.00383.2003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vascular NADPH oxidases have been shown to be a major source of reactive oxygen species (ROS). Recent studies have also implicated ROS in the proliferation of vascular smooth muscle cells. However, the components required for activation of the NADPH oxidase complex have not been clearly elucidated. Here we demonstrate that ROS generation in ovine pulmonary arterial smooth muscle cells (PASMCs) requires the activation of Rac1, implicating this protein as an important subunit of the NADPH oxidase complex. Our results, using a geranylgeranyl transferase inhibitor (GGTI-287), demonstrated a dose-dependent inhibition of Rac1 activity and ROS production. This was associated with an inhibition of PASMC proliferation with an arrest at G2/M. The inhibition of Rac1 by GGTI-287 led us to more specifically target Rac1 to investigate its role in the generation of ROS and cellular proliferation. To accomplish this, we utilized a dominant negative Rac1 (N17Rac1) and a constitutively active Rac1 (V12Rac1). These two forms of Rac1 were transiently expressed in PASMCs using adenovirus-mediated gene transfer. N17Rac1 expression resulted in decreased cellular Rac1 activity, whereas V12Rac1 infection showed increased activity. Compared with controls, the V12Rac1-expressing cells had higher levels of ROS production and increased proliferation, whereas the N17Rac1-expressing cells had decreased ROS generation and proliferation and cell cycle arrest at G2/M. However, the inhibition of cell growth produced by N17Rac1 overexpression could be overcome if cells were co-incubated with the Cu,Zn superoxide dismutase inhibitor DETC. These results indicate the importance of Rac1 in ROS generation and proliferation of vascular smooth muscle cells.
Collapse
Affiliation(s)
- Sandip Patil
- Department of Pediatrics, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
19
|
Li Z, Iwai M, Wu L, Liu HW, Chen R, Jinno T, Suzuki J, Tsuda M, Gao XY, Okumura M, Cui TX, Horiuchi M. Fluvastatin Enhances the Inhibitory Effects of a Selective AT
1
Receptor Blocker, Valsartan, on Atherosclerosis. Hypertension 2004; 44:758-63. [PMID: 15452025 DOI: 10.1161/01.hyp.0000145179.44166.0f] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We investigated the effects of a 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor (statin) on the inhibitory effects of an angiotensin II type-1 receptor (AT1) blocker on atherosclerosis and explored cellular mechanisms. We gave apolipoprotein E null mice a high-cholesterol diet for 10 weeks and measured atherosclerotic plaque area and lipid deposition. Neither 1 mg/kg per day of valsartan nor 3 mg/kg per day of fluvastatin had any effect on blood pressure or cholesterol concentration; however, both drugs decreased plaque area and lipid deposition after 10 weeks. We then reduced the doses of both drugs to 0.1 mg/kg per day and 1 mg/kg per day, respectively. At these doses, neither drug had an effect on atherosclerotic lesions. When both drugs were combined at these doses, a significant reduction in atherosclerotic lesions was observed. Similar inhibitory effects of valsartan or fluvastatin on the expressions of nicotinamide-adenine dinucleotide/nicotinamide-adenine dinucleotide phosphate oxidase subunits p22phox and p47phox, production of superoxide anion, the expression of monocyte chemoattractant protein-1, and intercellular adhesion molecule-1 expression were observed. These results suggest that concomitant AT1 receptor and cholesterol biosynthesis blockade, particularly when given concomitantly, blunts oxidative stress and inflammation independent of blood pressure or cholesterol-related effects.
Collapse
Affiliation(s)
- Zhen Li
- Department of Medical Biochemistry, Ehime University School of Medicine, Shigenobu, Onsen-gun, Ehime, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Quinn MT, Gauss KA. Structure and regulation of the neutrophil respiratory burst oxidase: comparison with nonphagocyte oxidases. J Leukoc Biol 2004; 76:760-81. [PMID: 15240752 DOI: 10.1189/jlb.0404216] [Citation(s) in RCA: 345] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Neutrophils play an essential role in the body's innate defense against pathogens and are one of the primary mediators of the inflammatory response. To defend the host, neutrophils use a wide range of microbicidal products, such as oxidants, microbicidal peptides, and lytic enzymes. The generation of microbicidal oxidants by neutrophils results from the activation of a multiprotein enzyme complex known as the reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, which is responsible for transferring electrons from NADPH to O2, resulting in the formation of superoxide anion. During oxidase activation, cytosolic oxidase proteins translocate to the phagosome or plasma membrane, where they assemble around a central membrane-bound component known as flavocytochrome b. This process is highly regulated, involving phosphorylation, translocation, and multiple conformational changes. Originally, it was thought that the NADPH oxidase was restricted to phagocytes and used solely in host defense. However, recent studies indicate that similar NADPH oxidase systems are present in a wide variety of nonphagocytic cells. Although the nature of these nonphagocyte NADPH oxidases is still being defined, it is clear that they are functionally distinct from the phagocyte oxidases. It should be noted, however, that structural features of many nonphagocyte oxidase proteins do seem to be similar to those of their phagocyte counterparts. In this review, key structural and functional features of the neutrophil NADPH oxidase and its protein components are described, including a consideration of transcriptional and post-translational regulatory features. Furthermore, relevant details about structural and functional features of various nonphagocyte oxidase proteins will be included for comparison.
Collapse
Affiliation(s)
- Mark T Quinn
- Department of Veterinary Molecular Biology, Montana State University, Bozeman 59717-3610, USA.
| | | |
Collapse
|
21
|
Zimmerman MC, Davisson RL. Redox signaling in central neural regulation of cardiovascular function. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2004; 84:125-49. [PMID: 14769433 DOI: 10.1016/j.pbiomolbio.2003.11.009] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
One of the most prominent concepts to emerge in cardiovascular research over the past decade, especially in areas focused on angiotensin II (AngII), is that reactive oxygen species (ROS) are critical signaling molecules in a wide range of cellular processes. Many of the physiological effects of AngII are mediated by ROS, and alterations in AngII-mediated redox mechanisms are implicated in cardiovascular diseases such as hypertension and atherosclerosis. Although most investigations to date have focused on the vasculature as a key player, the nervous system has recently begun to gain attention in this field. Accumulating evidence suggests that ROS have important effects on central neural mechanisms involved in blood pressure regulation, volume homeostasis, and autonomic function, particularly those that involve AngII signaling. Furthermore, oxidant stress in the central nervous system is implicated in the neuro-dysregulation associated with some forms of hypertension and heart failure. The main objective of this review is to discuss the recent progress and prospects for this new field of central redox signaling in cardiovascular regulation, while also addressing the molecular tools that have spurred it forward.
Collapse
Affiliation(s)
- Matthew C Zimmerman
- Department of Anatomy and Cell Biology, Roy J and Lucille A Carver College of Medicine, The University of Iowa, Iowa City 52245, USA
| | | |
Collapse
|
22
|
Li JM, Shah AM. ROS generation by nonphagocytic NADPH oxidase: potential relevance in diabetic nephropathy. J Am Soc Nephrol 2003; 14:S221-6. [PMID: 12874435 DOI: 10.1097/01.asn.0000077406.67663.e7] [Citation(s) in RCA: 205] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Oxidative stress has emerged as an important pathogenic factor in the development of long-term complications, such as atherosclerosis and nephropathy, in patients with diabetes. Whereas multiple enzymes and processes can contribute to oxidative stress, recent studies indicate that a multicomponent phagocyte-type NADPH oxidase is a major source of reactive oxygen species (ROS) production in many nonphagocytic cells, including fibroblasts, vascular smooth muscle cells, endothelial cells, renal mesangial cells, and tubular cells. Under physiologic conditions, nonphagocytic NADPH oxidases have very low-level constitutive activity. However, enzyme activity can be upregulated both acutely and chronically in response to stimuli such as growth factors, cytokines, high glucose, and hyperlipidemia. ROS production by the oxidase may serve a signaling role or may lead to oxidative damage. This article reviews current knowledge of the nonphagocyte-NADPH oxidases at both structural and biochemical levels and discusses the possible role of these enzymes in the pathophysiology of diabetic nephropathy.
Collapse
Affiliation(s)
- Jian-Mei Li
- Department of Cardiology, Guy's King's & St Thomas's School of Medicine, King's College London, London, United Kingdom.
| | | |
Collapse
|
23
|
Abstract
The introduction of the hydroxy methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) in 1987 was a major advance in the prevention and treatment of cardiovascular disease. Several landmark clinical trials have demonstrated the benefit of lipid lowering with statins for the primary and secondary prevention of coronary heart disease (CHD), namely The Scandinavian Simvastatin Survival Study (4S), Cholesterol And Recurrent Events (CARE), Long-term Intervention with Pravastatin in Ischemic Disease (LIPID), West of Scotland Coronary Prevention Study (WOSCOPS) and Air Force/Texas Coronary Atherosclerosis Prevention Study (AFCAPS/TexCAPS). Although it is widely accepted that the majority of clinical benefit obtained with statins is a direct result of their lipid-lowering properties, these agents appear to display additional cholesterol-independent or pleiotropic effects on various aspects of cardiovascular disease, including improving endothelial function, decreasing vascular inflammation and enhancing plaque stability. Although the full impact of statin therapy on each of these processes is not fully understood, ongoing studies with current and new statins are likely to shed further light on the potential cholesterol-independent benefits of these agents.
Collapse
Affiliation(s)
- James K Liao
- Vascular Medicine Research, Brigham and Women's Hospital, 65 Landsdowne Street, Room 275, Cambridge, MA 02139, USA.
| |
Collapse
|
24
|
Li SL, Valente AJ, Qiang M, Schlegel W, Gamez M, Clark RA. Multiple PU.1 sites cooperate in the regulation of p40(phox) transcription during granulocytic differentiation of myeloid cells. Blood 2002; 99:4578-87. [PMID: 12036891 DOI: 10.1182/blood.v99.12.4578] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The p40(phox) protein, a regulatory component of the phagocyte NADPH oxidase, is preferentially expressed in cells of myeloid lineage. We investigated transcriptional regulation of the p40(phox) gene in HL-60 myeloid cells. Deletion analysis of approximately 6 kb of the 5'-flanking sequence of the gene demonstrated that the proximal 106 base pair of the promoter exhibited maximum reporter activity. This region contains 3 potential binding sites for PU.1, a myeloid-restricted member of the ets family of transcription factors. Mutation or deletion of each PU.1 site decreased promoter activity, and the level of activity mediated by each site correlated with its binding avidity for PU.1, as determined by gel shift competition assays. Mutation of all 3 sites abolished promoter activity in myeloid cells. PU.1-dependent expression was also observed in the Raji B-cell line, whereas the moderate level of promoter reporter activity in the nonmyeloid HeLa cell line was independent of PU.1. Chromatin immunoprecipitation assay demonstrated occupation of the PU.1 sites by PU.1 in vivo in HL-60 cells. Cotransfection of the pGL3-p40-106 reporter construct with a dominant-negative PU.1 mutant dramatically reduced promoter activity, whereas the overexpression of PU.1 increased promoter activity. Promoter activity and transcript levels of p40(phox) increased in HL-60 cells during dimethyl sulfoxide-induced differentiation toward the granulocyte phenotype, and this was associated with increased cellular levels of PU.1 protein. Our findings demonstrate that PU.1 binding at multiple sites is required for p40(phox) gene transcription in myeloid cells and that granulocytic differentiation is associated with the coordinated up-regulation of PU.1 and p40(phox) expression.
Collapse
Affiliation(s)
- Sen-Lin Li
- Department of Medicine, University of Texas Health Science Center and the South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, 78229-3900, USA
| | | | | | | | | | | |
Collapse
|
25
|
Price MO, Atkinson SJ, Knaus UG, Dinauer MC. Rac activation induces NADPH oxidase activity in transgenic COSphox cells, and the level of superoxide production is exchange factor-dependent. J Biol Chem 2002; 277:19220-8. [PMID: 11896053 DOI: 10.1074/jbc.m200061200] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transient expression of constitutively active Rac1 derivatives, (G12V) or (Q61L), was sufficient to induce phagocyte NADPH oxidase activity in a COS-7 cell model in which human cDNAs for essential oxidase components, gp91(phox), p22(phox), p47(phox), and p67(phox), were expressed as stable transgenes. Expression of constitutively active Rac1 in "COS(phox)" cells induced translocation of p47(phox) and p67(phox) to the membrane. Furthermore, translocation of p47(phox) was induced in the absence of p67(phox) expression, even though Rac does not directly bind p47(phox). Rac effector domain point substitutions (A27K, G30S, D38A, Y40C), which can selectively eliminate interaction with different effector proteins, impaired Rac1V12-induced superoxide production. Activation of endogenous Rac1 by expression of constitutively active Rac-guanine nucleotide exchange factor (GEF) derivatives was sufficient to induce high level NADPH oxidase activity in COS(phox) cells. The constitutively active form of the hematopoietic-specific GEF, Vav1, was the most effective at activating superoxide production, despite detection of higher levels of Rac1-GTP upon expression of constitutively active Vav2 or Tiam1 derivatives. These data suggest that Rac can play a dual role in NADPH oxidase activation, both by directly participating in the oxidase complex and by activating signaling events leading to oxidase assembly, and that Vav1 may be the physiologically relevant GEF responsible for activating this Rac-regulated complex.
Collapse
Affiliation(s)
- Marianne O Price
- Herman B Wells Center for Pediatric Research, Department of Pediatrics (Hematology/Oncology), James Whitcomb Riley Hospital for Children, Indiana University Medical Center, Indianapolis, Indiana 46202, USA
| | | | | | | |
Collapse
|
26
|
Wassmann S, Laufs U, Stamenkovic D, Linz W, Stasch JP, Ahlbory K, Rösen R, Böhm M, Nickenig G. Raloxifene improves endothelial dysfunction in hypertension by reduced oxidative stress and enhanced nitric oxide production. Circulation 2002; 105:2083-91. [PMID: 11980689 DOI: 10.1161/01.cir.0000014618.91633.67] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND It has not been completely clarified whether selective estrogen receptor modulators (SERMs) such as raloxifene exert vasoprotective effects similar to those of estrogens. METHODS AND RESULTS To investigate vascular effects of raloxifene, male spontaneously hypertensive rats were treated for 10 weeks with either raloxifene (10 mg x kg(-1) x d(-1)) or vehicle. Raloxifene improved endothelium-dependent vasodilatation but had no effect on either endothelium-independent vasorelaxation or phenylephrine-induced vasoconstriction. Raloxifene treatment increased the release of NO from the vessel wall by enhanced expression and activity of endothelial NO synthase. Blood pressure reduction after bradykinin infusion was more pronounced in animals treated with SERMs. The production of superoxide in intact aortic segments was decreased by raloxifene treatment. Administration of raloxifene had no effect on the expression of the essential NAD(P)H oxidase subunits p22phox and nox1 in the vasculature but reduced the activity and expression of vascular membrane-bound rac1, a GTPase required for the activation of the NAD(P)H oxidase. Finally, blood pressure levels were significantly decreased in spontaneously hypertensive rats treated with raloxifene. All SERM effects were also detected in healthy age-matched Wistar rats. In cultured rat aortic vascular smooth muscle cells, raloxifene inhibited angiotensin II-induced reactive oxygen species production dependent on estrogen receptor activation. CONCLUSIONS Raloxifene treatment improves hypertension-induced endothelial dysfunction by increased bioavailability of NO. This is achieved by an increased activity of endothelial NO synthase and by an estrogen receptor-dependent reduction in release of reactive oxygen species from vascular cells. These vascular effects cause a profound blood pressure reduction and lead to decreased vascular damage in male spontaneously hypertensive rats.
Collapse
Affiliation(s)
- Sven Wassmann
- Medizinische Klinik und Poliklinik, Innere Medizin III, Universitätskliniken des Saarlandes, Homburg/Saar, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Wassmann S, Laufs U, Müller K, Konkol C, Ahlbory K, Bäumer AT, Linz W, Böhm M, Nickenig G. Cellular antioxidant effects of atorvastatin in vitro and in vivo. Arterioscler Thromb Vasc Biol 2002; 22:300-5. [PMID: 11834532 DOI: 10.1161/hq0202.104081] [Citation(s) in RCA: 385] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) may exert direct effects on vascular cells and beneficially influence endothelial dysfunction. Because reactive oxygen species (ROS) may lead to vascular damage and dysfunction, we investigated the effect of atorvastatin on ROS production and the underlying mechanisms in vitro and in vivo. Cultured rat aortic vascular smooth muscle cells were incubated with 10 micromol/L atorvastatin. Angiotensin II-induced and epidermal growth factor-induced ROS production were significantly reduced by atorvastatin (dichlorofluorescein fluorescence laser microscopy). Atorvastatin downregulated mRNA expression of the NAD(P)H oxidase subunit nox1, whereas p22phox mRNA expression was not significantly altered (reverse transcription-polymerase chain reaction, Northern analysis). Membrane translocation of rac1 GTPase, which is required for the activation of NAD(P)H oxidase, was inhibited by atorvastatin (Western blot). mRNA expression of superoxide dismutase isoforms and glutathione peroxidase was not modified by atorvastatin, whereas catalase expression was upregulated at mRNA and protein levels, resulting in an increased enzymatic activity. Effects of atorvastatin on ROS production and nox1, rac1, and catalase expression were inhibited by L-mevalonate but not by 25-hydroxycholesterol. In addition, spontaneously hypertensive rats were treated with atorvastatin for 30 days. ROS production in aortic segments was significantly reduced in statin-treated rats (lucigenin chemiluminescence). Treatment with atorvastatin reduced vascular mRNA expression of p22phox and nox1 and increased aortic catalase expression. mRNA expression of superoxide dismutases, glutathione peroxidase, and NAD(P)H oxidase subunits gp91phox, p40phox, p47phox, and p67phox remained unchanged. Translocation of rac1 from the cytosol to the cell membrane was also reduced in vivo. Thus, atorvastatin exerts cellular antioxidant effects in cultured rat vascular smooth muscle cells and in the vasculature of spontaneously hypertensive rats mediated by decreased expression of essential NAD(P)H oxidase subunits and by upregulation of catalase expression. These effects of atorvastatin may contribute to the vasoprotective effects of statins.
Collapse
Affiliation(s)
- Sven Wassmann
- Medizinische Klinik und Poliklinik-Innere Medizin III, Universitätskliniken des Saarlandes, Homburg/Saar, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kobayashi T, Tsunawaki S, Seguchi H. Evaluation of the process for superoxide production by NADPH oxidase in human neutrophils: evidence for cytoplasmic origin of superoxide. Redox Rep 2001; 6:27-36. [PMID: 11333112 DOI: 10.1179/135100001101536003] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
We present an up-to-date insight into the function of NADPH oxidase in human neutrophils, the signalling pathways involved in activation of this enzyme and the process of association of its components with the cytoskeleton. We also discuss the functional implications of morphological studies revealing localization of the sites of NADPH oxidase activity. An original model of the process of superoxide (O2*-) production in human neutrophils is shown. Organization of NADPH oxidase is associated with several components. Upon stimulation, tri-phox cytosolic components of NADPH oxidase (p40-phox, p47-phox and p67-phox) bind to actin filaments. This process involves other actin-binding proteins, such as cofilin and coronin. Activated protein kinase C, translocated from the plasma membrane, phosphorylates cytosolic components at a scaffold of cytoskeleton. Subsequently, p40-phox, responsible for maintaining the resting state of NADPH oxidase, is separated from other two cytosolic phox proteins following an attachment of the active form of small GTP-binding protein Rac to p67-phox. Cytosolic duo-phox proteins (p47-phox and p67-phox) conjugate with membrane components (gp91-phox, p22-phox and Rapla) of NADPH oxidase residing within membranes of intracellular compartments. This chain of events triggers production of O2*-. Then, oxidant-producing intracellular compartments associate with the plasma membrane. Eventually, intracellularly produced O2*- is released to the extracellular environment through the orifice formed by fusion of oxidant-producing compartments with the plasma membrane. Intracellular movement of the oxidant-producing compartments may be regulated by myosin light chain kinase. The review emphasizes that functional assembly of NADPH oxidase and, therefore, generation of O2*- is accomplished essentially within the intracellular compartments. Upon neutrophil stimulation, intracellularly generated O2*- is transported to the plasma membrane to be released and to ensure host defense against infection.
Collapse
Affiliation(s)
- T Kobayashi
- Department of Anatomy and Cell Biology, Kochi Medical School, Japan
| | | | | |
Collapse
|
29
|
Lapouge K, Smith SJ, Walker PA, Gamblin SJ, Smerdon SJ, Rittinger K. Structure of the TPR domain of p67phox in complex with Rac.GTP. Mol Cell 2000; 6:899-907. [PMID: 11090627 DOI: 10.1016/s1097-2765(05)00091-2] [Citation(s) in RCA: 237] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
p67phox is an essential part of the NADPH oxidase, a multiprotein enzyme complex that produces superoxide ions in response to microbial infection. Binding of the small GTPase Rac to p67phox is a key step in the assembly of the active enzyme complex. The structure of Rac.GTP bound to the N-terminal TPR (tetratricopeptide repeat) domain of p67phox reveals a novel mode of Rho family/effector interaction and explains the basis of GTPase specificity. Complex formation is largely mediated by an insertion between two TPR motifs, suggesting an unsuspected versatility of TPR domains in target recognition and in their more general role as scaffolds for the assembly of multiprotein complexes.
Collapse
Affiliation(s)
- K Lapouge
- Division of Protein Structure, National Institute for Medical Research, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
30
|
Cross AR. p40(phox) Participates in the activation of NADPH oxidase by increasing the affinity of p47(phox) for flavocytochrome b(558). Biochem J 2000; 349:113-7. [PMID: 10861218 PMCID: PMC1221127 DOI: 10.1042/0264-6021:3490113] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
NADPH oxidase is one of the major components of the innate immune system and is used by phagocytes to generate microbicidal reactive oxygen species. Activation of the enzyme requires the participation of a minimum of five proteins, p22(phox), gp91(phox) (together forming flavocytochrome b(558)), p47(phox), p67(phox) and the GTP-binding protein, Rac2. A sixth protein, p40(phox), has been implicated in the control of the activity of NADPH oxidase principally based on its sequence homology to, and physical association with, other phox components, and also the observation that it is phosphorylated during neutrophil activation. However, to date its role in regulating the activity of the enzyme has remained obscure, with evidence for both positive and negative influences on oxidase activity having being reported. Data are presented here using the cell-free system for NADPH oxidase activation that shows that p40(phox) can function to promote oxidase activation by increasing the affinity of p47(phox) for the enzyme approx. 3-fold.
Collapse
Affiliation(s)
- A R Cross
- Department of Molecular and Experimental Medicine, MEM-241, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|