1
|
Xiao SM, Xu R, Yang YX, Zhao R, Xie Y, Lei XD, Wu XT. Gastrointestinal stromal tumors regulate macrophage M2 polarization through the MIF/CXCR4 axis to immune escape. Front Immunol 2024; 15:1431535. [PMID: 39464891 PMCID: PMC11502962 DOI: 10.3389/fimmu.2024.1431535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 09/19/2024] [Indexed: 10/29/2024] Open
Abstract
Purpose The infiltration of immune cells and their roles of the infiltrating-immune cells in gastrointestinal stromal tumor (GIST) is still unclear. We aimed to discover the infiltration cell types and the relationship between the infiltrating-immune cells and the progression of GIST. Experimental design Single-cell RNA sequencing were performed to discover types of the infiltrating-immune cells and to analyze CellChat between cells. Immunohistochemistry of 80 GIST samples were used to clarify the relation between macrophages and recurrence risk. In vitro, flow cytometry and Real-time PCR were performed to uncover a potential mechanism of tumor cell regulation of macrophages. Results Tumor cells, macrophages, and T-cells were the predominant cell types. The MIF/CXCR4 axis was the most common ligand-receptor interaction between macrophages and tumor cells. As the risk increased, expression levels of CD68, CD206, MIF, and CXCR4 gradually increased. In vitro, we found that GIST882 was able to secrete MIF and GIST882 cell supernatant upregulated M2 polarization. Real-time PCR showed that expression levels of IL-10 mRNA and Arginase-1 mRNA were also the highest in the GIST882 cell supernatant group. Conclusions These findings identify that macrophages are the most abundant infiltrating cells in GIST. The MIF/CXCR4 axis is the most common ligand-receptor interaction between macrophages and tumor cells. GIST cells can regulate macrophage M2 polarization through the MIF/CXCR4 axis.
Collapse
Affiliation(s)
- Shuo-meng Xiao
- Department of Gastric Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Rui Xu
- Department of Gastric Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ying-xin Yang
- Department of Oncology, The First People’s Hospital of Dali, Dali City, Yunnan, China
| | - Rui Zhao
- Department of Gastrointestinal Surgery, West China School of Medicine and West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuan Xie
- Department of Gastric Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xu-dan Lei
- Radiation Oncology Key Laboratory of Sichuan Province, Department of Experimental Research, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xiao-ting Wu
- Department of Gastrointestinal Surgery, West China School of Medicine and West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Valdez CN, Sánchez-Zuno GA, Osmani L, Ibrahim W, Galan A, Bacchiocchi A, Halaban R, Kulkarni RP, Kang I, Bucala R, Tran T. Prognostic and therapeutic insights into MIF, DDT, and CD74 in melanoma. Oncotarget 2024; 15:507-520. [PMID: 39028303 PMCID: PMC11259151 DOI: 10.18632/oncotarget.28615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024] Open
Abstract
Macrophage Migration Inhibitory Factor (MIF) and its homolog D-dopachrome Tautomerase (DDT) have been implicated as drivers of tumor progression across a variety of cancers. Recent evidence suggests MIF as a therapeutic target in immune checkpoint inhibition (ICI) resistant melanomas, however clinical evidence of MIF and particularly of DDT remain limited. This retrospective study analyzed 97 patients treated at Yale for melanoma between 2002-2020. Bulk-RNA sequencing of patient tumor samples from the Skin Cancer SPORE Biorepository was used to evaluate for differential gene expression of MIF, DDT, CD74, and selected inflammatory markers, and gene expression was correlated with patient survival outcomes. Our findings revealed a strong correlation between MIF and DDT levels, with no statistically significant difference across common melanoma mutations and subtypes. Improved survival was associated with lower MIF and DDT levels and higher CD74:MIF and CD74:DDT levels. High CD74:DDT and CD74:MIF levels were also associated with enrichment of infiltrating inflammatory cell markers. These data suggest DDT as a novel target in immune therapy. Dual MIF and DDT blockade may provide synergistic responses in patients with melanoma, irrespective of common mutations, and may overcome ICI resistance. These markers may also provide prognostic value for further biomarker development.
Collapse
Affiliation(s)
| | | | - Lais Osmani
- Department of Medicine, Section of Rheumatology, Allergy and Immunology, Yale University, New Haven, CT 06520, USA
| | - Wael Ibrahim
- Department of Dermatology, Yale University, New Haven, CT 06520, USA
| | - Anjela Galan
- Department of Dermatology, Yale University, New Haven, CT 06520, USA
| | | | - Ruth Halaban
- Department of Dermatology, Yale University, New Haven, CT 06520, USA
| | - Rajan P. Kulkarni
- Department of Dermatology, Oregon Health and Science University, Portland, OR 97239, USA
- Cancer Early Detection Advanced Research Center (CEDAR), Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
- Department of Veterans Affairs Portland Health Care System, Operative Care Division, U.S. Portland, OR 97239, USA
| | - Insoo Kang
- School of Medicine, Yale University, New Haven, CT 06520, USA
- Department of Medicine, Section of Rheumatology, Allergy and Immunology, Yale University, New Haven, CT 06520, USA
| | - Richard Bucala
- School of Medicine, Yale University, New Haven, CT 06520, USA
- Department of Medicine, Section of Rheumatology, Allergy and Immunology, Yale University, New Haven, CT 06520, USA
- Yale Cancer Center, Yale University, New Haven, CT 06520, USA
| | - Thuy Tran
- School of Medicine, Yale University, New Haven, CT 06520, USA
- Department of Medicine, Section of Medical Oncology, Yale University, New Haven, CT 06520, USA
- Yale Cancer Center, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
3
|
Tanese K, Ogata D. The role of macrophage migration inhibitory factor family and CD74 in the pathogenesis of melanoma. Exp Dermatol 2024; 33:e15122. [PMID: 38884501 DOI: 10.1111/exd.15122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
Melanoma is an aggressive tumour with poor prognosis that arises from the malignant transformation of melanocytes. Over the past few decades, intense research into the pathogenesis of melanoma has led to the development of BRAF and immune checkpoint inhibitors, including antibodies against programmed cell death protein 1 (PD-1) and cytotoxic T lymphocyte-associated protein 4 (CTLA-4), which have shown clinically significant efficacy. However, some tumours do not respond to these therapies initially or become treatment resistant. Most melanoma tissues appear to possess biological characteristics that allow them to evade these treatments, and identifying these characteristics is one of the major challenges facing cancer researchers. One such characteristic that has recently gained attention is the role of macrophage migration inhibitory factor (MIF) and its receptor CD74. This review outlines the cellular and molecular functions of CD74, MIF and their family of proteins. We then review their roles in tumours based on previous reports, highlight their pathological significance in melanoma and discuss their potential as therapeutic targets.
Collapse
Affiliation(s)
- Keiji Tanese
- Department of Dermatology, Toho University School of Medicine, Tokyo, Japan
| | - Dai Ogata
- Department of Dermatologic Oncology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
4
|
Valdez CN, Sánchez-Zuno GA, Bucala R, Tran TT. Macrophage Migration Inhibitory Factor (MIF) and D-Dopachrome Tautomerase (DDT): Pathways to Tumorigenesis and Therapeutic Opportunities. Int J Mol Sci 2024; 25:4849. [PMID: 38732068 PMCID: PMC11084905 DOI: 10.3390/ijms25094849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Discovered as inflammatory cytokines, MIF and DDT exhibit widespread expression and have emerged as critical mediators in the response to infection, inflammation, and more recently, in cancer. In this comprehensive review, we provide details on their structures, binding partners, regulatory mechanisms, and roles in cancer. We also elaborate on their significant impact in driving tumorigenesis across various cancer types, supported by extensive in vitro, in vivo, bioinformatic, and clinical studies. To date, only a limited number of clinical trials have explored MIF as a therapeutic target in cancer patients, and DDT has not been evaluated. The ongoing pursuit of optimal strategies for targeting MIF and DDT highlights their potential as promising antitumor candidates. Dual inhibition of MIF and DDT may allow for the most effective suppression of canonical and non-canonical signaling pathways, warranting further investigations and clinical exploration.
Collapse
Affiliation(s)
- Caroline Naomi Valdez
- School of Medicine, Yale University, 333 Cedar St., New Haven, CT 06510, USA; (C.N.V.); (R.B.)
| | - Gabriela Athziri Sánchez-Zuno
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, 333 Cedar St., New Haven, CT 06510, USA;
| | - Richard Bucala
- School of Medicine, Yale University, 333 Cedar St., New Haven, CT 06510, USA; (C.N.V.); (R.B.)
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, 333 Cedar St., New Haven, CT 06510, USA;
- Yale Cancer Center, Yale University, 333 Cedar St., New Haven, CT 06510, USA
| | - Thuy T. Tran
- School of Medicine, Yale University, 333 Cedar St., New Haven, CT 06510, USA; (C.N.V.); (R.B.)
- Yale Cancer Center, Yale University, 333 Cedar St., New Haven, CT 06510, USA
- Section of Medical Oncology, Department of Internal Medicine, Yale University, 333 Cedar St., New Haven, CT 06510, USA
| |
Collapse
|
5
|
Zhu Y, Yang H, Han L, Mervin LH, Hosseini-Gerami L, Li P, Wright P, Trapotsi MA, Liu K, Fan TP, Bender A. In silico prediction and biological assessment of novel angiogenesis modulators from traditional Chinese medicine. Front Pharmacol 2023; 14:1116081. [PMID: 36817116 PMCID: PMC9937659 DOI: 10.3389/fphar.2023.1116081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Uncontrolled angiogenesis is a common denominator underlying many deadly and debilitating diseases such as myocardial infarction, chronic wounds, cancer, and age-related macular degeneration. As the current range of FDA-approved angiogenesis-based medicines are far from meeting clinical demands, the vast reserve of natural products from traditional Chinese medicine (TCM) offers an alternative source for developing pro-angiogenic or anti-angiogenic modulators. Here, we investigated 100 traditional Chinese medicine-derived individual metabolites which had reported gene expression in MCF7 cell lines in the Gene Expression Omnibus (GSE85871). We extracted literature angiogenic activities for 51 individual metabolites, and subsequently analysed their predicted targets and differentially expressed genes to understand their mechanisms of action. The angiogenesis phenotype was used to generate decision trees for rationalising the poly-pharmacology of known angiogenesis modulators such as ferulic acid and curculigoside and validated by an in vitro endothelial tube formation assay and a zebrafish model of angiogenesis. Moreover, using an in silico model we prospectively examined the angiogenesis-modulating activities of the remaining 49 individual metabolites. In vitro, tetrahydropalmatine and 1 beta-hydroxyalantolactone stimulated, while cinobufotalin and isoalantolactone inhibited endothelial tube formation. In vivo, ginsenosides Rb3 and Rc, 1 beta-hydroxyalantolactone and surprisingly cinobufotalin, restored angiogenesis against PTK787-induced impairment in zebrafish. In the absence of PTK787, deoxycholic acid and ursodeoxycholic acid did not affect angiogenesis. Despite some limitations, these results suggest further refinements of in silico prediction combined with biological assessment will be a valuable platform for accelerating the research and development of natural products from traditional Chinese medicine and understanding their mechanisms of action, and also for other traditional medicines for the prevention and treatment of angiogenic diseases.
Collapse
Affiliation(s)
- Yingli Zhu
- Department of Clinical Chinese Pharmacy, School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing, China,Department of Chemistry, Center for Molecular Science Informatics, University of Cambridge, Cambridge, United Kingdom,Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Hongbin Yang
- Department of Chemistry, Center for Molecular Science Informatics, University of Cambridge, Cambridge, United Kingdom
| | - Liwen Han
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China,School of Pharmacy and Pharmaceutical Science, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
| | - Lewis H. Mervin
- Department of Chemistry, Center for Molecular Science Informatics, University of Cambridge, Cambridge, United Kingdom
| | - Layla Hosseini-Gerami
- Department of Chemistry, Center for Molecular Science Informatics, University of Cambridge, Cambridge, United Kingdom
| | - Peihai Li
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Peter Wright
- Department of Chemistry, Center for Molecular Science Informatics, University of Cambridge, Cambridge, United Kingdom
| | - Maria-Anna Trapotsi
- Department of Chemistry, Center for Molecular Science Informatics, University of Cambridge, Cambridge, United Kingdom
| | - Kechun Liu
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Tai-Ping Fan
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom,*Correspondence: Tai-Ping Fan, ; Andreas Bender,
| | - Andreas Bender
- Department of Chemistry, Center for Molecular Science Informatics, University of Cambridge, Cambridge, United Kingdom,*Correspondence: Tai-Ping Fan, ; Andreas Bender,
| |
Collapse
|
6
|
Thiele M, Donnelly SC, Mitchell RA. OxMIF: a druggable isoform of macrophage migration inhibitory factor in cancer and inflammatory diseases. J Immunother Cancer 2022; 10:e005475. [PMID: 36180072 PMCID: PMC9528626 DOI: 10.1136/jitc-2022-005475] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2022] [Indexed: 11/04/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine with a pleiotropic spectrum of biological functions implicated in the pathogenesis of cancer and inflammatory diseases. MIF is constitutively present in several cell types and non-lymphoid tissues and is secreted after acute stress or inflammation. MIF triggers the release of proinflammatory cytokines, overrides the anti-inflammatory effects of glucocorticoids, and exerts chemokine function, resulting in increased migration and recruitment of leukocytes into inflamed tissue. Despite this, MIF is a challenging target for therapeutic intervention because of its ubiquitous nature and presence in the circulation and tissue of healthy individuals. Oxidized MIF (oxMIF) is an immunologically distinct disease-related structural isoform found in the plasma and tissues of patients with inflammatory diseases and in solid tumor tissues. MIF converts to oxMIF in an oxidizing, inflammatory environment. This review discusses the biology and activity of MIF and the potential for autoimmune disease and cancer modification by targeting oxMIF. Anti-oxMIF antibodies reduce cancer cell invasion/migration, angiogenesis, proinflammatory cytokine production, and ERK and AKT activation. Anti-oxMIF antibodies also elicit apoptosis and alter immune cell function and/or migration. When co-administered with a glucocorticoid, anti-oxMIF antibodies produced a synergistic response in inflammatory models. Anti-oxMIF antibodies therefore counterregulate biological activities attributed to MIF. oxMIF expression has been observed in inflammatory diseases (eg, sepsis, psoriasis, asthma, inflammatory bowel disease, and systemic lupus erythematosus) and oxMIF has been detected in ovarian, colorectal, lung, and pancreatic cancers. In contrast to MIF, oxMIF is specifically detected in plasma and/or tissues of diseased patients, but not in healthy individuals. Therefore, as a druggable isoform of MIF, oxMIF represents a potential new therapeutic target in inflammatory diseases and cancer. Fully human, monoclonal anti-oxMIF antibodies have been shown to selectively bind oxMIF in preclinical and phase I studies; however, additional clinical assessments are necessary to validate their use as either a monotherapy or in combination with standard-of-care regimens (ie, immunomodulatory agents/checkpoint inhibitors, anti-angiogenic drugs, chemotherapeutics, and glucocorticoids).
Collapse
Affiliation(s)
- Michael Thiele
- Biology Research, OncoOne Research & Development GmbH, Vienna, Austria
| | - Seamas C Donnelly
- Department of Medicine, Tallaght University Hospital & Trinity College Dublin, Dublin, Ireland
| | - Robert A Mitchell
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, Kentucky, USA
- Department of Surgery, J.G. Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
- Division of Immunotherapy, Department of Surgery, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
7
|
Immune-Related Gene Polymorphisms and Pharmacogenetic Studies in Nephrology. Clin Ther 2021; 43:2148-2153. [PMID: 34740465 DOI: 10.1016/j.clinthera.2021.09.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/21/2021] [Accepted: 09/26/2021] [Indexed: 12/14/2022]
Abstract
A large subgroup of patients with chronic kidney disease still encounter serious adverse effects and lack of responsiveness to medications, possibly because of the interindividual genetic variability in genes involved in the metabolism and transport of the treatments used. As a consequence, several pharmacogenetic studies have been conducted in nephrology patients that examine the effect of genetic variants in response to treatment in kidney diseases. The present commentary focuses on immune-related genes (TNF [tumor necrosis factor], MIF [macrophage migration inhibitory factor], and IL-10 [interleukin 10]) or those genes that may regulate the response to immunosuppressive medications (ABCB1 [ATP binding cassette subfamily B member 1] and ITPA [inosine triphosphatase]) used in kidney diseases. These genes were selected from those showing significant results in a recent meta-analysis of pharmacogenetic studies of patients with chronic kidney disease. This commentary highlights that certain polymorphisms should be investigated in patients with kidney diseases, especially if they are to be administered immunosuppressive agents. In certain cases, flavonoids such as quercetin may be beneficial.
Collapse
|
8
|
Jovanović Krivokuća M, Vilotić A, Stefanoska I, Bojić-Trbojević Ž, Vićovac L. Macrophage migration inhibitory factor in human early pregnancy events and association with placental pathologies. Placenta 2021; 116:51-57. [PMID: 33612316 DOI: 10.1016/j.placenta.2021.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/12/2021] [Accepted: 02/09/2021] [Indexed: 12/31/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is a versatile cytokine acting as an important regulator of innate and adaptive immunity and implicated in many physiological and pathological processes. It is abundantly expressed at the feto-maternal interface and proposed to have a role in establishing and maintaining a healthy pregnancy. This review presents the current literature data regarding the MIF role in early pregnancy events and its association with some of the placental pathological conditions, including infection, preeclampsia, gestational diabetes mellitus and choriocarcinoma. General information regarding MIF structure and function is followed by an overview of its expression in reproductive tissues and in pregnancy. Futher, we discuss MIF's involvement in the survival of decidual stromal cells, placenta of the first trimester of pregnancy, and in trophoblast cell functions studied in vitro. Current findings associating this cytokine to placental infection, preeclampsia, gestational diabetes mellitus and choriocarcinoma are presented in the final part.
Collapse
Affiliation(s)
- Milica Jovanović Krivokuća
- Department for Biology of Reproduction, Institute for the Application of Nuclear Energy, INEP, University of Belgrade, Banatska 31b, 11080, Belgrade, Serbia.
| | - Aleksandra Vilotić
- Department for Biology of Reproduction, Institute for the Application of Nuclear Energy, INEP, University of Belgrade, Banatska 31b, 11080, Belgrade, Serbia.
| | - Ivana Stefanoska
- Department for Biology of Reproduction, Institute for the Application of Nuclear Energy, INEP, University of Belgrade, Banatska 31b, 11080, Belgrade, Serbia.
| | - Žanka Bojić-Trbojević
- Department for Biology of Reproduction, Institute for the Application of Nuclear Energy, INEP, University of Belgrade, Banatska 31b, 11080, Belgrade, Serbia.
| | - Ljiljana Vićovac
- Department for Biology of Reproduction, Institute for the Application of Nuclear Energy, INEP, University of Belgrade, Banatska 31b, 11080, Belgrade, Serbia.
| |
Collapse
|
9
|
An HJ, Koh HM, Lee JS, Song DH. Prognostic role of macrophage migration inhibitory factor in patients with clear cell renal cell carcinoma. Medicine (Baltimore) 2020; 99:e23277. [PMID: 33327252 PMCID: PMC7738049 DOI: 10.1097/md.0000000000023277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a cytokine that mediates the interaction between malignant cells and the innate immune system. Recently, MIF has received attention for its role in tumorigenesis. We evaluated the prognostic role of MIF in clear cell renal cell carcinoma (CCRCC).A total of 152 patients, who underwent nephrectomy for CCRCC were enrolled in this study. Immunohistochemical staining of tissue microarray blocks containing 298 cores-2 cores per CCRCC patient was performed. The relationship between MIF expression and clinicopathological factors was evaluated. Total RNA and protein were extracted from 7 RCC (renal cell carcinoma) cell lines. MIF was knocked down in Caki-2 cells, and a wound healing assay was performed to evaluate migratory activity.Among the 298 cores, 180 (60.4%) were positive for MIF. Multivariate analysis, showed that, CCRCC patients with negative MIF expression exhibited poor disease-free survival (hazard ratio: 2.087, 95% confidence interval: 0.821-5.307, P value: .023) and poor disease-specific survival (hazard ratio: 2.101, 95% confidence interval: 1.009-4.374, P value: .047). The wound healing assay revealed that cell confluence was lower in MIF-deficient Caki-2 cells than in control cells.Negative MIF expression might be an independent prognostic marker for patients with CCRCC.
Collapse
Affiliation(s)
- Hyo Jung An
- Department of pathology, Gyeongsang National University Changwon Hospital, Changwon
- Gyeongsang National University School of Medicine
- Gyeongsang Institute of Health Science, Jinju, South Korea
| | - Hyun Min Koh
- Department of pathology, Gyeongsang National University Changwon Hospital, Changwon
| | - Jong Sil Lee
- Department of pathology, Gyeongsang National University Hospital
- Gyeongsang National University School of Medicine
- Gyeongsang Institute of Health Science, Jinju, South Korea
| | - Dae Hyun Song
- Department of pathology, Gyeongsang National University Changwon Hospital, Changwon
- Gyeongsang National University School of Medicine
- Gyeongsang Institute of Health Science, Jinju, South Korea
| |
Collapse
|
10
|
Cavalli E, Mazzon E, Mammana S, Basile MS, Lombardo SD, Mangano K, Bramanti P, Nicoletti F, Fagone P, Petralia MC. Overexpression of Macrophage Migration Inhibitory Factor and Its Homologue D-Dopachrome Tautomerase as Negative Prognostic Factor in Neuroblastoma. Brain Sci 2019; 9:brainsci9100284. [PMID: 31635049 PMCID: PMC6826588 DOI: 10.3390/brainsci9100284] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/01/2019] [Accepted: 10/18/2019] [Indexed: 01/09/2023] Open
Abstract
Neuroblastoma (NB) represents one of the most frequent pediatric solid tumors. Macrophage migration inhibitory factor (MIF) is a cytokine exerting multiple biological functions. More recently, a second member of the MIF family of cytokine has been identified, the D-dopachrome tautomerase (DDT), that exerts several overlapping functions with MIF. Growing evidence suggests a key role for MIF and DDT in the development of cancer. The aim of this study is to characterize the prognostic value of MIF and DDT in NB. We show that higher expression levels of MIF and DDT in Stage 4 NB samples are associated with a poorer prognosis, independently of the presence of MYCN amplification. Moreover, higher levels of MIF are mostly enriched by Th1 cells, while lower levels of MIF are associated with an increased proportion of B cells, Cytotoxic T cells, Dendritic cells and Natural Killer T cells. We also show that treatment with the histone deacetylase (HDAC) inhibitor, vorinostat, of the NB cell line, SH-SY5Y, determines a significant reduction in the expression of both MIF and DDT. Finally, MIF and DDT inhibition by short interfering RNA is able to revert vincristine sensitivity in vitro. Overall, our data suggest that MIF exert pro-tumorigenic properties in NB, likely by dampening antigen presentation and cytotoxic immune responses, and we propose the HDAC inhibitors as a potential therapeutic strategy for NB patients.
Collapse
Affiliation(s)
- Eugenio Cavalli
- IRCCS Centro Neurolesi Bonino Pulejo, C.da Casazza, 98124 Messina, Italy.
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi Bonino Pulejo, C.da Casazza, 98124 Messina, Italy.
| | - Santa Mammana
- IRCCS Centro Neurolesi Bonino Pulejo, C.da Casazza, 98124 Messina, Italy.
| | - Maria Sofia Basile
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy.
| | - Salvo Danilo Lombardo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy.
| | - Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy.
| | - Placido Bramanti
- IRCCS Centro Neurolesi Bonino Pulejo, C.da Casazza, 98124 Messina, Italy.
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy.
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy.
| | | |
Collapse
|
11
|
Koh HM, Kim DC, Kim YM, Song DH. Prognostic role of macrophage migration inhibitory factor expression in patients with squamous cell carcinoma of the lung. Thorac Cancer 2019; 10:2209-2217. [PMID: 31602798 PMCID: PMC6885432 DOI: 10.1111/1759-7714.13198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 12/16/2022] Open
Abstract
Background Macrophage migration inhibitory factor (MIF) has been shown to play an important role in the inflammatory and immune response in squamous cell carcinoma (SCC). Recent studies have reported that MIF is involved in the tumorigenesis and overexpressed in various cancers. In this study, we assessed the prognostic role of MIF expression in SCC of the lung, and demonstrated the effect of knockdown of MIF on the migration in lung SCC cell lines. Methods The relationship between MIF expression and clinicopathological parameters and the prognostic role of MIF expression were evaluated with immunohistochemical staining in 96 patients with SCC of the lung. The expression of MIF mRNA and protein was analyzed by semi‐quantitative polymerase chain reaction and Western blot in lung SCC cell. The effect of knockdown of MIF was assessed by wound healing assay. Results The high percentage of MIF‐positive cells was significantly associated with lymph node metastasis (P = 0.004), and was a poor prognostic factor of disease‐free survival (DFS) (hazard ratio [HR]: 3.125; 95% confidence interval [CI], 1.628–5.998; P = 0.001) and disease‐specific survival (DSS) (HR: 2.303; 95% CI, 1.172–4.525; P = 0.016). Moreover, Kaplan‐Meier analysis showed that SCC patients with a high percentage of MIF‐positive cells had a significantly lower DFS (P = 0.001) and DSS (P = 0.014) than those with a low percentage. Furthermore, wound healing assay revealed that knockdown of MIF resulted in decreased cellular migration. Conclusion MIF is closely associated with tumor progression and could be a prognostic factor in SCC of the lung.
Collapse
Affiliation(s)
- Hyun Min Koh
- Department of Pathology, Gyeongsang National University Changwon Hospital, Changwon, South Korea
| | - Dong Chul Kim
- Department of Pathology, Gyeongsang National University School of Medicine, Jinju, South Korea.,Gyeongsang Institute of Health Science, Jinju, South Korea.,Department of Pathology, Gyeongsang National University Hospital, Jinju, South Korea
| | - Yu-Min Kim
- Gyeongsang Institute of Health Science, Jinju, South Korea
| | - Dae Hyun Song
- Department of Pathology, Gyeongsang National University Changwon Hospital, Changwon, South Korea.,Department of Pathology, Gyeongsang National University School of Medicine, Jinju, South Korea.,Gyeongsang Institute of Health Science, Jinju, South Korea
| |
Collapse
|
12
|
Sharifi L, Nowroozi MR, Amini E, Arami MK, Ayati M, Mohsenzadegan M. A review on the role of M2 macrophages in bladder cancer; pathophysiology and targeting. Int Immunopharmacol 2019; 76:105880. [PMID: 31522016 DOI: 10.1016/j.intimp.2019.105880] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/16/2019] [Accepted: 09/03/2019] [Indexed: 12/13/2022]
Abstract
Tumor-associated macrophages (TAMs) which are often referred to as immunosuppressive cells (M2 macrophage), constitute a subset of tumor microenvironment cells and affect tumor progression in solid tumors. Recently, these cells have gained remarkable importance as therapeutic candidates for solid tumors. In bladder cancer, major studies have focused on evaluating TAMs in response to Bacillus Calmette-Guerin (BCG) therapy. M2 macrophages may directly impact the BCG-induced immune responses against tumor in bladder cancer. They are the main inhibitors of the tumor microenvironment that promotes growth and metastasis of the tumor. However, the clinical significance of M2 macrophages in bladder cancer is controversial. In this review, we will discuss the clinical significance of M2 macrophages in prognosis of bladder cancer as well as worth of their potential targeting in bladder cancer treatment. In the following, we will introduce important factors resulting in M2 macrophage promotion and also experimental therapeutic agents that may cause the inhibition of bladder cancer tumor growth.
Collapse
Affiliation(s)
- Laleh Sharifi
- Uro-Oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Erfan Amini
- Uro-Oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Kourosh Arami
- Department of Basic Sciences, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Ayati
- Uro-Oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Monireh Mohsenzadegan
- Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Zhu Y, Pick H, Gasilova N, Li X, Lin TE, Laeubli HP, Zippelius A, Ho PC, Girault HH. MALDI Detection of Exosomes: A Potential Tool for Cancer Studies. Chem 2019. [DOI: 10.1016/j.chempr.2019.04.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
14
|
Soumoy L, Kindt N, Ghanem G, Saussez S, Journe F. Role of Macrophage Migration Inhibitory Factor (MIF) in Melanoma. Cancers (Basel) 2019; 11:cancers11040529. [PMID: 31013837 PMCID: PMC6520935 DOI: 10.3390/cancers11040529] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/05/2019] [Accepted: 04/10/2019] [Indexed: 12/11/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is an inflammatory cytokine involved in the carcinogenesis of many cancer types. Here, we review the published experimental and clinical data for MIF and its involvement in melanoma. All reported data show that MIF is overexpressed in melanoma cells, especially in case of metastatic disease. Clinical studies also indicate that high MIF expression is positively associated with aggressiveness of the disease. Some data also highlight the implication of MIF in angiogenesis, immunity and metastasis in melanoma cell lines, as well as the availability of different therapeutic options targeting MIF for the treatment of metastatic melanoma. Indeed, the main problem in metastatic melanoma is the lack of long-term effective treatment. This is linked to the capacity of melanoma cells to mutate very quickly and/or activate alternative signaling pathways. Thus, MIF targeting therapies could provide a new effective way of treating melanoma. Moreover, cell sensitivity to MIF depletion does not correlate with the BRAF mutational status. Regarding the fact that many melanoma patients carry a BRAF mutation, and that they develop resistance to BRAF inhibitors, this observation is very interesting as MIF inhibitors could be used to treat many patients in relapse after treatment with an inhibitor of the mutant BRAF protein.
Collapse
Affiliation(s)
- Laura Soumoy
- Department of Human Anatomy and Experimental Oncology, Université de Mons (UMons), Research Institute for Health Sciences and Technology, 7000 Mons, Belgium.
| | - Nadège Kindt
- Department of Human Anatomy and Experimental Oncology, Université de Mons (UMons), Research Institute for Health Sciences and Technology, 7000 Mons, Belgium.
| | - Ghanem Ghanem
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1000 Brussels, Belgium.
| | - Sven Saussez
- Department of Human Anatomy and Experimental Oncology, Université de Mons (UMons), Research Institute for Health Sciences and Technology, 7000 Mons, Belgium.
- Department of Oto-Rhino-Laryngology, Université Libre de Bruxelles (ULB), CHU Saint-Pierre, 1000 Brussels, Belgium.
| | - Fabrice Journe
- Department of Human Anatomy and Experimental Oncology, Université de Mons (UMons), Research Institute for Health Sciences and Technology, 7000 Mons, Belgium.
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1000 Brussels, Belgium.
| |
Collapse
|
15
|
Cheon SK, Kim HP, Park YL, Jang JE, Lim Y, Song SH, Han SW, Kim TY. Macrophage migration inhibitory factor promotes resistance to MEK blockade in KRAS mutant colorectal cancer cells. Mol Oncol 2018; 12:1398-1409. [PMID: 29896883 PMCID: PMC6068346 DOI: 10.1002/1878-0261.12345] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/28/2018] [Accepted: 05/28/2018] [Indexed: 01/08/2023] Open
Abstract
Although MEK blockade has been highlighted as a promising antitumor drug, it has poor clinical efficacy in KRAS mutant colorectal cancer (CRC). Several feedback systems have been described in which inhibition of one intracellular pathway leads to activation of a parallel signaling pathway, thereby decreasing the effectiveness of single‐MEK targeted therapies. Here, we investigated a bypass mechanism of resistance to MEK inhibition in KRAS CRC. We found that KRAS mutant CRC cells with refametinib, MEK inhibitor, induced MIF secretion and resulted in activation of STAT3 and MAPK. MIF knockdown by siRNA restored sensitivity to refametinib in KRAS mutant cells. In addition, combination with refametinib and 4‐IPP, a MIF inhibitor, effectively reduced the activity of STAT3 and MAPK, more than single‐agent treatment. As a result, combined therapy was found to exhibit a synergistic growth inhibitory effect against refametinib‐resistant cells by inhibition of MIF activation. These results reveal that MIF‐induced STAT3 and MAPK activation evoked an intrinsic resistance to refametinib. Our results provide the basis for a rational combination strategy against KRAS mutant colorectal cancers, predicated on the understanding of cross talk between the MEK and MIF pathways.
Collapse
Affiliation(s)
- Seul-Ki Cheon
- Department of Molecular Medicine & Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Korea.,Cancer Research Institute, Seoul National University, Korea
| | - Hwang-Phill Kim
- Department of Molecular Medicine & Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Korea.,Cancer Research Institute, Seoul National University, Korea
| | - Ye-Lim Park
- Department of Molecular Medicine & Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Korea.,Cancer Research Institute, Seoul National University, Korea
| | - Jee-Eun Jang
- Cancer Research Institute, Seoul National University, Korea
| | - Yoojoo Lim
- Department of Internal Medicine, Seoul National University Hospital, Korea
| | - Sang-Hyun Song
- Cancer Research Institute, Seoul National University, Korea
| | - Sae-Won Han
- Cancer Research Institute, Seoul National University, Korea.,Department of Internal Medicine, Seoul National University Hospital, Korea
| | - Tae-You Kim
- Department of Molecular Medicine & Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Korea.,Cancer Research Institute, Seoul National University, Korea.,Department of Internal Medicine, Seoul National University Hospital, Korea
| |
Collapse
|
16
|
Balogh KN, Templeton DJ, Cross JV. Macrophage Migration Inhibitory Factor protects cancer cells from immunogenic cell death and impairs anti-tumor immune responses. PLoS One 2018; 13:e0197702. [PMID: 29864117 PMCID: PMC5986154 DOI: 10.1371/journal.pone.0197702] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/07/2018] [Indexed: 12/22/2022] Open
Abstract
The Macrophage Migration Inhibitory Factor (MIF) is an inflammatory cytokine that is overexpressed in a number of cancer types, with increased MIF expression often correlating with tumor aggressiveness and poor patient outcomes. In this study, we aimed to better understand the link between primary tumor expression of MIF and increased tumor growth. Using the MMTV-PyMT murine model of breast cancer, we observed that elevated MIF expression promoted tumor appearance and growth. Supporting this, we confirmed our previous observation that higher MIF expression supported tumor growth in the 4T1 murine model of breast cancer. We subsequently discovered that loss of MIF expression in 4T1 cells led to decreased cell numbers and increased apoptosis in vitro under reduced serum culture conditions. We hypothesized that this increase in cell death would promote detection by the host immune system in vivo, which could explain the observed impairment in tumor growth. Supporting this, we demonstrated that loss of MIF expression in the primary tumor led to an increased abundance of intra-tumoral IFNgamma-producing CD4+ and CD8+ T cells, and that depletion of T cells from mice bearing MIF-deficient tumors restored growth to the level of MIF-expressing tumors. Furthermore, we found that MIF depletion from the tumor cells resulted in greater numbers of activated intra-tumoral dendritic cells (DCs). Lastly, we demonstrated that loss of MIF expression led to a robust induction of a specialized form of cell death, immunogenic cell death (ICD), in vitro. Together, our data suggests a model in which MIF expression in the primary tumor dampens the anti-tumor immune response, promoting tumor growth.
Collapse
Affiliation(s)
- Kristen N. Balogh
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Dennis J. Templeton
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Janet V. Cross
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, United States of America
- * E-mail:
| |
Collapse
|
17
|
Figueiredo CR, Azevedo RA, Mousdell S, Resende-Lara PT, Ireland L, Santos A, Girola N, Cunha RLOR, Schmid MC, Polonelli L, Travassos LR, Mielgo A. Blockade of MIF-CD74 Signalling on Macrophages and Dendritic Cells Restores the Antitumour Immune Response Against Metastatic Melanoma. Front Immunol 2018; 9:1132. [PMID: 29875777 PMCID: PMC5974174 DOI: 10.3389/fimmu.2018.01132] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/04/2018] [Indexed: 12/15/2022] Open
Abstract
Mounting an effective immune response against cancer requires the activation of innate and adaptive immune cells. Metastatic melanoma is the most aggressive form of skin cancer. While immunotherapies have shown a remarkable success in melanoma treatment, patients develop resistance by mechanisms that include the establishment of an immune suppressive tumor microenvironment. Thus, understanding how metastatic melanoma cells suppress the immune system is vital to develop effective immunotherapies against this disease. In this study, we find that macrophages (MOs) and dendritic cells (DCs) are suppressed in metastatic melanoma and that the Ig-CDR-based peptide C36L1 is able to restore MOs and DCs' antitumorigenic and immunogenic functions and to inhibit metastatic growth in lungs. Specifically, C36L1 treatment is able to repolarize M2-like immunosuppressive MOs into M1-like antitumorigenic MOs, and increase the number of immunogenic DCs, and activated cytotoxic T cells, while reducing the number of regulatory T cells and monocytic myeloid-derived suppressor cells in metastatic lungs. Mechanistically, we find that C36L1 directly binds to the MIF receptor CD74 which is expressed on MOs and DCs, disturbing CD74 structural dynamics and inhibiting MIF signaling on these cells. Interfering with MIF-CD74 signaling on MOs and DCs leads to a decrease in the expression of immunosuppressive factors from MOs and an increase in the capacity of DCs to activate cytotoxic T cells. Our findings suggest that interfering with MIF-CD74 immunosuppressive signaling in MOs and DCs, using peptide-based immunotherapy can restore the antitumor immune response in metastatic melanoma. Our study provides the rationale for further development of peptide-based therapies to restore the antitumor immune response in metastatic melanoma.
Collapse
Affiliation(s)
- Carlos R. Figueiredo
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
- Experimental Oncology Unit (UNONEX), Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Ricardo A. Azevedo
- Experimental Oncology Unit (UNONEX), Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Sasha Mousdell
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Pedro T. Resende-Lara
- Laboratory of Computational Biology and Bioinformatics, Federal University of ABC, Santo André, Brazil
- Laboratoire de Biologie et Pharmacologie Appliquées (LBPA), UMR 8113, Ecole Normale Supérieure, Cachan, France
| | - Lucy Ireland
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Almudena Santos
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Natalia Girola
- Experimental Oncology Unit (UNONEX), Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Rodrigo L. O. R. Cunha
- Chemical Biology Laboratory, Natural and Human Sciences Center, Federal University of ABC, Santo André, Brazil
| | - Michael C. Schmid
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Luciano Polonelli
- Unit of Biomedical, Biotechnological and Translational Sciences, Department of Medicine and Surgery, Universitá degli Studi di Parma, Parma, Italy
| | - Luiz R. Travassos
- Experimental Oncology Unit (UNONEX), Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Ainhoa Mielgo
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
18
|
Poh AR, Ernst M. Targeting Macrophages in Cancer: From Bench to Bedside. Front Oncol 2018; 8:49. [PMID: 29594035 PMCID: PMC5858529 DOI: 10.3389/fonc.2018.00049] [Citation(s) in RCA: 362] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/19/2018] [Indexed: 12/29/2022] Open
Abstract
Macrophages are a major component of the tumor microenvironment and orchestrate various aspects of immunity. Within tumors, macrophages can reversibly alter their endotype in response to environmental cues, including hypoxia and stimuli derived from other immune cells, as well as the extracellular matrix. Depending on their activation status, macrophages can exert dual influences on tumorigenesis by either antagonizing the cytotoxic activity immune cells or by enhancing antitumor responses. In most solid cancers, increased infiltration with tumor-associated macrophages (TAMs) has long been associated with poor patient prognosis, highlighting their value as potential diagnostic and prognostic biomarkers in cancer. A number of macrophage-centered approaches to anticancer therapy have been investigated, and include strategies to block their tumor-promoting activities or exploit their antitumor effector functions. Integrating therapeutic strategies to target TAMs to complement conventional therapies has yielded promising results in preclinical trials and warrants further investigation to determine its translational benefit in human cancer patients. In this review, we discuss the molecular mechanisms underlying the pro-tumorigenic programming of macrophages and provide a comprehensive update of macrophage-targeted therapies for the treatment of solid cancers.
Collapse
Affiliation(s)
- Ashleigh R Poh
- Olivia Newton-John Cancer Research Institute, and La Trobe University School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute, and La Trobe University School of Cancer Medicine, Heidelberg, VIC, Australia
| |
Collapse
|
19
|
Oxidized macrophage migration inhibitory factor is a potential new tissue marker and drug target in cancer. Oncotarget 2018; 7:73486-73496. [PMID: 27636991 PMCID: PMC5341993 DOI: 10.18632/oncotarget.11970] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 09/02/2016] [Indexed: 01/16/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine, which was shown to be upregulated in cancers and to exhibit tumor promoting properties. Unlike other cytokines, MIF is ubiquitously present in the circulation and tissue of healthy subjects. We recently described a previously unrecognized, disease-related isoform of MIF, designated oxMIF, which is present in the circulation of patients with different inflammatory diseases. In this article, we report that oxMIF is also linked to different solid tumors as it is specifically expressed in tumor tissue from patients with colorectal, pancreatic, ovarian and lung cancer. Furthermore, oxMIF can be specifically targeted by a subset of phage display-derived fully human, monoclonal anti-MIF antibodies (mAbs) that were shown to neutralize pro-tumorigenic activities of MIF in vivo. We further demonstrate that anti-oxMIF mAbs sensitize human cancer cell lines (LNCaP, PC3, A2780 and A2780ADR) to the action of cytotoxic drugs (mitoxantrone, cisplatin and doxorubicin) in vitro and in an A2780 xenograft mouse model of ovarian cancer. We conclude that oxMIF is the disease related isoform of MIF in solid tumors and a potential new diagnostic marker and drug target in cancer.
Collapse
|
20
|
Wang SS, Cen X, Liang XH, Tang YL. Macrophage migration inhibitory factor: a potential driver and biomarker for head and neck squamous cell carcinoma. Oncotarget 2018; 8:10650-10661. [PMID: 27788497 PMCID: PMC5354689 DOI: 10.18632/oncotarget.12890] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 10/19/2016] [Indexed: 02/05/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF), a pleiotropic proinflammatory cytokine, has been showed to be associated with the immunopathogenesis of many diseases. Recent study demonstrated that MIF promoted tumorigenesis and tumor progression and played a critical role in various kinds of human cancer including head and neck squamous cell carcinoma(HNSCC). Hence, in this paper we retrospected the relationship between MIF and angiogenesis, epithelial-mesenchymal transition (EMT), inflammation, immune response, hypoxia microenvironment, and discussed whether it is a promising biomarker for diagnosis and supervisor of HNSCC.
Collapse
Affiliation(s)
- Sha-Sha Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu Sichuan, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu Sichuan, People's Republic of China
| | - Xiao Cen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu Sichuan, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu Sichuan, People's Republic of China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu Sichuan, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu Sichuan, People's Republic of China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu Sichuan, People's Republic of China.,Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu Sichuan, People's Republic of China
| |
Collapse
|
21
|
Kok T, Wapenaar H, Wang K, Neochoritis CG, Zarganes-Tzitzikas T, Proietti G, Eleftheriadis N, Kurpiewska K, Kalinowska-Tłuścik J, Cool RH, Poelarends GJ, Dömling A, Dekker FJ. Discovery of chromenes as inhibitors of macrophage migration inhibitory factor. Bioorg Med Chem 2017; 26:999-1005. [PMID: 29428527 DOI: 10.1016/j.bmc.2017.12.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 11/27/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is an essential signaling cytokine with a key role in the immune system. Binding of MIF to its molecular targets such as, among others, the cluster of differentiation 74 (CD74) receptor plays a key role in inflammatory diseases and cancer. Therefore, the identification of MIF binding compounds gained importance in drug discovery. In this study, we aimed to discover novel MIF binding compounds by screening of a focused compound collection for inhibition of its tautomerase enzyme activity. Inspired by the known chromen-4-one inhibitor Orita-13, a focused collection of compounds with a chromene scaffold was screened for MIF binding. The library was synthesized using versatile cyanoacetamide chemistry to provide diversely substituted chromenes. The screening provided inhibitors with IC50's in the low micromolar range. Kinetic evaluation suggested that the inhibitors were reversible and did not bind in the binding pocket of the substrate. Thus, we discovered novel inhibitors of the MIF tautomerase activity, which may ultimately support the development of novel therapeutic agents against diseases in which MIF is involved.
Collapse
Affiliation(s)
- Tjie Kok
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Groningen, The Netherlands; Faculty of Biotechnology, University of Surabaya, Jalan Raya Kalirungkut, Surabaya 60292, Indonesia
| | - Hannah Wapenaar
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Groningen, The Netherlands
| | - Kan Wang
- Department of Drug Design, University of Groningen, Groningen, The Netherlands
| | | | | | - Giordano Proietti
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Groningen, The Netherlands
| | - Nikolaos Eleftheriadis
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Groningen, The Netherlands; Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Katarzyna Kurpiewska
- Faculty of Chemistry, Jagiellonian University, 3 Ingardena Street, 30-060 Kraków, Poland
| | | | - Robbert H Cool
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Groningen, The Netherlands
| | - Gerrit J Poelarends
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Groningen, The Netherlands
| | - Alexander Dömling
- Department of Drug Design, University of Groningen, Groningen, The Netherlands
| | - Frank J Dekker
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
22
|
D'Amato-Brito C, Cipriano D, Colin DJ, Germain S, Seimbille Y, Robert JH, Triponez F, Serre-Beinier V. Role of MIF/CD74 signaling pathway in the development of pleural mesothelioma. Oncotarget 2017; 7:11512-25. [PMID: 26883190 PMCID: PMC4905490 DOI: 10.18632/oncotarget.7314] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 01/24/2016] [Indexed: 11/25/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine implicated in acute and chronic inflammatory diseases. MIF is overexpressed in various tumors. It displays a number of functions that provide a direct link between the process of inflammation and tumor growth. Our group recently identified the MIF-receptor CD74 as an independent prognostic factor for overall survival in patients with malignant pleural mesothelioma. In the present study, we compared the levels of expression of MIF and CD74 in different human mesothelioma cell lines and investigated their physiopathological functions in vitro and in vivo. Human mesothelioma cells expressed more CD74 and secreted less MIF than non tumoral MeT5A cells, suggesting a higher sensitivity to MIF. In mesothelioma cells, high MIF levels were associated with a high multiplication rate of cells. In vitro, reduction of MIF or CD74 levels in both mesothelioma cell lines showed that the MIF/CD74 signaling pathway promoted tumor cell proliferation and protected MPM cells from apoptosis. Finally, mesothelioma cell lines expressing high CD74 levels had a low tumorigenic potential after xenogeneic implantation in athymic nude mice. All these data highlight the complexity of the MIF/CD74 signaling pathway in the development of mesothelioma.
Collapse
Affiliation(s)
- Cintia D'Amato-Brito
- Department of Thoracic and Endocrine Surgery, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Davide Cipriano
- Department of Thoracic and Endocrine Surgery, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Didier J Colin
- MicroPET/SPECT/CT Imaging Laboratory, Centre for BioMedical Imaging (CIBM), University Hospitals and University of Geneva, Geneva, Switzerland
| | - Stéphane Germain
- MicroPET/SPECT/CT Imaging Laboratory, Centre for BioMedical Imaging (CIBM), University Hospitals and University of Geneva, Geneva, Switzerland
| | - Yann Seimbille
- Cyclotron Unit, University Hospitals and University of Geneva, Geneva, Switzerland
| | - John H Robert
- Department of Thoracic and Endocrine Surgery, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Frédéric Triponez
- Department of Thoracic and Endocrine Surgery, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Véronique Serre-Beinier
- Department of Thoracic and Endocrine Surgery, University Hospitals and University of Geneva, Geneva, Switzerland
| |
Collapse
|
23
|
Kim MJ, Kim WS, Kim DO, Byun JE, Huy H, Lee SY, Song HY, Park YJ, Kim TD, Yoon SR, Choi EJ, Ha H, Jung H, Choi I. Macrophage migration inhibitory factor interacts with thioredoxin-interacting protein and induces NF-κB activity. Cell Signal 2017; 34:110-120. [PMID: 28323005 DOI: 10.1016/j.cellsig.2017.03.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/09/2017] [Accepted: 03/16/2017] [Indexed: 12/27/2022]
Abstract
The nuclear factor kappa B (NF-κB) pathway is pivotal in controlling survival and apoptosis of cancer cells. Macrophage migration inhibitory factor (MIF), a cytokine that regulates the immune response and tumorigenesis under inflammatory conditions, is upregulated in various tumors. However, the intracellular functions of MIF are unclear. In this study, we found that MIF directly interacted with thioredoxin-interacting protein (TXNIP), a tumor suppressor and known inhibitor of NF-κB activity, and MIF significantly induced NF-κB activation. MIF competed with TXNIP for NF-κB activation, and the intracellular MIF induced NF-κB target genes, including c-IAP2, Bcl-xL, ICAM-1, MMP2 and uPA, by inhibiting the interactions between TXNIP and HDACs or p65. Furthermore, we identified the interaction motifs between MIF and TXNIP via site-directed mutagenesis of their cysteine (Cys) residues. Cys57 and Cys81 of MIF and Cys36 and Cys120 of TXNIP were responsible for the interaction. MIF reversed the TXNIP-induced suppression of cell proliferation and migration. Overall, we suggest that MIF induces NF-κB activity by counter acting the inhibitory effect of TXNIP on the NF-κB pathway via direct interaction with TXNIP. These findings reveal a novel intracellular function of MIF in the progression of cancer.
Collapse
Affiliation(s)
- Mi Jeong Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Functional Genomics, University of Science and Technology, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Won Sam Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Functional Genomics, University of Science and Technology, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Dong Oh Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Functional Genomics, University of Science and Technology, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Jae-Eun Byun
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Biochemistry, School of Life Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hangsak Huy
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Functional Genomics, University of Science and Technology, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Soo Yun Lee
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hae Young Song
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Young-Jun Park
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Functional Genomics, University of Science and Technology, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Tae-Don Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Functional Genomics, University of Science and Technology, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Suk Ran Yoon
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Functional Genomics, University of Science and Technology, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Eun-Ji Choi
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Hyunjung Ha
- Department of Biochemistry, School of Life Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Haiyoung Jung
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Functional Genomics, University of Science and Technology, Yuseong-gu, Daejeon 34113, Republic of Korea.
| | - Inpyo Choi
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Functional Genomics, University of Science and Technology, Yuseong-gu, Daejeon 34113, Republic of Korea.
| |
Collapse
|
24
|
Mirsaidi N, Burns MP, McClain SA, Forsyth E, Li J, Dukes B, Lin D, Nahvi R, Giraldo J, Patton M, Wang P, Lin K, Miller E, Ratliff T, Hamidi S, Crist S, Takemaru KI, Szema A. Enhanced Mortality to Metastatic Bladder Cancer Cell Line MB49 in Vasoactive Intestinal Peptide Gene Knockout Mice. Front Endocrinol (Lausanne) 2017; 8:162. [PMID: 28824540 PMCID: PMC5545686 DOI: 10.3389/fendo.2017.00162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 06/23/2017] [Indexed: 11/24/2022] Open
Abstract
To identify if the absence of the vasoactive intestinal peptide (VIP) gene enhances susceptibility to death from metastatic bladder cancer, two strains of mice were injected with MB49 murine bladder cancer cells. The growth and spread of the cancer was measured over a period of 4 weeks in C57BL/6 mice and 5 weeks in VIP knockout (KO) mice. A Kaplan-Meier plot was constructed to compare control C57BL/6 mice and C57BL/6 mice with MB49 vs. VIP KO controls and VIP KO mice with MB49. The wild-type (WT) strain (C57BL/6) contained the VIP gene, while the other strain, VIP knockout backcrossed to C57BL/6 (VIP KO) did not and was thus unable to endogenously produce VIP. VIP KO mice had increased mortality compared to C57BL/6 mice at 4 weeks. The number of ulcers between both groups was not statistically significant. In vitro studies indicated that the presence VIP in high doses reduced MB49 cell growth, as well as macrophage inhibitory factor (MIF), a growth factor in bladder cancer cells. These findings support the concept that VIP may attenuate susceptibility to death from bladder cancer, and that it exerts its effect via downregulation of MIF.
Collapse
Affiliation(s)
- Niely Mirsaidi
- Department of Technology and Society, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY, United States
- Three Village Allergy & Asthma, PLLC, South Setauket, NY, United States
| | - Matthew P. Burns
- Department of Technology and Society, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY, United States
- Three Village Allergy & Asthma, PLLC, South Setauket, NY, United States
| | | | - Edward Forsyth
- Department of Urology, Stony Brook University School of Medicine, Stony Brook, NY, United States
| | - Jonathan Li
- Department of Technology and Society, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY, United States
- Three Village Allergy & Asthma, PLLC, South Setauket, NY, United States
| | - Brittany Dukes
- Department of Technology and Society, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY, United States
- Three Village Allergy & Asthma, PLLC, South Setauket, NY, United States
| | - David Lin
- Department of Technology and Society, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY, United States
- Three Village Allergy & Asthma, PLLC, South Setauket, NY, United States
| | - Roxanna Nahvi
- Department of Technology and Society, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY, United States
- Three Village Allergy & Asthma, PLLC, South Setauket, NY, United States
| | - Jheison Giraldo
- Department of Technology and Society, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY, United States
- Three Village Allergy & Asthma, PLLC, South Setauket, NY, United States
| | - Megan Patton
- Three Village Allergy & Asthma, PLLC, South Setauket, NY, United States
| | - Ping Wang
- The Feinstein Institute for Medical Research, Center for Heart and Lung Research, Manhasset, NY, United States
| | - Ke Lin
- The Feinstein Institute for Medical Research, Center for Heart and Lung Research, Manhasset, NY, United States
| | - Edmund Miller
- The Feinstein Institute for Medical Research, Center for Heart and Lung Research, Manhasset, NY, United States
- The Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States
- Hofstra Northwell School of Medicine, Hempstead, NY, United States
| | - Timothy Ratliff
- Purdue University, Center for Cancer Research, West Lafayette, IN, United States
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Sayyed Hamidi
- James J. Peters Veterans Affairs Medical Center, Bronx, NY, United States
| | - Scott Crist
- Purdue University, Center for Cancer Research, West Lafayette, IN, United States
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Ken-Ichi Takemaru
- Department of Pharmacological Sciences, Stony Brook University School of Medicine, Stony Brook, NY, United States
| | - Anthony Szema
- Department of Technology and Society, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY, United States
- Three Village Allergy & Asthma, PLLC, South Setauket, NY, United States
- The Feinstein Institute for Medical Research, Center for Heart and Lung Research, Manhasset, NY, United States
- Department of Occupational Medicine, Epidemiology, and Prevention, Hofstra Northwell School of Medicine, Hempstead, NY, United States
- Northwell Health, Department of Medicine, Division of Pulmonary and Critical Care, Manhasset, NY, United States
- Northwell Health, Department of Medicine, Division of Allergy and Immunology, Manhasset, NY, United States
- *Correspondence: Anthony Szema,
| |
Collapse
|
25
|
Johler SM, Fuchs J, Seitz G, Armeanu-Ebinger S. Macrophage migration inhibitory factor (MIF) is induced by cytotoxic drugs and is involved in immune escape and migration in childhood rhabdomyosarcoma. Cancer Immunol Immunother 2016; 65:1465-1476. [PMID: 27629595 PMCID: PMC11029580 DOI: 10.1007/s00262-016-1896-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 08/26/2016] [Indexed: 12/15/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is known to be involved in oncogenic transformation, tumour progression, and immunosuppression and is overexpressed in many solid tumours, including paediatric rhabdomyosarcoma (RMS). We investigated the function of MIF in RMS during treatment with cytotoxic drugs. RMS cell lines were analysed by flow cytometry, immunofluorescence staining, and ELISA. We demonstrated the overexpression of MIF in RMS cells and the enhanced expression and secretion after treatment with cytotoxic agents. Migration assays of RMS cells revealed that inhibitors of MIF (ISO-1, Ant.III 4-IPP, Ant.V, sulforaphane (SF)) and blocking antibodies caused reduced migration, indicating a role for MIF in metastatic invasion. Additionally, we investigated the function of MIF in immune escape. The development of a population containing immunosuppressive myeloid-derived suppressor cells was promoted by incubation in conditioned medium of RMS cells comprising MIF and was reversed by MIF inhibitors but not by antibodies. Although most inhibitors may restore immune activity, Ant.III and 10 µM SF disturbed T cell proliferation in a CFSE assay, whereas T cell proliferation was not reduced by 3 µM SF, ISO-1 or antibodies. However, the inhibition of MIF by blocking antibodies did not increase the killing activity of allogenic PBMCs co-cultured with RMS cells. Our results reveal that MIF may be involved in an immune escape mechanism and demonstrate the involvement of MIF in immunogenic cell death during treatment with cytotoxic drugs. Targeting MIF may contribute to the restoration of immune sensitivity and the control of migration and metastatic invasion.
Collapse
Affiliation(s)
- Sarah Maria Johler
- Department of Pediatric Surgery and Urology, University Children's Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Jörg Fuchs
- Department of Pediatric Surgery and Urology, University Children's Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Guido Seitz
- Department of Pediatric Surgery and Urology, University Children's Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Sorin Armeanu-Ebinger
- Department of Pediatric Surgery and Urology, University Children's Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany.
| |
Collapse
|
26
|
Yoshihisa Y, Rehman MU, Kondo T, Shimizu T. Role of macrophage migration inhibitory factor in heat-induced apoptosis in keratinocytes. FASEB J 2016; 30:3870-3877. [PMID: 27528627 DOI: 10.1096/fj.201600408rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 08/01/2016] [Indexed: 12/31/2022]
Abstract
In human skin, keratinocytes are constantly challenged by adverse influences, such as hot and cold temperatures; however, the effects of heat on apoptosis induction in keratinocytes are not well understood. Macrophage migration inhibitory factor (MIF) is a potent cytokine that overcomes p53 function by suppressing its transcriptional activity. Here, we evaluated the effects of MIF on hyperthermia (HT)-induced apoptosis in MIF-deficient [knockout (KO)] and MIF-transgenic (Tg) mouse keratinocytes. Cells were exposed to HT at 44°C, and increased apoptosis was observed in MIF-KO and wild-type (WT) cells compared with MIF-Tg cells. To determine the mechanism, MIF-mediated changes in the cellular p53 level and its effects on p53-dependent death signaling (Bax and p21) and JNK signaling (p-JNK, JNK, p-Bad, and Bad) were investigated. MIF-Tg cells exhibited substantially decreased levels of p53 after HT treatment compared with WT and MIF-KO cells. In addition, HT treatment caused decreased expression of p-JNK and p-Bad in MIF-Tg cells; however, no such changes were observed in MIF-KO and WT cells. These results showed that the activation of JNK (p-JNK and p-Bad) and p53 may be involved in HT-induced apoptosis in keratinocytes and that enhanced endogenous MIF expression suppressed apoptosis.-Yoshihisa, Y., Rehman, M. U., Kondo, T., Shimizu, T. Role of macrophage migration inhibitory factor in heat-induced apoptosis in keratinocytes.
Collapse
Affiliation(s)
- Yoko Yoshihisa
- Department of Dermatology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan; and
| | - Mati Ur Rehman
- Department of Dermatology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan; and.,Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan
| | - Takashi Kondo
- Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan
| | - Tadamichi Shimizu
- Department of Dermatology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan; and
| |
Collapse
|
27
|
Fukaya R, Ohta S, Yaguchi T, Matsuzaki Y, Sugihara E, Okano H, Saya H, Kawakami Y, Kawase T, Yoshida K, Toda M. MIF Maintains the Tumorigenic Capacity of Brain Tumor-Initiating Cells by Directly Inhibiting p53. Cancer Res 2016; 76:2813-23. [PMID: 26980763 DOI: 10.1158/0008-5472.can-15-1011] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 03/04/2016] [Indexed: 11/16/2022]
Abstract
Tumor-initiating cells thought to drive brain cancer are embedded in a complex heterogeneous histology. In this study, we isolated primary cells from 21 human brain tumor specimens to establish cell lines with high tumorigenic potential and to identify the molecules enabling this capability. The morphology, sphere-forming ability upon expansion, and differentiation potential of all cell lines were indistinguishable in vitro However, testing for tumorigenicity revealed two distinct cell types, brain tumor-initiating cells (BTIC) and non-BTIC. We found that macrophage migration inhibitory factor (MIF) was highly expressed in BTIC compared with non-BTIC. MIF bound directly to both wild-type and mutant p53 but regulated p53-dependent cell growth by different mechanisms, depending on glioma cell line and p53 status. MIF physically interacted with wild-type p53 in the nucleus and inhibited its transcription-dependent functions. In contrast, MIF bound to mutant p53 in the cytoplasm and abrogated transcription-independent induction of apoptosis. Furthermore, MIF knockdown inhibited BTIC-induced tumor formation in a mouse xenograft model, leading to increased overall survival. Collectively, our findings suggest that MIF regulates BTIC function through direct, intracellular inhibition of p53, shedding light on the molecular mechanisms underlying the tumorigenicity of certain malignant brain cells. Cancer Res; 76(9); 2813-23. ©2016 AACR.
Collapse
Affiliation(s)
- Raita Fukaya
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan
| | - Shigeki Ohta
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Tomonori Yaguchi
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Yumi Matsuzaki
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Eiji Sugihara
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Yutaka Kawakami
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Takeshi Kawase
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan
| | - Kazunari Yoshida
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan
| | - Masahiro Toda
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
28
|
Macrophage migration inhibitory factor has a permissive role in concanavalin A-induced cell death of human hepatoma cells through autophagy. Cell Death Dis 2015; 6:e2008. [PMID: 26633714 PMCID: PMC4720884 DOI: 10.1038/cddis.2015.349] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 10/29/2015] [Accepted: 11/03/2015] [Indexed: 02/06/2023]
Abstract
Concanavalin A (ConA) is a lectin and T-cell mitogen that can activate immune responses. In recent times, ConA-induced cell death of hepatoma cells through autophagy has been reported and its therapeutic effect was confirmed in a murine in situ hepatoma model. However, the molecular mechanism of ConA-induced autophagy is still unclear. As macrophage migration inhibitory factor (MIF), which is a proinflammatory cytokine, can trigger autophagy in human hepatoma cells, the possible involvement of MIF in ConA-induced autophagy was investigated in this study. We demonstrated that cell death is followed by an increment in MIF expression and secretion in the ConA-stimulated human hepatoma cell lines, HuH-7 and Hep G2. In addition, ConA-induced autophagy and cell death of hepatoma cells were blocked in the presence of an MIF inhibitor. Knockdown of endogenous MIF by small hairpin RNA confirmed that MIF is required for both ConA-induced autophagy and death of hepatoma cells. Furthermore, signal pathway studies demonstrated that ConA induces signal transducer and activator of transcription 3 (STAT3) phosphorylation to trigger MIF upregulation, which in turn promotes Bcl-2/adenovirus E1B 19 kDa-interacting protein 3 (BNIP3)-dependent autophagy. By using a murine in situ hepatoma model, we further demonstrated that MIF contributes to anti-hepatoma activity of ConA by regulating STAT3-MIF-BNIP3-dependent autophagy. In summary, our findings uncover a novel role of MIF in lectin-mediated anti-hepatoma activities by regulating autophagy.
Collapse
|
29
|
Yang L, Liu Z, Wu R, Yao Q, Gu Z, Liu M. Correlation of C-X-C chemokine receptor 2 upregulation with poor prognosis and recurrence in human glioma. Onco Targets Ther 2015; 8:3203-9. [PMID: 26586954 PMCID: PMC4636088 DOI: 10.2147/ott.s91626] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
C-X-C chemokine receptor 2 (CXCR2), a member of the G-protein-coupled receptor family, is an interleukin-8 receptor and results in the activation of neutrophils. To date, CXCR2 has been identified with many cell events, including inflammation, neovascularization, metastasis, and cell carcinogenesis. This study aimed to investigate alterations in the expression of CXCR2 in patients with brain gliomas and relationships with pathological grades and clinicopathological characteristics. Brain tissue specimens from 60 patients with glioma and 15 patients undergoing surgery for epilepsy (controls) were detected using streptavidin-perosidase immunohistochemistry. Western blotting was used to evaluate CXCR2 protein levels with fresh tissues derived from glioma cases or controls. Correlations between CXCR2 expression and clinicopathological characteristics were analyzed using SPSS software. The results showed high-grade gliomas with high CXCR2 expression as compared with normal tissues. The expression of CXCR2 was significantly related to high grades and recurrence of tumor but not to age or sex. During an in vitro wound healing assay, U251 migration was reduced when the CXCR2-specific inhibitor SB225002 was applied. Our results suggested that the high expression of CXCR2 in gliomas was closely correlated to the degree of malignancy and recurrence and that CXCR2 inhibition decreased the migration of glioma cells. Therefore, CXCR2 may serve as a potential therapeutic target for the recurrence and migration of gliomas.
Collapse
Affiliation(s)
- Liu Yang
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Zenghui Liu
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Ronghua Wu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Qi Yao
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Zhikai Gu
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Mei Liu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, People's Republic of China
| |
Collapse
|
30
|
Chesney JA, Mitchell RA. 25 Years On: A Retrospective on Migration Inhibitory Factor in Tumor Angiogenesis. Mol Med 2015; 21 Suppl 1:S19-24. [PMID: 26605643 DOI: 10.2119/molmed.2015.00055] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 03/16/2015] [Indexed: 01/26/2023] Open
Abstract
Twenty-five years ago marked the publication of the first report describing a functional contribution by the cytokine, macrophage migration inhibitory factor (MIF), to tumor-associated angiogenesis and growth. Since first appearing, this report has been cited 304 times (as of this writing), underscoring not only the importance of this landmark study but also the importance of MIF in tumor neovascularization. Perhaps more importantly, this first link between MIF and stromal cell-dependent tumor angiogenesis presaged the subsequent identification of MIF in mediating protumorigenic contributions to several solid tumor stromal cell types, including monocytes, macrophages, T lymphocytes, NK cells, fibroblasts, endothelial progenitors and mesenchymal stem cells. This retrospective review will broadly evaluate both past and present literature stemming from this initial publication, with an emphasis on cellular sources, cellular effectors, signal transduction mechanisms and the clinical importance of MIF-dependent tumor vascularization.
Collapse
Affiliation(s)
- Jason A Chesney
- Molecular Targets Program, JG Brown Cancer Center, and the Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Robert A Mitchell
- Molecular Targets Program, JG Brown Cancer Center, and the Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| |
Collapse
|
31
|
He LJ, Xie D, Hu PJ, Liao YJ, Deng HX, Kung HF, Zhu SL. Macrophage migration inhibitory factor as a potential prognostic factor in gastric cancer. World J Gastroenterol 2015; 21:9916-9926. [PMID: 26379396 PMCID: PMC4566384 DOI: 10.3748/wjg.v21.i34.9916] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/13/2015] [Accepted: 07/15/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate macrophage migration inhibitory factor (MIF) expression and its clinical relevance in gastric cancer, and effects of MIF knockdown on proliferation of gastric cancer cells.
METHODS: Tissue microarray containing 117 samples of gastric cancer and adjacent non-cancer normal tissues was studied for MIF expression by immunohistochemistry (IHC) semiquantitatively, and the association of MIF expression with clinical parameters was analyzed. MIF expression in gastric cancer cell lines was detected by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot. Two pairs of siRNA targeting the MIF gene (MIF si-1 and MIF si-2) and one pair of scrambled siRNA as a negative control (NC) were designed and chemically synthesized. All siRNAs were transiently transfected in AGS cells with OligofectamineTM to knock down the MIF expression, with the NC group and mock group (OligofectamineTM alone) as controls. At 24, 48, and 72 h after transfection, MIF mRNA was analyzed by RT-PCR, and MIF and proliferating cell nuclear antigen (PCNA) proteins were detected by Western blot. The proliferative rate of AGS cells was assessed by methylthiazolyl tetrazolium (MTT) assay and colony forming assay.
RESULTS: The tissue microarray was informative for IHC staining, in which the MIF expression in gastric cancer tissues was higher than that in adjacent non-cancer normal tissues (P < 0.001), and high level of MIF was related to poor tumor differentiation, advanced T stage, advanced tumor stage, lymph node metastasis, and poor patient survival (P < 0.05 for all). After siRNA transfection, MIF mRNA was measured by real-time PCR, and MIF protein and PCNA were assessed by Western blot analysis. We found that compared to the NC group and mock group, MIF expression was knocked down successfully in gastric cancer cells, and PCNA expression was downregulated with MIF knockdown as well. The cell counts and the doubling times were assayed by MTT 4 d after transfection, and colonies formed were assayed by colony forming assay 10 d after transfection; all these showed significant changes in gastric cancer cells transfected with specific siRNA compared with the control siRNA and mock groups (P < 0.001 for all).
CONCLUSION: MIF could be of prognostic value in gastric cancer and might be a potential target for small-molecule therapy.
Collapse
|
32
|
Lourenco S, Teixeira VH, Kalber T, Jose RJ, Floto RA, Janes SM. Macrophage migration inhibitory factor-CXCR4 is the dominant chemotactic axis in human mesenchymal stem cell recruitment to tumors. THE JOURNAL OF IMMUNOLOGY 2015; 194:3463-74. [PMID: 25712213 DOI: 10.4049/jimmunol.1402097] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mesenchymal stromal cells (MSCs) are inherently tumor homing and can be isolated, expanded, and transduced, making them viable candidates for cell therapy. This tumor tropism has been used to deliver anticancer therapies to various tumor models. In this study, we sought to discover which molecules are the key effectors of human MSC tumor homing in vitro and using an in vivo murine model. In this study, we discover a novel role for macrophage migration inhibitory factor (MIF) as the key director of MSC migration and infiltration toward tumor cells. We have shown this major role for MIF using in vitro migration and invasion assays, in presence of different receptor inhibitors and achieving a drastic decrease in both processes using MIF inhibitor. Additionally, we demonstrate physical interaction between MIF and three receptors: CXCR2, CXCR4, and CD74. CXCR4 is the dominant receptor used by MIF in the homing tumor context, although some signaling is observed through CXCR2. We demonstrate downstream activation of the MAPK pathway necessary for tumor homing. Importantly, we show that knockdown of either CXCR4 or MIF abrogates MSC homing to tumors in an in vivo pulmonary metastasis model, confirming the in vitro two-dimensional and three-dimensional assays. This improved understanding of MSC tumor tropism will further enable development of novel cellular therapies for cancers.
Collapse
Affiliation(s)
- Sofia Lourenco
- Lungs for Living Research Centre, Division of Medicine, University College London, London WC1E 6JF, United Kingdom;
| | - Vitor H Teixeira
- Lungs for Living Research Centre, Division of Medicine, University College London, London WC1E 6JF, United Kingdom
| | - Tammy Kalber
- Lungs for Living Research Centre, Division of Medicine, University College London, London WC1E 6JF, United Kingdom; University College London Centre of Advanced Biomedical Imaging, University College London, London WC1E 6DD, United Kingdom
| | - Ricardo J Jose
- Centre for Inflammation and Tissue Repair, Division of Medicine, University College London, London WC1E 6JF, United Kingdom; and
| | - R Andres Floto
- Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge, CB2 0XY, United Kingdom
| | - Sam M Janes
- Lungs for Living Research Centre, Division of Medicine, University College London, London WC1E 6JF, United Kingdom
| |
Collapse
|
33
|
Sun H, Zhang X, Zhao L, Zhen X, Huang S, Wang S, He H, Liu Z, Xu N, Yang F, Qu Z, Ma Z, Zhang C, Zhang Y, Hu Q. Attenuation of atherosclerotic lesions in diabetic apolipoprotein E-deficient mice using gene silencing of macrophage migration inhibitory factor. J Cell Mol Med 2015; 19:836-49. [PMID: 25661015 PMCID: PMC4395198 DOI: 10.1111/jcmm.12521] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 11/20/2014] [Indexed: 01/24/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) involves the pathogenesis of atherosclerosis (AS) and increased plasma MIF levels in diabetes mellitus (DM) patients are associated with AS. Here, we have been suggested that MIF could be a critical contributor for the pathological process of diabetes-associated AS by using adenovirus-mediated RNA interference. First, streptozotocin (STZ)-induced diabetic animal model was constructed in 114 apolipoprotein E-deficient mice (apoE−/− mice) fed on a regular chow diet. Then, the animals were randomly divided into three groups: Adenovirus-mediated MIF interference (Ad-MIFi), Ad-enhanced green fluorescent protein (EGFP) and normal saline (NS) group (n ≈ 33/group). Non-diabetic apoE−/− mice (n = 35) were served as controls. Ad-MIFi, Ad-EGFP and NS were, respectively, injected into the tail vein of mice from Ad-MIFi, Ad-EGFP and NS group, which were injected repeatedly 4 weeks later. Physical, biochemical, morphological and molecular parameters were measured. The results showed that diabetic apoE−/− mice had significantly aggravated atherosclerotic lesions. MIF gene interference attenuated atherosclerotic lesions and stabilized atheromatous plaque, accompanied by the decreased macrophages and lipids deposition and inflammatory cytokines production, improved glucose intolerance and plasma cholesterol level, the decreased ratio of matrix matalloproteinase-2/tissue inhibitor of metalloproteinase-1 and plaque instability index. An increased expression of MIF and its ligand CD74 was also detected in the diabetic patients with coronary artery disease. The results suggest that MIF gene interference is able to inhibit atherosclerotic lesions and increase plaque stability in diabetic apoE−/−mice. MIF inhibition could be a novel and promising approach to the treatment of DM-associated AS.
Collapse
Affiliation(s)
- Hui Sun
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Shandong University Qilu Hospital, Jinan, Shandong, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Oliveira CS, de Bock CE, Molloy TJ, Sadeqzadeh E, Geng XY, Hersey P, Zhang XD, Thorne RF. Macrophage migration inhibitory factor engages PI3K/Akt signalling and is a prognostic factor in metastatic melanoma. BMC Cancer 2014; 14:630. [PMID: 25168062 PMCID: PMC4155090 DOI: 10.1186/1471-2407-14-630] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 08/20/2014] [Indexed: 02/08/2023] Open
Abstract
Background Macrophage migration inhibitory factor (MIF) is a widely expressed cytokine involved in a variety of cellular processes including cell cycle regulation and the control of proliferation. Overexpression of MIF has been reported in a number of cancer types and it has previously been shown that MIF is upregulated in melanocytic tumours with the highest expression levels occurring in malignant melanoma. However, the clinical significance of high MIF expression in melanoma has not been reported. Methods MIF expression was depleted in human melanoma cell lines using siRNA-mediated gene knockdown and effects monitored using in vitro assays of proliferation, cell cycle, apoptosis, clonogenicity and Akt signalling. In silico analyses of expression microarray data were used to correlate MIF expression levels in melanoma tumours with overall patient survival using a univariate Cox regression model. Results Knockdown of MIF significantly decreased proliferation, increased apoptosis and decreased anchorage-independent growth. Effects were associated with reduced numbers of cells entering S phase concomitant with decreased cyclin D1 and CDK4 expression, increased p27 expression and decreased Akt phosphorylation. Analysis of clinical outcome data showed that MIF expression levels in primary melanoma were not associated with outcome (HR = 1.091, p = 0.892) whereas higher levels of MIF in metastatic lesions were significantly associated with faster disease progression (HR = 2.946, p = 0.003 and HR = 4.600, p = 0.004, respectively in two independent studies). Conclusions Our in vitro analyses show that MIF functions upstream of the PI3K/Akt pathway in human melanoma cell lines. Moreover, depletion of MIF inhibited melanoma proliferation, viability and clonogenic capacity. Clinically, high MIF levels in metastatic melanoma were found to be associated with faster disease recurrence. These findings support the clinical significance of MIF signalling in melanoma and provide a strong rationale for both targeting and monitoring MIF expression in clinical melanoma. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-630) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rick F Thorne
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia.
| |
Collapse
|
35
|
Ioannou K, Cheng KF, Crichlow GV, Birmpilis AI, Lolis EJ, Tsitsilonis OE, Al-Abed Y. ISO-66, a novel inhibitor of macrophage migration, shows efficacy in melanoma and colon cancer models. Int J Oncol 2014; 45:1457-68. [PMID: 25050663 PMCID: PMC4432716 DOI: 10.3892/ijo.2014.2551] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/14/2014] [Indexed: 01/11/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic pro-inflammatory cytokine, which possesses a contributing role in cancer progression and metastasis and, thus, is now considered a promising anticancer drug target. Many MIF-inactivating strategies have proven successful in delaying cancer growth. Here, we report on the synthesis of ISO-66, a novel, highly stable, small-molecule MIF inhibitor, an analog of ISO-1 with improved characteristics. The MIF:ISO-66 co-crystal structure demonstrated that ISO-66 ligates the tautomerase active site of MIF, which has previously been shown to play an important role in its biological functions. In vitro, ISO-66 enhanced specific and non-specific anticancer immune responses, whereas prolonged administration of ISO-66 in mice with established syngeneic melanoma or colon cancer was non-toxic and resulted in a significant decrease in tumor burden. Subsequent ex vivo analysis of mouse splenocytes revealed that the observed decrease in tumor growth rates was likely mediated by the selective in vivo expansion of antitumor-reactive effector cells induced by ISO-66. Compared to other MIF-inactivating strategies employed in vivo, the anticancer activity of ISO-66 is demonstrated to be of equal or better efficacy. Our findings suggest that targeting MIF, via highly specific and stable compounds, such as ISO-66, may be effective for cancer treatment and stimulation of anticancer immune responses.
Collapse
Affiliation(s)
- Kyriaki Ioannou
- Department of Animal and Human Physiology, Faculty of Biology, University of Athens, Athens 15784, Greece
| | - Kai Fan Cheng
- Center for Molecular Innovation, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Gregg V Crichlow
- Department of Pharmacology, Yale University, New Haven, CT 06510, USA
| | - Anastasios I Birmpilis
- Department of Animal and Human Physiology, Faculty of Biology, University of Athens, Athens 15784, Greece
| | - Elias J Lolis
- Department of Pharmacology, Yale University, New Haven, CT 06510, USA
| | - Ourania E Tsitsilonis
- Department of Animal and Human Physiology, Faculty of Biology, University of Athens, Athens 15784, Greece
| | - Yousef Al-Abed
- Center for Molecular Innovation, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| |
Collapse
|
36
|
Younan DNA, Agamia N, Elshafei A, Ebeid N. Serum level of macrophage migration inhibitory factor (MIF) in Egyptians with alopecia areata and its relation to the clinical severity of the disease. J Clin Lab Anal 2014; 29:74-9. [PMID: 24687398 DOI: 10.1002/jcla.21731] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 11/18/2013] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Alopecia areata (AA) is a common dermatological problem that manifests as sudden loss of hair without any inflammation or scarring. Various cytokines are implicated in the pathogenesis of this disease. Macrophage migration inhibitory factor (MIF) is located at an upstream position in the events leading to the possible dysregulated immuno-inflammatory responses, and the high level of this cytokine in AA may suggest a role of MIF in the pathogenesis of AA. METHODS This case-control study was carried out on 31 AA patients with different grades of severity and 15 apparently healthy subjects. Serum MIF level was measured by ELISA, and was correlated with the clinical severity of the disease using SALT (severity of alopecia tool) scoring system. RESULTS In this study, there was a significant elevation in serum MIF levels in AA patients in comparison with controls. There was also a positive correlation between MIF levels and clinical severity and disease duration. CONCLUSION MIF seems to have an essential role in the etiopathogenesis of AA. So, it is considered to be a promising target in the therapy of autoimmune diseases and as a future predictor of alopecia activity. Anti-MIF therapy might be added as one of the new biological treatments for AA.
Collapse
|
37
|
Otterstrom C, Soltermann A, Opitz I, Felley-Bosco E, Weder W, Stahel RA, Triponez F, Robert JH, Serre-Beinier V. CD74: a new prognostic factor for patients with malignant pleural mesothelioma. Br J Cancer 2014; 110:2040-6. [PMID: 24594996 PMCID: PMC3992494 DOI: 10.1038/bjc.2014.117] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 11/28/2013] [Accepted: 02/10/2014] [Indexed: 12/29/2022] Open
Abstract
Background: The pro-inflammatory cytokine migration inhibitory factor (MIF) and its receptor CD74 have been proposed as possible therapeutic targets in several cancers. We studied the expression of MIF and CD74 together with calretinin in specimens of malignant pleural mesothelioma (MPM), correlating their expression levels with clinico-pathologic parameters, in particular overall survival (OS). Methods: Migration inhibitory factor, CD74, and calretinin immunoreactivity were investigated in a tissue microarray of 352 patients diagnosed with MPM. Protein expression intensities were semiquantitatively scored in the tumour cells and in the peritumoral stroma. Markers were matched with OS, age, gender, and histological subtype. Results: Clinical data from 135 patients were available. Tumour cell expressions of MIF and CD74 were observed in 95% and 98% of MPM specimens, respectively, with a homogenous distribution between the different histotypes. CD74 (P<0.001) but not MIF overexpression (P=0.231) emerged as an independent prognostic factor for prolonged OS. High expression of tumour cell calretinin correlated with the epithelioid histotype and was also predictive of longer OS (P<0.001). When compared with previously characterised putative epithelial-to-mesenchymal transition markers, CD74 correlated positively with tumoral PTEN and podoplanin expressions, but was inversely related with periostin expression. Conclusions: High expression of CD74 is an independent prognostic factor for prolonged OS in mesothelioma patients.
Collapse
Affiliation(s)
- C Otterstrom
- Division of Thoracic Surgery, University Hospitals of Geneva, Geneva, Switzerland
| | - A Soltermann
- Institute of Surgical Pathology, University Hospital Zürich, Zürich, Switzerland
| | - I Opitz
- Division of Thoracic Surgery, University Hospital Zürich, Zürich, Switzerland
| | - E Felley-Bosco
- Laboratory of Molecular Oncology, Clinic for Oncology, University Hospital Zürich, Zürich, Switzerland
| | - W Weder
- Division of Thoracic Surgery, University Hospital Zürich, Zürich, Switzerland
| | - R A Stahel
- Laboratory of Molecular Oncology, Clinic for Oncology, University Hospital Zürich, Zürich, Switzerland
| | - F Triponez
- Division of Thoracic Surgery, University Hospitals of Geneva, Geneva, Switzerland
| | - J H Robert
- Division of Thoracic Surgery, University Hospitals of Geneva, Geneva, Switzerland
| | - V Serre-Beinier
- Division of Thoracic Surgery, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
38
|
Involvement of MIF in basement membrane damage in chronically UVB-exposed skin in mice. PLoS One 2014; 9:e89569. [PMID: 24586879 PMCID: PMC3931804 DOI: 10.1371/journal.pone.0089569] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 01/21/2014] [Indexed: 02/04/2023] Open
Abstract
Solar ultraviolet (UV) B radiation is known to induce matrix metalloproteinases (MMPs) that degrade collagen in the basement membrane. Macrophage migration inhibitory factor (MIF) is a pluripotent cytokine that plays an essential role in the pathophysiology of skin inflammation induced by UV irradiation. This study examined the effects of MIF on basement membrane damage following chronic UVB irradiation in mice. The back skin of MIF transgenic (Tg) and wild-type (WT) mice was exposed to UVB three times a week for 10 weeks. There was a decrease in intact protein levels of type IV collagen and increased basement membrane damage in the exposed skin of the MIF Tg mice compared to that observed in the WT mice. Moreover, the skin of the MIF Tg mice exhibited higher MIF, MMP-2 and MMP-9 expression and protein levels than those observed in the WT mice. We also found that chronic UVB exposure in MIF Tg mice resulted in higher levels of neutrophil infiltration in the dermis compared with that observed in the WT mice. In vitro experiments revealed that MIF induced increases in the MMPs expression, including that of MMP-9 in keratinocytes and MMP-2 in fibroblasts. Cultured neutrophils also secreted MMP-9 stimulated by MIF. Therefore, MIF-mediated basement membrane damage occurs primarily through MMPs activation and neutrophil influx in murine skin following chronic UVB irradiation.
Collapse
|
39
|
Pei XJ, Wu TT, Li B, Tian XY, Li Z, Yang QX. Increased expression of macrophage migration inhibitory factor and DJ-1 contribute to cell invasion and metastasis of nasopharyngeal carcinoma. Int J Med Sci 2014; 11:106-15. [PMID: 24396292 PMCID: PMC3880997 DOI: 10.7150/ijms.7264] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 12/09/2013] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND AND AIM Both macrophage migration inhibitory factor (MIF) and DJ-1 protein have been shown to relate with cell invasion and metastasis in tumors. However, the role of DJ-1 in invasion and metastasis of nasopharyngeal carcinoma (NPC) and its relation to MIF expression in NPC are not fully understood. The aim of present study is to determine whether or not MIF and DJ-1 are correlated with tumor invasion and influence a worse outcome in NPC, as well as its related mechanism. METHODS 125 cases of NPC and 45 normal tissues of nasopharynx were collected. The expression of MIF and DJ-1 in tissue microarray was evaluated by immunohistochemical staining. Correlation between immunostainings and clinicopathological parameters, as well as the follow-up data of patients, was analyzed statistically. The association of MIF and DJ-1 with cell invasion and migration in NPC cell line were evaluated by small interfering RNA (siRNA) transfection, invasion assay and Western blotting. RESULTS MIF and DJ-1 staining was diffused and strong in tumor cells, whereas they were generally weaker and less common in normal lining epithelia of nasopharynx. High MIF expression in tumor cells (71.2%, 89/125 cases) were significantly associated with advanced clinical stage, lymph node metastasis, and worse prognosis of NPC patients. High expression of DJ-1 (75.2%, 94/125 cases) were closely correlated to lymph node metastasis and MIF high-expression. Only MIF high expression (P = 0.010) and lymph node metastasis (P = 0.004) emerged as strong independent prognostic factors for overall survival of NPC patients. In vitro, down-regulated expression of DJ-1 in NPC cell lines by siRNA was observed to reduce cell migration and invasion potential, however, exogenous MIF promoted cells invasion. CONCLUSIONS The data provided evidence that increased expression of MIF and DJ-1 induced cell invasion and metastasis of NPC, supporting the idea that MIF and DJ-1 may play important roles as regulators in the progression of NPC.
Collapse
Affiliation(s)
- Xiao-Juan Pei
- 1. Department of Pathology, Huizhou Municipal Central Hospital, 41 Eling Road North, Huizhou 516001, China
| | - Tong-Tong Wu
- 1. Department of Pathology, Huizhou Municipal Central Hospital, 41 Eling Road North, Huizhou 516001, China
| | - Bin Li
- 2. Department of pathology, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China
| | - Xiao-Ying Tian
- 3. School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong, China
| | - Zhi Li
- 2. Department of pathology, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China
| | - Qing-Xu Yang
- 1. Department of Pathology, Huizhou Municipal Central Hospital, 41 Eling Road North, Huizhou 516001, China
| |
Collapse
|
40
|
Zhang X, Chen L, Wang Y, Ding Y, Peng Z, Duan L, Ju G, Ren Y, Wang X. Macrophage migration inhibitory factor promotes proliferation and neuronal differentiation of neural stem/precursor cells through Wnt/β-catenin signal pathway. Int J Biol Sci 2013; 9:1108-20. [PMID: 24339732 PMCID: PMC3858584 DOI: 10.7150/ijbs.7232] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/23/2013] [Indexed: 01/12/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a highly conserved and evolutionarily ancient mediator with pleiotropic effects. Recent studies demonstrated that the receptors of MIF, including CD44, CXCR2, CXCR4 and CD74, are expressed in the neural stem/progenitor cells (NSPCs). The potential regulatory effect of MIF on NSPCs proliferation and neuronal differentiation, however, is largely unknown. Here, we investigated the effect of MIF on NSPC proliferation and neuronal differentiation, and further examined the signal pathway by which MIF transduced these signal effects in mouse NSPCs in vitro. The results showed that both Ki67-positive cells and neurosphere volumes were increased in a dose-dependent manner following MIF treatment. Furthermore, the expression of nuclear β-catenin was significantly stronger in MIF-stimulated groups than that in control groups. Conversely, administration of IWR-1, the inhibitor of Wnt/β-catenin pathway, significantly inhibited the proliferative effect of MIF on NSPCs. Immunostaining and Western blot further indicated that doublecortin (DCX) and Tuj 1, two neuronal markers, were evidently increased with MIF stimulation during NSPC differentiation, and there were more Tuj1-positive cells migrated out from neurospheres in MIF-stimulated groups than those in control groups. During NSPC differentiation, MIF increased the activity of β-galactosidase that responds to Wnt/β-catenin signaling. Wnt1 and β-catenin proteins were also up-regulated with MIF stimulation. Moreover, the expression of DCX and Tuj 1 was inhibited significantly by IWR-1. Taken together, the present study indicated that MIF enhances NSPC proliferation and promotes the neuronal differentiation, by activating Wnt/β-catenin signal pathway. The interaction between MIF and Wnt/β-catenin signal pathway may play an important role in modulating NSPC renewal and fate during brain development.
Collapse
Affiliation(s)
- Xijing Zhang
- 1. Department of Anesthesiology, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Choudhary S, Hegde P, Pruitt JR, Sielecki TM, Choudhary D, Scarpato K, Degraff DJ, Pilbeam CC, Taylor JA. Macrophage migratory inhibitory factor promotes bladder cancer progression via increasing proliferation and angiogenesis. Carcinogenesis 2013; 34:2891-9. [PMID: 23825153 DOI: 10.1093/carcin/bgt239] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Macrophage migratory inhibitory factor (MIF) is a proinflammatory cytokine shown to promote tumorigenesis. Using the N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN) model of bladder cancer, we previously showed that MIF knockout mice display decreased angiogenesis and invasion compared with wild-type. This study examines the role of MIF in bladder cancer via use of oral inhibitors of MIF. In vitro, high-grade bladder cancer cells were treated with recombinant human MIF +/- (rhMIF+/-) inhibitor. Measurements included cell counts, proliferation by (3)H-thymidine incorporation (TdR), extracellular signal-regulated kinase (ERK) phosphorylation by western blot analysis, messenger RNA (mRNA) expression by quantitative PCR and protein secretion by enzyme-linked immunosorbent assay. Treatment with rhMIF increased ERK phosphorylation, cell counts, TdR and mRNA expression and protein secretion of vascular endothelial growth factor, which were blocked by specific inhibitors of ERK and MIF. In vivo, 3-month-old male C57Bl/6 mice were given BBN for 22 and 16 weeks in study 1 and study 2, respectively. Mice (n = 8-10 per group) were gavaged with vehicle or doses of MIF inhibitors daily from weeks 16-22 in both studies. Average bladder weights, reflecting tumor mass, tumor stage/burden, mitotic rate and proliferation indices, and microvessel densities were reduced in inhibitor groups versus controls. In summary, MIF promotes bladder cancer via increasing cell proliferation and angiogenesis and oral inhibitors of MIF may prove useful in treatment of this disease.
Collapse
|
42
|
Pazyar N, Feily A, Yaghoobi R. Macrophage migration inhibitory factor as an incriminating agent in dermatological disorders. Indian J Dermatol 2013; 58:157. [PMID: 23716815 PMCID: PMC3657225 DOI: 10.4103/0019-5154.108068] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a critical immunoregulatory pluripotent cytokine. It has been re-evaluated as a proinflammatory cytokine, pituitary hormone and glucocorticoid-induced immunoregulatory protein. MIF exists in human epidermis, especially in the basal layer and also is expressed constitutively by monocytes/macrophages, T cells, B cells, endocrine, and epithelial cells. In the field of dermatology, MIF is believed to be a detrimental factor in inflammatory dermatological diseases including atopic dermatitis (AD), psoriasis, vitiligo, pemphigus vulgaris, bullous pemphigoid (BP), alopecia areata (AA) as well as other conditions such as photoaging, and photocarcinigenesis. The objective of this review is to gather and summarize MIF related disorders in dermatology and present valuable information for readers and researchers.
Collapse
Affiliation(s)
- Nader Pazyar
- Department of Dermatology, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | | |
Collapse
|
43
|
Sommerville C, Richardson JM, Williams RAM, Mottram JC, Roberts CW, Alexander J, Henriquez FL. Biochemical and immunological characterization of Toxoplasma gondii macrophage migration inhibitory factor. J Biol Chem 2013; 288:12733-41. [PMID: 23443656 PMCID: PMC3642319 DOI: 10.1074/jbc.m112.419911] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 02/04/2013] [Indexed: 01/21/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a proinflammatory molecule in mammals that, unusually for a cytokine, exhibits tautomerase and oxidoreductase enzymatic activities. Homologues of this well conserved protein are found within diverse phyla including a number of parasitic organisms. Herein, we produced recombinant histidine-tagged Toxoplasma gondii MIF (TgMIF), a 12-kDa protein that lacks oxidoreductase activity but exhibits tautomerase activity with a specific activity of 19.3 μmol/min/mg that cannot be inhibited by the human MIF inhibitor ISO-1. The crystal structure of the TgMIF homotrimer has been determined to 1.82 Å, and although it has close structural homology with mammalian MIFs, it has critical differences in the tautomerase active site that account for the different inhibitor sensitivity. We also demonstrate that TgMIF can elicit IL-8 production from human peripheral blood mononuclear cells while also activating ERK MAPK pathways in murine bone marrow-derived macrophages. TgMIF may therefore play an immunomodulatory role during T. gondii infection in mammals.
Collapse
Affiliation(s)
- Caroline Sommerville
- From the Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland, United Kingdom
| | - Julia M. Richardson
- School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, Scotland, United Kingdom
| | - Roderick A. M. Williams
- From the Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland, United Kingdom
- Institute of Biomedical and Environmental Health Research School of Science, University of the West of Scotland, Paisley PA1 2BE, Scotland, United Kingdom
| | - Jeremy C. Mottram
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, Scotland, United Kingdom, and
| | - Craig W. Roberts
- From the Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland, United Kingdom
| | - James Alexander
- From the Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland, United Kingdom
| | - Fiona L. Henriquez
- Institute of Biomedical and Environmental Health Research School of Science, University of the West of Scotland, Paisley PA1 2BE, Scotland, United Kingdom
| |
Collapse
|
44
|
Babu SN, Chetal G, Kumar S. Macrophage migration inhibitory factor: a potential marker for cancer diagnosis and therapy. Asian Pac J Cancer Prev 2013; 13:1737-44. [PMID: 22901113 DOI: 10.7314/apjcp.2012.13.5.1737] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a pluripotent cytokine which plays roles in inflammation, immune responses and cancer development. It assists macrophages in carrying out functions like phagocytosis, adherence and motility. Of late, MIF is implicated in almost all stages of neoplasia and expression is a feature of most types of cancer. The presence of MIF in almost all tumors and all stages of cancer makes it an interesting candidate for cancer therapy. This review explores the roles of MIF in neoplasia.
Collapse
Affiliation(s)
- Spoorthy N Babu
- IGNOU-I2IT Centre of Excellence for Advanced Education and Research, Pune, Maharashtra, India
| | | | | |
Collapse
|
45
|
Simpson KD, Templeton DJ, Cross JV. Macrophage migration inhibitory factor promotes tumor growth and metastasis by inducing myeloid-derived suppressor cells in the tumor microenvironment. THE JOURNAL OF IMMUNOLOGY 2012; 189:5533-40. [PMID: 23125418 DOI: 10.4049/jimmunol.1201161] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The macrophage migration inhibitory factor (MIF), an inflammatory cytokine, is overexpressed in many solid tumors and is associated with poor prognosis. We previously identified inhibitors of MIF within a class of natural products with demonstrated anti-cancer activities. We therefore sought to determine how MIF contributes to tumor growth and progression. We show in this study that in murine tumors including the 4T1 model of aggressive, spontaneously metastatic breast cancer in immunologically intact mice, tumor-derived MIF promotes tumor growth and pulmonary metastasis through control of inflammatory cells within the tumor. Specifically, MIF increases the prevalence of a highly immune suppressive subpopulation of myeloid-derived suppressor cells (MDSCs) within the tumor. In vitro, MIF promotes differentiation of myeloid cells into the same population of MDSCs. Pharmacologic inhibition of MIF reduces MDSC accumulation in the tumor similar to MIF depletion and blocks the MIF-dependent in vitro differentiation of MDSCs. Our results demonstrate that MIF is a therapeutically targetable mechanism for control of tumor growth and metastasis through regulation of the host immune response and support the potential utility of MIF inhibitors, either alone or in combination with standard tumor-targeting therapeutic or immunotherapy approaches.
Collapse
Affiliation(s)
- Kendra D Simpson
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
46
|
França CM, Batista AC, Borra RC, Ventiades-Flores JA, Mendonça EF, Deana AM, Mesquita-Ferrari RA, de Natali Caly D, de Mello Rode S, Faria MR. Macrophage migration inhibitory factor and oral cancer. J Oral Pathol Med 2012; 42:368-73. [DOI: 10.1111/jop.12011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2012] [Indexed: 01/02/2023]
Affiliation(s)
- Cristiane M. França
- Post-Graduation Program of Biophotonics Applied to Health Sciences; Nove de Julho University; São Paulo Brazil
| | - Aline C. Batista
- Department of Stomatology (Oral Pathology); Dental School; Federal University of Goiás; Goiânia Brazil
| | - Ricardo C. Borra
- Post-graduation Program in Stomatology; São Leopoldo Mandic School of Dentistry; Campinas-SP Brazil
| | | | - Elismauro F. Mendonça
- Division of Head and Neck; Araújo Jorge Hospital; Association of Cancer Combat of Goiás; Goiânia Brazil
| | - Alessandro M. Deana
- Post-Graduation Program of Biophotonics Applied to Health Sciences; Nove de Julho University; São Paulo Brazil
| | - Raquel A. Mesquita-Ferrari
- Post-Graduation Program of Biophotonics Applied to Health Sciences; Nove de Julho University; São Paulo Brazil
| | - Decio de Natali Caly
- Post-Graduation Program of Medical Sciences; Nove de Julho University; São Paulo Brazil
| | - Sigmar de Mello Rode
- São José dos Campos Dentistry School; UNESP; São José dos Campos São Paulo Brazil
| | - Miriam R. Faria
- Department of Cell and Developmental Biology; Institute of Biomedical Sciences, University of São Paulo; São Paulo Brazil
| |
Collapse
|
47
|
Choi S, Kim HR, Leng L, Kang I, Jorgensen WL, Cho CS, Bucala R, Kim WU. Role of macrophage migration inhibitory factor in the regulatory T cell response of tumor-bearing mice. THE JOURNAL OF IMMUNOLOGY 2012; 189:3905-13. [PMID: 22972922 DOI: 10.4049/jimmunol.1102152] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is involved in tumorigenesis by facilitating tumor proliferation and evasion of apoptosis; however, its role in tumor immunity is unclear. In this study, we investigated the effect of MIF on the progression of the syngenic, CT26 colon carcinoma and the generation of tumor regulatory T cells (Tregs). The results showed that the tumor growth rate was significantly lower in MIF knockout (MIF(-/-)) mice than in wild-type (MIF(+/+)) mice. Flow cytometric analysis of both spleen and tumor cells revealed that MIF(-/-) mice had significantly lower levels of tumor-associated CD4(+)Tregs than MIF(+/+) mice. The splenic cells of MIF(-/-) mice also showed a decrease in CD8(+)Tregs, which was accompanied by an increase in CD8-induced tumor cytotoxicity. Interestingly, the inducible Treg response in spleen cells to anti-CD3/CD28 plus IL-2 plus TGF-β was greater in MIF(-/-) mice than in MIF(+/+) mice. Spleen cells of MIF(-/-) mice, stimulated with anti-CD3/CD28, produced lower levels of IL-2, but not TGF-β, than those of MIF(+/+) mice, which was recovered by the addition of recombinant MIF. Conversely, a neutralizing anti-MIF Ab blocked anti-CD3-induced IL-2 production by splenocytes of MIF(+/+) mice and suppressed the inducible Treg generation. Moreover, the administration of IL-2 into tumor-bearing MIF(-/-) mice restored the generation of Tregs and tumor growth. Taken together, our data suggest that MIF promotes tumor growth by increasing Treg generation through the modulation of IL-2 production. Thus, anti-MIF treatment might be useful in enhancing the adaptive immune response to colon cancers.
Collapse
Affiliation(s)
- Susanna Choi
- Research Institute of Immunobiology, Catholic Research Institute of Medical Science, Seoul, Korea 137-040
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Du W, Wright BM, Li X, Finke J, Rini BI, Zhou M, He H, Lal P, Welford SM. Tumor-derived macrophage migration inhibitory factor promotes an autocrine loop that enhances renal cell carcinoma. Oncogene 2012; 32:1469-74. [PMID: 22543583 DOI: 10.1038/onc.2012.143] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The macrophage migration inhibitory factor (MIF) is a hypoxia regulated gene that has a variety of tumorigenic functions. In clear cell renal carcinoma (CCRC), hypoxic signaling is constitutively active because of the frequent loss of function of the von Hippel-Lindau tumor suppressor protein. We therefore sought to assess the expression of MIF in CCRC and its biological functions. We stained tumor tissue microarrays comprising sections of 128 CCRC tumors and found MIF to be moderately or highly expressed in >98%. MIF expression was further found to be dramatically elevated in blood plasma of individuals with CCRC compared with healthy controls, suggesting that measurement of MIF levels in the blood may have utility as a diagnostic marker in CCRC. At a functional level, MIF has been reported to engage the CD74 and CD44 receptors and induce signal transduction. In CCRC cell lines, depletion of MIF, CD74 or CD44 by small hairpin RNA led to a significant reduction in growth rate, and clonogenic survival, coinciding with the degree of knockdown. Interruption of the MIF pathway also decreased tumorigenic potential. Biochemically, we found that in CCRC cells MIF signaling leads to activation of the mitogen-activated protein kinase pathway and to Src phosphorylation, which is critical for regulation of p27. Together, our studies establish MIF as a protumorigenic signaling molecule that functions in an autocrine fashion to promote renal cell carcinoma and may be useful as a minimally invasive marker of disease status.
Collapse
Affiliation(s)
- W Du
- Department of Radiation Oncology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ohta S, Misawa A, Fukaya R, Inoue S, Kanemura Y, Okano H, Kawakami Y, Toda M. Macrophage migration inhibitory factor (MIF) promotes cell survival and proliferation of neural stem/progenitor cells. J Cell Sci 2012; 125:3210-20. [PMID: 22454509 DOI: 10.1242/jcs.102210] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In a previous study, we showed that murine dendritic cells (DCs) can increase the number of neural stem/progenitor cells (NSPCs) in vitro and in vivo. In the present study, we identified macrophage migration inhibitory factor (MIF) as a novel factor that can support the proliferation and/or survival of NSPCs in vitro. MIF is secreted by DCs and NSPCs, and its function in the normal brain remains largely unknown. It was previously shown that in macrophages, MIF binds to a CD74-CD44 complex. In the present study, we observed the expression of MIF receptors in mouse ganglionic-eminence-derived neurospheres using flow cytometry in vitro. We also found CD74 expression in the ganglionic eminence of E14 mouse brains, suggesting that MIF plays a physiological role in vivo. MIF increased the number of primary and secondary neurospheres. By contrast, retrovirally expressed MIF shRNA and MIF inhibitor (ISO-1) suppressed primary and secondary neurosphere formation, as well as cell proliferation. In the neurospheres, MIF knockdown by shRNA increased caspase 3/7 activity, and MIF increased the phosphorylation of Akt, Erk, AMPK and Stat3 (Ser727), as well as expression of Hes3 and Egfr, the products of which are known to support cell survival, proliferation and/or maintenance of NSPCs. MIF also acted as a chemoattractant for NSPCs. These results show that MIF can induce NSPC proliferation and maintenance by multiple signaling pathways acting synergistically, and it may be a potential therapeutic factor, capable of activating NSPC, for the treatment of degenerative brain disorders.
Collapse
Affiliation(s)
- Shigeki Ohta
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku-ku, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Xiao DZ, Dai B, Chen J, Luo Q, Liu XY, Lin QX, Li XH, Huang W, Yu XY. Loss of macrophage migration inhibitory factor impairs the growth properties of human HeLa cervical cancer cells. Cell Prolif 2011; 44:582-90. [PMID: 21991924 DOI: 10.1111/j.1365-2184.2011.00787.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVES This study aims to determine the role of macrophage migration inhibitory factor (MIF), a proinflammatory cytokine associated with cell proliferation and tumour growth in vivo. MATERIALS AND METHODS Our team used RNA interference technology to knock down MIF expression in human HeLa cervical cancer cells and to establish a stable cell line lacking MIF function. RESULTS Our results showed that long-term loss of MIF had little effect on cell morphology, but significantly inhibited their population growth and proliferation. The HeLa MIF-knockdown cells retained normal apoptotic signalling pathways in response to TNF-alpha treatment; however, they exhibited unique DNA profiles following doxorubicin treatment, suggesting that MIF may regulate a cell cycle checkpoint upon DNA damage. Our data also showed that knockdown of MIF expression in HeLa cells led to increased cell adhesion and therefore impaired their migratory capacity. More importantly, cells lacking MIF failed to either proliferate in soft agar or form tumours in vivo, when administered to nude mice. CONCLUSION MIF plays a pivotal role in proliferation and tumourigenesis of human HeLa cervical carcinoma cells, and may represent a promising therapeutic target for cancer intervention.
Collapse
Affiliation(s)
- D Z Xiao
- Medical Research Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|