1
|
Chen X, Shen X, Liu S, Li W, Wang H, Li J, Bai Z. A c-type lectin HcLec1 with dual function of immunology and mineralization from the freshwater oyster ( Hyriopsis cumingii Lea). Front Immunol 2025; 15:1530732. [PMID: 39877356 PMCID: PMC11772184 DOI: 10.3389/fimmu.2024.1530732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 12/26/2024] [Indexed: 01/31/2025] Open
Abstract
Background Shell and pearl formation in bivalves is a sophisticated biomineralization process that encompasses immunological and mineralization aspects, particularly during shell repair and the initial stages of pearl cultivation when a nucleus is inserted. Here, we describe a novel C-type lectin, HcLec1, isolated and characterized from the freshwater pearl mussel Hyriopsis cumingii Lea. Methods Immune challenge, RNA interference (RNAi) experiments, ELISA, and antibacterial assays were employed to investigate the role of HcLec1 in innate immunity. We also established shell damage repair and pearl nucleus insertion models to examine the impact of HcLec1 on the biomineralization process in Hyriopsis cumingii Lea. In vitro calcium carbonate crystallization assays were conducted to explore the direct role of HcLec1 in calcium carbonate crystal formation. Results The HcLec1 gene sequence is a full-length cDNA of 1552 bp, encoding 240 amino acids. HcLec1 comprises an N-terminal signal peptide and a carbohydrate-recognition domain (CRD), with QPD (Gln-Pro-Asp) and MND (Met-Asn-Asp) motifs for polysaccharide binding. Tissue expression analysis showed that HcLec1 is predominantly expressed in the gill tissue of Hyriopsis cumingii Lea under normal conditions, and its expression is significantly elevated in both gill and pearl sac tissues following nucleus insertion for pearl cultivation (P < 0.05). After immune stimulation with Aeromonas hydrophila and lipopolysaccharides (LPS), HcLec1 expression levels significantly increased in both cases (P < 0.01), indicating a role in bivalve innate immunity. RNA interference (RNAi)-mediated knockdown of HcLec1 led to a significant decrease in the expression levels of immune-related genes (WAP, α2m, and Lyso) and mineralization-related genes (CA, CHS, Nacrein, and Pif) (P < 0.05). In animal models for shell damage and nucleus insertion in pearl cultivation, HcLec1 showed a consistent expression pattern, with an initial significant decrease followed by a marked increase, peaking at day 14 (P < 0.05). This suggests a role for HcLec1 in pearl formation and shell repair. The recombinant HcLec1 protein demonstrated binding affinity to LPS and PGN, a robust ability to agglutinate Escherichia coli, Staphylococcus aureus, Aeromonas veronii, and Aeromonas hydrophila, and significantly inhibited bacterial growth (P < 0.05). Moreover, rHcLec1 promoted calcite crystal formation in saturated calcium carbonate solutions and altered crystal morphology. Discussion The HcLec1 gene plays a pivotal role in both innate immunity and biomineralization in the triangle sail mussel. This study enhances our understanding of the functional diversity of C-type lectins and provides a foundation for future studies on shell repair and pearl growth.
Collapse
Affiliation(s)
- Xiaofeng Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Xiaoya Shen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Shijun Liu
- Science and Technology Service Center, Shanghai MugaoBiotechnology co., Ltd., Shanghai, China
| | - Wenjuan Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - He Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Zhiyi Bai
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
2
|
Cho Y, Hanif MA, Hossen S, Kim SC, Han JD, Cho DH, Kho KH. The Isolation and Characterization of Perlucin in Pacific Abalone, Haliotis discus hannai: A Shell Morphogenic Protein with Potential Responses to Thermal Stress and Starvation. BIOLOGY 2024; 13:944. [PMID: 39596899 PMCID: PMC11591584 DOI: 10.3390/biology13110944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/07/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
Perlucin is a shell matrix protein that plays a significant role in regulating shell biomineralization. This study aimed to isolate and characterize the perlucin gene and analyze its expression to explore its role in shell formation, regeneration, and responses to thermal stress and starvation in Pacific abalone. The isolated full-length cDNA sequence of Hdh-Perlucin is 1002 bp long, encoding a 163-amino-acid polypeptide with a signal peptide. The mature peptide of Hdh-Perlucin contains a C-type lectin domain with signature motif and six conserved cysteine residues. Gene Ontology analysis suggests that Hdh-Perlucin exhibits carbohydrate-binding activity. Significantly higher expression of Hdh-Perlucin was observed during the juvenile, veliger, and trochophore stages, compared with cell division stage during early development. Upregulated expression was recorded from slow to rapid growth phases and during shell biomineralization, while downregulated expression was noted during starvation. Under thermal stress, expression peaked at 30 °C and 25 °C for 6 and 12 h, respectively, while consistently higher levels were observed at 15 °C throughout the experiment. This study provides the first comprehensive structural and expression analysis of Hdh-Perlucin, highlighting its roles in metamorphosis, shell formation and regeneration, and responses to heat stress and starvation in abalone.
Collapse
Affiliation(s)
- Yusin Cho
- Department of Fisheries Science, Chonnam National University, Yeosu 59626, Republic of Korea; (Y.C.); (M.A.H.); (S.H.); (D.H.C.)
| | - Md Abu Hanif
- Department of Fisheries Science, Chonnam National University, Yeosu 59626, Republic of Korea; (Y.C.); (M.A.H.); (S.H.); (D.H.C.)
| | - Shaharior Hossen
- Department of Fisheries Science, Chonnam National University, Yeosu 59626, Republic of Korea; (Y.C.); (M.A.H.); (S.H.); (D.H.C.)
| | - Soo Cheol Kim
- South Sea Fisheries Research Institute, National Institute of Fisheries Science, Yeosu 59780, Republic of Korea; (S.C.K.); (J.D.H.)
| | - Ji Do Han
- South Sea Fisheries Research Institute, National Institute of Fisheries Science, Yeosu 59780, Republic of Korea; (S.C.K.); (J.D.H.)
| | - Doo Hyun Cho
- Department of Fisheries Science, Chonnam National University, Yeosu 59626, Republic of Korea; (Y.C.); (M.A.H.); (S.H.); (D.H.C.)
| | - Kang Hee Kho
- Department of Fisheries Science, Chonnam National University, Yeosu 59626, Republic of Korea; (Y.C.); (M.A.H.); (S.H.); (D.H.C.)
| |
Collapse
|
3
|
Shimizu K, Negishi L, Kurumizaka H, Suzuki M. Diversification of von Willebrand Factor A and Chitin-Binding Domains in Pif/BMSPs Among Mollusks. J Mol Evol 2024; 92:415-431. [PMID: 38864871 PMCID: PMC11291548 DOI: 10.1007/s00239-024-10180-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/23/2024] [Indexed: 06/13/2024]
Abstract
Pif is a shell matrix protein (SMP) identified in the nacreous layer of Pinctada fucata (Pfu) comprised two proteins, Pif97 and Pif 80. Pif97 contains a von Willebrand factor A (VWA) and chitin-binding domains, whereas Pif80 can bind calcium carbonate crystals. The VWA domain is conserved in the SMPs of various mollusk species; however, their phylogenetic relationship remains obscure. Furthermore, although the VWA domain participates in protein-protein interactions, its role in shell formation has not been established. Accordingly, in the current study, we investigate the phylogenetic relationship between PfuPif and other VWA domain-containing proteins in major mollusk species. The shell-related proteins containing VWA domains formed a large clade (the Pif/BMSP family) and were classified into eight subfamilies with unique sequential features, expression patterns, and taxa diversity. Furthermore, a pull-down assay using recombinant proteins containing the VWA domain of PfuPif 97 revealed that the VWA domain interacts with five nacreous layer-related SMPs of P. fucata, including Pif 80 and nacrein. Collectively, these results suggest that the VWA domain is important in the formation of organic complexes and participates in shell mineralisation.
Collapse
Affiliation(s)
- Keisuke Shimizu
- Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-Cho, Yokosuka, Kanagawa, 237-0061, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Lumi Negishi
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Hitoshi Kurumizaka
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Michio Suzuki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan.
| |
Collapse
|
4
|
Schwaner C, Barbosa M, Haley J, Pales Espinosa E, Allam B. Transcriptomics, proteomics, and physiological assays reveal immunosuppression in the eastern oyster Crassostrea virginica exposed to acidification stress. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109366. [PMID: 38218419 DOI: 10.1016/j.fsi.2024.109366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Ocean acidification (OA) is recognized as a major stressor for a broad range of marine organisms, particularly shell-building invertebrates. OA can cause alterations in various physiological processes such as growth and metabolism, although its effect on host-pathogen interactions remains largely unexplored. In this study, we used transcriptomics, proteomics, and physiological assays to evaluate changes in immunity of the eastern oyster Crassostrea virginica exposed to OA conditions (pH = 7.5 vs pH = 7.9) at various life stages. The susceptibility of oyster larvae to Vibrio infection increased significantly (131 % increase in mortality) under OA conditions, and was associated with significant changes in their transcriptomes. The significantly higher mortality of larvae exposed to pathogens and acidification stress could be the outcome of an increased metabolic demand to cope with acidification stress (as seen by upregulation of metabolic genes) at the cost of immune function (downregulation of immune genes). While larvae were particularly vulnerable, juveniles appeared more robust to the stressors and there were no differences in mortality after pathogen (Aliiroseovarius crassostrea and Vibrio spp.) exposure. Proteomic investigations in adult oysters revealed that acidification stress resulted in a significant downregulation of mucosal immune proteins including those involved in pathogen recognition and microbe neutralization, suggesting weakened mucosal immunity. Hemocyte function in adults was also impaired by high pCO2, with a marked reduction in phagocytosis (67 % decrease in phagocytosis) in OA conditions. Together, results suggest that OA impairs immune function in the eastern oyster making them more susceptible to pathogen-induced mortality outbreaks. Understanding the effect of multiple stressors such as OA and disease is important for accurate predictions of how oysters will respond to future climate regimes.
Collapse
Affiliation(s)
- Caroline Schwaner
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook NY, 11790, USA
| | - Michelle Barbosa
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook NY, 11790, USA
| | - John Haley
- Stony Brook University, Biological Mass Spectrometry Center, Stony Brook Medicine, Stony Brook, NY, 11790, USA
| | | | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook NY, 11790, USA.
| |
Collapse
|
5
|
Zhao Y, Song M, Yu Z, Pang L, Zhang L, Karakassis I, Dimitriou PD, Yuan X. Transcriptomic Responses of a Lightly Calcified Echinoderm to Experimental Seawater Acidification and Warming during Early Development. BIOLOGY 2023; 12:1520. [PMID: 38132346 PMCID: PMC10740944 DOI: 10.3390/biology12121520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
Ocean acidification (OA) and ocean warming (OW) are potential obstacles to the survival and growth of marine organisms, particularly those that rely on calcification. This study investigated the single and joint effects of OA and OW on sea cucumber Apostichopus japonicus larvae raised under combinations of two temperatures (19 °C or 22 °C) and two pCO2 levels (400 or 1000 μatm) that reflect the current and end-of-21st-century projected ocean scenarios. The investigation focused on assessing larval development and identifying differences in gene expression patterns at four crucial embryo-larval stages (blastula, gastrula, auricularia, and doliolaria) of sea cucumbers, using RNA-seq. Results showed the detrimental effect of OA on the early development and body growth of A. japonicus larvae and a reduction in the expression of genes associated with biomineralization, skeletogenesis, and ion homeostasis. This effect was particularly pronounced during the doliolaria stage, indicating the presence of bottlenecks in larval development at this transition phase between the larval and megalopa stages in response to OA. OW accelerated the larval development across four stages of A. japonicus, especially at the blastula and doliolaria stages, but resulted in a widespread upregulation of genes related to heat shock proteins, antioxidant defense, and immune response. Significantly, the negative effects of elevated pCO2 on the developmental process of larvae appeared to be mitigated when accompanied by increased temperatures at the expense of reduced immune resilience and increased system fragility. These findings suggest that alterations in gene expression within the larvae of A. japonicus provide a mechanism to adapt to stressors arising from a rapidly changing oceanic environment.
Collapse
Affiliation(s)
- Ye Zhao
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Ocean School, Yantai University, Yantai 264005, China
| | - Mingshan Song
- Ministry of Ecology and Environment, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Zhenglin Yu
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Lei Pang
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Ioannis Karakassis
- Marine Ecology Laboratory, Department of Biology, University of Crete, GR 70013 Heraklion, Greece
| | - Panagiotis D. Dimitriou
- Marine Ecology Laboratory, Department of Biology, University of Crete, GR 70013 Heraklion, Greece
| | - Xiutang Yuan
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Ministry of Ecology and Environment, National Marine Environmental Monitoring Center, Dalian 116023, China
| |
Collapse
|
6
|
Wang Y, Mao J, Fan Z, Hang Y, Tang A, Tian Y, Wang X, Hao Z, Han B, Ding J, Chang Y. Transcriptome analysis reveals core lncRNA-mRNA networks regulating melanization and biomineralization in Patinopecten yessoensis shell-infested by Polydora. BMC Genomics 2023; 24:723. [PMID: 38031026 PMCID: PMC10687851 DOI: 10.1186/s12864-023-09837-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Patinopecten yessoensis, a large and old molluscan group, has been one of the most important aquaculture shellfish in Asian countries because of its high economic value. However, the aquaculture of the species has recently been seriously affected by the frequent outbreaks of Polydora disease, causing great economic losses. Long non-coding RNAs (lncRNAs) exhibit exhibit crucial effects on diverse biological processes, but still remain poorly studied in scallops, limiting our understanding of the molecular regulatory mechanism of P. yessoensis in response to Polydora infestation. RESULTS In this study, a high-throughput transcriptome analysis was conducted in the mantles of healthy and Polydora-infected P. yessoensis by RNA sequencing. A total of 19,133 lncRNAs with 2,203 known and 16,930 novel were identified. The genomic characterizations of lncRNAs showed shorter sequence and open reading frame (ORF) length, fewer number of exons and lower expression levels in comparison with mRNAs. There were separately 2280 and 1636 differentially expressed mRNAs and lncRNAs (DEGs and DELs) detected in diseased individuals. The target genes of DELs were determined by both co-location and co-expression analyses. Functional enrichment analysis revealed that DEGs involved in melanization and biomineralization were significantly upregulated; further, obviously increased melanin granules were observed in epithelial cells of the edge mantle in diseased scallops by histological and TEM study, indicating the crucial role of melanizaiton and biomineralization in P. yessoensis to resist against Polydora infestation. Moreover, many key genes, such as Tyrs, Frizzled, Wnts, calmodulins, Pifs, perlucin, laccase, shell matrix protein, mucins and chitins, were targeted by DELs. Finally, a core lncRNA-mRNA interactive network involved in melanization and biomineralization was constructed and validated by qRT-PCR. CONCLUSIONS This work provides valuable resources for studies of lncRNAs in scallops, and adds a new insight into the molecular regulatory mechanisms of P. yessoensis defending against Polydora infestation, which will contribute to Polydora disease control and breeding of disease-resistant varieties in molluscs.
Collapse
Affiliation(s)
- Yiying Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Junxia Mao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China.
| | - Zhiyue Fan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Yunna Hang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - AnQi Tang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Ying Tian
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Xubo Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Zhenlin Hao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Bing Han
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China.
| | - Jun Ding
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| |
Collapse
|
7
|
Saco A, Suárez H, Novoa B, Figueras A. A Genomic and Transcriptomic Analysis of the C-Type Lectin Gene Family Reveals Highly Expanded and Diversified Repertoires in Bivalves. Mar Drugs 2023; 21:md21040254. [PMID: 37103393 PMCID: PMC10140915 DOI: 10.3390/md21040254] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023] Open
Abstract
C-type lectins belong to a widely conserved family of lectins characterized in Metazoa. They show important functional diversity and immune implications, mainly as pathogen recognition receptors. In this work, C-type lectin-like proteins (CTLs) of a set of metazoan species were analyzed, revealing an important expansion in bivalve mollusks, which contrasted with the reduced repertoires of other mollusks, such as cephalopods. Orthology relationships demonstrated that these expanded repertoires consisted of CTL subfamilies conserved within Mollusca or Bivalvia and of lineage-specific subfamilies with orthology only between closely related species. Transcriptomic analyses revealed the importance of the bivalve subfamilies in mucosal immunity, as they were mainly expressed in the digestive gland and gills and modulated with specific stimuli. CTL domain-containing proteins that had additional domains (CTLDcps) were also studied, revealing interesting gene families with different conservation degrees of the CTL domain across orthologs from different taxa. Unique bivalve CTLDcps with specific domain architectures were revealed, corresponding to uncharacterized bivalve proteins with putative immune function according to their transcriptomic modulation, which could constitute interesting targets for functional characterization.
Collapse
Affiliation(s)
- Amaro Saco
- Institute of Marine Research IIM-CSIC, 36208 Vigo, Spain
| | - Hugo Suárez
- Institute of Marine Research IIM-CSIC, 36208 Vigo, Spain
| | - Beatriz Novoa
- Institute of Marine Research IIM-CSIC, 36208 Vigo, Spain
| | | |
Collapse
|
8
|
RNAi Silencing of the Biomineralization Gene Perlucin Impairs Oyster Ability to Cope with Ocean Acidification. Int J Mol Sci 2023; 24:ijms24043661. [PMID: 36835072 PMCID: PMC9961701 DOI: 10.3390/ijms24043661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Calcifying marine organisms, including the eastern oyster (Crassostrea virginica), are vulnerable to ocean acidification (OA) because it is more difficult to precipitate calcium carbonate (CaCO3). Previous investigations of the molecular mechanisms associated with resilience to OA in C. virginica demonstrated significant differences in single nucleotide polymorphism and gene expression profiles among oysters reared under ambient and OA conditions. Converged evidence generated by both of these approaches highlighted the role of genes related to biomineralization, including perlucins. Here, gene silencing via RNA interference (RNAi) was used to evaluate the protective role of a perlucin gene under OA stress. Larvae were exposed to short dicer-substrate small interfering RNA (DsiRNA-perlucin) to silence the target gene or to one of two control treatments (control DsiRNA or seawater) before cultivation under OA (pH ~7.3) or ambient (pH ~8.2) conditions. Two transfection experiments were performed in parallel, one during fertilization and one during early larval development (6 h post-fertilization), before larval viability, size, development, and shell mineralization were monitored. Silenced oysters under acidification stress were the smallest, had shell abnormalities, and had significantly reduced shell mineralization, thereby suggesting that perlucin significantly helps larvae mitigate the effects of OA.
Collapse
|
9
|
de Muizon CJ, Iandolo D, Nguyen DK, Al-Mourabit A, Rousseau M. Organic Matrix and Secondary Metabolites in Nacre. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:831-842. [PMID: 36057751 DOI: 10.1007/s10126-022-10145-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Nacre, also called mother-of-pearl, is a naturally occurring biomineral, largely studied by chemists, structural biologists, and physicists to understand its outstanding and diverse properties. Nacre is constituted of aragonite nanograins surrounded by organic matrix, and it has been established that the organic matrix is responsible for initiating and guiding the biomineralization process. The first challenge to study the organic matrix of nacre lays in its separation from the biomineral. Several extraction methods have been developed so far. They are categorized as either strong (e.g., decalcification) or soft (e.g., water, ethanol) and they allow specific extractions of targeted compounds. The structure of the nacreous organic matrix is complex, and it provides interesting clues to describe the mineralization process. Proteins, sugars, lipids, peptides, and other molecules have been identified and their role in mineralization investigated. Moreover, the organic matrix of nacre has shown interesting properties for human health. Several studies are investigating its activity on bone mineralization and its properties for skin care. In this review, we focus on the organic constituents, as lipids, sugars, and small metabolites which are less studied since present in small quantities.
Collapse
Affiliation(s)
- Capucine Jourdain de Muizon
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
- STANSEA, Saint-Étienne, France
| | - Donata Iandolo
- UMR5510 MATEIS, CNRS, University of Lyon, INSA-Lyon, Lyon, France
- U1059 INSERM - SAINBIOSE (SAnté INgéniérie BIOlogie St-Etienne) Campus Santé Innovation, Université Jean Monnet, Saint-Priest-en-Jarez, France
| | - Dung Kim Nguyen
- U1059 INSERM - SAINBIOSE (SAnté INgéniérie BIOlogie St-Etienne) Campus Santé Innovation, Université Jean Monnet, Saint-Priest-en-Jarez, France
| | - Ali Al-Mourabit
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Marthe Rousseau
- UMR5510 MATEIS, CNRS, University of Lyon, INSA-Lyon, Lyon, France.
- U1059 INSERM - SAINBIOSE (SAnté INgéniérie BIOlogie St-Etienne) Campus Santé Innovation, Université Jean Monnet, Saint-Priest-en-Jarez, France.
| |
Collapse
|
10
|
Rivera-Pérez C, Arroyo-Loranca RG, Hernández-Saavedra NY. An acidic protein, Hf15, from Haliotis fulgens involved in biomineralization. Comp Biochem Physiol A Mol Integr Physiol 2022; 272:111276. [PMID: 35853523 DOI: 10.1016/j.cbpa.2022.111276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/20/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022]
Abstract
Biomineralization leads to the hardening of mineralized materials, such as the shell of Mollusk, to fulfill a wide range of functions, such as (but not limited to) skeletal support, protection of the soft tissues, navigation, etc. The study of the proteins responsible for this process, shell matrix proteins (SMPs), allows addressing questions related to structure-function relationship and to the mechanism of mineral formation, which is limited in gastropod species. In this study, a low molecular weight protein was isolated from the insoluble fraction after decalcification with acetic acid of the shell of Haliotis fulgens and, named Hf15. The unglycosylated protein has a theoretical molecular weight of 15 kDa, it possesses calcium and chiting binding properties. Hf15 can precipitate calcium carbonate in vitro in presence of different salts. Analysis by LC-MS of the five peptide sequences of Hf15 generated by trypsinization revealed that two peptides displayed homology to an uncharacterized protein 3-like from Haliotis rufescens, Haliotis asinia and H. sorenseni. The results obtained indicated that Hf15 is a novel SMP involved in shell mineralization in Haliotis fulgens.
Collapse
Affiliation(s)
| | - Raquel G Arroyo-Loranca
- Fisheries Ecology, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, Baja California Sur, Mexico
| | | |
Collapse
|
11
|
Ma X, Zhang X, Qiao Y, Zhong S, Xing Y, Chen X. Weighted gene co-expression network analysis of embryos and first instar larvae of the horseshoe crab Tachypleus tridentatus uncovers development gene networks. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100980. [PMID: 35303535 DOI: 10.1016/j.cbd.2022.100980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/03/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Horseshoe crabs are marine chelicerates that have existed on Earth for about 450 million years, and they are often used as an experimental model for studying marine invertebrate embryology. In this study, we performed transcriptome gene expression profiling of four continuous embryonic stages (Stages 18-21) and first instar larvae of Tachypleus tridentatus. A mean of 50,742,995 high-quality clean reads was obtained from each library. We then conducted weighted gene co-expression network analysis (WGCNA) for 13,698 genes with fragments per kilobase of exon per million mapped fragments values >5. We identified 17 modules, six of which likely play critical roles in development. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of differentially expressed genes was performed on the biologically significant modules. We found that several pathways, such as hedgehog signaling pathway, VEGF signaling pathway, dorso-ventral axis formation, may be involved in the embryonic development process of T. tridentatus. We also identified hub genes that were highly connected in the six critical modules. This is the first study to apply WGCNA to horseshoe crabs to identify hub genes that may play critical roles in development, and our results provide new insight into the mechanisms underlying early development in horseshoe crabs.
Collapse
Affiliation(s)
- Xiaowan Ma
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, People's Republic of China
| | - Xingzhi Zhang
- Guangxi Institute of Fisheries, Nanning 530000, People's Republic of China
| | - Ying Qiao
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, People's Republic of China.
| | - Shengping Zhong
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, People's Republic of China.
| | - Yongze Xing
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, People's Republic of China
| | - Xuyang Chen
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, People's Republic of China
| |
Collapse
|
12
|
Song N, Li J, Li B, Pan E, Ma Y. Transcriptome analysis of the bivalve Placuna placenta mantle reveals potential biomineralization-related genes. Sci Rep 2022; 12:4743. [PMID: 35304539 PMCID: PMC8933548 DOI: 10.1038/s41598-022-08610-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/04/2022] [Indexed: 01/31/2023] Open
Abstract
The shells of window pane oyster Placuna placenta are very thin and exhibit excellent optical transparency and mechanical robustness. However, little is known about the biomineralization-related proteins of the shells of P. placenta. In this work, we report the comprehensive transcriptome of the mantle tissue of P. placenta for the first time. The unigenes of the mantle tissue of P. placenta were annotated by using the public databases such as nr, GO, KOG, KEGG, and Pfam. 24,343 unigenes were annotated according to Pfam database, accounting for 21.48% of the total unigenes. We find that half of the annotated unigenes of the mantle tissue of P. placenta are consistent to the annotated unigenes from pacific oyster Crassostrea gigas according to nr database. The unigene sequence analysis from the mantle tissue of P. placenta indicates that 465,392 potential single nucleotide polymorphisms (SNPs) and 62,103 potential indel markers were identified from 60,371 unigenes. 178 unigenes of the mantle tissue of P. placenta are found to be homologous to those reported proteins related to the biomineralization process of molluscan shells, while 18 of them are highly expressed unigenes in the mantle tissue. It is proposed that four unigenes with the highest expression levels in the mantle tissue are very often related to the biomineralization process, while another three unigenes are potentially related to the biomineralization process according to the Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) analysis. In summary, the transcriptome analysis of the mantle tissue of P. Placenta shows the potential biomineralization-related proteins and this work may shed light for the shell formation mechanism of bivalves.
Collapse
Affiliation(s)
- Ningjing Song
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Jiangfeng Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Baosheng Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Ercai Pan
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yurong Ma
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
13
|
Schwaner C, Farhat S, Haley J, Pales Espinosa E, Allam B. Transcriptomic, Proteomic, and Functional Assays Underline the Dual Role of Extrapallial Hemocytes in Immunity and Biomineralization in the Hard Clam Mercenaria mercenaria. Front Immunol 2022; 13:838530. [PMID: 35273613 PMCID: PMC8902148 DOI: 10.3389/fimmu.2022.838530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/28/2022] [Indexed: 12/13/2022] Open
Abstract
Circulating hemocytes in the hemolymph represent the backbone of innate immunity in bivalves. Hemocytes are also found in the extrapallial fluid (EPF), the space delimited between the shell and the mantle, which is the site of shell biomineralization. This study investigated the transcriptome, proteome, and function of EPF and hemolymph in the hard clam Mercenaria mercenaria. Total and differential hemocyte counts were similar between EPF and hemolymph. Overexpressed genes in the EPF were found to have domains previously identified as being part of the "biomineralization toolkit" and involved in bivalve shell formation. Biomineralization related genes included chitin-metabolism genes, carbonic anhydrase, perlucin, and insoluble shell matrix protein genes. Overexpressed genes in the EPF encoded proteins present at higher abundances in the EPF proteome, specifically those related to shell formation such as carbonic anhydrase and insoluble shell matrix proteins. Genes coding for bicarbonate and ion transporters were also overexpressed, suggesting that EPF hemocytes are involved in regulating the availability of ions critical for biomineralization. Functional assays also showed that Ca2+ content of hemocytes in the EPF were significantly higher than those in hemolymph, supporting the idea that hemocytes serve as a source of Ca2+ during biomineralization. Overexpressed genes and proteins also contained domains such as C1q that have dual functions in biomineralization and immune response. The percent of phagocytic granulocytes was not significantly different between EPF and hemolymph. Together, these findings suggest that hemocytes in EPF play a central role in both biomineralization and immunity.
Collapse
Affiliation(s)
- Caroline Schwaner
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, United States
| | - Sarah Farhat
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, United States
| | - John Haley
- Stony Brook University Biological Mass Spectrometry Center, Stony Brook Medicine, Stony Brook, NY, United States
| | | | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
14
|
Whaite A, Klein A, Mitu S, Wang T, Elizur A, Cummins S. The byssal-producing glands and proteins of the silverlip pearl oyster Pinctada maxima (Jameson, 1901). BIOFOULING 2022; 38:186-206. [PMID: 35282730 DOI: 10.1080/08927014.2022.2049256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Pinctada maxima are most well known for their production of high-quality natural pearls. They also generate another natural material, the byssus, an adhesive thread critical for steadfast attachment underwater. Herein, P. maxima byssal threads were analysed via proteotranscriptomics to reveal 49 proteins. Further characterisation was undertaken on five highly expressed genes: glycine-rich thread protein (GRT; also known as PUF3), apfp1/perlucin-like protein (Pmfp1); peroxidase; thrombospondin 1, and Balbiani ring 3 (BR3), which showed localised tissue expression. The spatial distribution of GRT and Pmfp1 via immunodetection combined with histology helped to identify glandular regions of the foot that contribute to byssal thread production: the byssal gland, the duct gland, and two thread-forming glands of basophilic and acidophilic serous-like cells. This work advanced primary knowledge on the glands involved in the creation of byssal threads and the protein composition of the byssus for P. maxima, providing a platform for the design of marine biopolymers.
Collapse
Affiliation(s)
- Alessandra Whaite
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
| | - Anne Klein
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
| | - Shahida Mitu
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
| | - Tianfang Wang
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
| | - Abigail Elizur
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
| | - Scott Cummins
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
| |
Collapse
|
15
|
Hall MR, Gracey AY. Single-Larva RNA Sequencing Identifies Markers of Copper Toxicity and Exposure in Early Mytilus californianus Larvae. Front Physiol 2021; 12:647482. [PMID: 34955868 PMCID: PMC8696127 DOI: 10.3389/fphys.2021.647482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
One of the challenges facing efforts to generate molecular biomarkers for toxins is distinguishing between markers that are indicative of exposure and markers that provide evidence of the effects of toxicity. Phenotypic anchoring provides an approach to help segregate markers into these categories based on some phenotypic index of toxicity. Here we leveraged the mussel embryo-larval toxicity assay in which toxicity is estimated by the fraction of larvae that exhibit an abnormal morphology, to isolate subsets of larvae that were abnormal and thus showed evidence of copper-toxicity, versus others that while exposed to copper exhibited normal morphology. Mussel larvae reared under control conditions or in the presence of increasing levels of copper (3-15 μg/L Cu2+) were physically sorted according to whether their morphology was normal or abnormal, and then profiled using RNAseq. Supervised differential expression analysis identified sets of genes whose differential expression was specific to the pools of abnormal larvae versus normal larvae, providing putative markers of copper toxicity versus exposure. Markers of copper exposure and copper-induced abnormality were involved in many of the same pathways, including development, shell formation, cell adhesion, and oxidative stress, yet unique markers were detected in each gene set. Markers of effect appeared to be more resolving between phenotypes at the lower copper concentration, while markers of exposure were informative at both copper concentrations.
Collapse
Affiliation(s)
- Megan R Hall
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Andrew Y Gracey
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
16
|
Suwannasing C, Buddawong A, Khumpune S, Habuddha V, Weerachatyanukul W, Asuvapongpatana S. Bone Morphogenetic Protein 2/4 in Mollusk, Haliotis diversicolor: Its Expression and Osteoinductive Function In Vitro. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:836-846. [PMID: 34609689 DOI: 10.1007/s10126-021-10071-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Bone morphogenetic proteins (BMPs), which are members of the superfamily of transforming growth factor-β (TGF-β), are known both in vitro and in vivo for their osteoinduction properties on the osteoblastic cells. Its role in the mollusk shell formation has also been gradually established. Using Haliotis diversicolor as a model, we characterized the HdBMP2/4 gene in the mantle tissue and showed its expression in the outer fold epithelium (particularly at the periostracal groove) the epithelial site which is involved in shell formation, both prismatic and nacreous layers. Shell notching experiments following gene analysis by qPCR revealed the upregulation of the HdBMP2/4 gene up to 3.2-fold than that of the control animals. In vitro treatments of the preosteoblastic cells, MC3T3-E1 with HdBMP2/4 synthetic peptide demonstrated the enhanced effect of many osteogenic genes that are known to regulate bone and shell biomineralization including ALP, Runx2, and OCN with 2-4 fold-change throughout 14 days of culture. In addition, the increased deposition of calcium-based mineral (as assessed by Alizarin red staining) of the treated cells was comparable to the ascorbic acid (Vit C) + glycerophosphate positive control which revealed the enhanced effect of HdBMP2/4 peptide on matrix biomineralization of the preosteoblastic cells. In conclusion, these results indicated the presence of the HdBMP2/4 gene in the mantle tissue at the site involved in shell formation and the effect of the HdBMP2/4 knuckle epitope peptide in osteoinduction in vitro.
Collapse
Affiliation(s)
- Chanyatip Suwannasing
- Department of Anatomy, Faculty of Science, Mahidol University, Rama 6 Rd, Ratchathewi, Bangkok, Thailand
- Department of Radiological Technology, Faculty of Allied Health Science, Naresuan University, Phitsanulok, Thailand
| | - Aticha Buddawong
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand
| | - Sarawut Khumpune
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, Thailand
| | - Valainipha Habuddha
- School of Allied Health Science, Walailak University, Nakhon Si Thammarat, Thailand
| | - Wattana Weerachatyanukul
- Department of Anatomy, Faculty of Science, Mahidol University, Rama 6 Rd, Ratchathewi, Bangkok, Thailand
| | - Somluk Asuvapongpatana
- Department of Anatomy, Faculty of Science, Mahidol University, Rama 6 Rd, Ratchathewi, Bangkok, Thailand.
| |
Collapse
|
17
|
Jo CH, Voronina N, Sun YK, Myung ST. Gifts from Nature: Bio-Inspired Materials for Rechargeable Secondary Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006019. [PMID: 34337779 DOI: 10.1002/adma.202006019] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/29/2021] [Indexed: 06/13/2023]
Abstract
Materials in nature have evolved to the most efficient forms and have adapted to various environmental conditions over tens of thousands of years. Because of their versatile functionalities and environmental friendliness, numerous attempts have been made to use bio-inspired materials for industrial applications, establishing the importance of biomimetics. Biomimetics have become pivotal to the search for technological breakthroughs in the area of rechargeable secondary batteries. Here, the characteristics of bio-inspired materials that are useful for secondary batteries as well as their benefits for application as the main components of batteries (e.g., electrodes, separators, and binders) are discussed. The use of bio-inspired materials for the synthesis of nanomaterials with complex structures, low-cost electrode materials prepared from biomass, and biomolecular organic electrodes for lithium-ion batteries are also introduced. In addition, nature-derived separators and binders are discussed, including their effects on enhancing battery performance and safety. Recent developments toward next-generation secondary batteries including sodium-ion batteries, zinc-ion batteries, and flexible batteries are also mentioned to understand the feasibility of using bio-inspired materials in these new battery systems. Finally, current research trends are covered and future directions are proposed to provide important insights into scientific and practical issues in the development of biomimetics technologies for secondary batteries.
Collapse
Affiliation(s)
- Chang-Heum Jo
- Hybrid Materials Research Center, Department of Nano Technology and Advanced Materials Engineering & Sejong Battery Institute, Sejong University, Gunja-dong, Gwangjin-gu, Seoul, 05006, South Korea
| | - Natalia Voronina
- Hybrid Materials Research Center, Department of Nano Technology and Advanced Materials Engineering & Sejong Battery Institute, Sejong University, Gunja-dong, Gwangjin-gu, Seoul, 05006, South Korea
| | - Yang-Kook Sun
- Department of Energy Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Seung-Taek Myung
- Hybrid Materials Research Center, Department of Nano Technology and Advanced Materials Engineering & Sejong Battery Institute, Sejong University, Gunja-dong, Gwangjin-gu, Seoul, 05006, South Korea
| |
Collapse
|
18
|
Chandra Rajan K, Meng Y, Yu Z, Roberts SB, Vengatesen T. Oyster biomineralization under ocean acidification: From genes to shell. GLOBAL CHANGE BIOLOGY 2021; 27:3779-3797. [PMID: 33964098 DOI: 10.1111/gcb.15675] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 04/02/2021] [Indexed: 05/27/2023]
Abstract
Biomineralization is one of the key processes that is notably affected in marine calcifiers such as oysters under ocean acidification (OA). Understanding molecular changes in the biomineralization process under OA and its heritability, therefore, is key to developing conservation strategies for protecting ecologically and economically important oyster species. To do this, in this study, we have explicitly chosen the tissue involved in biomineralization (mantle) of an estuarine commercial oyster species, Crassostrea hongkongensis. The primary aim of this study is to understand the influence of DNA methylation over gene expression of mantle tissue under decreased ~pH 7.4, a proxy of OA, and to extrapolate if these molecular changes can be observed in the product of biomineralization-the shell. We grew early juvenile C. hongkongensis, under decreased ~pH 7.4 and control ~pH 8.0 over 4.5 months and studied OA-induced DNA methylation and gene expression patterns along with shell properties such as microstructure, crystal orientation and hardness. The population of oysters used in this study was found to be moderately resilient to OA at the end of the experiment. The expression of key biomineralization-related genes such as carbonic anhydrase and alkaline phosphatase remained unaffected; thus, the mechanical properties of the shell (shell growth rate, hardness and crystal orientation) were also maintained without any significant difference between control and OA conditions with signs of severe dissolution. In addition, this study makes three major conclusions: (1) higher expression of Ca2+ binding/signalling-related genes in the mantle plays a key role in maintaining biomineralization under OA; (2) DNA methylation changes occur in response to OA; however, these methylation changes do not directly control gene expression; and (3) OA would be more of a 'dissolution problem' rather than a 'biomineralization problem' for resilient species that maintain calcification rate with normal shell growth and mechanical properties.
Collapse
Affiliation(s)
- Kanmani Chandra Rajan
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Yuan Meng
- State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ziniu Yu
- South China Sea Institute of Oceanology, Guangzhou, China
| | - Steven B Roberts
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
| | - Thiyagarajan Vengatesen
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR
| |
Collapse
|
19
|
Wall-Palmer D, Mekkes L, Ramos-Silva P, Dämmer LK, Goetze E, Bakker K, Duijm E, Peijnenburg KTCA. The impacts of past, present and future ocean chemistry on predatory planktonic snails. ROYAL SOCIETY OPEN SCIENCE 2021; 8:202265. [PMID: 34386247 PMCID: PMC8334855 DOI: 10.1098/rsos.202265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
The atlantid heteropods represent the only predatory, aragonite shelled zooplankton. Atlantid shell production is likely to be sensitive to ocean acidification (OA), and yet we know little about their mechanisms of calcification, or their response to changing ocean chemistry. Here, we present the first study into calcification and gene expression effects of short-term OA exposure on juvenile atlantids across three pH scenarios: mid-1960s, ambient and 2050 conditions. Calcification and gene expression indicate a distinct response to each treatment. Shell extension and shell volume were reduced from the mid-1960s to ambient conditions, suggesting that calcification is already limited in today's South Atlantic. However, shell extension increased from ambient to 2050 conditions. Genes involved in protein synthesis were consistently upregulated, whereas genes involved in organismal development were downregulated with decreasing pH. Biomineralization genes were upregulated in the mid-1960s and 2050 conditions, suggesting that any deviation from ambient carbonate chemistry causes stress, resulting in rapid shell growth. We conclude that atlantid calcification is likely to be negatively affected by future OA. However, we also found that plentiful food increased shell extension and shell thickness, and so synergistic factors are likely to impact the resilience of atlantids in an acidifying ocean.
Collapse
Affiliation(s)
- Deborah Wall-Palmer
- Plankton Diversity and Evolution, Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Lisette Mekkes
- Plankton Diversity and Evolution, Naturalis Biodiversity Center, Leiden, The Netherlands
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Paula Ramos-Silva
- Plankton Diversity and Evolution, Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Linda K. Dämmer
- Department of Ocean Systems, Royal Netherlands Institute for Sea Research (NIOZ), Texel, The Netherlands
- Environmental Geology, Department of Geology, Institute of Geosciences, University of Bonn, Bonn, Germany
| | - Erica Goetze
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Karel Bakker
- Department of Ocean Systems, Royal Netherlands Institute for Sea Research (NIOZ), Texel, The Netherlands
| | - Elza Duijm
- Plankton Diversity and Evolution, Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Katja T. C. A. Peijnenburg
- Plankton Diversity and Evolution, Naturalis Biodiversity Center, Leiden, The Netherlands
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Rivera-Pérez C, Hernández-Saavedra NY. Review: Post-translational modifications of marine shell matrix proteins. Comp Biochem Physiol B Biochem Mol Biol 2021; 256:110641. [PMID: 34182126 DOI: 10.1016/j.cbpb.2021.110641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/13/2021] [Accepted: 06/22/2021] [Indexed: 11/18/2022]
Abstract
Shell matrix proteins (SMPs) are key components for the Mollusk shell biomineralization. SMPs function has been hypothesized in several proteins by bioinformatics analysis, and through in vitro crystallization assays. However, studies of the post-translational modifications (PTMs) of SMPs, which contribute to their structure and the function, are limited. This review provides the current status of the SMPs with the most common PTMs described (glycosylation, phosphorylation, and disulfide bond formation) and their role in shell biomineralization. Also, recent studies based on recombinant production of SMPs are discussed. Finally, recommendations for the study of SMPs and their PTMs are provided. The review showed that PTMs are widely distributed in SMPs, and their presence on SMPs may contribute to the modulation of their activity in some SMPs, contributing to the crystal growth formation and differentiation through different mechanisms, however, in a few cases the lack of the PTMs do not alter their inherent function.
Collapse
Affiliation(s)
- Crisalejandra Rivera-Pérez
- CONACYT, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, Baja California Sur, Mexico.
| | - Norma Y Hernández-Saavedra
- Molecular Genetics Laboratory, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz 23096, Baja California Sur, Mexico
| |
Collapse
|
21
|
Conci N, Lehmann M, Vargas S, Wörheide G. Comparative Proteomics of Octocoral and Scleractinian Skeletomes and the Evolution of Coral Calcification. Genome Biol Evol 2021; 12:1623-1635. [PMID: 32761183 PMCID: PMC7533068 DOI: 10.1093/gbe/evaa162] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2020] [Indexed: 12/23/2022] Open
Abstract
Corals are the ecosystem engineers of coral reefs, one of the most biodiverse marine ecosystems. The ability of corals to form reefs depends on the precipitation of calcium carbonate (CaCO3) under biological control. However, several mechanisms underlying coral biomineralization remain elusive, for example, whether corals employ different molecular machineries to deposit different CaCO3 polymorphs (i.e., aragonite or calcite). Here, we used tandem mass spectrometry (MS/MS) to compare the proteins occluded in the skeleton of three octocoral and one scleractinian species: Tubipora musica and Sinularia cf. cruciata (calcite sclerites), the blue coral Heliopora coerulea (aragonitic skeleton), and the scleractinian aragonitic Montipora digitata. Reciprocal Blast analysis revealed extremely low overlap between aragonitic and calcitic species, while a core set of proteins is shared between octocorals producing calcite sclerites. However, the carbonic anhydrase CruCA4 is present in the skeletons of both polymorphs. Phylogenetic analysis highlighted several possible instances of protein co-option in octocorals. These include acidic proteins and scleritin, which appear to have been secondarily recruited for calcification and likely derive from proteins playing different functions. Similarities between octocorals and scleractinians included presence of a galaxin-related protein, carbonic anhydrases, and one hephaestin-like protein. Although the first two appear to have been independently recruited, the third appear to share a common origin. This work represents the first attempt to identify and compare proteins associated with coral skeleton polymorph diversity, providing several new research targets and enabling both future functional and evolutionary studies aimed at elucidating the origin and evolution of coral biomineralization.
Collapse
Affiliation(s)
- Nicola Conci
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, München, Germany
| | - Martin Lehmann
- Department of Biology I-Botany, Biozentrum der LMU München, Planegg-Martinsried, Germany
| | - Sergio Vargas
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, München, Germany
| | - Gert Wörheide
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, München, Germany.,SNSB - Bayerische Staatssammlung für Paläontologie und Geologie, Munich, Germany.,GeoBio-Center LMU, Ludwig-Maximilians-Universität München, München, Germany
| |
Collapse
|
22
|
Stenger PL, Ky CL, Reisser CMO, Cosseau C, Grunau C, Mege M, Planes S, Vidal-Dupiol J. Environmentally Driven Color Variation in the Pearl Oyster Pinctada margaritifera var. cumingii (Linnaeus, 1758) Is Associated With Differential Methylation of CpGs in Pigment- and Biomineralization-Related Genes. Front Genet 2021; 12:630290. [PMID: 33815466 PMCID: PMC8018223 DOI: 10.3389/fgene.2021.630290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/19/2021] [Indexed: 11/15/2022] Open
Abstract
Today, it is common knowledge that environmental factors can change the color of many animals. Studies have shown that the molecular mechanisms underlying such modifications could involve epigenetic factors. Since 2013, the pearl oyster Pinctada margaritifera var. cumingii has become a biological model for questions on color expression and variation in Mollusca. A previous study reported color plasticity in response to water depth variation, specifically a general darkening of the nacre color at greater depth. However, the molecular mechanisms behind this plasticity are still unknown. In this paper, we investigate the possible implication of epigenetic factors controlling shell color variation through a depth variation experiment associated with a DNA methylation study performed at the whole genome level with a constant genetic background. Our results revealed six genes presenting differentially methylated CpGs in response to the environmental change, among which four are linked to pigmentation processes or regulations (GART, ABCC1, MAPKAP1, and GRL101), especially those leading to darker phenotypes. Interestingly, the genes perlucin and MGAT1, both involved in the biomineralization process (deposition of aragonite and calcite crystals), also showed differential methylation, suggesting that a possible difference in the physical/spatial organization of the crystals could cause darkening (iridescence or transparency modification of the biomineral). These findings are of great interest for the pearl production industry, since wholly black pearls and their opposite, the palest pearls, command a higher value on several markets. They also open the route of epigenetic improvement as a new means for pearl production improvement.
Collapse
Affiliation(s)
- Pierre-Louis Stenger
- IFREMER, UMR 241 Écosystèmes Insulaires Océaniens, Labex Corail, Centre du Pacifique, Tahiti, French Polynesia
- IHPE, Université de Montpellier, CNRS, IFREMER, Université de Perpignan Via Domitia, Montpellier, France
| | - Chin-Long Ky
- IFREMER, UMR 241 Écosystèmes Insulaires Océaniens, Labex Corail, Centre du Pacifique, Tahiti, French Polynesia
- IHPE, Université de Montpellier, CNRS, IFREMER, Université de Perpignan Via Domitia, Montpellier, France
| | - Céline M. O. Reisser
- IFREMER, UMR 241 Écosystèmes Insulaires Océaniens, Labex Corail, Centre du Pacifique, Tahiti, French Polynesia
- MARBEC, Université de Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | - Céline Cosseau
- IHPE, Université de Montpellier, CNRS, IFREMER, Université de Perpignan Via Domitia, Perpignan, France
| | - Christoph Grunau
- IHPE, Université de Montpellier, CNRS, IFREMER, Université de Perpignan Via Domitia, Perpignan, France
| | - Mickaël Mege
- IFREMER, UMR 241 Écosystèmes Insulaires Océaniens, Labex Corail, Centre du Pacifique, Tahiti, French Polynesia
- IFREMER, PDG-RBE-SGMM-LGPMM, La Tremblade, France
| | - Serge Planes
- EPHE-UPVD-CNRS, USR 3278 CRIOBE, Labex Corail, PSL Research University, Université de Perpignan, Perpignan, France
| | - Jeremie Vidal-Dupiol
- IHPE, Université de Montpellier, CNRS, IFREMER, Université de Perpignan Via Domitia, Montpellier, France
| |
Collapse
|
23
|
Le Roy N, Ganot P, Aranda M, Allemand D, Tambutté S. The skeletome of the red coral Corallium rubrum indicates an independent evolution of biomineralization process in octocorals. BMC Ecol Evol 2021; 21:1. [PMID: 33514311 PMCID: PMC7853314 DOI: 10.1186/s12862-020-01734-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 12/13/2020] [Indexed: 12/16/2022] Open
Abstract
Background The process of calcium carbonate biomineralization has arisen multiple times during metazoan evolution. In the phylum Cnidaria, biomineralization has mostly been studied in the subclass Hexacorallia (i.e. stony corals) in comparison to the subclass Octocorallia (i.e. red corals); the two diverged approximately 600 million years ago. The precious Mediterranean red coral, Corallium rubrum, is an octocorallian species, which produces two distinct high-magnesium calcite biominerals, the axial skeleton and the sclerites. In order to gain insight into the red coral biomineralization process and cnidarian biomineralization evolution, we studied the protein repertoire forming the organic matrix (OM) of its two biominerals. Results We combined High-Resolution Mass Spectrometry and transcriptome analysis to study the OM composition of the axial skeleton and the sclerites. We identified a total of 102 OM proteins, 52 are found in the two red coral biominerals with scleritin being the most abundant protein in each fraction. Contrary to reef building corals, the red coral organic matrix possesses a large number of collagen-like proteins. Agrin-like glycoproteins and proteins with sugar-binding domains are also predominant. Twenty-seven and 23 proteins were uniquely assigned to the axial skeleton and the sclerites, respectively. The inferred regulatory function of these OM proteins suggests that the difference between the two biominerals is due to the modeling of the matrix network, rather than the presence of specific structural components. At least one OM component could have been horizontally transferred from prokaryotes early during Octocorallia evolution. Conclusion Our results suggest that calcification of the red coral axial skeleton likely represents a secondary calcification of an ancestral gorgonian horny axis. In addition, the comparison with stony coral skeletomes highlighted the low proportion of similar proteins between the biomineral OMs of hexacorallian and octocorallian corals, suggesting an independent acquisition of calcification in anthozoans.
Collapse
Affiliation(s)
- Nathalie Le Roy
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, Monaco, MC, 98000, Monaco. .,BOA UMR83, INRAe Centre Val de Loire, 37380, Nouzilly, France.
| | - Philippe Ganot
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, Monaco, MC, 98000, Monaco
| | - Manuel Aranda
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Denis Allemand
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, Monaco, MC, 98000, Monaco
| | - Sylvie Tambutté
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, Monaco, MC, 98000, Monaco
| |
Collapse
|
24
|
Rivera-Perez C, Flores-Sánchez IA, Ojeda Ramírez de Areyano JJ, Rojas Posadas DI, Hernández-Saavedra NY. A shell matrix protein of Pinctada mazatlanica produces nacre platelets in vitro. Sci Rep 2020; 10:20201. [PMID: 33214608 PMCID: PMC7677314 DOI: 10.1038/s41598-020-77320-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/09/2020] [Indexed: 11/09/2022] Open
Abstract
AbstractNacre is the main component of the pearl oyster shells and it is synthesized by specialized soluble and insoluble shell matrix proteins. Insoluble proteins from the decalcification of the shell are the less studied proteins due to the technical problems to isolate them from the organic matrix. In this study, an insoluble shell matrix protein from Pinctada mazatlanica, pearlin (Pmaz-pearlin), was successfully cloned from the mantle tissue, and the native protein isolated from the shell was functionally characterized. The full coding sequence of Pmaz-pearlin mRNA consists of 423 base pairs, which encode to a 16.3 kDa pearlin. Analysis of the deduced amino acid sequence revealed that Pmaz-pearlin contained four acidic regions, an NG repeat domain, and Cys conserved residues, the latter potentially forms four disulfide bridges which might stabilize the protein structure. The isolated protein from the shell is a glycoprotein of ~ 16.74 kDa which can produce aragonite and calcite crystals in vitro. Our results show that Pmaz-pearlin is a well-conserved protein involved in nacre layer growth, which produces calcite crystals in the presence of CaCl2, aragonite crystal polymorphs with a hexagonal structure in the presence of MgCl2, and needle-like crystal structure polymorphs in the presence of CaCO3 The identity of the crystals was confirmed using RAMAN analyses.
Collapse
|
25
|
Zheng X, Lei S, Zhao S, Ye G, Ma R, Liu L, Xie Y, Shi X, Chen J. Temperature elevation and acidification damage microstructure of abalone via expression change of crystal induction genes. MARINE ENVIRONMENTAL RESEARCH 2020; 162:105114. [PMID: 32892151 DOI: 10.1016/j.marenvres.2020.105114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
Ocean warming and acidification caused by global climate change interferes with the shell growth of mollusks. In abalone Haliotis discus hannai, the microstructural changes in the shell under stress are unclear, and the effect of thermal stress on biomineralization is unknown. The lack of gene information has also hampered the study of abalone biomineralization mechanisms. In this study, the microstructure of reconstructed shell in H. discus hannai was observed to determine the effects of thermal and acidification stress on shell growth. Three nacre protein genes, Hdh-AP7, Hdh-AP24, and Hdh-perlustrin, were characterized, and their expression pattern during shell repair was measured under thermal and acidification stress and compared with those of two known biomineralization-related genes, Hdh-AP-1 and Hdh-defensin. The stress resulted in aragonite plates with corroded or irregular microstructures. The gene expression of two nacre proteins (Hdh-AP7 and Hdh-AP24), which directly induce crystal formation, were more sensitive to thermal stress than to acidification, but the expression of the regulatory nacre protein (Hdh-perlustrin) and the two known genes (Hdh-AP-1 and Hdh-defensin), which are also related to immunity, showed an interlinked, complex pattern change. We concluded that high temperature and acidification damages the shell microstructure by disturbing the expression pattern of biomineralization-related genes.
Collapse
Affiliation(s)
- Xiangnan Zheng
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fujian, Fuzhou, 350108, China; Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fujian, Fuzhou, 350108, China
| | - Shanshan Lei
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fujian, Fuzhou, 350108, China; Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fujian, Fuzhou, 350108, China
| | - Shuxian Zhao
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fujian, Fuzhou, 350108, China; Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fujian, Fuzhou, 350108, China
| | - Ganping Ye
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fujian, Fuzhou, 350108, China; Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fujian, Fuzhou, 350108, China
| | - Ruijuan Ma
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fujian, Fuzhou, 350108, China; Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fujian, Fuzhou, 350108, China
| | - Lemian Liu
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fujian, Fuzhou, 350108, China; Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fujian, Fuzhou, 350108, China
| | - Youping Xie
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fujian, Fuzhou, 350108, China; Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fujian, Fuzhou, 350108, China
| | - Xinguo Shi
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fujian, Fuzhou, 350108, China; Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fujian, Fuzhou, 350108, China.
| | - Jianfeng Chen
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fujian, Fuzhou, 350108, China; Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fujian, Fuzhou, 350108, China.
| |
Collapse
|
26
|
Dong X, Zhao H, Li J, Tian Y, Zeng H, Ramos MA, Hu TS, Xu Q. Progress in Bioinspired Dry and Wet Gradient Materials from Design Principles to Engineering Applications. iScience 2020; 23:101749. [PMID: 33241197 PMCID: PMC7672307 DOI: 10.1016/j.isci.2020.101749] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Nature does nothing in vain. Through millions of years of revolution, living organisms have evolved hierarchical and anisotropic structures to maximize their survival in complex and dynamic environments. Many of these structures are intrinsically heterogeneous and often with functional gradient distributions. Understanding the convergent and divergent gradient designs in the natural material systems may lead to a new paradigm shift in the development of next-generation high-performance bio-/nano-materials and devices that are critically needed in energy, environmental remediation, and biomedical fields. Herein, we review the basic design principles and highlight some of the prominent examples of gradient biological materials/structures discovered over the past few decades. Interestingly, despite the anisotropic features in one direction (i.e., in terms of gradient compositions and properties), these natural structures retain certain levels of symmetry, including point symmetry, axial symmetry, mirror symmetry, and 3D symmetry. We further demonstrate the state-of-the-art fabrication techniques and procedures in making the biomimetic counterparts. Some prototypes showcase optimized properties surpassing those seen in the biological model systems. Finally, we summarize the latest applications of these synthetic functional gradient materials and structures in robotics, biomedical, energy, and environmental fields, along with their future perspectives. This review may stimulate scientists, engineers, and inventors to explore this emerging and disruptive research methodology and endeavors.
Collapse
Affiliation(s)
- Xiaoxiao Dong
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Hong Zhao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Jiapeng Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Yu Tian
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Melvin A Ramos
- Department of Mechanical Engineering, California State University, Los Angeles, CA 90032, USA
| | - Travis Shihao Hu
- Department of Mechanical Engineering, California State University, Los Angeles, CA 90032, USA
| | - Quan Xu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| |
Collapse
|
27
|
Mechanical Properties of Nacre-Like Composites: A Bottom-Up Approach. JOURNAL OF COMPOSITES SCIENCE 2020. [DOI: 10.3390/jcs4020035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nacre is a highly organized hierarchical structure of the mineral and organic components at all scales down to the molecular-scale guided by organic molecules. The mechanical properties of the mineral component of nacre have been studied and well established for decades. In the present work, the shear modulus of the organic matrix of nacre was obtained using two of its important proteineous components, Perlucin and Lustrin A. The shear modulus value of the organic matrix was computed to be in the range of 1.25–1.45 GPa using atomistic molecular dynamics (MD) simulations. Moreover, finite element (FE) simulations were conducted on the three-dimensional (3D) models of the nacre-like composite while varying the relative composition of mineral and organic constituents. The nacre-like composite models with 10–20% by volume of organic part estimated high toughness. The exact optimum value will depend on the mechanical properties of the organic matrix used in the synthesis of nacre-like material. The study is an advancement in the modeling of nacre, sheds light on macroscale properties of nacre-like composites, and opens up new avenues for continuum studies of nacre mechanics, including its mysterious toughening mechanism.
Collapse
|
28
|
Xing B, Graham N, Yu W. Transformation of siderite to goethite by humic acid in the natural environment. Commun Chem 2020; 3:38. [PMID: 36703449 PMCID: PMC9814924 DOI: 10.1038/s42004-020-0284-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/03/2020] [Indexed: 01/29/2023] Open
Abstract
Humic acid (HA) is particularly important in iron-bearing mineral transformations and erosion at the water-mineral boundary zone of the Earth. In this study, three stages of the possible pathway by which HA causes mineral transformation from siderite to goethite are identified. Firstly, a Fe(II)-HA complex is formed by chelation, which accelerates the dissolution and oxidation of Fe(II) from the surface of siderite. As the Fe(II)-HA complex retains Fe atoms in close proximity of each other, ferrihydrite is formed by the agglomeration and crystallization. Finally, the ferrihydrite structurally rearranges upon attachment to the surface of goethite crystals and merges with its structure. The influence of low concentrations of HA (0-2 mg/L) on phosphate adsorption is found to be beneficial by the inducing of new mineral phases. We believe that these results provide a greater understanding of the impact of HA in the biogeochemical cycle of phosphate, mineral transformation.
Collapse
Affiliation(s)
- Bobo Xing
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 10086, Beijing, China
| | - Nigel Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| | - Wenzheng Yu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 10086, Beijing, China.
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| |
Collapse
|
29
|
Ps19, a novel chitin binding protein from Pteria sterna capable to mineralize aragonite plates in vitro. PLoS One 2020; 15:e0230431. [PMID: 32191756 PMCID: PMC7081993 DOI: 10.1371/journal.pone.0230431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/28/2020] [Indexed: 11/19/2022] Open
Abstract
Mollusk shell is composed of two CaCO3 polymorphs (calcite and aragonite) and an organic matrix that consists of acetic acid- or ethylenediaminetetraacetic acid (EDTA)-soluble and insoluble proteins and other biomolecules (polysaccharides, β-chitin). However, the shell matrix proteins involved in nacre formation are not fully known. Thus, the aim of this study was to identify and characterize a novel protein from the acetic acid-insoluble fraction from the shell of Pteria sterna, named in this study as Ps19, to have a better understanding of the biomineralization process. Ps19 biochemical characterization showed that it is a glycoprotein that exhibits calcium- and chitin-binding capabilities. Additionally, it is capable of inducing aragonite plate crystallization in vitro. Ps19 partial peptide sequence showed similarity with other known shell matrix proteins, but it displayed similarity with proteins from Crassostrea gigas, Mizuhopecten yessoensis, Biomphalaria glabrata, Alpysia californica, Lottia gigantea and Elysia chlorotica. The results obtained indicated that Ps19 might play an important role in nacre growth of mollusk shells.
Collapse
|
30
|
Zheng X, Zhao S, Lei S, Ma R, Liu L, Xie Y, Shi X, Chen J. Cloning and characterization of a novel Lustrin A gene from Haliotis discus hannai. Comp Biochem Physiol B Biochem Mol Biol 2020; 240:110385. [DOI: 10.1016/j.cbpb.2019.110385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/02/2019] [Accepted: 11/05/2019] [Indexed: 10/25/2022]
|
31
|
Mao J, Zhang W, Wang X, Song J, Yin D, Tian Y, Hao Z, Han B, Chang Y. Histological and Expression Differences Among Different Mantle Regions of the Yesso Scallop (Patinopecten yessoensis) Provide Insights into the Molecular Mechanisms of Biomineralization and Pigmentation. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:683-696. [PMID: 31385168 DOI: 10.1007/s10126-019-09913-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
The molecular mechanisms of shell formation and pigmentation are issues of great interest in molluscan studies due to the unique physical and biological properties of shells. The Yesso scallop, Patinopecten yessoensis, is one of the most important maricultural bivalves in Asian countries, and its shell color shows polymorphism. To gain more information about the underlying mechanisms of shell formation and pigmentation, this study presents the first analyses of histological and transcriptional differences between different mantle regions of the Yesso scallop, which are thought to be responsible for the formation of different shell layers. The results showed major microstructural differences between the edge and central mantles, which were closely associated with their functions. Different biomineralization-related GO functions, which might participate in the formation of different shell layers, were significantly enriched in the different mantle regions, indicating the different molecular functions of the two mantle regions in shell formation. The melanogenesis pathway, which controls melanin biosynthesis, was the most significantly enriched pathway in the DEGs between the two mantle regions, indicating its important role in shell pigmentation. Tyr, the key and rate-limiting gene in melanogenesis, was expressed at a remarkably high level in the central mantle, while the upstream regulatory genes included in melanogenesis were mainly upregulated in the edge mantle, suggesting the different molecular functions of the two mantle regions in shell pigmentation.
Collapse
Affiliation(s)
- Junxia Mao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Wenjing Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Xubo Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Jian Song
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Donghong Yin
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Ying Tian
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Zhenlin Hao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Bing Han
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China.
| |
Collapse
|
32
|
Glycan Binding Profiling of Jacalin-Related Lectins from the Pteria Penguin Pearl Shell. Int J Mol Sci 2019; 20:ijms20184629. [PMID: 31540487 PMCID: PMC6769917 DOI: 10.3390/ijms20184629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/14/2019] [Accepted: 09/15/2019] [Indexed: 11/25/2022] Open
Abstract
We determined the primary structures of jacalin-related lectins termed PPL3s (PPL3A, 3B, and 3C, which are dimers consisting of sequence variants α + α, α + β, β + β, respectively) and PPL4, which is heterodimer consisting of α + β subunits, isolated from mantle secretory fluid of Pteria penguin (Mabe) pearl shell. Their carbohydrate-binding properties were analyzed, in addition to that of PPL2A, which was previously reported as a matrix protein. PPL3s and PPL4 shared only 35–50% homology to PPL2A, respectively; they exhibited significantly different carbohydrate-binding specificities based on the multiple glycan binding profiling data sets from frontal affinity chromatography analysis. The carbohydrate-binding specificity of PPL3s was similar to that of PPL2A, except only for Man3Fuc1Xyl1GlcNAc2 oligosaccharide, while PPL4 showed different carbohydrate-binding specificity compared with PPL2A and PPL3s. PPL2A and PPL3s mainly recognize agalactosylated- and galactosylated-type glycans. On the other hand, PPL4 binds to high-mannose-and hybrid-type N-linked glycans but not agalactosylated- and galactosylated-type glycans.
Collapse
|
33
|
Purification and functional analysis of the shell matrix protein N66 from the shell of the pearl oyster Pteria sterna. Comp Biochem Physiol B Biochem Mol Biol 2019; 235:19-29. [PMID: 31129291 DOI: 10.1016/j.cbpb.2019.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/10/2019] [Accepted: 05/14/2019] [Indexed: 11/22/2022]
Abstract
Mollusk biomineralization is a process controlled by a complex interplay of proteins, ions and external regulators. In spite of several studies, there is a lack of knowledge of who (molecules involved), how (mechanism) and why (evolution and adaptation) mollusk are designed as we know them. In this study, a shell matrix protein, N66, has been purified and characterized biochemically from the shell of Pteria sterna. Two protein bands with carbohydrates associated were separated with a molecular weight of ~60 and 64 kDa. It has carbonic anhydrase activity and it is able to form crystal polymorphs of calcium carbonate in vitro. The mRNA N66 was obtained from the mantle tissue of Pteria sterna and the deduced amino acid sequence contained a carbonic anhydrase (CA) domain and a Asn/Gly-rich domain (aa243-439). The CA domain contained three His residues acting as zinc ligands and the gate-keeper residues present in all α-CAs (Glu166-Thr525), being thus similar to the human isoform hCAVII. Also, to test whether the posttranslational modifications present on the native N66 affects the CA activity and its crystallization capability in vitro, a recombinant N66 was overexpressed in Escherichia coli and functionally characterized. Our results show that recombinant N66 has higher CA activity and produce larger size crystals in vitro than the native N66 protein, suggesting that intrinsic properties of the native N66, such as glycosylations and/or phosphorylations, might regulate its activity.
Collapse
|
34
|
Rivera-Perez C, Magallanes-Dominguez C, Dominguez-Beltran RV, Ojeda-Ramirez de Areyano JJ, Hernandez-Saavedra NY. Biochemical and molecular characterization of N66 from the shell of Pinctada mazatlanica. PeerJ 2019; 7:e7212. [PMID: 31293836 PMCID: PMC6599672 DOI: 10.7717/peerj.7212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/30/2019] [Indexed: 11/20/2022] Open
Abstract
Mollusk shell mineralization is a tightly controlled process made by shell matrix proteins (SMPs). However, the study of SMPs has been limited to a few model species. In this study, the N66 mRNA of the pearl oyster Pinctada mazatlanica was cloned and functionally characterized. The full sequence of the N66 mRNA comprises 1,766 base pairs, and encodes one N66 protein. A sequence analysis revealed that N66 contained two carbonic anhydrase (CA) domains, a NG domain and several glycosylation sites. The sequence showed similarity to the CA VII but also with its homolog protein nacrein. The native N66 protein was isolated from the shell and identified by mass spectrometry, the peptide sequence matched to the nucleotide sequence obtained. Native N66 is a glycoprotein with a molecular mass of 60-66 kDa which displays CA activity and calcium carbonate precipitation ability in presence of different salts. Also, a recombinant form of N66 was produced in Escherichia coli, and functionally characterized. The recombinant N66 displayed higher CA activity and crystallization capability than the native N66, suggesting that the lack of posttranslational modifications in the recombinant N66 might modulate its activity.
Collapse
Affiliation(s)
- Crisalejandra Rivera-Perez
- Department of Fisheries Ecology, CONACyT-Centro de Investigaciones Biologicas del Noroeste (CIBNOR), La Paz, Baja California Sur, Mexico
| | - Catalina Magallanes-Dominguez
- Department of Fisheries Ecology, Molecular Genetics Laboratory, Centro de Investigaciones Biologicas del Noroeste (CIBNOR), La Paz, Baja California Sur, Mexico
| | | | - Josafat Jehu Ojeda-Ramirez de Areyano
- Department of Fisheries Ecology, Molecular Genetics Laboratory, Centro de Investigaciones Biologicas del Noroeste (CIBNOR), La Paz, Baja California Sur, Mexico
| | - Norma Y. Hernandez-Saavedra
- Department of Fisheries Ecology, Molecular Genetics Laboratory, Centro de Investigaciones Biologicas del Noroeste (CIBNOR), La Paz, Baja California Sur, Mexico
| |
Collapse
|
35
|
Shi Y, Xu M, Huang J, Zhang H, Liu W, Ou Z, He M. Transcriptome analysis of mantle tissues reveals potential biomineralization-related genes in Tectus pyramis Born. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 29:131-144. [PMID: 30469052 DOI: 10.1016/j.cbd.2018.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/11/2018] [Indexed: 10/27/2022]
Abstract
The marine mollusk Tectus pyramis is a valuable shellfish primarily distributed in the tropical waters of the South China Sea, as well as in the Indo-Pacific Ocean and areas near the southern portion of the Japanese Peninsula. Despite major economic interest in this mollusk, limited genomic resources are available for this species, which has prevented studies of the molecular mechanism, such as biomineralization. Here, we report the first comprehensive transcript dataset of T. pyramis mantle tissue. From a total of 16,801,141 reads, 173,671 unique transcripts were assembled, which provides new genomic resources for the understanding of biomineralization in T. pyramis. The most abundant unique sequences of the top 30 most highly expressed genes were annotated as shematrin, while other highly expressed genes included glycine-rich protein and shematrin-1. Based on transcriptome annotation and Gene Ontology classification, 130 biomineralization-related genes were found including members of the BMP (bone morphogenetic proteins), calmodulin, perlucin, and shematrin families, as well as mantle genes, nacrein, and MSI60. The results of qPCR showed that 14 of 24 examined genes were highly expressed in the mantle. A phylogenetic tree of BMP, perlucin, shematrin proteins revealed conservation of their structure and functions and indicated that some members participated in biomineralization in T. pyramis. Taken together, the results presented herein will be useful in studies of molecular mechanisms and pathways of biomineralization in T. pyramis, as well as provide new insight into the mechanisms of biomineralization in gastropods.
Collapse
Affiliation(s)
- Yu Shi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Meng Xu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Jing Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Hua Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Wenguang Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Zekui Ou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Maoxian He
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
| |
Collapse
|
36
|
Liu X, Jin C, Li H, Bai Z, Li J. Morphological structure of shell and expression patterns of five matrix protein genes during the shell regeneration process in Hyriopsis cumingii. AQUACULTURE AND FISHERIES 2018. [DOI: 10.1016/j.aaf.2018.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
37
|
Poley JD, Braden LM, Messmer AM, Igboeli OO, Whyte SK, Macdonald A, Rodriguez J, Gameiro M, Rufener L, Bouvier J, Wadowska DW, Koop BF, Hosking BC, Fast MD. High level efficacy of lufenuron against sea lice (Lepeophtheirus salmonis) linked to rapid impact on moulting processes. Int J Parasitol Drugs Drug Resist 2018; 8:174-188. [PMID: 29627513 PMCID: PMC6039351 DOI: 10.1016/j.ijpddr.2018.02.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 02/26/2018] [Accepted: 02/28/2018] [Indexed: 11/29/2022]
Abstract
Drug resistance in the salmon louse Lepeophtheirus salmonis is a global issue for Atlantic salmon aquaculture. Multiple resistance has been described across most available compound classes with the exception of the benzoylureas. To target this gap in effective management of L. salmonis and other species of sea lice (e.g. Caligus spp.), Elanco Animal Health is developing an in-feed treatment containing lufenuron (a benzoylurea) to be administered prior to seawater transfer of salmon smolts and to provide long-term protection of salmon against sea lice infestations. Benzoylureas disrupt chitin synthesis, formation, and deposition during all moulting events. However, the mechanism(s) of action are not yet fully understood and most research completed to date has focused on insects. We exposed the first parasitic stage of L. salmonis to 700 ppb lufenuron for three hours and observed over 90% reduction in survival to the chalimus II life stage on the host, as compared to vehicle controls. This agrees with a follow up in vivo administration study on the host, which showed >95% reduction by the chalimus I stage. Transcriptomic responses of salmon lice exposed to lufenuron included genes related to moulting, epithelial differentiation, solute transport, and general developmental processes. Global metabolite profiles also suggest that membrane stability and fluidity is impacted in treated lice. These molecular signals are likely the underpinnings of an abnormal moulting process and cuticle formation observed ultrastructurally using transmission electron microscopy. Treated nauplii-staged lice exhibited multiple abnormalities in the integument, suggesting that the coordinated assembly of the epi- and procuticle is impaired. In all cases, treatment with lufenuron had rapid impacts on L. salmonis development. We describe multiple experiments to characterize the efficacy of lufenuron on eggs, larvae, and parasitic stages of L. salmonis, and provide the most comprehensive assessment of the physiological responses of a marine arthropod to a benzoylurea chemical.
Collapse
Affiliation(s)
- Jordan D Poley
- Hoplite Lab, Department of Pathology & Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave, Charlottetown PE, C1A 4P3, Canada.
| | - Laura M Braden
- Hoplite Lab, Department of Pathology & Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave, Charlottetown PE, C1A 4P3, Canada.
| | - Amber M Messmer
- Centre for Biomedical Research, Department of Biology, University of Victoria, Victoria BC, V8W 3N5, Canada.
| | - Okechukwu O Igboeli
- Hoplite Lab, Department of Pathology & Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave, Charlottetown PE, C1A 4P3, Canada.
| | - Shona K Whyte
- Hoplite Lab, Department of Pathology & Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave, Charlottetown PE, C1A 4P3, Canada.
| | - Alicia Macdonald
- Elanco Canada Limited, 150 Research Lane, Guelph, Ontario N1G 4T2, Canada.
| | - Jose Rodriguez
- Elanco Canada Limited, 150 Research Lane, Guelph, Ontario N1G 4T2, Canada.
| | - Marta Gameiro
- Elanco Canada Limited, 150 Research Lane, Guelph, Ontario N1G 4T2, Canada.
| | - Lucien Rufener
- Elanco Centre de Recherche Santé Animale SA, CH-1566 St.-Aubin, Switzerland; INVENesis LLC, Chemin de Belleroche 14, 2000 Neuchâtel, Switzerland.
| | - Jacques Bouvier
- Elanco Centre de Recherche Santé Animale SA, CH-1566 St.-Aubin, Switzerland; INVENesis LLC, Chemin de Belleroche 14, 2000 Neuchâtel, Switzerland.
| | - Dorota W Wadowska
- Electron Microscopy Laboratory, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave, Charlottetown, PEI, C1A 4P3, Canada.
| | - Ben F Koop
- Centre for Biomedical Research, Department of Biology, University of Victoria, Victoria BC, V8W 3N5, Canada.
| | - Barry C Hosking
- Elanco Canada Limited, 150 Research Lane, Guelph, Ontario N1G 4T2, Canada.
| | - Mark D Fast
- Hoplite Lab, Department of Pathology & Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave, Charlottetown PE, C1A 4P3, Canada.
| |
Collapse
|
38
|
Mann K, Cerveau N, Gummich M, Fritz M, Mann M, Jackson DJ. In-depth proteomic analyses of Haliotis laevigata (greenlip abalone) nacre and prismatic organic shell matrix. Proteome Sci 2018; 16:11. [PMID: 29983641 PMCID: PMC6003135 DOI: 10.1186/s12953-018-0139-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/25/2018] [Indexed: 01/12/2023] Open
Abstract
Background The shells of various Haliotis species have served as models of invertebrate biomineralization and physical shell properties for more than 20 years. A focus of this research has been the nacreous inner layer of the shell with its conspicuous arrangement of aragonite platelets, resembling in cross-section a brick-and-mortar wall. In comparison, the outer, less stable, calcitic prismatic layer has received much less attention. One of the first molluscan shell proteins to be characterized at the molecular level was Lustrin A, a component of the nacreous organic matrix of Haliotis rufescens. This was soon followed by the C-type lectin perlucin and the growth factor-binding perlustrin, both isolated from H. laevigata nacre, and the crystal growth-modulating AP7 and AP24, isolated from H. rufescens nacre. Mass spectrometry-based proteomics was subsequently applied to to Haliotis biomineralization research with the analysis of the H. asinina shell matrix and yielded 14 different shell-associated proteins. That study was the most comprehensive for a Haliotis species to date. Methods The shell proteomes of nacre and prismatic layer of the marine gastropod Haliotis laevigata were analyzed combining mass spectrometry-based proteomics and next generation sequencing. Results We identified 297 proteins from the nacreous shell layer and 350 proteins from the prismatic shell layer from the green lip abalone H. laevigata. Considering the overlap between the two sets we identified a total of 448 proteins. Fifty-one nacre proteins and 43 prismatic layer proteins were defined as major proteins based on their abundance at more than 0.2% of the total. The remaining proteins occurred at low abundance and may not play any significant role in shell fabrication. The overlap of major proteins between the two shell layers was 17, amounting to a total of 77 major proteins. Conclusions The H. laevigata shell proteome shares moderate sequence similarity at the protein level with other gastropod, bivalve and more distantly related invertebrate biomineralising proteomes. Features conserved in H. laevigata and other molluscan shell proteomes include short repetitive sequences of low complexity predicted to lack intrinsic three-dimensional structure, and domains such as tyrosinase, chitin-binding, and carbonic anhydrase. This catalogue of H. laevigata shell proteins represents the most comprehensive for a haliotid and should support future efforts to elucidate the molecular mechanisms of shell assembly. Electronic supplementary material The online version of this article (10.1186/s12953-018-0139-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Karlheinz Mann
- 1Abteilung Proteomics und Signaltransduktion, Max-Planck-Institut für Biochemie, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Nicolas Cerveau
- 2Department of Geobiology, Georg-August University of Göttingen, Goldschmidstr. 3, 37077 Göttingen, Germany
| | - Meike Gummich
- 3Universität Bremen, Institut für Biophysik, Otto Hahn Allee NW1, D-28334 Bremen, Germany
| | - Monika Fritz
- 3Universität Bremen, Institut für Biophysik, Otto Hahn Allee NW1, D-28334 Bremen, Germany
| | - Matthias Mann
- 1Abteilung Proteomics und Signaltransduktion, Max-Planck-Institut für Biochemie, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Daniel J Jackson
- 2Department of Geobiology, Georg-August University of Göttingen, Goldschmidstr. 3, 37077 Göttingen, Germany
| |
Collapse
|
39
|
Smith AM, Papaleo C, Reid CW, Bliss JM. RNA-Seq reveals a central role for lectin, C1q and von Willebrand factor A domains in the defensive glue of a terrestrial slug. BIOFOULING 2017; 33:741-754. [PMID: 28899232 PMCID: PMC6124484 DOI: 10.1080/08927014.2017.1361413] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/25/2017] [Indexed: 06/07/2023]
Abstract
The tough, hydrogel glue produced by the slug Arion subfuscus achieves impressive performance through metal-based, protein cross-links. The primary sequence of these proteins was determined through transcriptome sequencing and proteome analysis by tandem mass spectrometry. The main proteins that correlate with adhesive function are a group of 11 small, highly abundant lectin-like proteins. These proteins matched the ligand-binding C-lectin, C1q or H-lectin domains. The variety of different lectin-like proteins and their potential for oligomerization suggests that they function as versatile and potent cross-linkers. In addition, the glue contains five matrilin-like proteins that are rich in von Willebrand factor A (VWA) and EGF domains. Both C-lectins and VWA domains are known to bind to ligands using divalent cations. These findings are consistent with the double network mechanism proposed for slug glue, with divalent ions serving as sacrificial bonds to dissipate energy.
Collapse
Affiliation(s)
- Andrew M. Smith
- Ithaca College, Department of Biology, 953 Danby Road, Ithaca, NY 14850 607-274-3975, ,
| | - Cassandra Papaleo
- Ithaca College, Department of Biology, 953 Danby Road, Ithaca, NY 14850 607-274-3975, ,
| | - Christopher W. Reid
- Bryant University, Science and Technology Department, 1150 Douglas Pike, Smithfield, RI 02917 401-232-6000,
| | - Joseph M. Bliss
- Women & Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University 100 Dudley Street, Providence, RI 02905, 401-274-1100,
| |
Collapse
|
40
|
Goncalves P, Jones DB, Thompson EL, Parker LM, Ross PM, Raftos DA. Transcriptomic profiling of adaptive responses to ocean acidification. Mol Ecol 2017; 26:5974-5988. [PMID: 28833825 DOI: 10.1111/mec.14333] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/28/2017] [Accepted: 08/07/2017] [Indexed: 12/22/2022]
Abstract
Some populations of marine organisms appear to have inherent tolerance or the capacity for acclimation to stressful environmental conditions, including those associated with climate change. Sydney rock oysters from the B2 breeding line exhibit resilience to ocean acidification (OA) at the physiological level. To understand the molecular basis of this physiological resilience, we analysed the gill transcriptome of B2 oysters that had been exposed to near-future projected ocean pH over two consecutive generations. Our results suggest that the distinctive performance of B2 oysters in the face of OA is mediated by the selective expression of genes involved in multiple cellular processes. Subsequent high-throughput qPCR revealed that some of these transcriptional changes are exclusive to B2 oysters and so may be associated with their resilience to OA. The intracellular processes mediated by the differentially abundant genes primarily involve control of the cell cycle and maintenance of cellular homeostasis. These changes may enable B2 oysters to prevent apoptosis resulting from oxidative damage or to alleviate the effects of apoptosis through regulation of the cell cycle. Comparative analysis of the OA conditioning effects across sequential generations supported the contention that B2 and wild-type oysters have different trajectories of changing gene expression and responding to OA. Our findings reveal the broad set of molecular processes underlying transgenerational conditioning and potential resilience to OA in a marine calcifier. Identifying the mechanisms of stress resilience can uncover the intracellular basis for these organisms to survive and thrive in a rapidly changing ocean.
Collapse
Affiliation(s)
- Priscila Goncalves
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia.,Sydney Institute of Marine Science, Sydney, NSW, Australia
| | - David B Jones
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia.,Sydney Institute of Marine Science, Sydney, NSW, Australia
| | - Emma L Thompson
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia.,Sydney Institute of Marine Science, Sydney, NSW, Australia.,School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Laura M Parker
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Pauline M Ross
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - David A Raftos
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia.,Sydney Institute of Marine Science, Sydney, NSW, Australia
| |
Collapse
|
41
|
Goncalves P, Thompson EL, Raftos DA. Contrasting impacts of ocean acidification and warming on the molecular responses of CO 2-resilient oysters. BMC Genomics 2017; 18:431. [PMID: 28578697 PMCID: PMC5457604 DOI: 10.1186/s12864-017-3818-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 05/25/2017] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND This study characterises the molecular processes altered by both elevated CO2 and increasing temperature in oysters. Differences in resilience of marine organisms against the environmental stressors associated with climate change will have significant implications for the sustainability of coastal ecosystems worldwide. Some evidence suggests that climate change resilience can differ between populations within a species. B2 oysters represent a unique genetic resource because of their capacity to better withstand the impacts of elevated CO2 at the physiological level, compared to non-selected oysters from the same species (Saccostrea glomerata). Here, we used proteomic and transcriptomic analysis of gill tissue to evaluate whether the differential response of B2 oysters to elevated CO2 also extends to increased temperature. RESULTS Substantial and distinctive effects on protein concentrations and gene expression were evident among B2 oysters responding to elevated CO2 or elevated temperature. The combination of both stressors also altered oyster gill proteomes and gene expression. However, the impacts of elevated CO2 and temperature were not additive or synergistic, and may be antagonistic. CONCLUSIONS The data suggest that the simultaneous exposure of CO2-resilient oysters to near-future projected ocean pH and temperature results in complex changes in molecular processes in order to prevent stress-induced cellular damage. The differential response of B2 oysters to the combined stressors also indicates that the addition of thermal stress may impair the resilience of these oysters to decreased pH. Overall, this study reveals the intracellular mechanisms that might enable marine calcifiers to endure the emergent, adverse seawater conditions resulting from climate change.
Collapse
Affiliation(s)
- Priscila Goncalves
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia. .,Sydney Institute of Marine Science, Chowder Bay, Sydney, NSW, 2088, Australia.
| | - Emma L Thompson
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia.,Sydney Institute of Marine Science, Chowder Bay, Sydney, NSW, 2088, Australia.,Present Address: School of Life and Environmental Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - David A Raftos
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia.,Sydney Institute of Marine Science, Chowder Bay, Sydney, NSW, 2088, Australia
| |
Collapse
|
42
|
Gerhard EM, Wang W, Li C, Guo J, Ozbolat IT, Rahn KM, Armstrong AD, Xia J, Qian G, Yang J. Design strategies and applications of nacre-based biomaterials. Acta Biomater 2017; 54:21-34. [PMID: 28274766 DOI: 10.1016/j.actbio.2017.03.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 10/20/2022]
Abstract
The field of tissue engineering and regenerative medicine relies heavily on materials capable of implantation without significant foreign body reactions and with the ability to promote tissue differentiation and regeneration. The field of bone tissue engineering in particular requires materials capable of providing enhanced mechanical properties and promoting osteogenic cell lineage commitment. While bone repair has long relied almost exclusively on inorganic, calcium phosphate ceramics such as hydroxyapatite and their composites or on non-degradable metals, the organically derived shell and pearl nacre generated by mollusks has emerged as a promising alternative. Nacre is a naturally occurring composite material composed of inorganic, calcium carbonate plates connected by a framework of organic molecules. Similar to mammalian bone, the highly organized microstructure of nacre endows the composite with superior mechanical properties while the organic phase contributes to significant bioactivity. Studies, both in vitro and in vivo, have demonstrated nacre's biocompatibility, biodegradability, and osteogenic potential, which are superior to pure inorganic minerals such as hydroxyapatite or non-degradable metals. Nacre can be used directly as a bulk implant or as part of a composite material when combined with polymers or other ceramics. While nacre has demonstrated its effectiveness in multiple cell culture and animal models, it remains a relatively underexplored biomaterial. This review introduces the formation, structure, and characteristics of nacre, and discusses the present and future uses of this biologically-derived material as a novel biomaterial for orthopedic and other tissue engineering applications. STATEMENT OF SIGNIFICANCE Mussel derived nacre, a biological composite composed of mineralized calcium carbonate platelets and interplatelet protein components, has recently gained interest as a potential alternative ceramic material in orthopedic biomaterials, combining the integration and mechanical capabilities of calcium phosphates with increased bioactivity derived from proteins and biomolecules; however, there is limited awareness of this material's potential. Herein, we present, to our knowledge, the first comprehensive review of nacre as a biomaterial. Nacre is a highly promising yet overlooked biomaterial for orthopedic tissue engineering with great potential in a wide variety of material systems. It is our hope that publication of this article will lead to increased community awareness of the potential of nacre as a versatile, bioactive ceramic capable of improving bone tissue regeneration and will elicit increased research effort and innovation utilizing nacre.
Collapse
|
43
|
Cruz-Chú ER, Xiao S, Patil SP, Gkagkas K, Gräter F. Organic Filling Mitigates Flaw-Sensitivity of Nanoscale Aragonite. ACS Biomater Sci Eng 2017; 3:260-268. [PMID: 33465925 DOI: 10.1021/acsbiomaterials.6b00504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Engineering at nanoscale holds the promise of tuning materials with extraordinary properties. However, macroscopic approaches commonly used to predict mechanical properties do not fully apply at nanoscale level. A controversial feature is the presence of nanoflaws in aragonite nacre, as it is expected that flaws would weaken the material, whereas nacre still shows high toughness and rupture strength. Here, we performed molecular dynamics and finite element simulations emulating flaws found in aragonite nacre. Our simulations reveal two regimes for fracture: nacre remains flaw-insensitive only for flaws smaller than 1.2 nm depth, or flaws of a few atoms, whereas larger flaws follow a Griffith-like trend resembling macroscopic fracture. We tested an alternative mechanism for flaw-insensitivity in nacre, and investigated the mechanical effect of organic filling to mitigate fracture. We found that a single nacre protein, perlucin, decreases the stress concentration at the fracture point, producing enhancements of up to 15% in rupture strength. Our study reveals a more comprehensive understanding of mechanical stability at the nanoscale and offers new routes toward hybrid nanomaterials.
Collapse
Affiliation(s)
- Eduardo R Cruz-Chú
- Computational Science and Engineering Laboratory, ETH Zürich, Clausiusstrasse 33, Zürich 8092, Switzerland.,Molecular Biomechanics Group, Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, Heidelberg 69118, Germany
| | - Shijun Xiao
- Molecular Biomechanics Group, Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, Heidelberg 69118, Germany.,CAS-MPG Partner Institute and Key Laboratory for Computational Biology, Shanghai 200031, China
| | - Sandeep P Patil
- Molecular Biomechanics Group, Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, Heidelberg 69118, Germany.,Institute of General Mechanics, RWTH Aachen University, Aachen 52062, Germany
| | - Konstantinos Gkagkas
- Advanced Technology Division, Toyota Motor Europe NV/SA, Technical Center, Zaventem 1930, Belgium
| | - Frauke Gräter
- Molecular Biomechanics Group, Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, Heidelberg 69118, Germany.,Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg INF 368, Germany
| |
Collapse
|
44
|
Lemloh ML, Altintoprak K, Wege C, Weiss IM, Rothenstein D. Biogenic and Synthetic Peptides with Oppositely Charged Amino Acids as Binding Sites for Mineralization. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E119. [PMID: 28772478 PMCID: PMC5459154 DOI: 10.3390/ma10020119] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/18/2017] [Accepted: 01/24/2017] [Indexed: 11/25/2022]
Abstract
Proteins regulate diverse biological processes by the specific interaction with, e.g., nucleic acids, proteins and inorganic molecules. The generation of inorganic hybrid materials, such as shell formation in mollusks, is a protein-controlled mineralization process. Moreover, inorganic-binding peptides are attractive for the bioinspired mineralization of non-natural inorganic functional materials for technical applications. However, it is still challenging to identify mineral-binding peptide motifs from biological systems as well as for technical systems. Here, three complementary approaches were combined to analyze protein motifs consisting of alternating positively and negatively charged amino acids: (i) the screening of natural biomineralization proteins; (ii) the selection of inorganic-binding peptides derived from phage display; and (iii) the mineralization of tobacco mosaic virus (TMV)-based templates. A respective peptide motif displayed on the TMV surface had a major impact on the SiO₂ mineralization. In addition, similar motifs were found in zinc oxide- and zirconia-binding peptides indicating a general binding feature. The comparative analysis presented here raises new questions regarding whether or not there is a common design principle based on acidic and basic amino acids for peptides interacting with minerals.
Collapse
Affiliation(s)
- Marie-Louise Lemloh
- Institute of Biomaterials and Biomolecular Systems (IBBS), Biobased Materials, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
| | - Klara Altintoprak
- Institute of Biomaterials and Biomolecular Systems (IBBS), Molecular Biology and Plant Virology, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
| | - Christina Wege
- Institute of Biomaterials and Biomolecular Systems (IBBS), Molecular Biology and Plant Virology, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
- Projekthaus NanoBioMater, Allmandring 5B, 70569 Stuttgart, Germany.
| | - Ingrid M Weiss
- Institute of Biomaterials and Biomolecular Systems (IBBS), Biobased Materials, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
- Projekthaus NanoBioMater, Allmandring 5B, 70569 Stuttgart, Germany.
| | - Dirk Rothenstein
- Projekthaus NanoBioMater, Allmandring 5B, 70569 Stuttgart, Germany.
- Institute for Materials Science, Chair of Chemical Materials Synthesis, University of Stuttgart, Heisenbergstraße 3, 70569 Stuttgart, Germany.
| |
Collapse
|
45
|
The Distribution of Lectins across the Phylum Nematoda: A Genome-Wide Search. Int J Mol Sci 2017; 18:ijms18010091. [PMID: 28054982 PMCID: PMC5297725 DOI: 10.3390/ijms18010091] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/20/2016] [Accepted: 12/28/2016] [Indexed: 12/13/2022] Open
Abstract
Nematodes are a very diverse phylum that has adapted to nearly every ecosystem. They have developed specialized lifestyles, dividing the phylum into free-living, animal, and plant parasitic species. Their sheer abundance in numbers and presence in nearly every ecosystem make them the most prevalent animals on earth. In this research nematode-specific profiles were designed to retrieve predicted lectin-like domains from the sequence data of nematode genomes and transcriptomes. Lectins are carbohydrate-binding proteins that play numerous roles inside and outside the cell depending on their sugar specificity and associated protein domains. The sugar-binding properties of the retrieved lectin-like proteins were predicted in silico. Although most research has focused on C-type lectin-like, galectin-like, and calreticulin-like proteins in nematodes, we show that the lectin-like repertoire in nematodes is far more diverse. We focused on C-type lectins, which are abundantly present in all investigated nematode species, but seem to be far more abundant in free-living species. Although C-type lectin-like proteins are omnipresent in nematodes, we have shown that only a small part possesses the residues that are thought to be essential for carbohydrate binding. Curiously, hevein, a typical plant lectin domain not reported in animals before, was found in some nematode species.
Collapse
|
46
|
Wang X, Liu Z, Wu W. Transcriptome analysis of the freshwater pearl mussel (Cristaria plicata) mantle unravels genes involved in the formation of shell and pearl. Mol Genet Genomics 2016; 292:343-352. [PMID: 27987057 DOI: 10.1007/s00438-016-1278-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 12/03/2016] [Indexed: 10/20/2022]
Abstract
Cristaria plicata, a bivalve widespread in Eastern Asia fresh water, is utilized as the freshwater pearl mussel in China. With a high economic value in pearl production, it is also an ideal object used for the studies on biomineralization in freshwater. In the research, we performed a large-scale sequencing of Cristaria plicata mantle transcriptome using Illumina HiSeq™ 2500, obtaining 98,501 unigenes with 67,817,724 bases. 22.28 and 16.64% of the unigenes were annotated in the NR and Swiss-Prot databases, respectively. Most of the annotated unigenes were homologous with proteins of Crassostrea gigas (47.4%) and some were similar to proteins of Aplysia californica (16.7%). Here, we identified 109 homologous unigenes of 15 decided shell matrix proteins, including nacrein, Pif, perlucin, tyrosinase (Tyr), PfN44, PUSP1, chitinase, shell matrix protein, MSI80, fibronectin type III, AmOxCo, perlwapin, BMSP, PfCHS1 and CaLP. Two other mantle transcriptomes of Pinctada margaritifera and Pinctada fucata were also analyzed to perform a biomineralization protein comparison of the three molluscan transcriptomes. All the three compared mollusks shared four proteins, including nacrein, Pif, Tyr and PfCHS1. It was also discovered that Cristaria plicata shared more biomineralization proteins with Pinctada fucata than that with Pinctada margaritifera. Our study explored a whole draft of mantle transcriptome of freshwater mussel and unraveled genes involved in the formation of shell and pearl, making it possible to identify massive novel biomineralization proteins in mollusks.
Collapse
Affiliation(s)
- Xuefeng Wang
- College of Science, National University of Defense Technology, Changsha, 410073, People's Republic of China.,State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, People's Republic of China
| | - Zhiming Liu
- College of Science, National University of Defense Technology, Changsha, 410073, People's Republic of China. .,State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, People's Republic of China.
| | - Wenjian Wu
- College of Science, National University of Defense Technology, Changsha, 410073, People's Republic of China.,State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, People's Republic of China
| |
Collapse
|
47
|
Gardères J, Domart-Coulon I, Marie A, Hamer B, Batel R, Müller WEG, Bourguet-Kondracki ML. Purification and partial characterization of a lectin protein complex, the clathrilectin, from the calcareous sponge Clathrina clathrus. Comp Biochem Physiol B Biochem Mol Biol 2016; 200:17-27. [PMID: 27113336 DOI: 10.1016/j.cbpb.2016.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/14/2016] [Accepted: 04/20/2016] [Indexed: 11/26/2022]
Abstract
Carbohydrate-binding proteins were purified from the marine calcareous sponge Clathrina clathrus via affinity chromatography on lactose and N-acetyl glucosamine-agarose resins. Proteomic analysis of acrylamide gel separated protein subunits obtained in reducing conditions pointed out several candidates for lectins. Based on amino-acid sequence similarity, two peptides displayed homology with the jack bean lectin Concanavalin A, including a conserved domain shared by proteins in the L-type lectin superfamily. An N-acetyl glucosamine - binding protein complex, named clathrilectin, was further purified via gel filtration chromatography, bioguided with a diagnostic rabbit erythrocyte haemagglutination assay, and its activity was found to be calcium dependent. Clathrilectin, a protein complex of 3200kDa estimated by gel filtration, is composed of monomers with apparent molecular masses of 208 and 180kDa estimated on 10% SDS-PAGE. Nine internal peptides were identified using proteomic analyses, and compared to protein libraries from the demosponge Amphimedon queenslandica and a calcareous sponge Sycon sp. from the Adriatic Sea. The clathrilectin is the first lectin isolated from a calcareous sponge and displays homologies with predicted sponge proteins potentially involved in cell aggregation and interaction with bacteria.
Collapse
Affiliation(s)
- Johan Gardères
- Unité Molécules de Communication et Adaptation des Microorganismes, UMR 7245 CNRS-MNHN, Sorbonne Universités, Muséum National d'Histoire Naturelle, CP 54, 57 rue Cuvier, 75005 Paris, France; Laboratory for Marine Molecular Biology, Center for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, 52210 Rovinj, Croatia
| | - Isabelle Domart-Coulon
- Unité Molécules de Communication et Adaptation des Microorganismes, UMR 7245 CNRS-MNHN, Sorbonne Universités, Muséum National d'Histoire Naturelle, CP 54, 57 rue Cuvier, 75005 Paris, France
| | - Arul Marie
- Unité Molécules de Communication et Adaptation des Microorganismes, UMR 7245 CNRS-MNHN, Sorbonne Universités, Muséum National d'Histoire Naturelle, CP 54, 57 rue Cuvier, 75005 Paris, France
| | - Bojan Hamer
- Laboratory for Marine Molecular Biology, Center for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, 52210 Rovinj, Croatia
| | - Renato Batel
- Laboratory for Marine Molecular Biology, Center for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, 52210 Rovinj, Croatia
| | - Werner E G Müller
- ERC Advanced Investigator Grant Research Group at Institute for Physiological Chemistry, University Medical Center of Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Marie-Lise Bourguet-Kondracki
- Unité Molécules de Communication et Adaptation des Microorganismes, UMR 7245 CNRS-MNHN, Sorbonne Universités, Muséum National d'Histoire Naturelle, CP 54, 57 rue Cuvier, 75005 Paris, France.
| |
Collapse
|
48
|
Feng Q. Principles of calcium-based biomineralization. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2016; 52:141-97. [PMID: 21877266 DOI: 10.1007/978-3-642-21230-7_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The chapter provides some basic information on the formation principles of calcium carbonate in biological systems in marine environment in the point of view of materials science in order to provide strategies for biomimetic design and preparation of new functional materials. Many researchers try to explain the principles of biomineralization and get some valuable conclusions. This chapter introduces some calcium-based biominerals in aquatic organisms which mainly include calcium carbonate and calcium phosphate. Then it gives a presentation of the hierarchical structure of calcium carbonate-based and calcium phosphate-based biominerals, e.g., mollusc shell, pearl, carp otolith, tooth, and bone. Moreover, the chapter explains the principles of calcium carbonate mineralization from the aspects of the effects of additives and templates; it also gives some explanations to the principles of calcium phosphate mineralization.
Collapse
Affiliation(s)
- Qingling Feng
- Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China,
| |
Collapse
|
49
|
Eder M, Koch M, Muth C, Rutz A, Weiss IM. In vivo modified organic matrix for testing biomineralization-related protein functions in differentiated Dictyostelium on calcite. J Struct Biol 2016; 196:85-97. [PMID: 26993464 DOI: 10.1016/j.jsb.2016.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 02/29/2016] [Accepted: 03/15/2016] [Indexed: 11/17/2022]
Abstract
This work reports an in vivo approach for identifying the function of biomineralization-related proteins. Synthetic sequences of n16N, OC-17 and perlucin with signal peptides are produced in a novel Gateway expression system for Dictyostelium under the control of the [ecmB] promoter. A fast and easy scanning electron microscopic screening method was used to differentiate on the colony level between interplay effects of the proteins expressed in the extracellular matrix (ECM). Transformed Dictyostelium, which migrated as multicellular colonies on calcite crystals and left their ECM remnants on the surface were investigated also by energy-dispersive X-ray spectroscopy (EDX). Calcium minerals with and without phosphorous accumulated very frequently within the matrix of the Dictyostelium colonies when grown on calcite. Magnesium containing phosphorous granules were observed when colonies were exposed on silica. The absence of calcium EDX signals in these cases suggests that the external calcite crystals but not living cells represent the major source of calcium in the ECM. Several features of the system provide first evidence that each protein influences the properties of the matrix in a characteristic mode. Colonies transformed with perlucin produced a matrix with cracks on the length scale of a few microns throughout the matrix patch. For colonies with OC-17, almost no cracks were observed, regardless of the length scale. The non-transformed Dictyostelium (Ax3-Orf+) produced larger cracks. The strategy presented here develops the first step toward an efficient eukaryotic screening system for the combinatorial functionalization of materials by bioengineering in close analogy to natural biomineralization concepts.
Collapse
Affiliation(s)
- Magdalena Eder
- INM - Leibniz Institute for New Materials, Campus D2.2, 66123 Saarbrücken, Germany
| | - Marcus Koch
- INM - Leibniz Institute for New Materials, Campus D2.2, 66123 Saarbrücken, Germany
| | - Christina Muth
- INM - Leibniz Institute for New Materials, Campus D2.2, 66123 Saarbrücken, Germany
| | - Angela Rutz
- INM - Leibniz Institute for New Materials, Campus D2.2, 66123 Saarbrücken, Germany
| | - Ingrid M Weiss
- INM - Leibniz Institute for New Materials, Campus D2.2, 66123 Saarbrücken, Germany.
| |
Collapse
|
50
|
Natural Composite Systems for Bioinspired Materials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 940:143-166. [PMID: 27677512 DOI: 10.1007/978-3-319-39196-0_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
From a relatively limited selection of base materials, nature has steered the development of truly remarkable materials. The simplest and often overlooked organisms have demonstrated the ability to manufacture multi-faceted, molecular-level hierarchical structures that combine mechanical properties rarely seen in synthetic materials. Indeed, these natural composite systems, composed of an array of intricately arranged and functionally relevant organic and inorganic substances serve as inspiration for materials design. A better understanding of these composite systems, specifically at the interface of the hetero-assemblies, would encourage faster development of environmentally friendly "green" materials with molecular level specificities.
Collapse
|