1
|
Yang L, Zhang Y, Hong X, Zhang K, Liu B, Zhang P, Tang Q, Yu J, Jin XZ, Jin XZ, Zhang N, Targher G, Byrne CD, Zhang Z, Zheng MH, Zhang J. Serum dithiothreitol-oxidizing capacity (DOC) is a promising biomarker for excluding significant liver fibrosis: a proof-of-concept study. BMC Med 2024; 22:278. [PMID: 38956533 PMCID: PMC11221035 DOI: 10.1186/s12916-024-03502-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND APRI and FIB-4 scores are used to exclude clinically significant fibrosis (defined as stage ≥ F2) in patients with chronic viral hepatitis. However, the cut-offs for these scores (generated by Youden indices) vary between different patient cohorts. This study aimed to evaluate whether serum dithiothreitol-oxidizing capacity (DOC), i.e., a surrogate test of quiescin sulfhydryl oxidase-1, which is a matrix remodeling enzyme, could be used to non-invasively identify significant fibrosis in patients with various chronic liver diseases (CLDs). METHODS Diagnostic performance of DOC was compared with APRI and FIB-4 for identifying significant fibrosis. ROC curve analyses were undertaken in: a) two chronic hepatitis B (CHB) cohorts, independently established from hospitals in Wenzhou (n = 208) and Hefei (n = 120); b) a MASLD cohort from Wenzhou hospital (n = 122); and c) a cohort with multiple CLD etiologies (except CHB and MASLD; n = 102), which was identified from patients in both hospitals. Cut-offs were calculated using the Youden index. All CLD patients (n = 552) were then stratified by age for ROC curve analyses and cut-off calculations. RESULTS Stratified by CLD etiology or age, ROC curve analyses consistently showed that the DOC test was superior to APRI and FIB-4 for discriminating between clinically significant fibrosis and no fibrosis, when APRI and FIB-4 showed poor/modest diagnostic performance (P < 0.05, P < 0.01 and P < 0.001 in 3, 1 and 3 cohort comparisons, respectively). Conversely, the DOC test was equivalent to APRI and FIB-4 when all tests showed moderate/adequate diagnostic performances (P > 0.05 in 11 cohort comparisons). DOC had a significant advantage over APRI or FIB-4 scores for establishing a uniform cut-off independently of age and CLD etiology (coefficients of variation of DOC, APRI and FIB-4 cut-offs were 1.7%, 22.9% and 47.6% in cohorts stratified by CLD etiology, 2.0%, 26.7% and 29.5% in cohorts stratified by age, respectively). The uniform cut-off was 2.13, yielded from all patients examined. Surprisingly, the uniform cut-off was the same as the DOC upper limit of normal with a specificity of 99%, estimated from 275 healthy control individuals. Hence, the uniform cut-off should possess a high negative predictive value for excluding significant fibrosis in primary care settings. A high DOC cut-off with 97.5% specificity could be used for detecting significant fibrosis (≥ F2) with an acceptable positive predictive value (87.1%). CONCLUSIONS This proof-of-concept study suggests that the DOC test may efficiently rule out and rule in significant liver fibrosis, thereby reducing the numbers of unnecessary liver biopsies. Moreover, the DOC test may be helpful for clinicians to exclude significant liver fibrosis in the general population.
Collapse
Affiliation(s)
- Lumin Yang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science, Anhui Agricultural University, No. 130 West Changjiang Lane, Hefei, Anhui, 230036, China
| | - Yafei Zhang
- Department of Infectious Diseases and Institute of Clinical Virology, The Second Hospital of Anhui Medical University, No. 678 Furong Lane, Hefei, Anhui, 230601, China
| | - Xiaodan Hong
- Department of Infectious Diseases and Institute of Clinical Virology, The Second Hospital of Anhui Medical University, No. 678 Furong Lane, Hefei, Anhui, 230601, China
| | - Ke Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science, Anhui Agricultural University, No. 130 West Changjiang Lane, Hefei, Anhui, 230036, China
| | - Bingyan Liu
- Department of Infectious Diseases and Institute of Clinical Virology, The Second Hospital of Anhui Medical University, No. 678 Furong Lane, Hefei, Anhui, 230601, China
| | - Peixin Zhang
- Department of Infectious Diseases and Institute of Clinical Virology, The Second Hospital of Anhui Medical University, No. 678 Furong Lane, Hefei, Anhui, 230601, China
| | - Qianqian Tang
- Department of Infectious Diseases and Institute of Clinical Virology, The Second Hospital of Anhui Medical University, No. 678 Furong Lane, Hefei, Anhui, 230601, China
| | - Jian Yu
- Department of Infectious Diseases and Institute of Clinical Virology, The Second Hospital of Anhui Medical University, No. 678 Furong Lane, Hefei, Anhui, 230601, China
| | - Xiao-Zhi Jin
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, No. 2 Fuxue Lane, Wenzhou, 325000, China
| | - Xin-Zhe Jin
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ni Zhang
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, No. 2 Fuxue Lane, Wenzhou, 325000, China
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy
- Metabolic Diseases Research Unit, IRCCS Sacro Cuore - Don Calabria Hospital, Negrar Di Valpolicella, Italy
| | - Christopher D Byrne
- Southampton National Institute for Health and Care Research Biomedical Research Centre, University Hospital Southampton and University of Southampton, Southampton General Hospital, Southampton, UK
| | - Zhenhua Zhang
- Department of Infectious Diseases and Institute of Clinical Virology, The Second Hospital of Anhui Medical University, No. 678 Furong Lane, Hefei, Anhui, 230601, China.
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, No. 2 Fuxue Lane, Wenzhou, 325000, China.
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China.
| | - Jinsong Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science, Anhui Agricultural University, No. 130 West Changjiang Lane, Hefei, Anhui, 230036, China.
| |
Collapse
|
2
|
Mazepa E, Furlanetto ALDDM, Brum H, Nakao LS, Martinez PA, Cadena SMSC, Rocha MEM, Cunha ES, Martinez GR. Effects of redox modulation on quiescin/sulfhydryl oxidase activity of melanoma cells. Mol Cell Biochem 2024; 479:511-524. [PMID: 37103678 DOI: 10.1007/s11010-023-04745-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023]
Abstract
Secreted quiescin/sulfhydryl oxidase (QSOX) is overexpressed in many tumor cell lines, including melanoma, and is usually associated with a pro-invasive phenotype. Our previous work described that B16-F10 cells enter in a quiescent state as a protective mechanism against damage generated by reactive oxygen species (ROS) during melanogenesis stimulation. Our present results show that QSOX activity was two-fold higher in cells with stimulated melanogenesis when compared to control cells. Considering that glutathione (GSH) is one of the main factor responsible for controlling redox homeostasis in cells, this work also aimed to investigate the relationship between QSOX activity, GSH levels and melanogenesis stimulation in B16-F10 murine melanoma cell line. The redox homeostasis was impaired by treating cells with GSH in excess or depleting its intracellular levels through BSO treatment. Interestingly, GSH-depleted cells without stimulation of melanogenesis kept high levels of viability, suggesting a possible adaptive mechanism of survival even under low GSH levels. They also showed lower extracellular activity of QSOX, and higher QSOX intracellular immunostaining, suggesting that this enzyme was less excreted from cells and corroborating with a diminished extracellular QSOX activity. On the other hand, cells under melanogenesis stimulation showed a lower GSH/GSSG ratio (8:1) in comparison with control (non-stimulated) cells (20:1), indicating a pro-oxidative state after stimulation. This was accompanied by decreased cell viability after GSH-depletion, no alterations in QSOX extracellular activity, but higher QSOX nucleic immunostaining. We suggest that melanogenesis stimulation and redox impairment caused by GSH-depletion enhanced the oxidative stress in these cells, contributing to additional alterations of its metabolic adaptive response.
Collapse
Affiliation(s)
- Ester Mazepa
- Postgraduate Program in Sciences (Biochemistry), Department of Biochemistry and Molecular Biology, UFPR, Curitiba, PR, Brazil
| | | | - Hulyana Brum
- Postgraduate Program in Sciences (Biochemistry), Department of Biochemistry and Molecular Biology, UFPR, Curitiba, PR, Brazil
| | | | | | | | - Maria Eliane Merlin Rocha
- Postgraduate Program in Sciences (Biochemistry), Department of Biochemistry and Molecular Biology, UFPR, Curitiba, PR, Brazil
| | - Elizabeth Sousa Cunha
- Postgraduate Program in Sciences (Biochemistry), Department of Biochemistry and Molecular Biology, UFPR, Curitiba, PR, Brazil
| | - Glaucia Regina Martinez
- Postgraduate Program in Sciences (Biochemistry), Department of Biochemistry and Molecular Biology, UFPR, Curitiba, PR, Brazil.
| |
Collapse
|
3
|
Balu R, Ramachandran SS, Mathimaran A, Jeyaraman J, Paramasivam SG. Functional significance of mouse seminal vesicle sulfhydryl oxidase on sperm capacitation in vitro. Mol Hum Reprod 2022; 29:6637520. [PMID: 35809071 DOI: 10.1093/molehr/gaac025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/06/2022] [Indexed: 11/14/2022] Open
Abstract
During ejaculation, cauda epididymal spermatozoa are suspended in a protein-rich solution of seminal plasma which is composed of proteins mostly secreted from the seminal vesicle. These seminal proteins interact with the sperm cells and bring about changes in their physiology, so that they can become capacitated in order for the fertilization to take place. Sulfhydryl oxidase (SOX) is a member of the QSOX family and its expression is found to be high in the seminal vesicle secretion of mouse. Previously, it has been reported to cross-link thiol containing amino acids among major seminal vesicle secretion (SVS) proteins. However, its role in male reproduction is unclear. In this study, we determined the role of SOX on epididymal sperm maturation and also disclosed the binding effect of SOX on the sperm fertilizing ability in vitro. In order to achieve the above two objectives, we constructed a Sox clone (1.7 kb) using a pET-30a vector. His-tagged recombinant Sox was over expressed in Shuffle Escherichia coli cells and purified using His-Trap column affinity chromatography along with hydrophobic interaction chromatography. The purified SOX was confirmed by Western blot analysis and by its activity with DTT as a substrate. Results obtained from immunocytochemical staining clearly indicated that SOX possesses a binding site on the sperm acrosome. The influence of SOX on oxidation of sperm sulfhydryl to disulfides during epididymal sperm maturation was evaluated by a thiol labelling agent, mBBr. The SOX protein binds on to the sperm cells and increases their progressive motility. The effect of SOX binding on reducing the [Ca2+]i concentration in sperm head, was determined using a calcium probe, Fluo-3 AM. The inhibitory influence of SOX on sperm acrosome reaction was shown by using calcium ionophore A32187 to induce the acrosome reaction. The acrosome-reacted sperm were examined by staining with FITC-conjugated Arachis hypogaea (peanut) lectin. Furthermore, immunocytochemical analysis revealed that SOX remains bound to the sperm cells in the uterus but disappears in the oviduct during their transit in the female reproductive tract. The results from the above experiment revealed that SOX binding on to the sperm acrosome prevents sperm capacitation by affecting the [Ca2+]i concentration in the sperm head and the ionophore-induced acrosome reaction. Thus, the binding of SOX on to the sperm acrosome may possibly serve as a decapacitation factor in the uterus to prevent premature capacitation and acrosome reaction, thus preserving their fertilizing ability.
Collapse
Affiliation(s)
- Rubhadevi Balu
- Department of Biotechnology, BIT-Campus, Anna University, Tiruchirappalli-620024, Tamil Nadu India
| | | | - Amala Mathimaran
- Department of Bioinformatics, Alagappa University, Karaikudi-630 004, Tamil Nadu, India
| | - Jeyakanthan Jeyaraman
- Department of Bioinformatics, Alagappa University, Karaikudi-630 004, Tamil Nadu, India
| | | |
Collapse
|
4
|
Bothrops Jararaca Snake Venom Modulates Key Cancer-Related Proteins in Breast Tumor Cell Lines. Toxins (Basel) 2021; 13:toxins13080519. [PMID: 34437390 PMCID: PMC8402457 DOI: 10.3390/toxins13080519] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer is characterized by the development of abnormal cells that divide in an uncontrolled way and may spread into other tissues where they may infiltrate and destroy normal body tissue. Several previous reports have described biochemical anti-tumorigenic properties of crude snake venom or its components, including their capability of inhibiting cell proliferation and promoting cell death. However, to the best of our knowledge, there is no work describing cancer cell proteomic changes following treatment with snake venoms. In this work we describe the quantitative changes in proteomics of MCF7 and MDA-MB-231 breast tumor cell lines following treatment with Bothrops jararaca snake venom, as well as the functional implications of the proteomic changes. Cell lines were treated with sub-toxic doses at either 0.63 μg/mL (low) or 2.5 μg/mL (high) of B. jararaca venom for 24 h, conditions that cause no cell death per se. Proteomics analysis was conducted on a nano-scale liquid chromatography coupled on-line with mass spectrometry (nLC-MS/MS). More than 1000 proteins were identified and evaluated from each cell line treated with either the low or high dose of the snake venom. Protein profiling upon venom treatment showed differential expression of several proteins related to cancer cell metabolism, immune response, and inflammation. Among the identified proteins we highlight histone H3, SNX3, HEL-S-156an, MTCH2, RPS, MCC2, IGF2BP1, and GSTM3. These data suggest that sub-toxic doses of B. jararaca venom have potential to modulate cancer-development related protein targets in cancer cells. This work illustrates a novel biochemical strategy to identify therapeutic targets against cancer cell growth and survival.
Collapse
|
5
|
Payen VL, Lavergne A, Alevra Sarika N, Colonval M, Karim L, Deckers M, Najimi M, Coppieters W, Charloteaux B, Sokal EM, El Taghdouini A. Single-cell RNA sequencing of human liver reveals hepatic stellate cell heterogeneity. JHEP Rep 2021; 3:100278. [PMID: 34027339 PMCID: PMC8121977 DOI: 10.1016/j.jhepr.2021.100278] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 02/11/2021] [Accepted: 02/28/2021] [Indexed: 02/07/2023] Open
Abstract
Background & Aims The multiple vital functions of the human liver are performed by highly specialised parenchymal and non-parenchymal cells organised in complex collaborative sinusoidal units. Although crucial for homeostasis, the cellular make-up of the human liver remains to be fully elucidated. Here, single-cell RNA-sequencing was used to unravel the heterogeneity of human liver cells, in particular of hepatocytes (HEPs) and hepatic stellate cells (HSCs). Method The transcriptome of ~25,000 freshly isolated human liver cells was profiled using droplet-based RNA-sequencing. Recently published data sets and RNA in situ hybridisation were integrated to validate and locate newly identified cell populations. Results In total, 22 cell populations were annotated that reflected the heterogeneity of human parenchymal and non-parenchymal liver cells. More than 20,000 HEPs were ordered along the portocentral axis to confirm known, and reveal previously undescribed, zonated liver functions. The existence of 2 subpopulations of human HSCs with unique gene expression signatures and distinct intralobular localisation was revealed (i.e. portal and central vein-concentrated GPC3+ HSCs and perisinusoidally located DBH+ HSCs). In particular, these data suggest that, although both subpopulations collaborate in the production and organisation of extracellular matrix, GPC3+ HSCs specifically express genes involved in the metabolism of glycosaminoglycans, whereas DBH+ HSCs display a gene signature that is reminiscent of antigen-presenting cells. Conclusions This study highlights metabolic zonation as a key determinant of HEP transcriptomic heterogeneity and, for the first time, outlines the existence of heterogeneous HSC subpopulations in the human liver. These findings call for further research on the functional implications of liver cell heterogeneity in health and disease. Lay summary This study resolves the cellular landscape of the human liver in an unbiased manner and at high resolution to provide new insights into human liver cell biology. The results highlight the physiological heterogeneity of human hepatic stellate cells. A cell atlas from the near-native transcriptome of >25,000 human liver cells is presented. Hepatocytes were ordered along the portocentral axis to reveal previously undescribed gene expression patterns and zonated liver functions. Two subpopulations of human hepatic stellate cells (HSCs) are reported, characterised by different spatial distribution in the native tissue. Characteristic gene signatures of HSC subpopulations are suggestive of far-reaching functional differences.
Collapse
Key Words
- BSA, bovine serum albumin
- CC, cholangiocyte
- CV, central vein
- DEG, differentially expressed gene
- EC, endothelial cell
- ECM, extracellular matrix
- Extracellular matrix
- FFPE, formaldehyde-fixed paraffin embedded
- GAG, glycosaminoglycan
- GEO, Gene Expression Omnibus
- GO, gene ontology
- HEP, hepatocyte
- HLA, human leukocyte antigen
- HRP, horseradish peroxidase
- HSC, hepatic stellate cell
- Hepatocyte
- ISH, in situ hybridisation
- KLR, killer lectin-like receptor
- LP, lymphoid cell
- Liver cell atlas
- MP, macrophage
- MZ, midzonal
- PC, pericentral
- PP, periportal
- PV, portal vein
- TBS, Tris buffered saline
- TSA, tyramide signal amplification
- UMAP, uniform manifold approximation and projection
- UMI, unique molecular identifier
- VIM, vimentin
- Zonation
- scRNA-seq, single-cell RNA-sequencing
Collapse
Affiliation(s)
- Valéry L. Payen
- Laboratory of Pediatric Hepatology and Cell Therapy (PEDI), IREC Institute, Université catholique de Louvain, Brussels, Belgium
- Laboratory of Advanced Drug Delivery and Biomaterials (ADDB), LDRI Institute, Université catholique de Louvain, Brussels, Belgium
| | - Arnaud Lavergne
- Genomics Platform, GIGA Institute, Université de Liège, Liège, Belgium
| | - Niki Alevra Sarika
- Laboratory of Pediatric Hepatology and Cell Therapy (PEDI), IREC Institute, Université catholique de Louvain, Brussels, Belgium
- Laboratory of Advanced Drug Delivery and Biomaterials (ADDB), LDRI Institute, Université catholique de Louvain, Brussels, Belgium
| | - Megan Colonval
- Genomics Platform, GIGA Institute, Université de Liège, Liège, Belgium
| | - Latifa Karim
- Genomics Platform, GIGA Institute, Université de Liège, Liège, Belgium
| | - Manon Deckers
- Genomics Platform, GIGA Institute, Université de Liège, Liège, Belgium
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy (PEDI), IREC Institute, Université catholique de Louvain, Brussels, Belgium
| | - Wouter Coppieters
- Genomics Platform, GIGA Institute, Université de Liège, Liège, Belgium
| | | | - Etienne M. Sokal
- Laboratory of Pediatric Hepatology and Cell Therapy (PEDI), IREC Institute, Université catholique de Louvain, Brussels, Belgium
- Corresponding authors. Address: Laboratory of Pediatric Hepatology and Cell Therapy (PEDI), IREC Institute, Université catholique de Louvain, Avenue Mounier 52 Box B1.52.03, 1200 Brussels, Belgium.
| | - Adil El Taghdouini
- Laboratory of Pediatric Hepatology and Cell Therapy (PEDI), IREC Institute, Université catholique de Louvain, Brussels, Belgium
- Corresponding authors. Address: Laboratory of Pediatric Hepatology and Cell Therapy (PEDI), IREC Institute, Université catholique de Louvain, Avenue Mounier 52 Box B1.52.03, 1200 Brussels, Belgium.
| |
Collapse
|
6
|
Sha J, Arbesman J, Harter ML. Premature senescence in human melanocytes after exposure to solar UVR: An exosome and UV-miRNA connection. Pigment Cell Melanoma Res 2020; 33:671-684. [PMID: 32386350 DOI: 10.1111/pcmr.12888] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/27/2020] [Accepted: 05/02/2020] [Indexed: 01/10/2023]
Abstract
Ultraviolet radiation (UVR) can play two roles: induce cellular senescence and convert skin melanocytes into melanoma. To assess whether this conversion might rely on melanocytes having to first acquire a senescent phenotype, we studied the effects of physiological doses of UVR (UVA + UVB) on quiescent melanocytes in vitro. Repeated doses of UVR induced these melanocytes into a senescent-like state. Additionally, these cells secrete exosomes with specific miRNAs that differ in quantity from those of the un-irradiated melanocytes. Many of the exosomal miRNAs that were differentially enriched regulated genes comprising a "senescence core signature" and encoding factors of the senescence-messaging secretome (SASP), while a subset of the differentially reduced miRNAs targeted DNA repair genes that have been experimentally shown to be repressed in senescent melanocytes. Thus, the selection of specific miRNAs by exosomes and their release from melanocytes after exposure to UVR have activities in inducing these cells into premature senescence.
Collapse
Affiliation(s)
- Jingfeng Sha
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Joshua Arbesman
- Dermatology and Plastic Surgery Institute and Cancer Biology, Cleveland Clinic, Cleveland, OH, USA
| | - Marian L Harter
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
7
|
Feldman T, Grossman-Haham I, Elkis Y, Vilela P, Moskovits N, Barshack I, Salame TM, Fass D, Ilani T. Inhibition of fibroblast secreted QSOX1 perturbs extracellular matrix in the tumor microenvironment and decreases tumor growth and metastasis in murine cancer models. Oncotarget 2020; 11:386-398. [PMID: 32064042 PMCID: PMC6996906 DOI: 10.18632/oncotarget.27438] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/29/2019] [Indexed: 12/20/2022] Open
Abstract
Extracellular matrix (ECM) plays an important role in tumor development and dissemination, but few points of therapeutic intervention targeting ECM of the tumor microenvironment have been exploited to date. Recent observations suggest that the enzymatic introduction of disulfide bond cross-links into the ECM may be modulated to affect cancer progression. Specifically, the disulfide bond-forming activity of the enzyme Quiescin sulfhydryl oxidase 1 (QSOX1) is required by fibroblasts to assemble ECM components for adhesion and migration of cancer cells. Based on this finding and the increased QSOX1 expression in the stroma of aggressive breast carcinomas, we developed monoclonal antibody inhibitors with the aim of preventing QSOX1 from participating in pro-metastatic ECM remodeling. Here we show that QSOX1 inhibitory antibodies decreased tumor growth and metastasis in murine cancer models and had added benefits when provided together with chemotherapy. Mechanistically, the inhibitors dampened stromal participation in tumor development, as the tumors of treated animals showed fewer myofibroblasts and poorer ECM organization. Thus, our findings demonstrate that specifically targeting excess stromal QSOX1 secreted in response to tumor-cell signaling provides a means to modulate the tumor microenvironment and may complement other therapeutic approaches in cancer.
Collapse
Affiliation(s)
- Tal Feldman
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Iris Grossman-Haham
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yoav Elkis
- Almog Diagnostic, Shoham 6081513, Israel
| | - Patrick Vilela
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Neta Moskovits
- Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Iris Barshack
- Institute of Pathology, Sheba Medical Center Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tomer M Salame
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Deborah Fass
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tal Ilani
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
8
|
França KC, Martinez PA, Prado ML, Lo SM, Borges BE, Zanata SM, San Martin A, Nakao LS. Quiescin/sulfhydryl oxidase 1b (QSOX1b) induces migration and proliferation of vascular smooth muscle cells by distinct redox pathways. Arch Biochem Biophys 2020; 679:108220. [PMID: 31812669 DOI: 10.1016/j.abb.2019.108220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 01/24/2023]
Abstract
Quiescent and contractile VSMC can switch to proliferative and migratory phenotype in response to growth factors and cytokines, an effect underscored by Nox family NADPH oxidases, particularly Nox1. We previously showed that quiescin/sulfhydryl oxidase 1 (QSOX1) has a role in neointima formation in balloon-injured rat carotid. Here, we investigated the intracellular redox mechanisms underlying these effects in primary VSMC. Our results show that exogenous incubation with wild type QSOX1b (wt QSOX), or with secreted QSOX1, but not with the inactive C452S QSOX 1b (C452S QSOX) or secreted inactive C455S QSOX1, induces VSMC migration and chemotaxis. PEG-catalase (PEG-CAT) prevented, while PEG-superoxide dismutase (PEG-SOD) increased migration induced by wt QSOX. Moreover, wt QSOX-induced migration was abrogated in NOX1-null VSMC. In contrast, both wt QSOX and C452S QSOX, and both secreted QSOX1 and C455S QSOX1, induce cell proliferation. Such effect was unaltered by PEG-CAT, while being inhibited by PEG-SOD. However, QSOX1-induced proliferation was not significantly affected in NOX1-null VSMC, compared with WT VSMC. These results indicate that hydrogen peroxide and superoxide mediate, respectively, migration and proliferation. However, Nox1 was required only for QSOX1-induced migration. In parallel, QSOX1-induced proliferation was independent of its redox activity, although mediated by intracellular superoxide.
Collapse
Affiliation(s)
- Karime C França
- Department of Basic Pathology, Universidade Federal Do Paraná, Curitiba, PR, 81531-980, Brazil
| | - Pierina A Martinez
- Department of Basic Pathology, Universidade Federal Do Paraná, Curitiba, PR, 81531-980, Brazil
| | - Maiara L Prado
- Department of Basic Pathology, Universidade Federal Do Paraná, Curitiba, PR, 81531-980, Brazil
| | - Sze M Lo
- Department of Basic Pathology, Universidade Federal Do Paraná, Curitiba, PR, 81531-980, Brazil
| | - Beatriz E Borges
- Department of Basic Pathology, Universidade Federal Do Paraná, Curitiba, PR, 81531-980, Brazil
| | - Silvio M Zanata
- Department of Basic Pathology, Universidade Federal Do Paraná, Curitiba, PR, 81531-980, Brazil
| | | | - Lia S Nakao
- Department of Basic Pathology, Universidade Federal Do Paraná, Curitiba, PR, 81531-980, Brazil.
| |
Collapse
|
9
|
Horowitz B, Javitt G, Ilani T, Gat Y, Morgenstern D, Bard FA, Fass D. Quiescin sulfhydryl oxidase 1 (QSOX1) glycosite mutation perturbs secretion but not Golgi localization. Glycobiology 2018; 28:580-591. [PMID: 29757379 DOI: 10.1093/glycob/cwy044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 05/08/2018] [Indexed: 12/13/2022] Open
Abstract
Quiescin sulfhydryl oxidase 1 (QSOX1) catalyzes the formation of disulfide bonds in protein substrates. Unlike other enzymes with related activities, which are commonly found in the endoplasmic reticulum, QSOX1 is localized to the Golgi apparatus or secreted. QSOX1 is upregulated in quiescent fibroblast cells and secreted into the extracellular environment, where it contributes to extracellular matrix assembly. QSOX1 is also upregulated in adenocarcinomas, though the extent to which it is secreted in this context is currently unknown. To achieve a better understanding of factors that dictate QSOX1 localization and function, we aimed to determine how post-translational modifications affect QSOX1 trafficking and activity. We found a highly conserved N-linked glycosylation site to be required for QSOX1 secretion from fibroblasts and other cell types. Notably, QSOX1 lacking a glycan at this site arrives at the Golgi, suggesting that it passes endoplasmic reticulum quality control but is not further transported to the cell surface for secretion. The QSOX1 transmembrane segment is dispensable for Golgi localization and secretion, as fully luminal and transmembrane variants displayed the same trafficking behavior. This study provides a key example of the effect of glycosylation on Golgi exit and contributes to an understanding of late secretory sorting and quality control.
Collapse
Affiliation(s)
- Ben Horowitz
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Gabriel Javitt
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tal Ilani
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yair Gat
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - David Morgenstern
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Frederic A Bard
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, Proteos, Singapore
| | - Deborah Fass
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
10
|
Pavuluri S, Sharp JA, Lefevre C, Nicholas KR. The Effect of Mammary Extracellular Matrix in Controlling Oral and Mammary Cancer Cells. Asian Pac J Cancer Prev 2018; 19:57-63. [PMID: 29373893 PMCID: PMC5844637 DOI: 10.22034/apjcp.2018.19.1.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Extracellular matrix (ECM) plays an important role in the normal physiology of tissues and progression to disease. Earlier studies and our external microarray data analysis indicated that mammary matrix from involuting tissue showed upregulation of genes involved in ECM remodeling. The present study examines the fate of mammary and oral cancer cells grown in the ECM from lactating mammary gland. Our findings show that non-tumorigenic cells, MCF10A and DOK cells did not proliferate but the tumorigenic and metastatic cells, SCC25 and MDA-MB-231, underwent apoptosis when grown on mammary ECM isolated from lactating mice. In addition, the cytokinesis marker, CEP55, was repressed in the oral and breast cancer cells. In contrast, these cells proliferated normally on mammary ECM isolated from mice undergoing involution. External microarray data analysis of mammary tissue further revealed over expression (~16 fold) of QSOX1 gene, which promotes cellular quiescence, in lactating mammary gland. A recent study has indicated that QSOX1 overexpression in breast cancer cells led to reduced proliferation and tumorigenic properties. This extracellular protein in mammary ECM may be responsible for reduced cellular proliferation. The present study has shown that ECM from lactating mammary gland can regulate signals to oral and breast cancer cells to halt cell division. This preliminary observation provided insights into the potential role of ECM factors present in lactating mammary gland as therapeutic targets to control cancer cell division. This preliminary study is an attempt to understand not only the requirement of ECM remodeling factors essential for the growth and survival of cancer cells but also the factors present in the lactation matrix that simultaneously halts cell division and selectively inhibits the growth of cancer cells.
Collapse
Affiliation(s)
- Sivapriya Pavuluri
- Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad, India
| | | | | | | |
Collapse
|
11
|
Slow domain reconfiguration causes power-law kinetics in a two-state enzyme. Proc Natl Acad Sci U S A 2018; 115:513-518. [PMID: 29298911 DOI: 10.1073/pnas.1714401115] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein dynamics are typically captured well by rate equations that predict exponential decays for two-state reactions. Here, we describe a remarkable exception. The electron-transfer enzyme quiescin sulfhydryl oxidase (QSOX), a natural fusion of two functionally distinct domains, switches between open- and closed-domain arrangements with apparent power-law kinetics. Using single-molecule FRET experiments on time scales from nanoseconds to milliseconds, we show that the unusual open-close kinetics results from slow sampling of an ensemble of disordered domain orientations. While substrate accelerates the kinetics, thus suggesting a substrate-induced switch to an alternative free energy landscape of the enzyme, the power-law behavior is also preserved upon electron load. Our results show that the slow sampling of open conformers is caused by a variety of interdomain interactions that imply a rugged free energy landscape, thus providing a generic mechanism for dynamic disorder in multidomain enzymes.
Collapse
|
12
|
Reduced QSOX1 enhances radioresistance in nasopharyngeal carcinoma. Oncotarget 2017; 9:3230-3241. [PMID: 29423042 PMCID: PMC5790459 DOI: 10.18632/oncotarget.23227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/16/2017] [Indexed: 12/26/2022] Open
Abstract
Radioresistance is a major cause leads to treatment failure in nasopharyngeal carcinoma (NPC). In our previous study, we identified that QSOX1 is a differentially expressed protein in NPC cell lines with variable radiosensitivities. The present study aimed to investigate the biological behavior of QSOX1 in nasopharyngeal carcinoma (NPC) and its effect on radiosensitivity. The levels of QSOX1 detected by enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry (IHC) in radioresistant NPC patient sera and tissue samples were markedly lower than those in radiosensitive samples. Small hairpin RNAs (shRNAs) were employed to knock down endogenous QSOX1 expression in CNE-2 cells, and then, radiosensitivity, apoptosis, migration and invasion were assessed using colony formation, Cell Counting Kit-8 (CCK-8), flow cytometry, and transwell assays, respectively. Tumor growth and radioresistance were also evaluated using a xenograft model in nude mice. The shRNA-mediated knockdown of QSOX1 significantly increased cell survival under irradiation (IR) and weakened radiosensitivity, which was likely due to a reduction in the cell apoptosis rate after IR. Moreover, QSOX1 silencing led to the suppression of cellular migration and invasion. Similar results were obtained with the xenograft mouse model. Thus, targeting QSOX1 will provide a new avenue for increasing the sensitivity of NPC to radiotherapy.
Collapse
|
13
|
Abstract
Cysteine thiols are among the most reactive functional groups in proteins, and their pairing in disulfide linkages is a common post-translational modification in proteins entering the secretory pathway. This modest amino acid alteration, the mere removal of a pair of hydrogen atoms from juxtaposed cysteine residues, contrasts with the substantial changes that characterize most other post-translational reactions. However, the wide variety of proteins that contain disulfides, the profound impact of cross-linking on the behavior of the protein polymer, the numerous and diverse players in intracellular pathways for disulfide formation, and the distinct biological settings in which disulfide bond formation can take place belie the simplicity of the process. Here we lay the groundwork for appreciating the mechanisms and consequences of disulfide bond formation in vivo by reviewing chemical principles underlying cysteine pairing and oxidation. We then show how enzymes tune redox-active cofactors and recruit oxidants to improve the specificity and efficiency of disulfide formation. Finally, we discuss disulfide bond formation in a cellular context and identify important principles that contribute to productive thiol oxidation in complex, crowded, dynamic environments.
Collapse
Affiliation(s)
- Deborah Fass
- Department of Structural Biology, Weizmann Institute of Science , Rehovot 7610001, Israel
| | - Colin Thorpe
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| |
Collapse
|
14
|
Kuo YW, Joshi R, Wang TE, Chang HW, Li SH, Hsiao CN, Tsai PSJ. Identification, characterization and purification of porcine Quiescin Q6-Sulfydryl Oxidase 2 protein. BMC Vet Res 2017; 13:205. [PMID: 28662655 PMCID: PMC5492681 DOI: 10.1186/s12917-017-1125-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/20/2017] [Indexed: 01/05/2023] Open
Abstract
Background Post-spermiogenesis membrane surface modifications rely on molecules present in the reproductive tracts. Two isoforms (isoform 1 and 2) from Quiescin Q6-Sulfydryl Oxidase protein family have been identified in the male reproductive tract of rodent species. However, unlike isoform 1, scarce information is available for isoform 2, likely due to its lower expression level and lack of proper purification methods to obtain sufficient protein quantity for further assays. Results This study demonstrated the presence of short and long forms of Quiescin Q6-Sulfydryl Oxidase 2 in boar, likely representing the secretory (short form) and transmembrane (long form) forms of Quiescin Q6-Sulfydryl Oxidase 2. Immunohistochemistry studies revealed the presence of Quiescin Q6-Sulfydryl Oxidase 2 in a broad range of porcine tissues; the pronounced vesicle-contained Quiescin Q6-Sulfydryl Oxidase 2 at the apical region of epididymis and seminal vesicles epithelium suggested its involvement in sperm physiology and its participation in semen formation. The majority of porcine Quiescin Q6-Sulfydryl Oxidase 2 could be purified via either antibody affinity column or be salted out using 10%–40% ammonium sulfate. Higher amount of low molecular weight Quiescin Q6-Sulfydryl Oxidase 2 observed in the seminal vesicle likely represents the secretory form of Quiescin Q6-Sulfydryl Oxidase 2 and reflects an exuberant secretory activity in this organ. Conclusions We demonstrated for the first time, the presence of Quiescin Q6-Sulfydryl Oxidase 2 in porcine species; moreover, two forms of Quiescin Q6-Sulfydryl Oxidase 2 were identified and exhibited distinct molecular weights and properties during protein purification processes. This study also provided feasible Quiescin Q6-Sulfydryl Oxidase 2 purification methods from slaughterhouse materials that could potentially allow obtaining sufficient amount of Quiescin Q6-Sulfydryl Oxidase 2 for future functional investigations.
Collapse
Affiliation(s)
- Yu-Wen Kuo
- Department of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, 10617, Taipei, Taiwan.,Graduate Institute of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, 10617, Taipei, Taiwan
| | - Radhika Joshi
- Department of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, 10617, Taipei, Taiwan
| | - Tse-En Wang
- Department of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, 10617, Taipei, Taiwan.,Graduate Institute of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, 10617, Taipei, Taiwan
| | - Hui-Wen Chang
- Department of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, 10617, Taipei, Taiwan.,Graduate Institute of Molecular and Comparative Pathobiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, 10617, Taipei, Taiwan
| | - Sheng-Hsiang Li
- Department of Medical Research, Mackay Memorial Hospital, No. 92, Section 2, Zhongshan N. Rd, 251 Tamshui, Taipei, Taiwan
| | - Chun-Ni Hsiao
- Department of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, 10617, Taipei, Taiwan.,Graduate Institute of Molecular and Comparative Pathobiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, 10617, Taipei, Taiwan.,Shui-Po International Certification Boar Semen Station, No. 71-115, 732, Tainan, Taiwan
| | - Pei-Shiue Jason Tsai
- Department of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, 10617, Taipei, Taiwan. .,Graduate Institute of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, 10617, Taipei, Taiwan. .,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, 10617, Taipei, Taiwan.
| |
Collapse
|
15
|
QSOX1 expression is associated with aggressive tumor features and reduced survival in breast carcinomas. Mod Pathol 2016; 29:1485-1491. [PMID: 27562495 DOI: 10.1038/modpathol.2016.148] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/08/2016] [Accepted: 07/08/2016] [Indexed: 11/08/2022]
Abstract
The biological role of quiescin sulfhydryl oxidase 1 (QSOX1) in tumor development is not well known, and its relation to breast cancer progression and prognosis is controversial. Here, our aim was to study the expression pattern and prognostic impact of QSOX1 in breast cancer, in relation to molecular subgroups and tumor cell proliferation. We examined a population-based series as part of the prospective Norwegian Breast Cancer Screening Program, including all women (50-69 years) diagnosed with breast cancer in one county of Norway during 1996-2003. QSOX1 expression was assessed by immunohistochemistry on tissue microarrays (n=458). Median follow-up time was 13 years. High expression of QSOX1 protein was associated with features of poor prognosis including high histologic grade, hormone receptor negativity, HER2 positivity, and increased tumor cell proliferation. High QSOX1 expression was further associated with reduced breast cancer-specific survival in both univariate and multivariate analysis, independent of molecular subtypes. High QSOX1 expression is a strong and independent factor of reduced survival in breast cancer, also reflected by elevated levels in more aggressive molecular subgroups. QSOX1 expression may represent a biomarker for aggressive disease and a potential treatment target.
Collapse
|
16
|
Grossman I, Ilani T, Fleishman SJ, Fass D. Overcoming a species-specificity barrier in development of an inhibitory antibody targeting a modulator of tumor stroma. Protein Eng Des Sel 2016; 29:135-47. [PMID: 26819240 PMCID: PMC4795942 DOI: 10.1093/protein/gzv067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 09/19/2015] [Accepted: 12/14/2015] [Indexed: 12/26/2022] Open
Abstract
The secreted disulfide catalyst Quiescin sulfhydryl oxidase-1 (QSOX1) affects extracellular matrix organization and is overexpressed in various adenocarcinomas and associated stroma. Inhibition of extracellular human QSOX1 by a monoclonal antibody decreased tumor cell migration in a cell co-culture model and hence may have therapeutic potential. However, the species specificity of the QSOX1 monoclonal antibody has been a setback in assessing its utility as an anti-metastatic agent in vivo, a common problem in the antibody therapy industry. We therefore used structurally guided engineering to expand the antibody species specificity, improving its affinity toward mouse QSOX1 by at least four orders of magnitude. A crystal structure of the re-engineered variant, complexed with its mouse antigen, revealed that the antibody accomplishes dual-species targeting through altered contacts between its heavy and light chains, plus replacement of bulky aromatics by flexible side chains and versatile water-bridged polar interactions. In parallel, we produced a surrogate antibody targeting mouse QSOX1 that exhibits a new QSOX1 inhibition mode. This set of three QSOX1 inhibitory antibodies is compatible with various mouse models for pre-clinical trials and biotechnological applications. In this study we provide insights into structural blocks to cross-reactivity and set up guideposts for successful antibody design and re-engineering.
Collapse
Affiliation(s)
- Iris Grossman
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tal Ilani
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sarel Jacob Fleishman
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Deborah Fass
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
17
|
Single-molecule spectroscopy exposes hidden states in an enzymatic electron relay. Nat Commun 2015; 6:8624. [PMID: 26468675 PMCID: PMC4634331 DOI: 10.1038/ncomms9624] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 09/12/2015] [Indexed: 01/15/2023] Open
Abstract
The ability to query enzyme molecules individually is transforming our view of catalytic mechanisms. Quiescin sulfhydryl oxidase (QSOX) is a multidomain catalyst of disulfide-bond formation that relays electrons from substrate cysteines through two redox-active sites to molecular oxygen. The chemical steps in electron transfer have been delineated, but the conformational changes accompanying these steps are poorly characterized. Here we use single-molecule Förster resonance energy transfer (smFRET) to probe QSOX conformation in resting and cycling enzyme populations. We report the discovery of unanticipated roles for conformational changes in QSOX beyond mediating electron transfer between redox-active sites. In particular, a state of the enzyme not previously postulated or experimentally detected is shown to gate, via a conformational transition, the entrance into a sub-cycle within an expanded QSOX kinetic scheme. By tightly constraining mechanistic models, smFRET data can reveal the coupling between conformational and chemical transitions in complex enzymatic cycles. A major challenge in following electron transfer through dithiol/disulfide exchange is the dearth of accompanying spectroscopic effects. Here, the authors use single-molecule Förster resonance energy transfer experiments to illuminate disulfide bond rearrangements within the enzyme quiescin sulfhydryl oxidase.
Collapse
|
18
|
The flavo-oxidase QSOX1 supports vascular smooth muscle cell migration and proliferation: Evidence for a role in neointima growth. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1334-46. [DOI: 10.1016/j.bbadis.2015.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 02/13/2015] [Accepted: 03/04/2015] [Indexed: 12/15/2022]
|
19
|
Sobral ACL, Neto VM, Traiano G, Percicote AP, Gugelmin ES, de Souza CM, Nakao L, Torres LFB, de Noronha L. Immunohistochemical expression of sulfhydryl oxidase (QSOX1) in pediatric medulloblastomas. Diagn Pathol 2015; 10:37. [PMID: 25908093 PMCID: PMC4414442 DOI: 10.1186/s13000-015-0268-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 04/07/2015] [Indexed: 12/15/2022] Open
Abstract
Background Medulloblastoma is a malignant, invasive embryonal tumor of the cerebellum and accounts for 20% of intracranial tumors in children. QSOX1, whose functions include formation of disulphide bridges, which are needed for correct protein folding and stability, formation of the extracellular matrix, regulation of the redox status and cell cycle control, appears to be involved in apoptosis in pathological states such as cancer. Thus, the aim of this study was to investigate the immunohistochemical expression of QSOX1 in medulloblastomas and nonneoplastic cerebellum. Methods Histology blocks of pediatric medulloblastomas were separated and two representative areas of the tumors and non-neoplastic cerebellum samples were used to construct tissue microarrays (TMAs) that were stained with an anti-QSOX1 antibody, and the slides were read using image analysis software. Results QSOX1 immunoexpression was observed in the non-neoplastic cerebellum samples and the medulloblastoma samples. There was no statistically significant relationship between QSOX1 immunopositivity in the medulloblastoma samples and the clinical and pathological variables. Conclusions Although QSOX1 did not prove useful for stratifying patients into risk groups, tumor cells and the fibrillar extracellular matrix were positive for this marker, indicating that this enzyme may be involved in the pathogenesis of medulloblastoma. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1822040654139436
Collapse
Affiliation(s)
| | | | - Gabriela Traiano
- School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Brazil.
| | - Ana Paula Percicote
- Department of Basic Pathology and Department of Medical Pathology, Federal University of Paraná, Curitiba, Brazil.
| | | | - Cleber Machado de Souza
- School of Health and Biosciences, Pontifical Catholic University of Paraná, Curitiba, Brazil.
| | - Lia Nakao
- Department of Basic Pathology and Department of Medical Pathology, Federal University of Paraná, Curitiba, Brazil.
| | - Luiz Fernando Bleggi Torres
- Department of Basic Pathology and Department of Medical Pathology, Federal University of Paraná, Curitiba, Brazil.
| | - Lucia de Noronha
- School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Brazil.
| |
Collapse
|
20
|
Gat Y, Vardi-Kilshtain A, Grossman I, Major DT, Fass D. Enzyme structure captures four cysteines aligned for disulfide relay. Protein Sci 2014; 23:1102-12. [PMID: 24888638 PMCID: PMC4116658 DOI: 10.1002/pro.2496] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 05/28/2014] [Accepted: 05/28/2014] [Indexed: 11/09/2022]
Abstract
Thioredoxin superfamily proteins introduce disulfide bonds into substrates, catalyze the removal of disulfides, and operate in electron relays. These functions rely on one or more dithiol/disulfide exchange reactions. The flavoenzyme quiescin sulfhydryl oxidase (QSOX), a catalyst of disulfide bond formation with an interdomain electron transfer step in its catalytic cycle, provides a unique opportunity for exploring the structural environment of enzymatic dithiol/disulfide exchange. Wild-type Rattus norvegicus QSOX1 (RnQSOX1) was crystallized in a conformation that juxtaposes the two redox-active di-cysteine motifs in the enzyme, presenting the entire electron-transfer pathway and proton-transfer participants in their native configurations. As such a state cannot generally be enriched and stabilized for analysis, RnQSOX1 gives unprecedented insight into the functional group environments of the four cysteines involved in dithiol/disulfide exchange and provides the framework for analysis of the energetics of electron transfer in the presence of the bound flavin adenine dinucleotide cofactor. Hybrid quantum mechanics/molecular mechanics (QM/MM) free energy simulations based on the X-ray crystal structure suggest that formation of the interdomain disulfide intermediate is highly favorable and secures the flexible enzyme in a state from which further electron transfer via the flavin can occur.
Collapse
Affiliation(s)
- Yair Gat
- Department of Structural Biology, Weizmann Institute of ScienceRehovot, 76100, Israel
| | - Alexandra Vardi-Kilshtain
- Department of Chemistry and the Lise Meitner-Minerva Center of Computational Quantum Chemistry, Bar Ilan UniversityRamat Gan, 52900, Israel
| | - Iris Grossman
- Department of Structural Biology, Weizmann Institute of ScienceRehovot, 76100, Israel
| | - Dan Thomas Major
- Department of Chemistry and the Lise Meitner-Minerva Center of Computational Quantum Chemistry, Bar Ilan UniversityRamat Gan, 52900, Israel
| | - Deborah Fass
- Department of Structural Biology, Weizmann Institute of ScienceRehovot, 76100, Israel
| |
Collapse
|
21
|
Poillet L, Pernodet N, Boyer-Guittaut M, Adami P, Borg C, Jouvenot M, Delage-Mourroux R, Despouy G. QSOX1 inhibits autophagic flux in breast cancer cells. PLoS One 2014; 9:e86641. [PMID: 24475161 PMCID: PMC3901705 DOI: 10.1371/journal.pone.0086641] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 12/13/2013] [Indexed: 12/23/2022] Open
Abstract
The QSOX1 protein (Quiescin Sulfhydryl oxidase 1) catalyzes the formation of disulfide bonds and is involved in the folding and stability of proteins. More recently, QSOX1 has been associated with tumorigenesis and protection against cellular stress. It has been demonstrated in our laboratory that QSOX1 reduces proliferation, migration and invasion of breast cancer cells in vitro and reduces tumor growth in vivo. In addition, QSOX1 expression has been shown to be induced by oxidative or ER stress and to prevent cell death linked to these stressors. Given the function of QSOX1 in these two processes, which have been previously linked to autophagy, we wondered whether QSOX1 might be regulated by autophagy inducers and play a role in this catabolic process. To answer this question, we used in vitro models of breast cancer cells in which QSOX1 was overexpressed (MCF-7) or extinguished (MDA-MB-231). We first showed that QSOX1 expression is induced following amino acid starvation and maintains cellular homeostasis. Our results also indicated that QSOX1 inhibits autophagy through the inhibition of autophagosome/lysosome fusion. Moreover, we demonstrated that inhibitors of autophagy mimic the effect of QSOX1 on cell invasion, suggesting that its role in this process is linked to the autophagy pathway. Previously published data demonstrated that extinction of QSOX1 promotes tumor growth in NOG mice. In this study, we further demonstrated that QSOX1 null tumors present lower levels of the p62 protein. Altogether, our results demonstrate for the first time a role of QSOX1 in autophagy in breast cancer cells and tumors.
Collapse
Affiliation(s)
- Laura Poillet
- Université de Franche-Comté, Estrogènes, Expression Génique et Pathologies du Système Nerveux Central, U.F.R. Sciences et Techniques, Besançon, Doubs, France
| | - Nicolas Pernodet
- Université de Franche-Comté, Estrogènes, Expression Génique et Pathologies du Système Nerveux Central, U.F.R. Sciences et Techniques, Besançon, Doubs, France
| | - Michaël Boyer-Guittaut
- Université de Franche-Comté, Estrogènes, Expression Génique et Pathologies du Système Nerveux Central, U.F.R. Sciences et Techniques, Besançon, Doubs, France
| | - Pascale Adami
- Université de Franche-Comté, Estrogènes, Expression Génique et Pathologies du Système Nerveux Central, U.F.R. Sciences et Techniques, Besançon, Doubs, France
| | - Christophe Borg
- Université de Franche-Comté, Inserm UMR 1098, Relation Hôte Greffon et Ingénierie Cellulaire et Génique, Besançon, Doubs, France
| | - Michèle Jouvenot
- Université de Franche-Comté, Estrogènes, Expression Génique et Pathologies du Système Nerveux Central, U.F.R. Sciences et Techniques, Besançon, Doubs, France
| | - Régis Delage-Mourroux
- Université de Franche-Comté, Estrogènes, Expression Génique et Pathologies du Système Nerveux Central, U.F.R. Sciences et Techniques, Besançon, Doubs, France
| | - Gilles Despouy
- Université de Franche-Comté, Estrogènes, Expression Génique et Pathologies du Système Nerveux Central, U.F.R. Sciences et Techniques, Besançon, Doubs, France
- * E-mail:
| |
Collapse
|
22
|
Abstract
QSOX1 (quiescin sulfhydryl oxidase 1) efficiently catalyses the insertion of disulfide bonds into a wide range of proteins. The enzyme is mechanistically well characterized, but its subcellular location and the identity of its protein substrates remain ill-defined. The function of QSOX1 is likely to involve disulfide formation in proteins entering the secretory pathway or outside the cell. In the present study, we show that this enzyme is efficiently secreted from mammalian cells despite the presence of a transmembrane domain. We identify internal cleavage sites and demonstrate that the protein is processed within the Golgi apparatus to yield soluble enzyme. As a consequence of this efficient processing, QSOX1 is probably functional outside the cell. Also, QSOX1 forms a dimer upon cleavage of the C-terminal domain. The processing of QSOX1 suggests a novel level of regulation of secretion of this potent disulfide catalyst and producer of hydrogen peroxide.
Collapse
|
23
|
Oxidative protein-folding systems in plant cells. Int J Cell Biol 2013; 2013:585431. [PMID: 24187554 PMCID: PMC3800646 DOI: 10.1155/2013/585431] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/01/2013] [Indexed: 12/13/2022] Open
Abstract
Plants are unique among eukaryotes in having evolved organelles: the protein storage vacuole, protein body, and chloroplast. Disulfide transfer pathways that function in the endoplasmic reticulum (ER) and chloroplasts of plants play critical roles in the development of protein storage organelles and the biogenesis of chloroplasts, respectively. Disulfide bond formation requires the cooperative function of disulfide-generating enzymes (e.g., ER oxidoreductase 1), which generate disulfide bonds de novo, and disulfide carrier proteins (e.g., protein disulfide isomerase), which transfer disulfides to substrates by means of thiol-disulfide exchange reactions. Selective molecular communication between disulfide-generating enzymes and disulfide carrier proteins, which reflects the molecular and structural diversity of disulfide carrier proteins, is key to the efficient transfer of disulfides to specific sets of substrates. This review focuses on recent advances in our understanding of the mechanisms and functions of the various disulfide transfer pathways involved in oxidative protein folding in the ER, chloroplasts, and mitochondria of plants.
Collapse
|
24
|
Grossman I, Alon A, Ilani T, Fass D. An inhibitory antibody blocks the first step in the dithiol/disulfide relay mechanism of the enzyme QSOX1. J Mol Biol 2013; 425:4366-78. [PMID: 23867277 DOI: 10.1016/j.jmb.2013.07.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 07/09/2013] [Indexed: 01/01/2023]
Abstract
Quiescin sulfhydryl oxidase 1 (QSOX1) is a catalyst of disulfide bond formation that undergoes regulated secretion from fibroblasts and is over-produced in adenocarcinomas and other cancers. We have recently shown that QSOX1 is required for incorporation of particular laminin isoforms into the extracellular matrix (ECM) of cultured fibroblasts and, as a consequence, for tumor cell adhesion to and penetration of the ECM. The known role of laminins in integrin-mediated cell survival and motility suggests that controlling QSOX1 activity may provide a novel means of combating metastatic disease. With this motivation, we developed a monoclonal antibody that inhibits the activity of human QSOX1. Here, we present the biochemical and structural characterization of this antibody and demonstrate that it is a tight-binding inhibitor that blocks one of the redox-active sites in the enzyme, but not the site at which de novo disulfides are generated catalytically. Sulfhydryl oxidase activity is thus prevented without direct binding of the sulfhydryl oxidase domain, confirming the model for the interdomain QSOX1 electron transfer mechanism originally surmised based on mutagenesis and protein dissection. In addition, we developed a single-chain variant of the antibody and show that it is a potent QSOX1 inhibitor. The QSOX1 inhibitory antibody will be a valuable tool in studying the role of ECM composition and architecture in cell migration, and the recombinant version may be further developed for potential therapeutic applications based on manipulation of the tumor microenvironment.
Collapse
Affiliation(s)
- Iris Grossman
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
25
|
Ilani T, Alon A, Grossman I, Horowitz B, Kartvelishvily E, Cohen SR, Fass D. A secreted disulfide catalyst controls extracellular matrix composition and function. Science 2013; 341:74-6. [PMID: 23704371 DOI: 10.1126/science.1238279] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Disulfide bond formation in secretory proteins occurs primarily in the endoplasmic reticulum (ER), where multiple enzyme families catalyze cysteine cross-linking. Quiescin sulfhydryl oxidase 1 (QSOX1) is an atypical disulfide catalyst, localized to the Golgi apparatus or secreted from cells. We examined the physiological function for extracellular catalysis of de novo disulfide bond formation by QSOX1. QSOX1 activity was required for incorporation of laminin into the extracellular matrix (ECM) synthesized by fibroblasts, and ECM produced without QSOX1 was defective in supporting cell-matrix adhesion. We developed an inhibitory monoclonal antibody against QSOX1 that could modulate ECM properties and undermine cell migration.
Collapse
Affiliation(s)
- Tal Ilani
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel.
| | | | | | | | | | | | | |
Collapse
|
26
|
Limor-Waisberg K, Ben-Dor S, Fass D. Diversification of quiescin sulfhydryl oxidase in a preserved framework for redox relay. BMC Evol Biol 2013; 13:70. [PMID: 23510202 PMCID: PMC3616962 DOI: 10.1186/1471-2148-13-70] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 03/07/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The enzyme family Quiescin Sulfhydryl Oxidase (QSOX) is defined by the presence of an amino-terminal thioredoxin-fold (Trx) domain and a carboxy-terminal Erv family sulfhydryl oxidase domain. QSOX enzymes, which generate disulfide bonds and transfer them to substrate proteins, are present in a wide variety of eukaryotic species including metazoans and plants, but are absent from fungi. Plant and animal QSOXs differ in their active-site amino acid sequences and content of non-catalytic domains. The question arises, therefore, whether the Trx-Erv fusion has the same mechanistic significance in all QSOX enzymes, and whether shared features distinguish the functional domains of QSOX from other instances in which these domains occur independently. Through a study of QSOX phylogeny and an analysis of QSOX sequence diversity in light of recently determined three-dimensional structures, we sought insight into the origin and evolution of this multi-domain redox alliance. RESULTS An updated collection of QSOX enzymes was used to confirm and refine the differences in domain composition and active-site sequence motif patterns of QSOXs belonging to various eukaryotic phyla. Beyond the expected phylogenetic distinction of animal and plant QSOX enzymes, trees based on individual redox-active QSOX domains show a particular distinction of the Trx domain early in plant evolution. A comparison of QSOX domains with Trx and Erv domains from outside the QSOX family revealed several sequence and structural features that clearly differentiate QSOXs from other enzymes containing either of these domains. Notably, these features, present in QSOXs of various phyla, localize to the interface between the Trx and Erv domains observed in structures of QSOX that model interdomain redox communication. CONCLUSIONS The infrastructure for interdomain electron relay, previously identified for animal and parasite QSOXs, is found broadly across the QSOX family, including the plant enzymes. We conclude that the conserved three-dimensional framework of the QSOX catalytic domains accommodates lineage-specific differences and paralog diversification in the amino acid residues surrounding the redox-active cysteines. Our findings indicate that QSOX enzymes are characterized not just by the presence of the two defining domain folds but also by features that promote coordinated activity.
Collapse
Affiliation(s)
- Keren Limor-Waisberg
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
27
|
Pernodet N, Hermetet F, Adami P, Vejux A, Descotes F, Borg C, Adams M, Pallandre JR, Viennet G, Esnard F, Jouvenot M, Despouy G. High expression of QSOX1 reduces tumorogenesis, and is associated with a better outcome for breast cancer patients. Breast Cancer Res 2012; 14:R136. [PMID: 23098186 PMCID: PMC4053115 DOI: 10.1186/bcr3341] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 10/24/2012] [Indexed: 11/18/2022] Open
Abstract
Introduction The gene quiescin/sulfhydryl oxidase 1, QSOX1, encodes an enzyme directed to the secretory pathway and excreted into the extracellular space. QSOX1 participates in the folding and stability of proteins and thus could regulate the biological activity of its substrates in the secretory pathway and/or outside the cell. The involvement of QSOX1 in oncogenesis has been studied primarily in terms of its differential expression in systemic studies. QSOX1 is overexpressed in prostate cancers and in pancreatic adenocarcinoma. In contrast, QSOX1 gene expression is repressed in endothelial tumors. In the present study, we investigated the role of QSOX1 in breast cancer. Methods We analyzed QSOX1 mRNA expression in a cohort of 217 invasive ductal carcinomas of the breast. Moreover, we investigated QSOX1's potential role in regulating tumor growth and metastasis using cellular models in which we overexpressed or extinguished QSOX1 and xenograft experiments. Results We showed that the QSOX1 expression level is inversely correlated to the aggressiveness of breast tumors. Our results show that QSOX1 leads to a decrease in cell proliferation, clonogenic capacities and promotes adhesion to the extracellular matrix. QSOX1 also reduces the invasive potential of cells by reducing cell migration and decreases the activity of the matrix metalloproteinase, MMP-2, involved in these mechanisms. Moreover, in vivo experiments show that QSOX1 drastically reduces the tumor development. Conclusions Together, these results suggest that QSOX1 could be posited as a new biomarker of good prognosis in breast cancer and demonstrate that QSOX1 inhibits human breast cancer tumorogenesis.
Collapse
|
28
|
Shenoy N, Kessel R, Bhagat TD, Bhattacharyya S, Yu Y, McMahon C, Verma A. Alterations in the ribosomal machinery in cancer and hematologic disorders. J Hematol Oncol 2012; 5:32. [PMID: 22709827 PMCID: PMC3438023 DOI: 10.1186/1756-8722-5-32] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 06/18/2012] [Indexed: 11/16/2022] Open
Abstract
Ribosomes are essential components of the protein translation machinery and are composed of more than 80 unique large and small ribosomal proteins. Recent studies show that in addition to their roles in protein translation, ribosomal proteins are also involved in extra-ribosomal functions of DNA repair, apoptosis and cellular homeostasis. Consequently, alterations in the synthesis or functioning of ribosomal proteins can lead to various hematologic disorders. These include congenital anemias such as Diamond Blackfan anemia and Shwachman Diamond syndrome; both of which are associated with mutations in various ribosomal genes. Acquired uniallelic deletion of RPS14 gene has also been shown to lead to the 5q syndrome, a distinct subset of MDS associated with macrocytic anemia. Recent evidence shows that specific ribosomal proteins are overexpressed in liver, colon, prostate and other tumors. Ribosomal protein overexpression can promote tumorigenesis by interactions with the p53 tumor suppressor pathway and also by direct effects on various oncogenes. These data point to a broad role of ribosome protein alterations in hematologic and oncologic diseases.
Collapse
Affiliation(s)
- Niraj Shenoy
- Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10467, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Sevier CS. Erv2 and quiescin sulfhydryl oxidases: Erv-domain enzymes associated with the secretory pathway. Antioxid Redox Signal 2012; 16:800-8. [PMID: 22142242 DOI: 10.1089/ars.2011.4450] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
SIGNIFICANCE Members of the Erv/ALR/QSOX protein family contain an Erv sequence module and catalyze protein disulfide bond formation. Erv enzymes impact protein function within and outside cells that affects both normal and malignant cell growth. This protein family is named for its founding members: Erv1 (essential for respiratory and vegetative growth 1) and ALR (augmenter of liver regeneration), homologous mitochondrial proteins from yeast and mammals, respectively, and QSOX (quiescin sulfhydryl oxidase), an oxidase secreted from quiescent cells. This review will focus on a subset of Erv proteins that are localized within the secretory pathway: Erv2-like proteins, proteins present in the endoplasmic reticulum of fungi, and QSOX proteins, proteins localized within the secretory pathway and extracellular space and present in most eukaryotes, but not fungi. RECENT ADVANCES A wealth of structural and biochemical data has been obtained for Erv2 and QSOX proteins. These data have identified a generally conserved catalytic mechanism and structure for the Erv2 and QSOX proteins with unique features for each enzyme. CRITICAL ISSUES Many fundamental questions remain about the activity for these proteins in living cells including the partners, pathways, and locations utilized by these enzymes in vivo. FUTURE DIRECTIONS A more comprehensive understanding of the cellular roles for Erv2 and QSOX enzymes will require identification of their partners and substrates. Also, determining when Erv2 and QSOX function during growth and development, and how changes in levels of active Erv2 and QSOX impact cell function, is necessary to facilitate a better understanding of these intriguing enzymes.
Collapse
Affiliation(s)
- Carolyn S Sevier
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14853, USA.
| |
Collapse
|
30
|
de Andrade CR, Stolf BS, Debbas V, Rosa DS, Kalil J, Coelho V, Laurindo FRM. Quiescin sulfhydryl oxidase (QSOX) is expressed in the human atheroma core: possible role in apoptosis. In Vitro Cell Dev Biol Anim 2011; 47:716-27. [PMID: 22069028 DOI: 10.1007/s11626-011-9461-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 09/26/2011] [Indexed: 12/30/2022]
Abstract
Quiescin sulfhydryl oxidases (QSOXs) catalyze the formation of disulfide bonds in peptides and proteins, and in vertebrates comprise two proteins: QSOX1 and QSOX2. QSOX1, the most extensively studied type, has been implicated in protein folding, production of extracellular matrix, redox regulation, protection from apoptosis, angiogenesis, and cell differentiation. Atherosclerosis is an immunopathological condition in which redox processes, apoptosis, cell differentiation, and matrix secretion/maturation have critical roles. Considering these data, we hypothesized that QSOX1 could be involved in this disease, possibly reducing apoptosis and angiogenesis inside the plaque. QSOX1 labeling in normal human carotid vessels showed predominant expression by endothelium, subendothelium, and adventitia. In atherosclerotic plaques, however, QSOX1 was highly expressed in macrophages at the lipid core. QSOX1 expression was also studied in terms of mRNA and protein in cell types present in plaques under apoptotic or activating stimuli, emulating conditions found in the atherosclerotic process. QSOX1 mRNA increased in endothelial cells and macrophages after the induction of apoptosis. At the protein level, the correlation between apoptosis and QSOX1 expression was not evident in all cell types, possibly because of a rapid secretion of QSOX1. Our results propose for the first time possible roles for QSOX1 in atherosclerosis, being upregulated in endothelial cells and macrophages by apoptosis and cell activation, and possibly controlling these processes, as well as angiogenesis. The quantitative differences in QSOX1 induction may depend on the cell type and also on local factors.
Collapse
Affiliation(s)
- Claudia R de Andrade
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil.
| | | | | | | | | | | | | |
Collapse
|
31
|
Katchman BA, Antwi K, Hostetter G, Demeure MJ, Watanabe A, Decker GA, Miller LJ, Von Hoff DD, Lake DF. Quiescin Sulfhydryl Oxidase 1 Promotes Invasion of Pancreatic Tumor Cells Mediated by Matrix Metalloproteinases. Mol Cancer Res 2011; 9:1621-31. [DOI: 10.1158/1541-7786.mcr-11-0018] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Lai MD, Xu J. Ribosomal proteins and colorectal cancer. Curr Genomics 2011; 8:43-9. [PMID: 18645623 DOI: 10.2174/138920207780076938] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Revised: 08/12/2006] [Accepted: 08/20/2006] [Indexed: 12/26/2022] Open
Abstract
The ribosome is essential for protein synthesis. The composition and structure of ribosomes from several organisms have been determined, and it is well documented that ribosomal RNAs (rRNAs) and ribosomal proteins (RPs) constitute this important organelle. Many RPs also fill various roles that are independent of protein biosynthesis, called extraribosomal functions. These functions include DNA replication, transcription and repair, RNA splicing and modification, cell growth and proliferation, regulation of apoptosis and development, and cellular transformation. Previous investigations have revealed that RP regulation in colorectal carcinomas (CRC) differs from that found in colorectal adenoma or normal mucosa, with some RPs being up-regulated while others are down-regulated. The expression patterns of RPs are associated with the differentiation, progression or metastasis of CRC. Additionally, the recent literature has shown that the perturbation of specific RPs may promote certain genetic diseases and tumorigenesis. Because of the implications of RPs in disease, especially malignancy, our review sought to address several questions. Why do expression levels or categories of RPs differ in different diseases, most notably in CRC? Is this a cause or consequence of the diseases? What are their possible roles in the diseases? We review the known extraribosomal functions of RPs and associated changes in colorectal cancer and attempt to clarify the possible roles of RPs in colonic malignancy.
Collapse
Affiliation(s)
- Mao-De Lai
- Department of Pathology and Pathophysiology, School of Medicine, Zhejiang University, Hangzhou 310058, China.
| | | |
Collapse
|
33
|
Cloning and characterization of ribosomal protein S29, a deltamethrin resistance associated gene from Culex pipiens pallens. Parasitol Res 2011; 109:1689-97. [DOI: 10.1007/s00436-011-2443-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Accepted: 04/29/2011] [Indexed: 10/18/2022]
|
34
|
Mulvey C, Tudzarova S, Crawford M, Williams GH, Stoeber K, Godovac-Zimmermann J. Quantitative proteomics reveals a "poised quiescence" cellular state after triggering the DNA replication origin activation checkpoint. J Proteome Res 2010; 9:5445-60. [PMID: 20707412 DOI: 10.1021/pr100678k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An origin activation checkpoint has recently been discovered in the G1 phase of the mitotic cell cycle, which can be triggered by loss of DNA replication initiation factors such as the Cdc7 kinase. Insufficient levels of Cdc7 activate cell cycle arrest in normal cells, whereas cancer cells appear to lack this checkpoint response, do not arrest, and proceed with an abortive S phase, leading to cell death. The differential response between normal and tumor cells at this checkpoint has led to widespread interest in the development of pharmacological Cdc7 inhibitors as novel anticancer agents. We have used RNAi against Cdc7 in combination with SILAC-based high resolution MS proteomics to investigate the cellular mechanisms underlying the maintenance of the origin activation checkpoint in normal human diploid fibroblasts. Bioinformatics analysis identified clear changes in wide-ranging biological processes including altered cellular energetic flux, moderate stress response, reduced proliferative capacity, and a spatially distributed response across the mitochondria, lysosomes, and the cell surface. These results provide a quantitative overview of the processes involved in maintenance of the arrested state, show that this phenotype involves active rather than passive cellular adaptation, and highlight a diverse set of proteins responsible for cell cycle arrest and ultimately for promotion of cellular survival. We propose that the Cdc7-depleted proteome maintains cellular arrest by initiating a dynamic quiescence-like response and that the complexities of this phenotype will have important implications for the continued development of promising Cdc7-targeted cancer therapies.
Collapse
Affiliation(s)
- Claire Mulvey
- Centre for Molecular Medicine, Rayne Institute, Division of Medicine, University College London, London, U.K
| | | | | | | | | | | |
Collapse
|
35
|
Nishimura T, Nozu K, Kishioka Y, Wakamatsu JI, Hattori A. Decorin expression in quiescent myogenic cells. Biochem Biophys Res Commun 2008; 370:383-7. [DOI: 10.1016/j.bbrc.2008.03.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Accepted: 03/04/2008] [Indexed: 11/25/2022]
|
36
|
Tissue distribution of quiescin Q6/sulfhydryl oxidase (QSOX) in developing mouse. J Mol Histol 2007; 39:217-25. [DOI: 10.1007/s10735-007-9156-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Accepted: 11/09/2007] [Indexed: 01/04/2023]
|
37
|
Morel C, Adami P, Musard JF, Duval D, Radom J, Jouvenot M. Involvement of sulfhydryl oxidase QSOX1 in the protection of cells against oxidative stress-induced apoptosis. Exp Cell Res 2007; 313:3971-82. [DOI: 10.1016/j.yexcr.2007.09.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 09/05/2007] [Accepted: 09/05/2007] [Indexed: 10/22/2022]
|
38
|
Nakatani T, Honda E, Hayakawa S, Sato M, Satoh K, Kudo M, Munakata H. Effects of decorin on the expression of α-smooth muscle actin in a human myofibroblast cell line. Mol Cell Biochem 2007; 308:201-7. [DOI: 10.1007/s11010-007-9629-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Accepted: 10/09/2007] [Indexed: 01/09/2023]
|
39
|
Su Y, Simmen FA, Xiao R, Simmen RCM. Expression profiling of rat mammary epithelial cells reveals candidate signaling pathways in dietary protection from mammary tumors. Physiol Genomics 2007; 30:8-16. [PMID: 17341692 DOI: 10.1152/physiolgenomics.00023.2007] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The role of diet in the prevention of breast cancer is widely accepted, yet little is known about how its biological effects mitigate susceptibility to this disease. Soy consumption is associated with reduced breast cancer risk in women, an effect largely attributed to the soy isoflavone genistein (Gen). We previously showed reduced incidence of chemically induced mammary tumors in young adult rats with lifetime dietary intake of soy protein isolate (SPI) than in those fed the control diet containing casein (Cas). To gain insight into signaling pathways underlying dietary tumor protection, we performed genome-wide expression profiling of mammary epithelial cells from young adult rats lifetime fed Cas, SPI, or Cas supplemented with Gen. We identified mammary epithelial genes regulated by SPI (79 total) and Gen (96 total) using Affymetrix rat 230A GeneChip arrays and found minimal overlap in gene expression patterns. We showed that the regulated transcripts functionally clustered in biochemical pathways involving metabolism, immune response, signal transduction, and ion transport. We confirmed the differential expression of Wnt (Wnt5a, Sfrp2) and Notch (Notch2, Hes1) signaling components by SPI and/or Gen using quantitative real-time PCR. Wnt pathway inhibition by Gen was supported by reduced cyclin D1 immunoreactivity in mammary ductal epithelium of Gen relative to Cas and SPI groups, despite comparable levels of membrane-localized E-cadherin and beta-catenin. Identification of distinct Gen and SPI responsive genes in mammary epithelial cells may define early events contributing to tumor protection by diet relevant to the prevention of breast and other types of cancer.
Collapse
Affiliation(s)
- Ying Su
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, and Arkansas Children's Nutrition Center, Little Rock, Arkansas 72202, USA
| | | | | | | |
Collapse
|
40
|
Dekel B, Zangi L, Shezen E, Reich-Zeliger S, Eventov-Friedman S, Katchman H, Jacob-Hirsch J, Amariglio N, Rechavi G, Margalit R, Reisner Y. Isolation and characterization of nontubular sca-1+lin- multipotent stem/progenitor cells from adult mouse kidney. J Am Soc Nephrol 2006; 17:3300-14. [PMID: 17093069 DOI: 10.1681/asn.2005020195] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Tissue engineering and cell therapy approaches aim to take advantage of the repopulating ability and plasticity of multipotent stem cells to regenerate lost or diseased tissue. Recently, stage-specific embryonic kidney progenitor tissue was used to regenerate nephrons. Through fluorescence-activated cell sorting, microarray analysis, in vitro differentiation assays, mixed lymphocyte reaction, and a model of ischemic kidney injury, this study sought to identify and characterize multipotent organ stem/progenitor cells in the adult kidney. Herein is reported the existence of nontubular cells that express stem cell antigen-1 (Sca-1). This population of small cells includes a CD45-negative fraction that lacks hematopoietic stem cell and lineage markers and resides in the renal interstitial space. In addition, these cells are enriched for beta1-integrin, are cytokeratin negative, and show minimal expression of surface markers that typically are found on bone marrow-derived mesenchymal stem cells. Global gene profiling reveals enrichment for many genes downstream of developmental signaling molecules and self-renewal pathways, such as TGF-beta/bone morphogenic protein, Wnt, or fibroblast growth factor, as well as for those that are involved in specification of mesodermal lineages (myocyte enhancer factor 2A, YY1-associated factor 2, and filamin-beta). In vitro, they are plastic adherent and slowly proliferating and result in inhibition of alloreactive CD8(+) T cells, indicative of an immune-privileged behavior. Furthermore, clonal-derived lines can be differentiated into myogenic, osteogenic, adipogenic, and neural lineages. Finally, when injected directly into the renal parenchyma, shortly after ischemic/reperfusion injury, renal Sca-1(+)Lin(-) cells, derived from ROSA26 reporter mice, adopt a tubular phenotype and potentially could contribute to kidney repair. These data define a unique phenotype for adult kidney-derived cells, which have potential as stem cells and may contribute to the regeneration of injured kidneys.
Collapse
Affiliation(s)
- Benjamin Dekel
- Weizmann Institute of Science, Department of Immunology, Rehovot, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Zanata SM, Luvizon AC, Batista DF, Ikegami CM, Pedrosa FO, Souza EM, Chaves DFS, Caron LF, Pelizzari JV, Laurindo FRM, Nakao LS. High levels of active quiescin Q6 sulfhydryl oxidase (QSOX) are selectively present in fetal serum. Redox Rep 2006; 10:319-23. [PMID: 16438804 DOI: 10.1179/135100005x83699] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The participation of thiol-oxidoreductases such as thioredoxin during implantation, embryogenesis and fetal development has been extensively studied. Here, we analyzed the expression of the thioredoxin superfamily enzyme quiescin Q6/sulfhydryl oxidase (QSOX) during development. Results show that QSOX is present in fetal bovine serum (4 months' gestation), but its levels decrease with time after birth (from P1 to P60). We also demonstrate that a sulfhydryl oxidase activity correlates with QSOX expression in such sera, suggesting a putative role in the redox modulation of developmental programs.
Collapse
Affiliation(s)
- S M Zanata
- Department of Basic Pathology, Universidade Federal do Paraná, Curitiba, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Anderson JE. The satellite cell as a companion in skeletal muscle plasticity: currency, conveyance, clue, connector and colander. ACTA ACUST UNITED AC 2006; 209:2276-92. [PMID: 16731804 DOI: 10.1242/jeb.02088] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Satellite cells are companions to voluntary muscle fibres, and are named for their intimate positional or ;satellite' relationship, as if revolving around fibres, like a satellite moon around the earth. Studies on the nature of at least some satellite cells, including their capabilities for self-renewal and for giving rise to multiple lineages in a stem cell-like function, are exploring the molecular basis of phenotypes described by markers of specialized function and gene expression in normal development, neuromuscular disease and aging. In adult skeletal muscle, the self-renewing capacity of satellite cells contributes to muscle growth, adaptation and regeneration. Muscle remodeling, such as demonstrated by changes in myofibre cross-sectional area and length, nerve and tendon junctions, and fibre-type distribution, occur in the absence of injury and provide broad functional and structural diversity among skeletal muscles. Those contributions to plasticity involve the satellite cell in at least five distinct roles, here described using metaphors for behaviour or the investigator's perspective. Satellite cells are the 'currency' of muscle; have a 'conveyance' role in adaptation by domains of cytoplasm along a myofibre; serve researchers, through a marker role, as 'clues' to various activities of muscle; are 'connectors' that physically, and through signalling and cell-fibre communications, bridge myofibres to the intra- and extra-muscular environment; and are equipped as metabolic and genetic filters or 'colanders' that can rectify or modulate particular signals. While all these roles are still under exploration, each contributes to the plasticity of skeletal muscle and thence to the overall biology and function of an organism. The use of metaphor for describing these roles helps to clarify and scrutinize the definitions that form the basis of our understanding of satellite cell biology: the metaphors provide the construct for various approaches to detect or test the nature of satellite cell functions in skeletal muscle plasticity.
Collapse
Affiliation(s)
- Judy E Anderson
- Department of Human Anatomy and Cell Science, Faculty of Medicine, University of Manitoba, Winnipeg, MB, R3E 0W3, Canada.
| |
Collapse
|
43
|
Radom J, Colin D, Thiebault F, Dognin-Bergeret M, Mairet-Coello G, Esnard-Feve A, Fellmann D, Jouvenot M. Identification and expression of a new splicing variant of FAD-sulfhydryl oxidase in adult rat brain. ACTA ACUST UNITED AC 2006; 1759:225-33. [PMID: 16806532 DOI: 10.1016/j.bbaexp.2006.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 04/05/2006] [Accepted: 04/24/2006] [Indexed: 01/22/2023]
Abstract
Flavoproteins of the quiescin/sulfhydryl oxidase (QSOX) family catalyze oxidation of peptide and protein thiols to disulfides with the reduction of oxygen to hydrogen peroxide. We report here the molecular cloning of a new putative sulfhydryl oxidase cDNA, rQSOX-L (GenBank Accession no ), from adult rat brain and its expression studied by RT-PCR, Northern and Western blots in rat tissues. DNA-sequencing demonstrated the existence of two cDNAs in rat cortex, corresponding to a long transcript (rQSOX-L) and a short transcript (rQSOX-S) which differed by 851 nucleotides due to alternative splicing. The new transcript, rQSOX-L (3356 nucleotides), was specifically expressed in brain, hypophysis, heart, testis and seminal vesicle. The distribution of this variant is not homogeneous in the different tissues studied and suggests a complex gene regulation. The full-length rQSOX-L cDNA has an open reading frame of 2250-bp encoding a protein of 750 amino acids that contains a signal peptide sequence, a protein-disulfide-isomerase-type thioredoxin and ERV1-ALR domains and a long form specific C-terminal extension. The rQSOX-L protein is highly homologous to members of the sulfhydryl oxidase/Quiescin family and contains particularly two potential sites for N-glycosylation. This protein isoform was specifically detected in rat brain tissues in opposition to the low molecular form that was ubiquitous. Matrix-assisted laser desorption/ionization time of flight mass spectrometry analysis of the immunoprecipitate tryptic fragments allowed the identification of rQSOX-L protein.
Collapse
Affiliation(s)
- Jean Radom
- Equipe "Estrogènes, Expression Génique et Pathologie du Système Nerveux Central", E. A. 3922, IFR 133, Université de Franche-Comté, UFR Sciences et Techniques, 16 Route de Gray, 25030 Besançon cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Two pathways for the formation of biosynthetic protein disulfide bonds have been characterized in the endoplasmic reticulum (ER) of eukaryotes. In the major pathway, the membrane-associated flavoprotein Ero1 generates disulfide bonds for transfer to protein disulfide isomerase (PDI), which is responsible for directly introducing disulfide bonds into secretory proteins. In a minor fungal-specific protein oxidation pathway, the membrane-associated flavoprotein Erv2 can catalyze disulfide bond formation via the transfer of oxidizing equivalents to PDI. Genomic sequencing has revealed an abundance of enzymes sharing homology with Ero1, Erv2, or PDI. Herein the authors discuss the functional, mechanistic, and potential structural similarities between these homologs and the core enzymes of the characterized ER oxidation pathways. In addition they speculate about the possible differences between these enzymes that may explain why the cell contains multiple proteins dedicated to a single process. Finally, the eukaryotic ER protein oxidation and reduction pathways are compared to the corresponding prokaryotic periplasmic pathways, to highlight the functional, mechanistic, and structural similarities that exist between the pathways in these two kingdoms despite very low primary sequence homology between the protein and small molecule components.
Collapse
Affiliation(s)
- Carolyn S Sevier
- Department of Biology, Massachusetts Institute of Technology, Cambridge, 02139, USA
| | | |
Collapse
|
45
|
Coller HA, Sang L, Roberts JM. A new description of cellular quiescence. PLoS Biol 2006; 4:e83. [PMID: 16509772 PMCID: PMC1393757 DOI: 10.1371/journal.pbio.0040083] [Citation(s) in RCA: 372] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Accepted: 01/19/2006] [Indexed: 01/27/2023] Open
Abstract
Cellular quiescence, defined as reversible growth/proliferation arrest, is thought to represent a homogenous state induced by diverse anti-mitogenic signals. We used transcriptional profiling to characterize human diploid fibroblasts that exited the cell cycle after exposure to three independent signals—mitogen withdrawal, contact inhibition, and loss of adhesion. We show here that each signal caused regulation of a unique set of genes known to be important for cessation of growth and division. Therefore, contrary to expectation, cells enter different quiescent states that are determined by the initiating signal. However, underlying this diversity we discovered a set of genes whose specific expression in non-dividing cells was signal-independent, and therefore representative of quiescence per se, rather than the signal that induced it. This fibroblast “quiescence program” contained genes that enforced the non-dividing state, and ensured the reversibility of the cell cycle arrest. We further demonstrate that one mechanism by which the reversibility of quiescence is insured is the suppression of terminal differentiation. Expression of the quiescence program was not simply a downstream consequence of exit from the cell cycle, because key parts, including those involved in suppressing differentiation, were not recapitulated during the cell cycle arrest caused by direct inhibition of cyclin-dependent kinases. These studies form a basis for understanding the normal biology of cellular quiescence. Transcriptional profiling of fibroblasts induced to exit the cell cycle by distinct signals reveals distinctions and commonalities in the pathways to cellular quiescence.
Collapse
Affiliation(s)
- Hilary A Coller
- Department of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
| | | | | |
Collapse
|
46
|
Abstract
Eukaryotic flavin-dependent sulfhydryl oxidases catalyze oxidative protein folding with the generation of disulfides and the reduction of oxygen to hydrogen peroxide. This review deals principally with the Quiescinsulfhydryl oxidases (QSOX) that are found in multiple forms in multicellular organisms and singly in a number of protozoan parasites. QSOX is an ancient fusion of thioredoxin domains and an FAD-binding module, ERV1/ALR. Interdomain disulfide exchanges transmit reducing equivalents from substrates to the flavin cofactor and thence to molecular oxygen. The in vitro substrate specificity of avian QSOX1 and the likely substrates of QSOXs in vivo are discussed. The location of QSOX immunoreactivity and mRNA expression levels in human cells and tissues is reviewed. Generally, there is a marked association of QSOX1 expression with cell types that have a high secretory load of disulfide-containing peptides and proteins. The abundance of sulfhydryl oxidases in the islets of Langerhans suggests that oxidative protein folding may directly contribute to the oxidative stress believed to be a factor in the progression to type II diabetes. Finally, the structure and mechanism of QSOX proteins is compared to their smaller stand-alone cousins: yeast ERV1p and ERV2p, the mammalian augmenter of liver regeneration (ALR), and the viral ALR homologs.
Collapse
|
47
|
Vala A, Sevier CS, Kaiser CA. Structural determinants of substrate access to the disulfide oxidase Erv2p. J Mol Biol 2005; 354:952-66. [PMID: 16288914 DOI: 10.1016/j.jmb.2005.09.076] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Revised: 09/22/2005] [Accepted: 09/25/2005] [Indexed: 10/25/2022]
Abstract
Erv2p is a small, dimeric FAD-dependent sulfhydryl oxidase that generates disulfide bonds in the lumen of the endoplasmic reticulum. Mutagenic and structural studies suggest that Erv2p uses an internal thiol-transfer relay between the FAD-proximal active site cysteine pair (Cys121-Cys124) and a second cysteine pair (Cys176-Cys178) located in a flexible, substrate-accessible C-terminal tail of the adjacent dimer subunit. Here, we demonstrate that Cys176 and Cys178 are the only amino acids in the tail region required for disulfide transfer and that their relative positioning within the tail peptide is important for activity. However, intragenic suppressor mutations could be isolated that bypass the requirement for Cys176 and Cys178. These mutants were found to disrupt Erv2p dimerization and to increase the activity of Erv2p for thiol substrates such as glutathione. We propose that the two Erv2p subunits act together to direct the disulfide transfer to specific substrates. One subunit provides the catalytic domain composed of the active site cysteine residues and the FAD cofactor, while the second subunit appears to have two functions: it facilitates disulfide transfer to substrates via the tail cysteine residues, while simultaneously shielding the active site cysteine residues from non-specific reactions.
Collapse
Affiliation(s)
- Andrea Vala
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
48
|
Sevier CS, Kadokura H, Tam VC, Beckwith J, Fass D, Kaiser CA. The prokaryotic enzyme DsbB may share key structural features with eukaryotic disulfide bond forming oxidoreductases. Protein Sci 2005; 14:1630-42. [PMID: 15930008 PMCID: PMC2253379 DOI: 10.1110/ps.051355705] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Three different classes of thiol-oxidoreductases that facilitate the formation of protein disulfide bonds have been identified. They are the Ero1 and SOX/ALR family members in eukaryotic cells, and the DsbB family members in prokaryotic cells. These enzymes transfer oxidizing potential to the proteins PDI or DsbA, which are responsible for directly introducing disulfide bonds into substrate proteins during oxidative protein folding in eukaryotes and prokaryotes, respectively. A comparison of the recent X-ray crystal structure of Ero1 with the previously solved structure of the SOX/ALR family member Erv2 reveals that, despite a lack of primary sequence homology between Ero1 and Erv2, the core catalytic domains of these two proteins share a remarkable structural similarity. Our search of the DsbB protein sequence for features found in the Ero1 and Erv2 structures leads us to propose that, in a fascinating example of structural convergence, the catalytic core of this integral membrane protein may resemble the soluble catalytic domain of Ero1 and Erv2. Our analysis of DsbB also identified two new groups of DsbB proteins that, based on sequence homology, may also possess a catalytic core similar in structure to the catalytic domains of Ero1 and Erv2.
Collapse
Affiliation(s)
- Carolyn S Sevier
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | |
Collapse
|
49
|
Tury A, Mairet-Coello G, Esnard-Fève A, Benayoun B, Risold PY, Griffond B, Fellmann D. Cell-specific localization of the sulphydryl oxidase QSOX in rat peripheral tissues. Cell Tissue Res 2005; 323:91-103. [PMID: 16160860 DOI: 10.1007/s00441-005-0043-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Accepted: 07/18/2005] [Indexed: 11/29/2022]
Abstract
Rat quiescin/sulphydryl oxidase (rQSOX) introduces disulphide bridges into peptides and proteins with the reduction of molecular oxygen to hydrogen peroxide. Its occurrence has been previously highlighted in a wide range of organs by reverse transcription-polymerase chain reaction (RT-PCR) and Northern blot analyses, methods that have provided information concerning its expression in whole organs but that do not reveal the cell types expressing this enzyme. In this report, in addition to RT-PCR and Western blot experiments, the cell-specific localization of rQSOX has been investigated in a wide range of male and female adult rat tissues by using in situ hybridization and immunohistochemistry. Labelling was detected in most organs and systems including the immune, endocrine and reproductive systems, the respiratory, digestive and urinary tracts and the skin. No labelling was observed in the heart, blood vessel endothelium, liver or smooth and skeletal muscles. rQSOX expression was mainly localized in epithelial cells specialized in secretion, strengthening the hypothesis that QSOX enzymes play an important role in the mechanism of secretion, notably in the folding of secreted proteins. The intracellular patterns of immunolabelling indicate that the protein usually follows the secretory pathway, which is in accordance with its secreted nature and its presumed involvement in the elaboration of the extracellular matrix. In seminiferous tubules, where a high level of expression was noticed, QSOX might play an important physiological role in sperm function and serve as a marker for the diagnosis of male infertility.
Collapse
Affiliation(s)
- Anna Tury
- Laboratoire d'Histologie, E.A. 3922 Estrogènes, Expression Génique et Pathologies du Système Nerveux Central, IFR INSERM 133, Faculté de Médecine et de Pharmacie, Université de Franche-Comté, 19 Rue Ambroise Paré, 25041, Besançon, France
| | | | | | | | | | | | | |
Collapse
|
50
|
Seidler DG, Schaefer L, Robenek H, Iozzo RV, Kresse H, Schönherr E. A physiologic three-dimensional cell culture system to investigate the role of decorin in matrix organisation and cell survival. Biochem Biophys Res Commun 2005; 332:1162-70. [PMID: 15949467 DOI: 10.1016/j.bbrc.2005.04.175] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Accepted: 04/27/2005] [Indexed: 11/17/2022]
Abstract
In vivo cells exist in a three-dimensional environment generated and maintained by multiple cell-cell and cell-matrix interactions. Proteoglycans, like decorin, affect these complex interactions. Thus, we sought to investigate the role of decorin in a three-dimensional environment where the matrix was generated over time by decorin-deficient fibroblasts in the presence of L-ascorbic acid 2-phosphate. The cells were viable and proliferated in response to FGF2. Decorin was incorporated in the matrix and caused a approximately 2 nm shift in the average diameter of the collagen fibrils, and the range and distribution of the fibrils became narrower and more uniform. Although there were no appreciable changes in collagen composition, we found that exogenous decorin induced the de novo synthesis of collagen I and V and cross-linked beta(I). In the early phases of the three-dimensional culture, decorin reduced apoptosis. However, following the establishment of a three-dimensional matrix, the cells did not require decorin for their survival.
Collapse
Affiliation(s)
- Daniela G Seidler
- Department of Physiological Chemistry and Pathobiochemistry, Waldeyerstr. 15, University Hospital Münster, University of Münster, D-48149 Münster, Germany.
| | | | | | | | | | | |
Collapse
|