1
|
Schuetz T, Dolejsi T, Beck E, Fugger F, Bild A, Duin MT, Gavranovic-Novakovic J, Hilbold E, Hoffmann T, Zuber J, Bauer A, Ruschitzka F, Bär C, Penninger JM, Haubner BJ. Murine neonatal cardiac regeneration depends on Insulin-like growth factor 1 receptor signaling. Sci Rep 2024; 14:22661. [PMID: 39349545 PMCID: PMC11443045 DOI: 10.1038/s41598-024-72783-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 09/10/2024] [Indexed: 10/02/2024] Open
Abstract
Unlike adult mammals, the hearts of neonatal mice possess the ability to completely regenerate from myocardial infarction (MI). This observation has sparked vast interest in deciphering the potentially lifesaving and morbidity-reducing mechanisms involved in neonatal cardiac regeneration. In mice, the regenerative potential is lost within the first week of life and coincides with a reduction of Insulin-like growth factor 1 receptor (Igf1r) expression in the heart. Igf1r is a well-known regulator of cardiomyocyte maturation and proliferation in neonatal mice. To test the role of Igf1r as a pivotal factor in cardiac regeneration, we knocked down (KD) Igf1r specifically in cardiomyocytes using recombinant adeno-associated virus (rAAV) delivery and troponin T promotor driven shRNAmirs. Cardiomyocyte specific Igf1r KD versus control mice were subjected to experimental MI by permanent ligation of the left anterior descending artery (LAD). Cardiac functional and morphological data were analyzed over a 21-day period. Neonatal Igf1r KD mice showed reduced systolic cardiac function and increased fibrotic cardiac remodeling 21 days post injury. This cardiac phenotype was associated with reduced cardiomyocyte nuclei mitosis and decreased AKT and ERK phosphorylation in Igf1r KD, compared to control neonatal mouse hearts. Our in vivo murine data show that Igf1r KD shifts neonatal cardiac regeneration to a more adult-like scarring phenotype, identifying cardiomyocyte-specific Igf1r signaling as a crucial component of neonatal cardiac regeneration.
Collapse
Affiliation(s)
- Thomas Schuetz
- Department of Internal Medicine III (Cardiology and Angiology), Innsbruck Medical University, Innsbruck, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Theresa Dolejsi
- Department of Internal Medicine III (Cardiology and Angiology), Innsbruck Medical University, Innsbruck, Austria
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Eva Beck
- Department of Internal Medicine III (Cardiology and Angiology), Innsbruck Medical University, Innsbruck, Austria
| | - Fabio Fugger
- Department of Internal Medicine III (Cardiology and Angiology), Innsbruck Medical University, Innsbruck, Austria
| | - Alexander Bild
- Department of Internal Medicine III (Cardiology and Angiology), Innsbruck Medical University, Innsbruck, Austria
| | - Marie-Theres Duin
- Department of Internal Medicine III (Cardiology and Angiology), Innsbruck Medical University, Innsbruck, Austria
| | - Jasmina Gavranovic-Novakovic
- Department of Internal Medicine III (Cardiology and Angiology), Innsbruck Medical University, Innsbruck, Austria
| | - Erika Hilbold
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | | | | | - Axel Bauer
- Department of Internal Medicine III (Cardiology and Angiology), Innsbruck Medical University, Innsbruck, Austria
| | - Frank Ruschitzka
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Josef Martin Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria.
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.
- Helmholtz Centre for Infection Research, Braunschweig, Germany.
| | - Bernhard Johannes Haubner
- Department of Internal Medicine III (Cardiology and Angiology), Innsbruck Medical University, Innsbruck, Austria.
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria.
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
- Department of Cardiology, University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Alshoubaki YK, Nayer B, Lu YZ, Salimova E, Lau SN, Tan JL, Amann-Zalcenstein D, Hickey PF, Del Monte-Nieto G, Vasanthakumar A, Martino MM. Tregs delivered post-myocardial infarction adopt an injury-specific phenotype promoting cardiac repair via macrophages in mice. Nat Commun 2024; 15:6480. [PMID: 39090108 PMCID: PMC11294480 DOI: 10.1038/s41467-024-50806-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Regulatory T cells (Tregs) are key immune regulators that have shown promise in enhancing cardiac repair post-MI, although the mechanisms remain elusive. Here, we show that rapidly increasing Treg number in the circulation post-MI via systemic administration of exogenous Tregs improves cardiac function in male mice, by limiting cardiomyocyte death and reducing fibrosis. Mechanistically, exogenous Tregs quickly home to the infarcted heart and adopt an injury-specific transcriptome that mediates repair by modulating monocytes/macrophages. Specially, Tregs lead to a reduction in pro-inflammatory Ly6CHi CCR2+ monocytes/macrophages accompanied by a rapid shift of macrophages towards a pro-repair phenotype. Additionally, exogenous Treg-derived factors, including nidogen-1 and IL-10, along with a decrease in cardiac CD8+ T cell number, mediate the reduction of the pro-inflammatory monocyte/macrophage subset in the heart. Supporting the pivotal role of IL-10, exogenous Tregs knocked out for IL-10 lose their pro-repair capabilities. Together, this study highlights the beneficial use of a Treg-based therapeutic approach for cardiac repair with important mechanistic insights that could facilitate the development of novel immunotherapies for MI.
Collapse
Affiliation(s)
- Yasmin K Alshoubaki
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, Australia
| | - Bhavana Nayer
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, Australia
| | - Yen-Zhen Lu
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, Australia
| | | | - Sin Nee Lau
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, Australia
| | - Jean L Tan
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, Australia
| | - Daniela Amann-Zalcenstein
- Advanced Genomics Facility, Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Peter F Hickey
- Advanced Genomics Facility, Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Gonzalo Del Monte-Nieto
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, Australia
- Victorian Heart Institute, Monash University, Victorian Heart Hospital, Melbourne, Australia
| | - Ajithkumar Vasanthakumar
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia
- La Trobe University, Bundoora, Australia
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Mikaël M Martino
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, Australia.
- Victorian Heart Institute, Monash University, Victorian Heart Hospital, Melbourne, Australia.
| |
Collapse
|
3
|
Lay IS, Kuo WW, Shibu MA, Ho TJ, Cheng SM, Day CH, Ban B, Wang S, Li Q, Huang CY. Exercise training restores IGFIR survival signaling in d-galactose induced-aging rats to suppress cardiac apoptosis. J Adv Res 2020; 28:35-41. [PMID: 33364043 PMCID: PMC7753223 DOI: 10.1016/j.jare.2020.06.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/26/2020] [Accepted: 06/17/2020] [Indexed: 12/18/2022] Open
Abstract
Introduction Insulin-like growth factor-I receptor (IGF1R) mediated survival signaling is a crucial mechanism for cellular endurance and a potential indicator of recuperation in deteriorating hearts. Objective This study evaluates the impact of long-term exercise training in enhancing cardiac survival mechanism in D-galactose-induced toxicity associated aging rats. Methods Forty-eight male SD-rats were segregated into 4 groups (n=9) and were named as control, exercise training groups, aging group and aging group with exercise training. Aging was induced by intraperitoneal (IP) D-galactose (150 mL/kg) injection for 8 weeks and for exercise training, the rats were left to swim in warm water for 60 min every day and 5 times/week. Western blotting of proteins from the left ventricles was performed to identify the modulations in the survival signaling. Tissue sections were analyzed to determine the extent of fibrosis and apoptosis. Results Western-blot analysis performed on the excised left ventricles (LV) showed that proteins of the cardiac survival pathway including IGF1R and Akt and the pro-survival Bcl-2 showed significant decrease in the aging group, whereas the levels were restored in the aging rats subjected to exercise training. In addition, aging groups showed increased interstitial space and collagen accumulation. Further, TUNEL assay showed higher number of apoptotic cells in the LV of aging group, which was correlated with increase in the proteins involved in FAS-FADD-dependent apoptosis. However, these aging associated effects were ameliorated upon exercise training in the D-galactose-induced aging rats that showed elevated IGF1R/Akt signaling. Conclusion The results suggest that IGFIR survival signaling cascadeis elevated in following long-term exercise training and thereby provide cardio-protective benefits in D-galactose induced aging rats.
Collapse
Affiliation(s)
- Ing-Shiow Lay
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, 40402 Taichung, Taiwan.,Department of Chinese Medicine, China Medical University Beigang Hospital, Yunlin County 65152, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan
| | - Marthandam Asokan Shibu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Tsung-Jung Ho
- Integration Center of Traditional Chinese and Modern Medicine, HualienTzu Chi Hospital, Hualien 97002, Taiwan.,Department of Chinese Medicine,Hualien Tzu Chi Hospital, Hualien 97002, Taiwan.,School of Post Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Shiu-Min Cheng
- Department of Psychology, Asia University, Taichung, Taiwan
| | | | - Bo Ban
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining Medical University, 89 Guhuai Road, Jining, Shandong 272029, China
| | - Shulin Wang
- Department of Cardiology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, Guangdong, China
| | - Qiaowen Li
- Department of Cardiology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, Guangdong, China
| | - Chih-Yang Huang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, 40402 Taichung, Taiwan.,Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan.,Department of Biotechnology, Asia University, Taichung, Taiwan.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,Holistic Education Center, Tzu Chi University of Science and Technology, Hualien, Taiwan
| |
Collapse
|
4
|
Shaikh S, Troncoso R, Mondaca-Ruff D, Parra V, Garcia L, Chiong M, Lavandero S. The STIM1 inhibitor ML9 disrupts basal autophagy in cardiomyocytes by decreasing lysosome content. Toxicol In Vitro 2018; 48:121-127. [PMID: 29337250 DOI: 10.1016/j.tiv.2018.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/06/2018] [Accepted: 01/09/2018] [Indexed: 01/08/2023]
Abstract
Stromal-interaction molecule 1 (STIM1)-mediated store-operated Ca2+ entry (SOCE) plays a key role in mediating cardiomyocyte hypertrophy, both in vitro and in vivo. Moreover, there is growing support for the contribution of SOCE to the Ca2+ overload associated with ischemia/reperfusion injury. Therefore, STIM1 inhibition is proposed as a novel target for controlling both hypertrophy and ischemia/reperfusion-induced Ca2+ overload. Our aim was to evaluate the effect of ML9, a STIM1 inhibitor, on cardiomyocyte viability. ML9 was found to induce cell death in cultured neonatal rat cardiomyocytes. Caspase-3 activation, apoptotic index and release of the necrosis marker lactate dehydrogenase to the extracellular medium were evaluated. ML9-induced cardiomyocyte death was not associated with increased intracellular ROS or decreased ATP levels. Moreover, treatment with ML9 significantly increased levels of the autophagy marker LC3-II, without altering Beclin1 or p62 protein levels. However, treatment with ML9 followed by bafilomycin-A1 did not produce further increases in LC3-II content. Furthermore, treatment with ML9 resulted in decreased LysoTracker® Green staining. Collectively, these data suggest that ML9-induced cardiomyocyte death is triggered by a ML9-dependent disruption of autophagic flux due to lysosomal dysfunction.
Collapse
Affiliation(s)
- S Shaikh
- Advanced Center for Chronic Disease (ACCDiS) & Center of Exercise, Metabolism and Cancer (CEMC), Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, University of Chile, Santiago, Chile
| | - R Troncoso
- Advanced Center for Chronic Disease (ACCDiS) & Center of Exercise, Metabolism and Cancer (CEMC), Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, University of Chile, Santiago, Chile; Institute for Nutrition and Food Technology (INTA), University of Chile, Chile
| | - D Mondaca-Ruff
- Advanced Center for Chronic Disease (ACCDiS) & Center of Exercise, Metabolism and Cancer (CEMC), Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, University of Chile, Santiago, Chile
| | - V Parra
- Advanced Center for Chronic Disease (ACCDiS) & Center of Exercise, Metabolism and Cancer (CEMC), Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, University of Chile, Santiago, Chile
| | - L Garcia
- Advanced Center for Chronic Disease (ACCDiS) & Center of Exercise, Metabolism and Cancer (CEMC), Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, University of Chile, Santiago, Chile
| | - M Chiong
- Advanced Center for Chronic Disease (ACCDiS) & Center of Exercise, Metabolism and Cancer (CEMC), Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, University of Chile, Santiago, Chile.
| | - S Lavandero
- Advanced Center for Chronic Disease (ACCDiS) & Center of Exercise, Metabolism and Cancer (CEMC), Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, University of Chile, Santiago, Chile; Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
5
|
Liu J, Liu M, Chen L. Novel pathogenesis: regulation of apoptosis by Apelin/APJ system. Acta Biochim Biophys Sin (Shanghai) 2017; 49:471-478. [PMID: 28407045 DOI: 10.1093/abbs/gmx035] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Indexed: 12/31/2022] Open
Abstract
Apelin is the endogenous peptide APJ receptor, while APJ is a member of the G protein-coupled receptors family. Recent evidence strongly suggests that Apelin/APJ system influences apoptosis in various diseases through different signal pathways. In this review, we discuss the possible mechanisms by which the Apelin/APJ system inhibits apoptosis, including the phosphatidylinositol-3-kinase (PI3K)/Akt, ERK1/2, caspase signaling, and autophagy pathway. We also summarize the role of Apelin/APJ system in apoptosis in myocardial ischemia-reperfusion (I/R) injury, pulmonary artery hypertension, retinal neovascular disease, acute renal injury, skeletal homeostasis, and gastrointestinal diseases. Apelin/APJ system decreases myocardial infarction size and alleviates myocardial I/R injury by inhibiting cardiomyocytes apoptosis. However, Apelin/APJ system improves pulmonary artery hypertension via increasing apoptosis. Apelin/APJ system exerts neuroprotective effect by blocking apoptosis and participates in the recovery of retinal neovascular disease by suppressing apoptosis. Apelin/APJ system also shows anti-apoptotic effect against acute renal injury and plays a role in regulating skeletal homeostasis. In gastrointestinal disease, Apelin/APJ system plays a potential physiological role in gastrointestinal cytoprotection by regulating apoptosis. We hope that a better understanding of the Apelin/APJ system will help to discover new disease pathogenesis and find possible therapeutic targets of the Apelin/APJ system essential for various diseases.
Collapse
Affiliation(s)
- Jiaqi Liu
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang 421001, China
| | - Meiqing Liu
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang 421001, China
| | | |
Collapse
|
6
|
Novel players in cardioprotection: Insulin like growth factor-1, angiotensin-(1–7) and angiotensin-(1–9). Pharmacol Res 2015; 101:41-55. [DOI: 10.1016/j.phrs.2015.06.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 06/27/2015] [Accepted: 06/28/2015] [Indexed: 12/14/2022]
|
7
|
Tomas-Martin P, Lopez-Guerrero AM, Casas-Rua V, Pozo-Guisado E, Martin-Romero FJ. Phospho-STIM1 is a downstream effector that mediates the signaling triggered by IGF-1 in HEK293 cells. Cell Signal 2015; 27:545-54. [PMID: 25562429 DOI: 10.1016/j.cellsig.2014.12.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/13/2014] [Accepted: 12/27/2014] [Indexed: 12/20/2022]
Abstract
STIM1 is a Ca(2+) sensor of the endoplasmic reticulum (ER) that triggers the activation of plasma membrane Ca(2+) channels upon depletion of Ca(2+) levels within the ER. During thapsigargin-triggered Ca(2+) store depletion, ERK1/2 phosphorylates STIM1 at Ser575, Ser608, and Ser621. This phosphorylation plays a role in the regulation of STIM1 dissociation from the microtubule plus-end binding protein EB1, an essential step for STIM1 activation by thapsigargin. However, little is known regarding the physiological role of this phosphorylation. Because IGF-1 triggers the activation of the RAF-MEK-ERK and the phosphoinositide pathways, the role of STIM1 phosphorylation in IGF-1 stimulation was studied. There was found to be phosphorylation of ERK1/2 in both the presence and the absence of extracellular Ca(2+), demonstrating that Ca(2+) influx is not essential for ERK1/2 activation. In parallel, IGF-1 triggered STIM1 phosphorylation at the aforementioned sites, an effect that was blocked by PD0325901, a MEK1/2 inhibitor used to block ERK1/2 activation. Also, STIM1-GFP was found in clusters upon IGF-1 stimulation, and STIM1-S575A/S608A/S621A-GFP strongly reduced this multimerization. Interestingly, phospho-STIM1 was mainly found in clusters when cells were treated with IGF-1, and IGF-1 triggered the dissociation of STIM1 from EB1, similarly to what has been observed for thapsigargin, suggesting that STIM1 mediates the IGF-1 signaling pathway. A study of IGF-1-stimulated NFAT translocation was therefore performed, finding that STIM1-S575A/S608A/S621A blocked this translocation, as did the fusion protein STIM1-EB1, confirming that both STIM1 phosphorylation and STIM1-EB1 dissociation are required for IGF-1-triggered Ca(2+)-dependent signaling, and demonstrating that STIM1 phosphorylation plays a role as a downstream effector of the RAF-MEK-ERK pathway and an upstream activator of Ca(2+) entry.
Collapse
Affiliation(s)
- Patricia Tomas-Martin
- Department of Biochemistry and Molecular Biology, School of Life Sciences, University of Extremadura, Badajoz 06006, Spain.
| | - Aida M Lopez-Guerrero
- Department of Biochemistry and Molecular Biology, School of Life Sciences, University of Extremadura, Badajoz 06006, Spain.
| | - Vanessa Casas-Rua
- Department of Biochemistry and Molecular Biology, School of Life Sciences, University of Extremadura, Badajoz 06006, Spain.
| | - Eulalia Pozo-Guisado
- Department of Biochemistry and Molecular Biology, School of Life Sciences, University of Extremadura, Badajoz 06006, Spain.
| | - Francisco Javier Martin-Romero
- Department of Biochemistry and Molecular Biology, School of Life Sciences, University of Extremadura, Badajoz 06006, Spain.
| |
Collapse
|
8
|
Sohrabji F. Estrogen-IGF-1 interactions in neuroprotection: ischemic stroke as a case study. Front Neuroendocrinol 2015; 36:1-14. [PMID: 24882635 PMCID: PMC4247812 DOI: 10.1016/j.yfrne.2014.05.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 05/15/2014] [Accepted: 05/16/2014] [Indexed: 12/25/2022]
Abstract
The steroid hormone 17b-estradiol and the peptide hormone insulin-like growth factor (IGF)-1 independently exert neuroprotective actions in neurologic diseases such as stroke. Only a few studies have directly addressed the interaction between the two hormone systems, however, there is a large literature that indicates potentially greater interactions between the 17b-estradiol and IGF-1 systems. The present review focuses on key issues related to this interaction including IGF-1 and sex differences and common activation of second messenger systems. Using ischemic stroke as a case study, this review also focuses on independent and cooperative actions of estrogen and IGF-1 on neuroprotection, blood brain barrier integrity, angiogenesis, inflammation and post-stroke epilepsy. Finally, the review also focuses on the astrocyte, a key mediator of post stroke repair, as a local source of 17b-estradiol and IGF-1. This review thus highlights areas where significant new research is needed to clarify the interactions between these two neuroprotectants.
Collapse
Affiliation(s)
- Farida Sohrabji
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, TAMHSC College of Medicine, Bryan, TX 77807, United States.
| |
Collapse
|
9
|
Linke R, Pries R, Könnecke M, Bruchhage KL, Böscke R, Gebhard M, Wollenberg B. The MEK1/2-ERK1/2 pathway is activated in chronic rhinosinusitis with nasal polyps. Arch Immunol Ther Exp (Warsz) 2014; 62:217-29. [PMID: 24609540 DOI: 10.1007/s00005-014-0281-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 12/11/2013] [Indexed: 11/27/2022]
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) is a common disease that has a considerable impact on the quality of life. Alterations in signalling pathways may contribute to the ongoing inflammation and proliferation in CRSwNP. The MEK1/2-ERK1/2 pathway transmits signals from many extracellular molecules to regulate cellular processes. We examined tissue samples from nasal polyps and the inferior turbinate of patients with CRSwNP and the inferior turbinate from subjects with healthy mucosa. The expressions of MEK1/2, ERK1/2, and their active phosphorylated forms pMEK1/2 and pERK1/2 were analysed using DNA microarray, quantitative real-time PCR, protein array, Western hybridisation, and immunohistochemistry. We detected increased MEK1/2 protein expression in nasal polyps compared to the inferior turbinates of patients with CRSwNP or healthy mucosa. We also found a higher amount of MEK1/2 in the inferior turbinates of patients with CRSwNP compared to those with healthy mucosa. Most importantly, we observed a significant increase in the phosphorylation of MEK1/2 and ERK1/2 in nasal polyps compared to both types of controls. We observed activation of the MEK1/2-ERK1/2 pathway in nasal polyps. Interestingly, we did not see the same activation pattern in different tiers of the MEK1/2-ERK1/2 signalling cascade. One explanation for this result is that the components enhance the complex MEK-ERK cascade in a distinct manner, enabling a wide variety of functions. The MEK1/2-ERK1/2 pathway appears to play a pivotal role in the pathogenesis of CRSwNP.
Collapse
Affiliation(s)
- Robert Linke
- Department of Otorhinolaryngology and Facial Plastic Surgery, UK-SH, HNO-Klinik, University of Luebeck, Ratzeburger Allee 160, 23538, Luebeck, Germany,
| | | | | | | | | | | | | |
Collapse
|
10
|
Troncoso R, Ibarra C, Vicencio JM, Jaimovich E, Lavandero S. New insights into IGF-1 signaling in the heart. Trends Endocrinol Metab 2014; 25:128-37. [PMID: 24380833 DOI: 10.1016/j.tem.2013.12.002] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/16/2013] [Accepted: 12/02/2013] [Indexed: 01/15/2023]
Abstract
Insulin-like growth factor 1 (IGF-1) signaling regulates contractility, metabolism, hypertrophy, autophagy, senescence, and apoptosis in the heart. IGF-1 deficiency is associated with an increased risk of cardiovascular disease, whereas cardiac activation of IGF-1 receptor (IGF-1R) protects from the detrimental effects of a high-fat diet and myocardial infarction. IGF-1R activates multiple pathways through its intrinsic tyrosine kinase activity and through coupling to heterotrimeric G protein. These pathways involve classic second messengers, phosphorylation cascades, lipid signaling, Ca(2+) transients, and gene expression. In addition, IGF-1R triggers signaling in different subcellular locations including the plasma membrane, perinuclear T tubules, and also in internalized vesicles. In this review, we provide a fresh and updated view of the complex IGF-1 scenario in the heart, including a critical focus on therapeutic strategies.
Collapse
Affiliation(s)
- Rodrigo Troncoso
- Facultad de Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago 838049, Chile; Centro de Estudios Moleculares de la Célula, Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago 838049, Chile
| | - Cristián Ibarra
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
| | | | - Enrique Jaimovich
- Centro de Estudios Moleculares de la Célula, Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago 838049, Chile
| | - Sergio Lavandero
- Facultad de Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago 838049, Chile; Centro de Estudios Moleculares de la Célula, Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago 838049, Chile; Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA.
| |
Collapse
|
11
|
Fortuño MA, López N, González A, Díez J. Involvement of cardiomyocyte survival–apoptosis balance in hypertensive cardiac remodeling. Expert Rev Cardiovasc Ther 2014; 1:293-307. [PMID: 15030288 DOI: 10.1586/14779072.1.2.293] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The balance between cell death and cell survival is a tightly controlled process, especially in terminally differentiated cells, such as the cardiomyocyte. Accumulating data support a role for cardiomyocyte apoptosis in the development of several cardiac diseases, including the transition from hypertensive compensatory hypertrophy to heart failure. This review briefly summarizes the status of the knowledge regarding the death-survival balance of cardiomyocytes in the context of hypertensive heart disease. Several molecular and cellular aspects as well as the most relevant pathophysiological implications are presented. Moreover, diagnosis tools under development and the possibilities for pharmacological intervention are also examined.
Collapse
Affiliation(s)
- María A Fortuño
- Division of Cardiovascular Pathophysiology, School of Medicine, University of Navarra, Pamplona, Spain.
| | | | | | | |
Collapse
|
12
|
Troncoso R, Díaz-Elizondo J, Espinoza SP, Navarro-Marquez MF, Oyarzún AP, Riquelme JA, Garcia-Carvajal I, Díaz-Araya G, García L, Hill JA, Lavandero S. Regulation of cardiac autophagy by insulin-like growth factor 1. IUBMB Life 2013; 65:593-601. [PMID: 23671040 DOI: 10.1002/iub.1172] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 03/22/2013] [Indexed: 12/25/2022]
Abstract
Insulin-like growth factor-1 (IGF-1) signaling is a key pathway in the control of cell growth and survival. Three critical nodes in the IGF-1 signaling pathway have been described in cardiomyocytes: protein kinase Akt/mammalian target of rapamycin (mTOR), Ras/Raf/extracellular signal-regulated kinase (ERK), and phospholipase C (PLC)/inositol 1,4,5-triphosphate (InsP3 )/Ca(2+) . The Akt/mTOR and Ras/Raf/ERK signaling arms govern survival in the settings of cardiac stress and hypertrophic growth. By contrast, PLC/InsP3 /Ca(2+) functions to regulate metabolic adaptability and gene transcription. Autophagy is a catabolic process involved in protein degradation, organelle turnover, and nonselective breakdown of cytoplasmic components during nutrient starvation or stress. In the heart, autophagy is observed in a variety of human pathologies, where it can be either adaptive or maladaptive, depending on the context. We proposed the hypothesis that IGF-1 protects the heart by rescuing the mitochondrial metabolism and the energetics state, reducing cell death and controls the potentially exacerbate autophagic response to nutritional stress. In light of the importance of IGF-1 and autophagy in the heart, we review here IGF-1 signaling and autophagy regulation in the context of cardiomyocyte nutritional stress.
Collapse
Affiliation(s)
- Rodrigo Troncoso
- Centro de Estudios Moleculares de la Célula, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Hassan F, Meduru S, Taguchi K, Kuppusamy ML, Mostafa M, Kuppusamy P, Khan M. Carvedilol enhances mesenchymal stem cell therapy for myocardial infarction via inhibition of caspase-3 expression. J Pharmacol Exp Ther 2012; 343:62-71. [PMID: 22739507 DOI: 10.1124/jpet.112.196915] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Adult stem cells have shown great promise toward repairing infarcted heart and restoring cardiac function. Mesenchymal stem cells (MSCs), because of their inherent multipotent nature and their ability to secrete a multitude of growth factors and cytokines, have been used for cardiac repair with encouraging results. Preclinical studies showed that MSCs injected into infarcted hearts improve cardiac function and attenuate fibrosis. Although stem cell transplantation is a promising therapeutic option to repair the infarcted heart, it is faced with a number of challenges, including the survival of the transplanted cells in the ischemic region, due to excessive oxidative stress present in the ischemic region. The objective of this study was to determine the effect of Carvedilol (Carv), a nonselective β-blocker with antioxidant properties, on the survival and engraftment of MSCs in the infarcted heart. MSCs were subjected to a simulated host-tissue environment, similar to the one present in the infarcted myocardium, by culturing them in the presence of hydrogen peroxide (H(2)O(2)) to induce oxidative stress. MSCs were treated with 2.5 μM Carv for 1 h in serum-free medium, followed by treatment with H(2)O(2) for 2 h. The treated cells exhibited significant protection against H(2)O(2)-induced cell death versus untreated controls as determined by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assays. Likewise, transplantation of MSCs after permanent left coronary artery ligation and treatment of animals after myocardial infarction (MI) with Carv (5 mg/kg b.wt.) led to significant improvement in cardiac function, decreased fibrosis, and caspase-3 expression compared with the MI or MSC-alone groups.
Collapse
Affiliation(s)
- Fatemat Hassan
- Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Troncoso R, Vicencio JM, Parra V, Nemchenko A, Kawashima Y, Del Campo A, Toro B, Battiprolu PK, Aranguiz P, Chiong M, Yakar S, Gillette TG, Hill JA, Abel ED, Leroith D, Lavandero S. Energy-preserving effects of IGF-1 antagonize starvation-induced cardiac autophagy. Cardiovasc Res 2011; 93:320-9. [PMID: 22135164 DOI: 10.1093/cvr/cvr321] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AIMS Insulin-like growth factor 1 (IGF-1) is known to exert cardioprotective actions. However, it remains unknown if autophagy, a major adaptive response to nutritional stress, contributes to IGF-1-mediated cardioprotection. METHODS AND RESULTS We subjected cultured neonatal rat cardiomyocytes, as well as live mice, to nutritional stress and assessed cell death and autophagic rates. Nutritional stress induced by serum/glucose deprivation strongly induced autophagy and cell death, and both responses were inhibited by IGF-1. The Akt/mammalian target of rapamycin (mTOR) pathway mediated the effects of IGF-1 upon autophagy. Importantly, starvation also decreased intracellular ATP levels and oxygen consumption leading to AMP-activated protein kinase (AMPK) activation; IGF-1 increased mitochondrial Ca(2+) uptake and mitochondrial respiration in nutrient-starved cells. IGF-1 also rescued ATP levels, reduced AMPK phosphorylation and increased p70(S6K) phosphorylation, which indicates that in addition to Akt/mTOR, IGF-1 inhibits autophagy by the AMPK/mTOR axis. In mice harbouring a liver-specific igf1 deletion, which dramatically reduces IGF-1 plasma levels, AMPK activity and autophagy were increased, and significant heart weight loss was observed in comparison with wild-type starved animals, revealing the importance of IGF-1 in maintaining cardiac adaptability to nutritional insults in vivo. CONCLUSION Our data support the cardioprotective actions of IGF-1, which, by rescuing the mitochondrial metabolism and the energetic state of cells, reduces cell death and controls the potentially harmful autophagic response to nutritional challenges. IGF-1, therefore, may prove beneficial to mitigate damage induced by excessive nutrient-related stress, including ischaemic disease in multiple tissues.
Collapse
Affiliation(s)
- Rodrigo Troncoso
- Centro de Estudios Moleculares de Célula, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 838-0492, Chile
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Li H, Malhotra D, Yeh CC, Tu R, Zhu BQ, Birger N, Wisneski A, Cha J, Karliner JS, Mann MJ. Myocardial survival signaling in response to stem cell transplantation. J Am Coll Surg 2009; 208:607-13. [PMID: 19476797 DOI: 10.1016/j.jamcollsurg.2008.12.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 12/18/2008] [Accepted: 12/18/2008] [Indexed: 02/08/2023]
Abstract
BACKGROUND Experimental human stem cell transplantation to the heart has begun, but the mechanisms underlying benefits seen in preclinical models, both at the site of cell injection and at more distant regions, remain uncertain. We hypothesize that these benefits can be best understood first at the level of key intracellular signaling cascades in the host myocardium, which can be responsible for functional and structural preservation of the heart. STUDY DESIGN Western blot and ELISA were used to assess key pathways that regulate cardiac myocyte survival and hypertrophy in both the infarct/borderzone and remote myocardium of C57/B6 mouse hearts subjected to coronary artery ligation, with subsequent injection of either vehicle or bone marrow-derived adult mesenchymal stem cells (MSC). RESULTS Improved left ventricular function with MSC transplantation was associated with a relative preservation of Akt phosphorylation (activation) and of phosphorylation of downstream mediators of cell survival and hypertrophy. There was no substantial difference in activation of mitogen-activated protein kinase p38, and activation of the antiapoptotic mitogen-activated protein kinase extracellular signal-regulated kinase was lower at 1 week after MSC treatment, but rose beyond controls by week 2. Similar changes were observed in both the infarct/borderzone and the remote myocardium. CONCLUSION Stem cell transplantation in the post-MI murine myocardium is associated with preservation of Akt signaling. Together with a possible later increase in extracellular signal-regulated kinase activation, this signaling change might be responsible for cardioprotection. Additional focused investigation might identify elements in transplantation regimens that optimize this mechanism of benefit, and that can increase the likelihood of human clinical success.
Collapse
Affiliation(s)
- Hongzhe Li
- Division of Cardiothoracic Surgery, University of California, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Stavropoulou A, Halapas A, Sourla A, Philippou A, Papageorgiou E, Papalois A, Koutsilieris M. IGF-1 expression in infarcted myocardium and MGF E peptide actions in rat cardiomyocytes in vitro. Mol Med 2009; 15:127-35. [PMID: 19295919 DOI: 10.2119/molmed.2009.00012] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Accepted: 03/05/2009] [Indexed: 11/06/2022] Open
Abstract
Insulinlike growth factor-1 (IGF-1) expression is implicated in myocardial pathophysiology, and two IGF-1 mRNA splice variants have been detected in rodents, IGF-1Ea and mechano-growth factor (MGF). We investigated the expression pattern of IGF-1 gene transcripts in rat myocardium from 1 h up to 8 wks after myocardial infarction induced by left anterior descending coronary artery ligation. In addition, we characterized IGF-1 and MGF E peptide action and their respective signaling in H9C2 myocardial-like cells in vitro. IGF-1Ea and MGF expression were significantly increased, both at transcriptional and translational levels, during the late postinfarction period (4 and 8 wks) in infarcted rat myocardium. Measurements of serum IGF-1 levels in infarcted rats were initially decreased (24 h up to 1 wk) but remained unaltered throughout the late experimental phase (4 to 8 wks) compared with sham-operated rats. Furthermore, specific anti-IGF-1R neutralizing antibody failed to block the synthetic MGF E peptide action, whereas it completely blocked IGF-1 action on the proliferation of H9C2 cells. Moreover, this synthetic MGF E peptide did not activate Akt phosphorylation, whereas it activated ERK1/2 in H9C2 rat myocardial cells. These data support the role of IGF-1 expression in the myocardial repair process and suggest that synthetic MGF E peptide actions may be mediated via an IGF-1R independent pathway in rat myocardial cells, as suggested by our in vitro experiments.
Collapse
Affiliation(s)
- Anastasia Stavropoulou
- Department of Experimental Physiology, Medical School, National Kapodistrian University of Athens, Goudi-Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
17
|
Lu SY, Sontag DP, Detillieux KA, Cattini PA. FGF-16 is released from neonatal cardiac myocytes and alters growth-related signaling: a possible role in postnatal development. Am J Physiol Cell Physiol 2008; 294:C1242-9. [PMID: 18337564 DOI: 10.1152/ajpcell.00529.2007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
FGF-16 has been reported to be preferentially expressed in the adult rat heart. We have investigated the expression of FGF-16 in the perinatal and postnatal heart and its functional significance in neonatal rat cardiac myocytes. FGF-16 mRNA accumulation was observed by quantitative RT-PCR between neonatal days 1 and 7, with this increased expression persisting into adulthood. FGF-2 has been shown to increase neonatal rat cardiac myocyte proliferative potential via PKC activation. Gene array analysis revealed that FGF-16 inhibited the upregulation by FGF-2 of cell cycle promoting genes including cyclin F and Ki67. Furthermore, the CDK4/6 inhibitor gene Arf/INK4A was upregulated with the combination of FGF-16 and FGF-2 but not with either factor on its own. The effect on Ki67 was validated by protein immunodetection, which also showed that FGF-16 significantly decreased FGF-2-induced Ki67 labeling of cardiac myocytes, although it alone had no effect on Ki67 labeling. Inhibition of p38 MAPK potentiated cardiac myocyte proliferation induced by FGF-2 but did not alter the inhibitory action of FGF-16. Receptor binding assay showed that FGF-16 can compete with FGF-2 for binding sites including FGF receptor 1. FGF-16 had no effect on activated p38, ERK1/2, or JNK/SAPK after FGF-2 treatment. However, FGF-16 inhibited PKC-alpha and PKC-epsilon activation induced by FGF-2 and, importantly, IGF-1. Collectively, these data suggest that expression and release of FGF-16 in the neonatal myocardium interfere with cardiac myocyte proliferative potential by altering the local signaling environment via modulation of PKC activation and cell cycle-related gene expression.
Collapse
Affiliation(s)
- Shun Yan Lu
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada R3E 3J7
| | | | | | | |
Collapse
|
18
|
Caraglia M, Marra M, Viscomi C, D'Alessandro AM, Budillon A, Meo G, Arra C, Barbieri A, Rapp UR, Baldi A, Tassone P, Venuta S, Abbruzzese A, Tagliaferri P. The farnesyltransferase inhibitor R115777 (ZARNESTRA) enhances the pro-apoptotic activity of interferon-alpha through the inhibition of multiple survival pathways. Int J Cancer 2007; 121:2317-30. [PMID: 17657738 DOI: 10.1002/ijc.22964] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Interferon alpha (IFNalpha) induces an EGF-Ras-->Raf-1-->Erk dependent survival pathway counteracting apoptosis induced by the cytokine. In this paper we have evaluated the effects of the combination between farnesyl-transferase inhibitor (FTI) R115777 and IFNalpha on the growth inhibition and apoptosis of cancer cells. Simultaneous exposure to R115777 and IFNalpha produced synergistic both antiproliferative and proapoptotic effects. In these experimental conditions, IFNalpha and R115777 completely antagonized the increased activity of both Ras and Erk-1/2 induced by IFNalpha and strongly reduced Akt activity. Furthermore, treatment with R115777 in combination with IFNalpha regimen induced tumor growth delay on established KB cell xenografts in nude mice, while the single agents were almost inactive. R115777 was again able to antagonize the Ras-dependent survival pathway induced by IFNalpha also in vivo. Raf-1, one of the downstream targets of Ras, has been reported to activate bcl-2 through displacement and/or phosphorylation of Bad. We have found that IFNalpha induced mitochondrial localization of Raf-1 that was antagonized by R115777. Moreover, IFNalpha increased Raf-1/bcl-2 immuno-conjugate formation and intracellular co-localization and enhanced phosphorylation of Bad at Ser 112 and again R115777 counteracted all these effects. Moreover, the use of plasmids encoding for dominant negative or dominant positive Raf-1 antagonized and potentiated, respectively, the co-immunoprecipitation between Raf-1 and bcl-2. In conclusion, FTI R115777 strongly potentiates the antitumor activity of IFNalpha both in vitro and in vivo through the inhibition of different survival pathways that are dependent from isoprenylation of intracellular proteins such as ras.
Collapse
Affiliation(s)
- Michele Caraglia
- Experimental Pharmacology Unit, Experimental Oncology Department, National Cancer Institute Fondazione "G. Pascale", Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
ERK1/2 is an important subfamily of mitogen-activated protein kinases that control a broad range of cellular activities and physiological processes. ERK1/2 can be activated transiently or persistently by MEK1/2 and upstream MAP3Ks in conjunction with regulation and involvement of scaffolding proteins and phosphatases. Activation of ERK1/2 generally promotes cell survival; but under certain conditions, ERK1/2 can have pro-apoptotic functions.
Collapse
Affiliation(s)
- Zhimin Lu
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas M. D. Anderson Cancer Center, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030, USA.
| | | |
Collapse
|
20
|
Thomadaki H, Scorilas A. BCL2 family of apoptosis-related genes: functions and clinical implications in cancer. Crit Rev Clin Lab Sci 2006; 43:1-67. [PMID: 16531274 DOI: 10.1080/10408360500295626] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
One of the most effective ways to combat different types of cancer is through early diagnosis and administration of effective treatment, followed by efficient monitoring that will allow physicians to detect relapsing disease and treat it at the earliest possible time. Apoptosis, a normal physiological form of cell death, is critically involved in the regulation of cellular homeostasis. Dysregulation of programmed cell death mechanisms plays an important role in the pathogenesis and progression of cancer as well as in the responses of tumours to therapeutic interventions. Many members of the BCL2 (B-cell CLL/lymphoma 2; Bcl-2) family of apoptosis-related genes have been found to be differentially expressed in various malignancies, and some are useful prognostic cancer biomarkers. We have recently cloned a new member of this family, BCL2L12, which was found to be differentially expressed in many tumours. Most of the BCL2 family genes have been found to play a central regulatory role in apoptosis induction. Results have made it clear that a number of coordinating alterations in the BCL2 family of genes must occur to inhibit apoptosis and provoke carcinogenesis in a wide variety of cancers. However, more research is required to increase our understanding of the extent to which and the mechanisms by which they are involved in cancer development, providing the basis for earlier and more accurate cancer diagnosis, prognosis and therapeutic intervention that targets the apoptosis pathways. In the present review, we describe current knowledge of the function and molecular characteristics of a series of classic but also newly discovered genes of the BCL2 family as well as their implications in cancer development, prognosis and treatment.
Collapse
Affiliation(s)
- Hellinida Thomadaki
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Athens, Panepistimiopolis, 15701 Athens, Greece
| | | |
Collapse
|
21
|
Chanalaris A, Lawrence KM, Townsend PA, Davidson S, Jamshidi Y, Jashmidi Y, Stephanou A, Knight RD, Hsu SY, Hsueh AJW, Latchman DS. Hypertrophic effects of urocortin homologous peptides are mediated via activation of the Akt pathway. Biochem Biophys Res Commun 2005; 328:442-8. [PMID: 15694367 DOI: 10.1016/j.bbrc.2005.01.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2004] [Indexed: 11/21/2022]
Abstract
The UCN homologues SCP and SRP bind specifically to the CRFR2 receptor, whereas UCN binds to both CRFR1 and CRFR2. We have previously demonstrated that all three peptides are cardioprotective, and both the Akt and MAPK p42/44 pathways are essential for this effect. Here we tested the hypertrophic effects of these peptides. We examined the effects of the peptides on cell area, protein synthesis, and induction of the natriuretic peptides ANP and BNP. All three peptides were able to increase all the markers of hypertrophy examined, with SCP being the most potent of the three, followed by UCN and SRP last. In addition, we provide a mechanism of action for the three peptides and show that Akt phosphorylation is important for their hypertrophic action, whereas MAPK p42/44 is not involved in this effect.
Collapse
Affiliation(s)
- Anastasios Chanalaris
- Medical Molecular Biology Unit, Institute of Child Health, University College London, London WC1N 1EH, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Jackson DN, Foster DA. The enigmatic protein kinase Cdelta: complex roles in cell proliferation and survival. FASEB J 2004; 18:627-36. [PMID: 15054085 DOI: 10.1096/fj.03-0979rev] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein kinase Cdelta (PKCdelta) has been implicated both as a tumor suppressor and a positive regulator of cell cycle progression. PKCdelta has also been reported to positively and negatively regulate apoptotic programs. This has led to conflicting hypotheses on the role of PKCdelta in the control of cell proliferation and survival. Surprisingly, PKCdelta mice develop normally and are fertile, indicating that PKCdelta is not critical for normal cell proliferation during development. However, PKCdelta may play important roles in neoplastic cell proliferation. In this review, we have summarized the apparent multifunctional properties of this enigmatic protein with regard to its role in the regulation of cell cycle progression and cell survival. It is proposed that PKCdelta has both tumor suppressor and proliferation capabilities that can be recruited as a backup kinase for both gatekeeper tumor suppression and as an activator of the Ras/Raf/MEK/MAP kinase signaling pathway in cell proliferation.
Collapse
Affiliation(s)
- Desmond N Jackson
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10021, USA
| | | |
Collapse
|
23
|
Sandalova E, Wei CH, Masucci MG, Levitsky V. Regulation of expression of Bcl-2 protein family member Bim by T cell receptor triggering. Proc Natl Acad Sci U S A 2004; 101:3011-6. [PMID: 14970329 PMCID: PMC365736 DOI: 10.1073/pnas.0400005101] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Bim, a proapoptotic BH3-only member of the Bcl-2 protein family, is required for central and peripheral deletion of T lymphocytes. Mechanisms regulating Bim activity in T cells remain poorly understood. We show that expression of Bim is up-regulated in human T cells after polyclonal or specific T cell receptor triggering. Induction of Bim was affected by the agonistic potency of MHC:peptide ligands. Peptides that failed to induce Bim expression, failed to induce apoptosis in specific T cells, whereas partially agonistic ligands, which trigger death receptor-independent activation-induced cell death (AICD), induced Bim, but were inefficient in up-regulating Bcl-X(L). Activation of protein kinase C and calcineurin appeared to be necessary and sufficient for Bim up-regulation after T cell receptor ligation. Immunosuppressive drugs known to prevent T cell deletion in vivo, such as cyclosporin A or FK506, blocked Bim up-regulation and rescued T cells from death receptor-independent AICD, whereas rapamycin, which allows the development of stable immunological tolerance, did not exhibit these activities. These results define a new mode of Bim regulation, strongly implicate Bim as a mediator of AICD, and suggest that Bim up-regulation can be targeted to influence the outcome of specific immune responses.
Collapse
Affiliation(s)
- Elena Sandalova
- Microbiology and Tumor Biology Center, Karolinska Institute, S171 77 Stockholm, Sweden
| | | | | | | |
Collapse
|
24
|
Ibarra C, Estrada M, Carrasco L, Chiong M, Liberona JL, Cardenas C, Díaz-Araya G, Jaimovich E, Lavandero S. Insulin-like growth factor-1 induces an inositol 1,4,5-trisphosphate-dependent increase in nuclear and cytosolic calcium in cultured rat cardiac myocytes. J Biol Chem 2003; 279:7554-65. [PMID: 14660553 DOI: 10.1074/jbc.m311604200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the heart, insulin-like growth factor-1 (IGF-1) is a pro-hypertrophic and anti-apoptotic peptide. In cultured rat cardiomyocytes, IGF-1 induced a fast and transient increase in Ca(2+)(i) levels apparent both in the nucleus and cytosol, releasing this ion from intracellular stores through an inositol 1,4,5-trisphosphate (IP(3))-dependent signaling pathway. Intracellular IP(3) levels increased after IGF-1 stimulation in both the presence and absence of extracellular Ca(2+). A different spatial distribution of IP(3) receptor isoforms in cardiomyocytes was found. Ryanodine did not prevent the IGF-1-induced increase of Ca(2+)(i) levels but inhibited the basal and spontaneous Ca(2+)(i) oscillations observed when cardiac myocytes were incubated in Ca(2+)-containing resting media. Spatial analysis of fluorescence images of IGF-1-stimulated cardiomyocytes incubated in Ca(2+)-containing resting media showed an early increase in Ca(2+)(i), initially localized in the nucleus. Calcium imaging suggested that part of the Ca(2+) released by stimulation with IGF-1 was initially contained in the perinuclear region. The IGF-1-induced increase on Ca(2+)(i) levels was prevented by 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-AM, thapsigargin, xestospongin C, 2-aminoethoxy diphenyl borate, U-73122, pertussis toxin, and betaARKct (a peptide inhibitor of Gbetagamma signaling). Pertussis toxin also prevented the IGF-1-dependent IP(3) mass increase. Genistein treatment largely decreased the IGF-1-induced changes in both Ca(2+)(i) and IP(3). LY29402 (but not PD98059) also prevented the IGF-1-dependent Ca(2+)(i) increase. Both pertussis toxin and U73122 prevented the IGF-1-dependent induction of both ERKs and protein kinase B. We conclude that IGF-1 increases Ca(2+)(i) levels in cultured cardiac myocytes through a Gbetagamma subunit of a pertussis toxin-sensitive G protein-PI3K-phospholipase C signaling pathway that involves participation of IP(3).
Collapse
Affiliation(s)
- Cristian Ibarra
- Departament de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The heart is subjected to oxidative stress during various clinical situations, such as ischemia-reperfusion injury and anthracycline chemotherapy. The loss of cardiac myocytes is the major problem in heart failure; thus, it is important to protect cardiac myocytes against cell death. Various growth factors, including insulin like growth factor, hepatocyte growth factor, endothelin-1, fibroblast growth factor, and transforming growth factor, have been shown to protect the heart against oxidative stress. The mechanism of growth factor-mediated cardioprotection may involve the attenuation of cardiac myocyte apoptosis. The present article summarizes the current knowledge on the molecular mechanisms of growth factor-mediated antiapoptotic signaling in cardiac myocytes. Insulin-like growth factor-1 activates phosphatidylinositol 3' -kinase and extracellular signal-regulated kinase pathways. Recent data showed that GATA-4 might be an important mediator of cardiac myocyte survival by endothelin-1 and hepatocyte growth factor. These growth factors, as well as mediators of growth factor-signaling, may be useful in therapeutic strategies against oxidative stress-induced cardiac injury.
Collapse
Affiliation(s)
- Yuichiro J Suzuki
- Jean Mayer USDA Human Nutrition Research Center on Aging, Department of Medicine, Tufts University, Boston, MA, USA.
| |
Collapse
|
26
|
Schulz R, Aker S, Belosjorow S, Konietzka I, Rauen U, Heusch G. Stress kinase phosphorylation is increased in pacing-induced heart failure in rabbits. Am J Physiol Heart Circ Physiol 2003; 285:H2084-90. [PMID: 12842818 DOI: 10.1152/ajpheart.01038.2002] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In hearts with chronic left ventricular (LV) systolic dysfunction secondary to hypertension or myocardial infarction, MAPK phosphorylation and/or activity are increased. Whether other settings of LV dysfunction not associated with ischemia-reperfusion are also characterized by increased MAPK phosphorylation or activity is unknown. After 3 wk of rapid LV pacing (400 beats/min), eight rabbits displayed clinical signs of heart failure (HF), and echocardiography revealed an increase in LV end-diastolic diameter from 15.6 +/- 0.7 (means +/- SE) to 18.8 +/- 0.7 mm and a reduced shortening fraction from 31 +/- 1to10 +/- 2% (both P < 0.05). Morphological alterations in HF included increased numbers of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive cardiomyocytes, extent of fibrosis, and cross-sectional cardiomyocyte area. Total p38 MAPK did not differ between failing and normal hearts (n = 8). However, p38 MAPK phosphorylation [164,488 +/- 29,323 vs. 43,565 +/- 14,817 arbitrary units (AU), P < 0.05, densitometry] and the activities of p38 MAPK-alpha and -beta were increased in failing compared with normal hearts (149,441 +/- 38,381 and 170,430 +/- 32,952 vs. 68,815 +/- 28,984 and 81,788 +/- 22,774 AU, respectively, both P < 0.05). In failing compared with normal hearts, total and phosphorylated JNK46 and JNK54 MAPK were increased, whereas total and phosphorylated ERK MAPK remained unchanged. In pacing-induced HF, p38 and JNK MAPK phosphorylation as well as p38 MAPK activity was increased. Further studies will have to define whether or not chronic specific blockade of MAPK activity can interfere with apoptosis/fibrosis and thereby attenuate the progression of HF.
Collapse
Affiliation(s)
- Rainer Schulz
- Institut für Pathophysiologie, Zentrum für Innere Medizin, Universitätsklinikum Essen, Hufelandstrasse 55, 45122 Essen, Germany.
| | | | | | | | | | | |
Collapse
|
27
|
Caraglia M, Tagliaferri P, Marra M, Giuberti G, Budillon A, Gennaro ED, Pepe S, Vitale G, Improta S, Tassone P, Venuta S, Bianco AR, Abbruzzese A. EGF activates an inducible survival response via the RAS-> Erk-1/2 pathway to counteract interferon-alpha-mediated apoptosis in epidermoid cancer cells. Cell Death Differ 2003; 10:218-29. [PMID: 12700650 DOI: 10.1038/sj.cdd.4401131] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The mechanisms of tumor cell resistance to interferon-alpha (IFNalpha) are at present mostly unsolved. We have previously demonstrated that IFNalpha induces apoptosis on epidermoid cancer cells and EGF antagonizes this effect. We have also found that IFNalpha-induced apoptosis depends upon activation of the NH(2)-terminal Jun kinase-1 (Jnk-1) and p(38) mitogen-activated protein kinase, and that these effects are also antagonized by EGF. At the same time, IFNalpha increases the expression and function of the epidermal growth factor receptor (EGF-R). Here we report that the apoptosis induced by IFNalpha occurs together with activation of caspases 3, 6 and 8 and that EGF also antagonizes this effect. On the basis of these results, we have hypothesized that the increased EGF-R expression and function could represent an inducible survival response that might protect tumor cells from apoptosis caused by IFNalpha via extracellular signal regulated kinase 1 and 2 (Erk-1/2) cascades. We have found an increased activity of Ras and Raf-1 in IFNalpha-treated cells. Moreover, IFNalpha induces a 50% increase of the phosphorylated isoforms and enzymatic activity of Erk-1/2. We have also demonstrated that the inhibition of Ras activity induced by the transfection of the dominant negative Ras plasmid RASN17 and the inhibition of Mek-1 with PD098059 strongly potentiates the apoptosis induced by IFNalpha. Moreover, the selective inhibition of this pathway abrogates the counteracting effect of EGF on the IFNalpha-induced apoptosis. All these findings suggest that epidermoid tumor cells counteract the IFNalpha-induced apoptosis through a survival pathway that involves the hyperactivation of the EGF-dependent Ras->Erk signalling. The selective targeting of this pathway appears to be a promising approach in order to enhance the antitumor activity of IFNalpha.
Collapse
Affiliation(s)
- M Caraglia
- Dipartimento di Biochimica e Biofisica, Seconda Universitá di Napoli, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Biomechanical signaling is a complex interaction of both intracellular and extracellular components. Both passive and active components are involved in the extracellular environment to signal through specific receptors to multiple signaling pathways. This review provides an overview of extracellular matrix, specific receptors, and signaling pathways for biomechanical stimulation in cardiac hypertrophy.
Collapse
Affiliation(s)
- Mark A Sussman
- Children's Hospital and Research Foundation, Division of Molecular Cardiovascular Biology, Cincinnati, Ohio, USA
| | | | | |
Collapse
|
29
|
Pecherskaya A, Rubin E, Solem M. Alterations in Insulin-Like Growth Factor-I Signaling in Cardiomyocytes From Chronic Alcohol-Exposed Rats. Alcohol Clin Exp Res 2002. [DOI: 10.1111/j.1530-0277.2002.tb02633.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Mehrhof FB, Müller FU, Bergmann MW, Li P, Wang Y, Schmitz W, Dietz R, von Harsdorf R. In cardiomyocyte hypoxia, insulin-like growth factor-I-induced antiapoptotic signaling requires phosphatidylinositol-3-OH-kinase-dependent and mitogen-activated protein kinase-dependent activation of the transcription factor cAMP response element-binding protein. Circulation 2001; 104:2088-94. [PMID: 11673351 DOI: 10.1161/hc4201.097133] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND A variety of pathologic stimuli lead to apoptosis of cardiomyocytes. Survival factors like insulin-like growth factor-I (IGF-I) exert anti-apoptotic effects in the heart. Yet the underlying signaling pathways are poorly understood. METHODS AND RESULTS In a model of hypoxia-induced apoptosis of cultured neonatal cardiomyocytes, IGF-I prevented cell death in a dose-dependent manner. Antiapoptotic signals induced by IGF-I are mediated by more than one signaling pathway, because pharmacological inhibition of the phosphatidylinositol-3-OH-kinase (PI3K) or the mitogen-activated protein kinase kinase (MEK1) signaling pathway both antagonize the protective effect of IGF-I in an additive manner. IGF-I-stimulation was followed by a PI3K-dependent phosphorylation of AKT and BAD and an MEK1-dependent phosphorylation of extracellular signal-regulated kinase (ERK) 1 and ERK2. IGF-I also induced phosphorylation of cAMP response element-binding protein (CREB) in a PI3K- and MEK1-dependent manner. Ectopic overexpression of a dominant-negative mutant of CREB abolished the antiapoptotic effect of IGF-I. Protein levels of the antiapoptotic factor bcl-2 increased after longer periods of IGF-I-stimulation, which could be reversed by pharmacological inhibition of PI3K as well as MEK1 and also by overexpression of dominant-negative CREB. CONCLUSIONS In summary, our data demonstrate that in cardiomyocytes, the antiapoptotic effect of IGF-I requires both PI3K- and MEK1-dependent pathways leading to the activation of the transcription factor CREB, which then induces the expression of the antiapoptotic factor bcl-2.
Collapse
Affiliation(s)
- F B Mehrhof
- Department of Cardiology, Franz Volhard Clinic, Humboldt-University, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Nakamura T, Mizuno S, Matsumoto K, Sawa Y, Matsuda H, Nakamura T. Myocardial protection from ischemia/reperfusion injury by endogenous and exogenous HGF. J Clin Invest 2000; 106:1511-9. [PMID: 11120758 PMCID: PMC387252 DOI: 10.1172/jci10226] [Citation(s) in RCA: 355] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Using a rat model of ischemia/reperfusion injury, we demonstrate here that HGF is cardioprotective due to its antiapoptotic effect on cardiomyocytes. Following transient myocardial ischemia and reperfusion, c-Met/HGF receptor expression rapidly increased in the ischemic myocardium, an event accompanied by a dramatic increase in plasma HGF levels in the infarcted rats. When endogenous HGF was neutralized with a specific antibody, the number of myocyte cell deaths increased markedly, the infarct area expanded, and the mortality increased to 50%, as compared with a control group in which there was no mortality. Plasma from the myocardial infarcted rats had cardioprotective effects on primary cultured cardiomyocytes, but these effects were significantly diminished by neutralizing HGF. In contrast, recombinant HGF administration reduced the size of infarct area and improved cardiac function by suppressing apoptosis in cardiomyocytes. HGF rapidly augmented Bcl-xL expression in injured cardiomyocytes both in vitro and in vivo. As apoptosis of cardiomyocytes is one of the major contributors to the pathogenesis in subjects with ischemia/reperfusion injury, prevention of apoptosis may prove to be a reasonable therapeutic strategy. Supplements of HGF, an endogenous cardioprotective factor, may be found clinically suitable in treating subjects with myocardial infarction.
Collapse
Affiliation(s)
- T Nakamura
- Division of Biochemistry, Department of Oncology, Biomedical Research Center B7, Osaka University Graduate School of Medicine, Suita, Japan.
| | | | | | | | | | | |
Collapse
|
32
|
Pecherskaya A, Solem M. IGF1 activates PKC alpha-dependent protein synthesis in adult rat cardiomyocytes. MOLECULAR CELL BIOLOGY RESEARCH COMMUNICATIONS : MCBRC 2000; 4:166-71. [PMID: 11281731 DOI: 10.1006/mcbr.2001.0274] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Acute exposure to interleukin 1 beta (IL1beta) or insulin-like growth factor 1 (IGF1) promoted the translocation of PKC alpha from the cytosol to the membrane of adult rat cardiomyocytes. Western analysis demonstrated that membranal localization of PKC alpha was increased from 23% in the control to 49% after exposure to IGF1, and it was increased to 42% after exposure to IL1beta. Activation of Erk1/Erk2 by IGF1 and IL1beta was studied using a phosphorylation-specific antibody. IGF1-induced activation of p44/p42 MAP kinase was blocked by preincubation with the PKC inhibitors, bisindolylmaleimide and Gö6976, as well as the tyrosine kinase inhibitor, genistein. IGF1 increased the rate of protein synthesis, indicated by the increase in L-[(14)C(U)] phenylalanine incorporation over time, and this effect was inhibited by Gö6976.
Collapse
Affiliation(s)
- A Pecherskaya
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, JAH 260, 1020 Locust Street, Philadelphia, Pennsylvania, 19107, USA
| | | |
Collapse
|