1
|
Angelotti T. Exploring the eukaryotic Yip and REEP/Yop superfamily of membrane-shaping adapter proteins (MSAPs): A cacophony or harmony of structure and function? Front Mol Biosci 2022; 9:912848. [PMID: 36060263 PMCID: PMC9437294 DOI: 10.3389/fmolb.2022.912848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Polytopic cargo proteins are synthesized and exported along the secretory pathway from the endoplasmic reticulum (ER), through the Golgi apparatus, with eventual insertion into the plasma membrane (PM). While searching for proteins that could enhance cell surface expression of olfactory receptors, a new family of proteins termed “receptor expression-enhancing proteins” or REEPs were identified. These membrane-shaping hairpin proteins serve as adapters, interacting with intracellular transport machinery, to regulate cargo protein trafficking. However, REEPs belong to a larger family of proteins, the Yip (Ypt-interacting protein) family, conserved in yeast and higher eukaryotes. To date, eighteen mammalian Yip family members, divided into four subfamilies (Yipf, REEP, Yif, and PRAF), have been identified. Yeast research has revealed many intriguing aspects of yeast Yip function, functions that have not completely been explored with mammalian Yip family members. This review and analysis will clarify the different Yip family nomenclature that have encumbered prior comparisons between yeast, plants, and eukaryotic family members, to provide a more complete understanding of their interacting proteins, membrane topology, organelle localization, and role as regulators of cargo trafficking and localization. In addition, the biological role of membrane shaping and sensing hairpin and amphipathic helical domains of various Yip proteins and their potential cellular functions will be described. Lastly, this review will discuss the concept of Yip proteins as members of a larger superfamily of membrane-shaping adapter proteins (MSAPs), proteins that both shape membranes via membrane-sensing and hairpin insertion, and well as act as adapters for protein-protein interactions. MSAPs are defined by their localization to specific membranes, ability to alter membrane structure, interactions with other proteins via specific domains, and specific interactions/effects on cargo proteins.
Collapse
|
2
|
Abu Irqeba A, Ogilvie JM. Di-arginine and FFAT-like motifs retain a subpopulation of PRA1 at ER-mitochondria membrane contact sites. PLoS One 2020; 15:e0243075. [PMID: 33259547 PMCID: PMC7707580 DOI: 10.1371/journal.pone.0243075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 11/14/2020] [Indexed: 11/19/2022] Open
Abstract
Prenylated Rab Acceptor 1 (PRA1/Rabac1) is a four-pass transmembrane protein that has been found to localize to the Golgi and promiscuously associate with a diverse array of Rab GTPases. We have previously identified PRA1 to be among the earliest significantly down-regulated genes in the rd1 mouse model of retinitis pigmentosa, a retinal degenerative disease. Here, we show that an endogenous subpopulation of PRA1 resides within the endoplasmic reticulum (ER) at ER-mitochondria membrane contact sites in cultured mammalian cells. We also demonstrate that PRA1 contains two previously unidentified ER retention/retrieval amino acid sequences on its cytosolic N-terminal region: a membrane distal di-arginine motif and a novel membrane proximal FFAT-like motif. Using a truncation construct that lacks complete Golgi targeting information, we show that mutation of either motif leads to an increase in cell surface localization, while mutation of both motifs exhibits an additive effect. We also present evidence that illustrates that N- or C- terminal addition of a tag to full-length PRA1 leads to differential localization to either the Golgi or reticular ER, phenotypes that do not completely mirror endogenous protein localization. The presence of multiple ER retention motifs on the PRA1 N-terminal region further suggests that it has a functional role within the ER.
Collapse
Affiliation(s)
- Ameair Abu Irqeba
- Department of Biology, Saint Louis University, St. Louis, Missouri, United States of America
| | - Judith Mosinger Ogilvie
- Department of Biology, Saint Louis University, St. Louis, Missouri, United States of America
| |
Collapse
|
3
|
Abu Irqeba A, Ogilvie JM. Novel binding partners for Prenylated Rab Acceptor 1 identified by a split-ubiquitin yeast two-hybrid screen. BMC Res Notes 2019; 12:188. [PMID: 30925931 PMCID: PMC6441142 DOI: 10.1186/s13104-019-4219-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/25/2019] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE Prenylated Rab Acceptor 1 (PRA1) is a transmembrane protein localized to the early secretory pathway. It has been found to interact with an array of Rab GTPases, leading to its hypothesized function in the recycling of Rab GTPases. However, all previous strategies used to screen for novel interacting partners have utilized a classic yeast two-hybrid approach that requires both bait and its potential binding partners to be cytosolic proteins. In the split-ubiquitin yeast two-hybrid screen, a protein interaction leads to the re-constitution of ubiquitin, which is followed by proteolytic release of a transcription activator that migrates to the nucleus alone. This allows for bait and/or prey to be integral membrane protein(s). To better understand the in vivo function of PRA1, we took an unbiased approach that screened PRA1 against a normalized mouse neuronal cDNA library using this variant of the classic screening strategy. RESULTS We report 41 previously unidentified potential PRA1 binding partners revealed by this screen and validate the screen by confirming three of these interactions using a bi-molecular fluorescence complementation assay in mammalian cells. The identified proteins reside throughout the secretory pathway and are both membrane-bound and cytosolic in their identity, suggesting alternative functions for PRA1.
Collapse
Affiliation(s)
- Ameair Abu Irqeba
- Biology Department, Saint Louis University, Macelwane Hall, 3507 Laclede Ave, St. Louis, MO 63103 USA
| | - Judith Mosinger Ogilvie
- Biology Department, Saint Louis University, Macelwane Hall, 3507 Laclede Ave, St. Louis, MO 63103 USA
| |
Collapse
|
4
|
Galea G, Bexiga MG, Panarella A, O'Neill ED, Simpson JC. A high-content screening microscopy approach to dissect the role of Rab proteins in Golgi-to-ER retrograde trafficking. J Cell Sci 2015; 128:2339-49. [PMID: 25999475 DOI: 10.1242/jcs.167973] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 05/18/2015] [Indexed: 12/24/2022] Open
Abstract
Here, we describe a high-content microscopy-based screen that allowed us to systematically assess and rank proteins involved in Golgi-to-endoplasmic reticulum (ER) retrograde transport in mammalian cells. Using a cell line stably expressing a GFP-tagged Golgi enzyme, we used brefeldin A treatment to stimulate the production of Golgi-to-ER carriers and then quantitatively analysed populations of cells for changes in this trafficking event. Systematic RNA interference (RNAi)-based depletion of 58 Rab GTPase proteins and 12 Rab accessory proteins of the PRAF, YIPF and YIF protein families revealed that nine of these were strong regulators. In addition to demonstrating roles for Rab1a, Rab1b, Rab2a, and Rab6a or Rab6a' in this transport step, we also identified Rab10 and Rab11a as playing a role and being physically present on a proportion of the Golgi-to-ER tubular intermediates. Combinatorial depletions of Rab proteins also revealed previously undescribed functional co-operation and physical co-occurrence between several Rab proteins. Our approach therefore provides a novel and robust strategy for a more complete investigation of the molecular components required to regulate Golgi-to-ER transport in mammalian cells.
Collapse
Affiliation(s)
- George Galea
- School of Biology and Environmental Science and UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Mariana G Bexiga
- School of Biology and Environmental Science and UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Angela Panarella
- School of Biology and Environmental Science and UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Elaine D O'Neill
- School of Biology and Environmental Science and UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Jeremy C Simpson
- School of Biology and Environmental Science and UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
5
|
Dickison VM, Richmond AM, Abu Irqeba A, Martak JG, Hoge SCE, Brooks MJ, Othman MI, Khanna R, Mears AJ, Chowdhury AY, Swaroop A, Ogilvie JM. A role for prenylated rab acceptor 1 in vertebrate photoreceptor development. BMC Neurosci 2012; 13:152. [PMID: 23241222 PMCID: PMC3576285 DOI: 10.1186/1471-2202-13-152] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 11/19/2012] [Indexed: 11/10/2022] Open
Abstract
Background The rd1 mouse retina is a well-studied model of retinal degeneration where rod photoreceptors undergo cell death beginning at postnatal day (P) 10 until P21. This period coincides with photoreceptor terminal differentiation in a normal retina. We have used the rd1 retina as a model to investigate early molecular defects in developing rod photoreceptors prior to the onset of degeneration. Results Using a microarray approach, we performed gene profiling comparing rd1 and wild type (wt) retinas at four time points starting at P2, prior to any obvious biochemical or morphological differences, and concluding at P8, prior to the initiation of cell death. Of the 143 identified differentially expressed genes, we focused on Rab acceptor 1 (Rabac1), which codes for the protein Prenylated rab acceptor 1 (PRA1) and plays an important role in vesicular trafficking. Quantitative RT-PCR analysis confirmed reduced expression of PRA1 in rd1 retina at all time points examined. Immunohistochemical observation showed that PRA1-like immunoreactivity (LIR) co-localized with the cis-Golgi marker GM-130 in the photoreceptor as the Golgi translocated from the perikarya to the inner segment during photoreceptor differentiation in wt retinas. Diffuse PRA1-LIR, distinct from the Golgi marker, was seen in the distal inner segment of wt photoreceptors starting at P8. Both plexiform layers contained PRA1 positive punctae independent of GM-130 staining during postnatal development. In the inner retina, PRA1-LIR also colocalized with the Golgi marker in the perinuclear region of most cells. A similar pattern was seen in the rd1 mouse inner retina. However, punctate and significantly reduced PRA1-LIR was present throughout the developing rd1 inner segment, consistent with delayed photoreceptor development and abnormalities in Golgi sorting and vesicular trafficking. Conclusions We have identified genes that are differentially regulated in the rd1 retina at early time points, which may give insights into developmental defects that precede photoreceptor cell death. This is the first report of PRA1 expression in the retina. Our data support the hypothesis that PRA1 plays an important role in vesicular trafficking between the Golgi and cilia in differentiating and mature rod photoreceptors.
Collapse
|
6
|
Lee MH, Jung C, Lee J, Kim SY, Lee Y, Hwang I. An Arabidopsis prenylated Rab acceptor 1 isoform, AtPRA1.B6, displays differential inhibitory effects on anterograde trafficking of proteins at the endoplasmic reticulum. PLANT PHYSIOLOGY 2011; 157:645-58. [PMID: 21828250 PMCID: PMC3192560 DOI: 10.1104/pp.111.180810] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 08/04/2011] [Indexed: 05/23/2023]
Abstract
Prenylated Rab acceptors (PRAs), members of the Ypt-interacting protein family of small membrane proteins, are thought to aid the targeting of prenylated Rabs to their respective endomembrane compartments. In plants, the Arabidopsis (Arabidopsis thaliana) PRA1 family contains 19 members that display varying degrees of sequence homology to animal PRA1 and localize to the endoplasmic reticulum (ER) and/or endosomes. However, the exact role of these proteins remains to be fully characterized. In this study, the effect of AtPRA1.B6, a member of the AtPRA1 family, on the anterograde trafficking of proteins targeted to various endomembrane compartments was investigated. High levels of AtPRA1.B6 resulted in differential inhibition of coat protein complex II vesicle-mediated anterograde trafficking. The trafficking of the vacuolar proteins sporamin:GFP (for green fluorescent protein) and AALP:GFP, the secretory protein invertase:GFP, and the plasma membrane proteins PMP:GFP and H+-ATPase:GFP was inhibited in a dose-dependent manner, while the trafficking of the Golgi-localized proteins ST:GFP and KAM1(ΔC):mRFP was not affected. Conversely, in RNA interference plants displaying lower levels of AtPRA1.B6 transcripts, the trafficking efficiency of sporamin:GFP and AALP:GFP to the vacuole was increased. Localization and N-glycan pattern analyses of cargo proteins revealed that AtPRA1.B6-mediated inhibition of anterograde trafficking occurs at the ER. In addition, AtPRA1.B6 levels were controlled by cellular processes, including 26S proteasome-mediated proteolysis. Based on these results, we propose that AtPRA1.B6 is a negative regulator of coat protein complex II vesicle-mediated anterograde trafficking for a subset of proteins at the ER.
Collapse
|
7
|
Wang L, Zhan Y, Song E, Yu Y, Jiu Y, Du W, Lu J, Liu P, Xu P, Xu T. HID-1 is a peripheral membrane protein primarily associated with the medial- and trans- Golgi apparatus. Protein Cell 2011; 2:74-85. [PMID: 21337012 DOI: 10.1007/s13238-011-1008-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 01/18/2011] [Indexed: 10/18/2022] Open
Abstract
Caenorhabditis elegans hid-1 gene was first identified in a screen for mutants with a high-temperature-induced dauer formation (Hid) phenotype. Despite the fact that the hid-1 gene encodes a novel protein (HID-1) which is highly conserved from Caenorhabditis elegans to mammals, the domain structure, subcellular localization, and exact function of HID-1 remain unknown. Previous studies and various bioinformatic softwares predicted that HID-1 contained many transmembrane domains but no known functional domain. In this study, we revealed that mammalian HID-1 localized to the medial- and trans- Golgi apparatus as well as the cytosol, and the localization was sensitive to brefeldin A treatment. Next, we demonstrated that HID-1 was a peripheral membrane protein and dynamically shuttled between the Golgi apparatus and the cytosol. Finally, we verified that a conserved N-terminal myristoylation site was required for HID-1 binding to the Golgi apparatus. We propose that HID-1 is probably involved in the intracellular trafficking within the Golgi region.
Collapse
Affiliation(s)
- Lifen Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Jung CJ, Lee MH, Min MK, Hwang I. Localization and trafficking of an isoform of the AtPRA1 family to the Golgi apparatus depend on both N- and C-terminal sequence motifs. Traffic 2010; 12:185-200. [PMID: 21059161 DOI: 10.1111/j.1600-0854.2010.01140.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Prenylated Rab acceptors (PRAs) bind to prenylated Rab proteins and possibly aid in targeting Rabs to their respective compartments. In Arabidopsis, 19 isoforms of PRA1 have been identified and, depending upon the isoforms, they localize to the endoplasmic reticulum (ER), Golgi apparatus and endosomes. Here, we investigated the localization and trafficking of AtPRA1.B6, an isoform of the Arabidopsis PRA1 family. In colocalization experiments with various organellar markers, AtPRA1.B6 tagged with hemagglutinin (HA) at the N-terminus localized to the Golgi apparatus in protoplasts and transgenic plants. The valine residue at the C-terminal end and an EEE motif in the C-terminal cytoplasmic domain were critical for anterograde trafficking from the ER to the Golgi apparatus. The N-terminal region contained a sequence motif for retention of AtPRA1.B6 at the Golgi apparatus. In addition, anterograde trafficking of AtPRA1.B6 from the ER to the Golgi apparatus was highly sensitive to the HA:AtPRA1.B6 level. The region that contains the sequence motif for Golgi retention also conferred the abundance-dependent trafficking inhibition. On the basis of these results, we propose that AtPRA1.B6 localizes to the Golgi apparatus and its ER-to-Golgi trafficking and localization to the Golgi apparatus are regulated by multiple sequence motifs in both the C- and N-terminal cytoplasmic domains.
Collapse
Affiliation(s)
- Chan Jin Jung
- Division of Molecular and Life Sciences and Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | | | | | | |
Collapse
|
9
|
Borsics T, Lundberg E, Geerts D, Koomoa DLT, Koster J, Wester K, Bachmann AS. Subcellular distribution and expression of prenylated Rab acceptor 1 domain family, member 2 (PRAF2) in malignant glioma: Influence on cell survival and migration. Cancer Sci 2010; 101:1624-31. [PMID: 20412121 PMCID: PMC11158841 DOI: 10.1111/j.1349-7006.2010.01570.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Our previous studies revealed that the expression of the 19-kDa protein prenylated Rab acceptor 1 domain family, member 2 (PRAF2) is elevated in cancer tissues of the breast, colon, lung, and ovary, when compared to noncancerous tissues of paired samples. PRAF2 mRNA expression also correlated with several genetic and clinical features and is a candidate prognostic marker in the pediatric cancer neuroblastoma. The PRAF2-related proteins, PRAF1 and PRAF3, play multiple roles in cellular processes, including endo/exocytic vesicle trafficking and glutamate uptake. PRAF2 shares a high sequence homology with these family members, but its function remains unknown. In this study, we examined PRAF2 mRNA and protein expression in 20 different human cancer types using Affymetrix microarray and human tissue microarray (TMA) analyses, respectively. In addition, we investigated the subcellular distribution of PRAF2 by immunofluorescence microscopy and cell fractionation studies. PRAF2 mRNA and protein expression was elevated in several cancer tissues with highest levels in malignant glioma. At the molecular level, we detected native PRAF2 in small, vesicle-like structures throughout the cytoplasm as well as in and around cell nuclei of U-87 malignant glioma cells. We further found that monomeric and dimeric forms of PRAF2 are associated with different cell compartments, suggesting possible functional differences. Importantly, PRAF2 down-regulation by RNA interference significantly reduced the cell viability, migration, and invasiveness of U-87 cells. This study shows that PRAF2 expression is elevated in various tumors with exceptionally high expression in malignant gliomas, and PRAF2 therefore presents a candidate molecular target for therapeutic intervention.
Collapse
Affiliation(s)
- Tamás Borsics
- Cancer Research Center of Hawaii, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Alvim Kamei CL, Boruc J, Vandepoele K, Van den Daele H, Maes S, Russinova E, Inzé D, De Veylder L. The PRA1 gene family in Arabidopsis. PLANT PHYSIOLOGY 2008; 147:1735-49. [PMID: 18583532 PMCID: PMC2492607 DOI: 10.1104/pp.108.122226] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 06/25/2008] [Indexed: 05/18/2023]
Abstract
Prenylated Rab acceptor 1 (PRA1) domain proteins are small transmembrane proteins that regulate vesicle trafficking as receptors of Rab GTPases and the vacuolar soluble N-ethylmaleimide-sensitive factor attachment receptor protein VAMP2. However, little is known about PRA1 family members in plants. Sequence analysis revealed that higher plants, compared with animals and primitive plants, possess an expanded family of PRA1 domain-containing proteins. The Arabidopsis (Arabidopsis thaliana) PRA1 (AtPRA1) proteins were found to homodimerize and heterodimerize in a manner corresponding to their phylogenetic distribution. Different AtPRA1 family members displayed distinct expression patterns, with a preference for vascular cells and expanding or developing tissues. AtPRA1 genes were significantly coexpressed with Rab GTPases and genes encoding vesicle transport proteins, suggesting an involvement in the vesicle trafficking process similar to that of their animal counterparts. Correspondingly, AtPRA1 proteins were localized in the endoplasmic reticulum, Golgi apparatus, and endosomes/prevacuolar compartments, hinting at a function in both secretory and endocytic intracellular trafficking pathways. Taken together, our data reveal a high functional diversity of AtPRA1 proteins, probably dealing with the various demands of the complex trafficking system.
Collapse
Affiliation(s)
- Claire Lessa Alvim Kamei
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Koomoa DLT, Go RCV, Wester K, Bachmann AS. Expression profile of PRAF2 in the human brain and enrichment in synaptic vesicles. Neurosci Lett 2008; 436:171-6. [PMID: 18395978 DOI: 10.1016/j.neulet.2008.03.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 02/23/2008] [Accepted: 03/07/2008] [Indexed: 11/16/2022]
Abstract
PRA1 domain family, member 2 (PRAF2) is a novel 19-kDa protein with a prenylated Rab acceptor 1 (PRA1) motif and four transmembrane domains. Our previous studies revealed that PRAF2 is highly expressed in the brain and serves as a candidate prognostic marker in neuroblastoma (NB). PRAF2 is related to proteins PRAF1 (PRA1, prenylin, Yip3) and PRAF3 (GTRAP3-18, JWA, Arl6-IP5), both of which are enriched in the brain and implicated in cellular transport and endo/exocytic vesicle trafficking. However, the function for PRAF2 remains unknown. In this study, we analyzed the distribution and localization of PRAF2 in the mature human brain using two new antibodies specific for the protein. Analysis by immunohistochemistry revealed that in the human cerebellum, the PRAF2 protein was strongly expressed in Purkinje cells and, more moderately, in cells of the molecular and the granular layers. In the cerebral cortex, hippocampus, and lateral ventricles, PRAF2 protein was detected in neuronal cells, but not in non-neuronal cells. Intriguingly, immunoblot analysis revealed that PRAF2 is enriched in synaptic vesicles (SVs) prepared from rat brains. The expression of PRAF2 in specific regions of the brain including SVs suggest an important physiological function for this novel protein, possibly by participating in multiple aspects of SV maturation, transport, and signal transmission.
Collapse
Affiliation(s)
- Dana-Lynn T Koomoa
- Cancer Research Center of Hawaii, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | | | | | | |
Collapse
|
12
|
Compton SL, Behrend EN. PRAF1: a Golgi complex transmembrane protein that interacts with virusesThis paper is one of a selection of papers published in this Special Issue, entitled CSBMCB — Membrane Proteins in Health and Disease. Biochem Cell Biol 2006; 84:940-8. [PMID: 17215881 DOI: 10.1139/o06-176] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Prenylated Rab acceptor domain family member 1 (PRAF1), a transmembrane protein whose precise function is unknown, localizes to the Golgi complex, post-Golgi vesicles, lipid rafts, endosomes, and the plasma membrane. VAMP2 and Rab3A are SNARE proteins that interact with PRAF1, and, as part of a SNARE complex, PRAF1 may function in the regulation of docking and fusion of transport vesicles both in the Golgi complex and at the plasma membrane. Alternately, PRAF1 may function as a sorting protein in the Golgi complex. In addition to interacting with SNARE proteins, PRAF1 interacts with rotaviral, retroviral, and herpes viral proteins. The function of viral protein interaction is unknown, but PRAF1 may enhance rotaviral and retroviral assembly. In contrast, PRAF1 may inhibit the herpes virus life cycle.
Collapse
Affiliation(s)
- Shannon L Compton
- Department of Biomedical Science, Auburn University, Auburn, AL, USA.
| | | |
Collapse
|
13
|
Fo CS, Coleman CS, Wallick CJ, Vine AL, Bachmann AS. Genomic organization, expression profile, and characterization of the new protein PRA1 domain family, member 2 (PRAF2). Gene 2006; 371:154-65. [PMID: 16481131 DOI: 10.1016/j.gene.2005.12.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Revised: 12/08/2005] [Accepted: 12/08/2005] [Indexed: 11/29/2022]
Abstract
PRA1 domain family, member 2 (PRAF2) is a new 19 kDa protein with four putative transmembrane (TM) domains. PRAF2 (formerly designated JM4) belongs to a new protein family, which plays a role in the regulation of intracellular protein transport. Recently, PRAF2 was found to interact with the chemokine receptor CCR5. In order to further study the function and regulation of PRAF2, we determined its genomic structure and its protein expression pattern in normal and cancerous human tissues. PRAF2 encodes a 178-residue protein, whose sequence is related to PRAF1 (PRA1/prenylin) and PRAF3 (JWA/GTRAP3-18). The human PRAF2 gene contains three exons separated by two introns and is located on human chromosome Xp11.23. The recombinant PRAF2 protein was readily expressed in Schneider 2 (S2) insect cells, and the native protein was detected in human tissues with strong expression in the brain, small intestine, lung, spleen, and pancreas. The protein was undetectable in tissue of the testes. Strong PRAF2 protein expression was also found in human tumor tissues of the breast, colon, lung, and ovary, with a weaker staining pattern in normal tissues of the same patient. Our studies show for the first time that the CCR5-interacting PRAF2 protein is expressed in several human tissues with a possible function in ER/Golgi transport and vesicular traffic.
Collapse
Affiliation(s)
- Crystal S Fo
- Cancer Research Center of Hawaii, University of Hawaii at Manoa, 1236 Lauhala Street, Honolulu, HI 96813, USA
| | | | | | | | | |
Collapse
|
14
|
Liang Z, Veeraprame H, Bayan N, Li G. The C-terminus of prenylin is important in forming a dimer conformation necessary for endoplasmic-reticulum-to-Golgi transport. Biochem J 2004; 380:43-9. [PMID: 14979871 PMCID: PMC1224162 DOI: 10.1042/bj20031788] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2003] [Revised: 02/09/2004] [Accepted: 02/23/2004] [Indexed: 11/17/2022]
Abstract
Prenylin [or prenylated Rab acceptor 1 (PRA1)] is a multi-pass transmembrane protein that initially inserts into the ER (endoplasmic reticulum) membrane, followed by vesicular transport along the exocytic pathway to the Golgi complex where it may regulate the functions of prenylated proteins. Deletion of the C-terminal 10 amino acid residues of prenylin blocks its export from the ER. We have employed site-directed mutagenesis to investigate the role of each of the C-terminal 10 residues in the ER export of prenylin. This region contains a di-acidic motif (Asp176-Xaa-Glu), but changing either acidic residue to alanine has no effect on the ER export of prenylin. Alanine-scanning mutagenesis of the entire C-terminal region reveals that only the very C-terminal Val185 residue is crucial for the ER export of prenylin. Changing the C-terminal Val185 to most other amino acids effectively prevents prenylin from exiting the ER. However, deletion of Val185 has only moderate effect on the ER export of prenylin, suggesting that this valine residue is not part of an export signal itself; instead, it may affect the folding and conformation of prenylin. We show that the wild-type prenylin can efficiently form a homodimer in the cell by using a cell-permeant cross-linker, whereas the large C-terminal truncation and Val185 mutants are defective in forming such a dimer. Thus we have identified a single C-terminal valine residue that is essential for the proper dimerization and ER export of prenylin.
Collapse
Affiliation(s)
- Zhimin Liang
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 940 S.L. Young Blvd., BMSB 853, Oklahoma City, OK 73104, USA
| | | | | | | |
Collapse
|
15
|
Barrowman J, Wang W, Zhang Y, Ferro-Novick S. The Yip1p.Yif1p complex is required for the fusion competence of endoplasmic reticulum-derived vesicles. J Biol Chem 2003; 278:19878-84. [PMID: 12657649 DOI: 10.1074/jbc.m302406200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here we report that Yip1p and Yif1p, two members of an integral membrane protein complex that bind to the Rab Ypt1p, are required for membrane fusion with the Golgi in vitro. To block fusion, anti-Yip1p or anti-Yif1p antibodies must be added before vesicles bud from the endoplasmic reticulum (ER). These antibodies do not block the packaging of Yip1p, Yif1p, or the soluble NSF attachment protein receptor (SNAREs) into vesicles. We propose that Yip1p and Yif1p perform a critical role in establishing the fusion competence of ER to Golgi vesicles at the time of budding. Consistent with this proposal, we observe that the Yip1p.Yif1p complex binds to the ER to Golgi SNAREs Bos1p and Sec22p, two components of the membrane fusion machinery.
Collapse
Affiliation(s)
- Jemima Barrowman
- Howard Hughes Medical Institute and the Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06519, USA
| | | | | | | |
Collapse
|
16
|
Lin J, Liang Z, Zhang Z, Li G. Membrane topography and topogenesis of prenylated Rab acceptor (PRA1). J Biol Chem 2001; 276:41733-41. [PMID: 11535589 PMCID: PMC1350924 DOI: 10.1074/jbc.m103475200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mouse prenylated Rab acceptor (mPRA1) is associated with the Golgi membrane at steady state and interacts with Rab proteins. It contains two internal hydrophobic domains (34 residues each) that have enough residues to form four transmembrane (TM) segments. In this study, we have determined the membrane topography of mPRA1 in both intact cells and isolated microsomes. The putative TM segments of mPRA1 were used to substitute for a known TM segment of a model membrane protein to determine whether the mPRA1 segments integrate into the membrane. Furthermore, N-linked glycosylation scanning methods were used to distinguish luminal domains from cytoplasmic domains of mPRA1. The data demonstrate that mPRA1 is a polytopic membrane protein containing four TM segments. These TM segments act cooperatively during the translocation and integration at the endoplasmic reticulum membrane. All hydrophilic domains are in the cytoplasm, including the N-terminal domain, the linker domain between the two hydrophobic domains, and the C-terminal domain. As a result, the bulk of mPRA1 is located in the cytoplasm, supporting its postulated role in regulating Rab membrane targeting and intracellular trafficking.
Collapse
Affiliation(s)
- Jialing Lin
- ‡ To whom correspondence may be addressed: Dept. of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 940 S. L. Young Blvd., BMSB 853, Oklahoma City, OK 73104. G. L.: Tel.: 405-271-2227 (ext. 1232); Fax: 405-271-3139; E-mail:; J.L.: Tel.: 405-271-2227 (ext. 1216); Fax: 405-271-3139; E-mail:
| | | | | | - Guangpu Li
- ‡ To whom correspondence may be addressed: Dept. of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 940 S. L. Young Blvd., BMSB 853, Oklahoma City, OK 73104. G. L.: Tel.: 405-271-2227 (ext. 1232); Fax: 405-271-3139; E-mail:; J.L.: Tel.: 405-271-2227 (ext. 1216); Fax: 405-271-3139; E-mail:
| |
Collapse
|