1
|
Wang F, Gao W, Sun J, Mao X, Liu K, Xu J, Fu D, Yuan M, Wang H, Chen N, Xiao S, Xue C. NADPH Oxidase ClNOX2 Regulates Melanin-Mediated Development and Virulence in Curvularia lunata. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1315-1329. [PMID: 32815478 DOI: 10.1094/mpmi-06-20-0138-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The role of NADPH oxidases (NOXs) in pathogenesis and development in the Curvularia leaf spot agent Curvularia lunata remains poorly understood. In this study, we identified C. lunata ClNOX2, which localized to the plasma membrane and was responsible for reactive oxygen species (ROS) generation. Scavenging the ROS production inhibited the conidial germination and appressorial formation. The ClNOX2 and ClBRN1 deletion mutants were defective in 1,8-dihydroxynaphthalene (DHN) melanin accumulation, appressorial formation, and cellulase synthesis and exhibited lower virulence. However, disruption of the ClNOX2 and ClBRN1 genes facilitated hyphal growth, enhanced stress adaptation to cell-wall-disrupting agents, and promoted developmental processes such as conidiation, conidial germination, and pseudothecium and ascus formation. Interestingly, loss of ClM1, the cell wall integrity (CWI) mitogen-activated protein kinase gene in C. lunata, led to morphology and pathogenicity phenotypes similar to ClNOX2 and ClBRN1 deletion mutants such as abnormal conidia, fewer appressoria, less melanin, increased hyphal growth, and enhanced tolerance to Congo red (CR). These results indicated that the ClNOX2 gene plays an important role in C. lunata development and virulence via regulating intracellular DHN melanin biosynthesis. Quantitative reverse-transcription PCR revealed that the ClNOX2-related ROS signaling pathway and ClM1-mediated CWI signaling pathway are cross-linked in regulating DHN melanin biosynthesis. Our findings provide new insights into how ClNOX2 participates in pathogenesis and development in hemibiotrophic plant fungal pathogens.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Fen Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Weida Gao
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Jiaying Sun
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Xiuwen Mao
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Kexin Liu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Jingru Xu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Dandan Fu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Mingyue Yuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Hongchuan Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Nan Chen
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Shuqin Xiao
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Chunsheng Xue
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| |
Collapse
|
2
|
Rath PP, Gourinath S. The actin cytoskeleton orchestra in Entamoeba histolytica. Proteins 2020; 88:1361-1375. [PMID: 32506560 DOI: 10.1002/prot.25955] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/17/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022]
Abstract
Years of evolution have kept actin conserved throughout various clades of life. It is an essential protein starring in many cellular processes. In a primitive eukaryote named Entamoeba histolytica, actin directs the process of phagocytosis. A finely tuned coordination between various actin-binding proteins (ABPs) choreographs this process and forms one of the virulence factors for this protist pathogen. The ever-expanding world of ABPs always has space to accommodate new and varied types of proteins to the earlier existing repertoire. In this article, we report the identification of 390 ABPs from Entamoeba histolytica. These proteins are part of diverse families that have been known to regulate actin dynamics. Most of the proteins are primarily uncharacterized in this organism; however, this study aims to annotate the ABPs based on their domain arrangements. A unique characteristic about some of the ABPs found is the combination of domains present in them unlike any other reported till date. Calponin domain-containing proteins formed the largest group among all types with 38 proteins, followed by 29 proteins with the infamous BAR domain in them, and 23 proteins belonging to actin-related proteins. The other protein families had a lesser number of members. Presence of exclusive domain arrangements in these proteins could guide us to yet unknown actin regulatory mechanisms prevalent in nature. This article is the first step to unraveling them.
Collapse
|
3
|
Kawai T, Tatsumi S, Kihara S, Sakimura K, Okamura Y. Mechanistic insight into the suppression of microglial ROS production by voltage-gated proton channels (VSOP/Hv1). Channels (Austin) 2017; 12:1-8. [PMID: 28961043 PMCID: PMC5972804 DOI: 10.1080/19336950.2017.1385684] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Voltage-gated proton channels (VSOP/Hv1) reportedly promote reactive oxygen species (ROS) production in several immune cell types. However, we recently reported that primary microglia from VSOP/Hv1-deficient mice show higher ROS production than those from WT mice. Microglia may show a distinct activation status between WT and VSOP/Hv1-deficient cells, leading to a distinct level of ROS production between them. This is unlikely, however, because ROS production in VSOP/Hv1-deficient microglia remained higher than in WT microglia when the cells were exposed to LPS. Further, this increase in ROS production in VSOP/Hv1-deficient cells was not observed in macrophages, which suggests microglia have a unique mechanism of VSOP/Hv1-dependent ROS regulation. The mechanism underlying this unconventional ROS regulation by VSOP/Hv1 in microglia is discussed.
Collapse
Affiliation(s)
- Takafumi Kawai
- a Integrative Physiology, Department of Physiology, Graduate School of Medicine , Osaka University , Osaka , JAPAN
| | - Shoki Tatsumi
- a Integrative Physiology, Department of Physiology, Graduate School of Medicine , Osaka University , Osaka , JAPAN.,b Graduate School of Frontier Biosciences, Osaka University , Osaka , JAPAN.,c Department of Biomedical Informatics , Division of Health Sciences, Graduate School of Medicine, Osaka University , Osaka , JAPAN
| | - Shinji Kihara
- c Department of Biomedical Informatics , Division of Health Sciences, Graduate School of Medicine, Osaka University , Osaka , JAPAN
| | - Kenji Sakimura
- d Department of Cellular Neurobiology , Brain Research Institute, Niigata University , Niigata , JAPAN
| | - Yasushi Okamura
- a Integrative Physiology, Department of Physiology, Graduate School of Medicine , Osaka University , Osaka , JAPAN.,b Graduate School of Frontier Biosciences, Osaka University , Osaka , JAPAN
| |
Collapse
|
4
|
Kawai T, Okochi Y, Ozaki T, Imura Y, Koizumi S, Yamazaki M, Abe M, Sakimura K, Yamashita T, Okamura Y. Unconventional role of voltage‐gated proton channels (
VSOP
/Hv1) in regulation of microglial
ROS
production. J Neurochem 2017. [DOI: 10.1111/jnc.14106] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Takafumi Kawai
- Integrative Physiology Department of Physiology Graduate School of Medicine & Frontier Biosciences Osaka University Suita Osaka Japan
| | - Yoshifumi Okochi
- Integrative Physiology Department of Physiology Graduate School of Medicine & Frontier Biosciences Osaka University Suita Osaka Japan
| | - Tomohiko Ozaki
- Department of Molecular Neuroscience Graduate School of Medicine Osaka University Suita Osaka Japan
| | - Yoshio Imura
- Department of Neuropharmacology Interdisciplinary Graduate School of Medicine University of Yamanashi Chuo Yamanashi Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology Interdisciplinary Graduate School of Medicine University of Yamanashi Chuo Yamanashi Japan
| | - Maya Yamazaki
- Department of Cellular Neurobiology Brain Research Institute Niigata University Niigata Japan
| | - Manabu Abe
- Department of Cellular Neurobiology Brain Research Institute Niigata University Niigata Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology Brain Research Institute Niigata University Niigata Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience Graduate School of Medicine Osaka University Suita Osaka Japan
| | - Yasushi Okamura
- Integrative Physiology Department of Physiology Graduate School of Medicine & Frontier Biosciences Osaka University Suita Osaka Japan
| |
Collapse
|
5
|
Binding of EBP50 to Nox organizing subunit p47phox is pivotal to cellular reactive species generation and altered vascular phenotype. Proc Natl Acad Sci U S A 2016; 113:E5308-17. [PMID: 27540115 DOI: 10.1073/pnas.1514161113] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite numerous reports implicating NADPH oxidases (Nox) in the pathogenesis of many diseases, precise regulation of this family of professional reactive oxygen species (ROS) producers remains unclear. A unique member of this family, Nox1 oxidase, functions as either a canonical or hybrid system using Nox organizing subunit 1 (NoxO1) or p47(phox), respectively, the latter of which is functional in vascular smooth muscle cells (VSMC). In this manuscript, we identify critical requirement of ezrin-radixin-moesin-binding phosphoprotein 50 (EBP50; aka NHERF1) for Nox1 activation and downstream responses. Superoxide (O2 (•-)) production induced by angiotensin II (AngII) was absent in mouse EBP50 KO VSMC vs. WT. Moreover, ex vivo incubation of aortas with AngII showed a significant increase in O2 (•-) in WT but not EBP50 or Nox1 nulls. Similarly, lipopolysaccharide (LPS)-induced oxidative stress was attenuated in femoral arteries from EBP50 KO vs. WT. In silico analyses confirmed by confocal microscopy, immunoprecipitation, proximity ligation assay, FRET, and gain-/loss-of-function mutagenesis revealed binding of EBP50, via its PDZ domains, to a specific motif in p47(phox) Functional studies revealed AngII-induced hypertrophy was absent in EBP50 KOs, and in VSMC overexpressing EBP50, Nox1 gene silencing abolished VSMC hypertrophy. Finally, ex vivo measurement of lumen diameter in mouse resistance arteries exhibited attenuated AngII-induced vasoconstriction in EBP50 KO vs. WT. Taken together, our data identify EBP50 as a previously unidentified regulator of Nox1 and support that it promotes Nox1 activity by binding p47(phox) This interaction is pivotal for agonist-induced smooth muscle ROS, hypertrophy, and vasoconstriction and has implications for ROS-mediated physiological and pathophysiological processes.
Collapse
|
6
|
Stanley A, Thompson K, Hynes A, Brakebusch C, Quondamatteo F. NADPH oxidase complex-derived reactive oxygen species, the actin cytoskeleton, and Rho GTPases in cell migration. Antioxid Redox Signal 2014; 20:2026-42. [PMID: 24251358 DOI: 10.1089/ars.2013.5713] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
SIGNIFICANCE Rho GTPases are historically known to be central regulators of actin cytoskeleton reorganization. This affects many processes including cell migration. In addition, members of the Rac subfamily are known to be involved in reactive oxygen species (ROS) production through the regulation of NADPH oxidase (Nox) activity. This review focuses on relationships between Nox-regulated ROS, Rho GTPases, and cytoskeletal reorganization, in the context of cell migration. RECENT ADVANCES It has become clear that ROS participate in the regulation of certain Rho GTPase family members, thus mediating cytoskeletal reorganization. CRITICAL ISSUES The role of the actin cytoskeleton in providing a scaffold for components of the Nox complex needs to be examined in the light of these new advances. During cell migration, Rho GTPases, ROS, and cytoskeletal organization appear to function as a complex regulatory network. However, more work is needed to fully elucidate the interactions between these factors and their potential in vivo importance. FUTURE DIRECTIONS Ultrastructural analysis, that is, electron microscopy, particularly immunogold labeling, will enable direct visualization of subcellular compartments. This in conjunction with the analysis of tissues lacking specific Rho GTPases, and Nox components will facilitate a detailed examination of the interactions of these structures with the actin cytoskeleton. In combination with the analysis of ROS production, including its subcellular location, these data will contribute significantly to our understanding of this intricate network under physiological conditions. Based on this, in vivo and in vitro studies can then be combined to elucidate the signaling pathways involved and their targets.
Collapse
Affiliation(s)
- Alanna Stanley
- 1 Skin and Extracellular Matrix Research Group , Anatomy, NUI Galway, Galway, Ireland
| | | | | | | | | |
Collapse
|
7
|
Choy JS, Lu X, Yang J, Zhang ZD, Kassab GS. Endothelial actin depolymerization mediates NADPH oxidase-superoxide production during flow reversal. Am J Physiol Heart Circ Physiol 2013; 306:H69-77. [PMID: 24186098 DOI: 10.1152/ajpheart.00402.2013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Slow moving blood flow and changes in flow direction, e.g., negative wall shear stress, can cause increased superoxide (O2(·-)) production in vascular endothelial cells. The mechanism by which shear stress increases O2(·-) production, however, is not well established. We tested the hypothesis that actin depolymerization, which occurs during flow reversal, mediates O2(·-) production in vascular endothelial cells via NADPH oxidase, and more specifically, the subunit p47(phox). Using a swine model, we created complete blood flow reversal in one carotid artery, while the contralateral vessel maintained forward blood flow as control. We measured actin depolymerization, NADPH oxidase activity, and reactive oxygen species (ROS) production in the presence of various inhibitors. Flow reversal was found to induce actin depolymerization and a 3.9 ± 1.0-fold increase in ROS production as compared with forward flow. NADPH oxidase activity was 1.4 ± 0.2 times higher in vessel segments subjected to reversed blood flow when measured by a direct enzyme assay. The NADPH oxidase subunits gp91(phox) (Nox2) and p47(phox) content in the vessels remained unchanged after 4 h of flow reversal. In contrast, p47(phox) phosphorylation was increased in vessels with reversed flow. The response caused by reversed flow was reduced by in vivo treatment with jasplakinolide, an actin stabilizer (only a 1.7 ± 0.3-fold increase). Apocynin (an antioxidant) prevented reversed flow-induced ROS production when the animals were treated in vivo. Cytochalasin D mimicked actin depolymerization in vitro and caused a 5.2 ± 3.0-fold increase in ROS production. These findings suggest that actin filaments play an important role in negative shear stress-induced ROS production by potentiating NADPH oxidase activity, and more specifically, the p47(phox) subunit in vascular endothelium.
Collapse
Affiliation(s)
- Jenny S Choy
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, Indiana
| | | | | | | | | |
Collapse
|
8
|
NADPH oxidases regulate septin-mediated cytoskeletal remodeling during plant infection by the rice blast fungus. Proc Natl Acad Sci U S A 2013; 110:3179-84. [PMID: 23382235 DOI: 10.1073/pnas.1217470110] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The rice blast fungus Magnaporthe oryzae infects plants with a specialized cell called an appressorium, which uses turgor to drive a rigid penetration peg through the rice leaf cuticle. Here, we show that NADPH oxidases (Nox) are necessary for septin-mediated reorientation of the F-actin cytoskeleton to facilitate cuticle rupture and plant cell invasion. We report that the Nox2-NoxR complex spatially organizes a heteroligomeric septin ring at the appressorium pore, required for assembly of a toroidal F-actin network at the point of penetration peg emergence. Maintenance of the cortical F-actin network during plant infection independently requires Nox1, a second NADPH oxidase, which is necessary for penetration hypha elongation. Organization of F-actin in appressoria is disrupted by application of antioxidants, whereas latrunculin-mediated depolymerization of appressorial F-actin is competitively inhibited by reactive oxygen species, providing evidence that regulated synthesis of reactive oxygen species by fungal NADPH oxidases directly controls septin and F-actin dynamics.
Collapse
|
9
|
Abstract
Many of the best-studied actin regulatory proteins use non-covalent means to modulate the properties of actin. Yet, actin is also susceptible to covalent modifications of its amino acids. Recent work is increasingly revealing that actin processing and its covalent modifications regulate important cellular events. In addition, numerous pathogens express enzymes that specifically use actin as a substrate to regulate their hosts' cells. Actin post-translational alterations have been linked to different normal and disease processes and the effects associated with metabolic and environmental stressors. Herein, we highlight specific co-translational and post-translational modifications of actin and discuss the current understanding of the role that these modifications play in regulating actin.
Collapse
Affiliation(s)
- Jonathan R Terman
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | | |
Collapse
|
10
|
Feng Y, Zhang D, Zhang Y, Zhang Q, Liu W. The mechanism of long-term low-dose asymmetric dimethylarginine inducing transforming growth factor-β expression in endothelial cells. Int J Mol Med 2012; 31:67-74. [PMID: 23175152 DOI: 10.3892/ijmm.2012.1190] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 09/24/2012] [Indexed: 11/06/2022] Open
Abstract
Asymmetric dimethylarginine (ADMA), an endogenous nitric oxide synthase (NOS) inhibitor, accumulates in plasma during chronic kidney disease (CKD). High plasma levels of ADMA can increase transforming growth factor-β (TGF-β) expression, related to renal fibrosis, but the precise molecular mechanism is not explicit. The present study was designed to determine the mechanism through which long-term low-dose ADMA induces TGF-β expression in endothelial cells and to investigate the molecular mechanism of its action. Human umbilical vein endothelial cells (HUVECs) were exposed to low-dose ADMA (5 and 10 µmol/l) for 7 passages and TGF-β expression was determined. Human renal glomerular endothelial cells (HRGECs) were exposed to high-dose ADMA (100 µmol/l) which were used to clarify the molecular mechanism. The results showed that long-term low-dose ADMA (5 and 10 µmol/l) increases TGF-β production in both mRNA and protein levels in HUVECs in a time-dependent manner. We confirmed that exogenous ADMA (100 µmol/l) significantly enhanced stress fiber formation in HRGECs and upregulated TGF-β expression. Such effects of ADMA in HRGECs were inhibited by pre-treatment with actin depolymerizing agent, actin stabilizing agent, p38 MAPK inhibitor and NADPH oxidase inhibitor. In addition, we demonstrated that ADMA (100 µmol/l) significantly activated nuclear factor-κB (NF-κB) in HRGECs, which was markedly attenuated by actin depolymerizing agent, actin stabilizing agent, p38 MAPK inhibitor and NADPH oxidase inhibitor. In brief, the present study demonstrated that long-term low-dose ADMA induces TGF-β expression in endothelial cells at both the gene and protein levels. The actin cytoskeleton may be involved in modulation of ADMA-induced NF-κB activation and the ensuing TGF-β expression in HRGECs.
Collapse
Affiliation(s)
- Yiduo Feng
- Department of Nephrology, Affiliated Beijing Friendship Hospital, Faculty of Kidney Diseases, Capital Medical University, Xi Cheng, Beijing 100050, PR China
| | | | | | | | | |
Collapse
|
11
|
Liu SG, Zhu DZ, Chen GH, Gao XQ, Zhang XS. Disrupted actin dynamics trigger an increment in the reactive oxygen species levels in the Arabidopsis root under salt stress. PLANT CELL REPORTS 2012; 31:1219-26. [PMID: 22383108 DOI: 10.1007/s00299-012-1242-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 02/02/2012] [Accepted: 02/17/2012] [Indexed: 05/11/2023]
Abstract
UNLABELLED Changes in actin dynamics represent the primary response of the plant cell to extracellular signaling. Recent studies have now revealed that actin remodeling is involved in abiotic stress tolerance in plants. In our current study, the relationship between the changes in actin dynamics and the reactive oxygen species (ROS) level at the initial stages of salt stress was investigated in the elongation zone of the Arabidopsis root tip. We found that a 200 mM NaCl treatment disrupted the dynamics of the actin filaments within 10 min and increased the ROS levels in the elongation zone cells of the Arabidopsis root tip. We further found that the NADPH oxidase activity inhibitor, diphenyleneiodonium, treatment blocked this ROS increase under salt stress conditions. The roles of actin dynamics and the NADPH oxidases in ROS generation were further analyzed using the actin-specific agents, latrunculin B (Lat-B) and jasplakinolide (Jasp), and mutants of Arabidopsis NADPH oxidase AtrbohC. Lat-B and Jasp promote actin depolymerization and polymerization, respectively, and both were found to enhance the ROS levels following NaCl treatment. However, this response was abolished in the atrbohC mutants. Our present results thus demonstrate that actin dynamics are involved in regulating the ROS level in Arabidopsis root under salt stress conditions. KEY MESSAGE Salt stress disrupts the dynamics of the actin filaments in Arabidopsis in the short term which are involved in regulating the ROS levels that arise under salt stress conditions via the actions of the AtrbohC.
Collapse
Affiliation(s)
- Shang Gang Liu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, Shandong, China
| | | | | | | | | |
Collapse
|
12
|
Production of human β-actin and a mutant using a bacterial expression system with a cold shock vector. Protein Expr Purif 2011; 78:1-5. [DOI: 10.1016/j.pep.2010.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 09/04/2010] [Accepted: 09/12/2010] [Indexed: 11/21/2022]
|
13
|
Rasmussen I, Pedersen LH, Byg L, Suzuki K, Sumimoto H, Vilhardt F. Effects of F/G-actin ratio and actin turn-over rate on NADPH oxidase activity in microglia. BMC Immunol 2010; 11:44. [PMID: 20825680 PMCID: PMC2944333 DOI: 10.1186/1471-2172-11-44] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 09/08/2010] [Indexed: 11/10/2022] Open
Abstract
Background Most in vivo studies that have addressed the role of actin dynamics in NADPH oxidase function in phagocytes have used toxins to modulate the polymerization state of actin and mostly effects on actin has been evaluated by end point measurements of filamentous actin, which says little about actin dynamics, and without consideration for the subcellular distribution of the perturbed actin cytoskeleton. Results Here, we in addition to toxins use conditional expression of the major actin regulatory protein LIM kinase-1 (LIMK1), and shRNA knock-down of cofilin to modulate the cellular F/G-actin ratio in the Ra2 microglia cell line, and we use Fluorescence Recovery after Photobleaching (FRAP) in β-actin-YFP-transduced cells to obtain a dynamic measure of actin recovery rates (actin turn-over rates) in different F/G-actin states of the actin cytoskeleton. Our data demonstrate that stimulated NADPH oxidase function was severely impaired only at extreme actin recovery rates and F/G-actin ratios, and surprisingly, that any moderate changes of these parameters of the actin cytoskeleton invariably resulted in an increased NADPH oxidase activity. Conclusion moderate actin polymerization and depolymerization both increase the FMLP and PMA-stimulated NADPH oxidase activity of microglia, which is directly correlated with neither actin recovery rate nor F/G- actin ratio. Our results indicate that NADPH oxidase functions in an enhanced state of activity in stimulated phagocytes despite widely different states of the actin cytoskeleton.
Collapse
Affiliation(s)
- Izabela Rasmussen
- Dept of Cellular and Molecular Medicine, The Panum Institute, Copenhagen University, 2200N Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
14
|
Usatyuk PV, Gorshkova IA, He D, Zhao Y, Kalari SK, Garcia JGN, Natarajan V. Phospholipase D-mediated activation of IQGAP1 through Rac1 regulates hyperoxia-induced p47phox translocation and reactive oxygen species generation in lung endothelial cells. J Biol Chem 2009; 284:15339-52. [PMID: 19366706 DOI: 10.1074/jbc.m109.005439] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidic acid generated by the activation of phospholipase D (PLD) functions as a second messenger and plays a vital role in cell signaling. Here we demonstrate that PLD-dependent generation of phosphatidic acid is critical for Rac1/IQGAP1 signal transduction, translocation of p47(phox) to cell periphery, and ROS production. Exposure of [(32)P]orthophosphate-labeled human pulmonary artery endothelial cells (HPAECs) to hyperoxia (95% O(2) and 5% CO(2)) in the presence of 0.05% 1-butanol, but not tertiary-butanol, stimulated PLD as evidenced by accumulation of [(32)P]phosphatidylbutanol. Infection of HPAECs with adenoviral constructs of PLD1 and PLD2 wild-type potentiated hyperoxia-induced PLD activation and accumulation of O(2)(.)/reactive oxygen species (ROS). Conversely, overexpression of catalytically inactive mutants of PLD (hPLD1-K898R or mPLD2-K758R) or down-regulation of expression of PLD with PLD1 or PLD2 siRNA did not augment hyperoxia-induced [(32)P]phosphatidylbutanol accumulation and ROS generation. Hyperoxia caused rapid activation and redistribution of Rac1, and IQGAP1 to cell periphery, and down-regulation of Rac1, and IQGAP1 attenuated hyperoxia-induced tyrosine phosphorylation of Src and cortactin and ROS generation. Further, hyperoxia-mediated redistribution of Rac1, and IQGAP1 to membrane ruffles, was attenuated by PLD1 or PLD2 small interference RNA, suggesting that PLD is upstream of the Rac1/IQGAP1 signaling cascade. Finally, small interference RNA for PLD1 or PLD2 attenuated hyperoxia-induced cortactin tyrosine phosphorylation and abolished Src, cortactin, and p47(phox) redistribution to cell periphery. These results demonstrate a role of PLD in hyperoxia-mediated IQGAP1 activation through Rac1 in tyrosine phosphorylation of Src and cortactin, as well as in p47(phox) translocation and ROS formation in human lung endothelial cells.
Collapse
Affiliation(s)
- Peter V Usatyuk
- Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
The beneficial effects of statins, the most widely prescribed class of drugs in the world, are now recognized to extend well beyond their lipid-lowering properties. Through a combination of both distinct and interdependent effects on endothelial cell (EC) Rho GTPase regulation, NAPDH oxidase activity, NO bioavailability, and differential gene expression, statins confer significant protection of the vasculature. Abundant in vitro data, in addition to myriad reports relying on a range of animal models, now firmly support the idea that these drugs may serve as novel and effective therapeutic agents in a variety of disease states characterized by vascular dysfunction.
Collapse
Affiliation(s)
- Jeffrey R Jacobson
- Section of Pulmonary and Critical Care Medicine, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA.
| |
Collapse
|
16
|
Pendyala S, Usatyuk PV, Gorshkova IA, Garcia JG, Natarajan V. Regulation of NADPH oxidase in vascular endothelium: the role of phospholipases, protein kinases, and cytoskeletal proteins. Antioxid Redox Signal 2009; 11:841-60. [PMID: 18828698 PMCID: PMC2850292 DOI: 10.1089/ars.2008.2231] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The generation of reactive oxygen species (ROS) in the vasculature plays a major role in the genesis of endothelial cell (EC) activation and barrier function. Of the several potential sources of ROS in the vasculature, the endothelial NADPH oxidase family of proteins is a major contributor of ROS associated with lung inflammation, ischemia/reperfusion injury, sepsis, hyperoxia, and ventilator-associated lung injury. The NADPH oxidase in lung ECs has most of the components found in phagocytic oxidase, and recent studies show the expression of several homologues of Nox proteins in vascular cells. Activation of NADPH oxidase of nonphagocytic vascular cells is complex and involves assembly of the cytosolic (p47(phox), p67(phox), and Rac1) and membrane-associated components (Noxes and p22(phox)). Signaling pathways leading to NADPH oxidase activation are not completely defined; however, they do appear to involve the cytoskeleton and posttranslation modification of the components regulated by protein kinases, protein phosphatases, and phospholipases. Furthermore, several key components regulating NADPH oxidase recruitment, assembly, and activation are enriched in lipid microdomains to form a functional signaling platform. Future studies on temporal and spatial localization of Nox isoforms will provide new insights into the role of NADPH oxidase-derived ROS in the pathobiology of lung diseases.
Collapse
|
17
|
Kerkweg U, Petrat F, Korth HG, de Groot H. Disruption of skeletal myocytes initiates superoxide release: contribution of NADPH oxidase. Shock 2007; 27:552-8. [PMID: 17438461 DOI: 10.1097/01.shk.0000245027.39483.e4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Generation of reactive oxygen species (ROS) as an early local reaction to muscle crush injury has frequently been predicted. However, although it is known that severe inflammatory reactions occurring after major muscle trauma originate mainly from early local incidents within the injured tissue, no detailed studies exist on the local generation of ROS in response to myocyte destruction thus far. Therefore, in this study, ROS formation after lethal mechanical damage was examined using a model of scraping injury to cultured C2C12 skeletal myocytes and superoxide detection by lucigenin chemiluminescence, nitrotetrazolium blue chloride reduction, or electron spin resonance spectroscopy. Mechanical rupture of myocytes resulted in an immediate release of superoxide from the damaged cells that could be substantially blocked by the superoxide scavengers superoxide dismutase (51%), tiron (95%), and MAMA/NO (93%) and by hypoxia (83% inhibition). Superoxide generation was primarily confined to the myocytes' membrane fraction and 7- to 8-fold enhanced by the addition of NADH or NADPH. The NADPH-enhanced superoxide generation could largely be diminished by the NAD(P)H oxidase inhibitors diphenyleneiodonium and apocynin in cell lysates (97% and 35% inhibition, respectively) and in isolated membrane fractions (61% and 63% inhibition). We thus conclude that immediately after myocyte damage, large amounts of superoxide are formed that predominantly originate from membrane-bound electron-transferring enzymes, especially NAD(P)H oxidase. This suggests a decisive role of ROS in the pathogenesis of tissue trauma, with superoxide being an initiator of the signaling mechanism from injured myocytes to the surrounding tissue and, potentially, to the whole body.
Collapse
Affiliation(s)
- Uta Kerkweg
- Institut für Physiologische Chemie, Universitätsklinikum, Hufelandstr. 55, D-45122 Essen, Germany
| | | | | | | |
Collapse
|
18
|
Usatyuk PV, Romer LH, He D, Parinandi NL, Kleinberg ME, Zhan S, Jacobson JR, Dudek SM, Pendyala S, Garcia JGN, Natarajan V. Regulation of hyperoxia-induced NADPH oxidase activation in human lung endothelial cells by the actin cytoskeleton and cortactin. J Biol Chem 2007; 282:23284-95. [PMID: 17562703 DOI: 10.1074/jbc.m700535200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although the actin cytoskeleton has been implicated in the control of NADPH oxidase in phagocytosis, very little is known about the cytoskeletal regulation of endothelial NADPH oxidase assembly and activation. Here, we report a role for cortactin and the tyrosine phosphorylation of cortactin in hyperoxia-induced NADPH oxidase activation and ROS production in human pulmonary artery ECs (HPAECs). Exposure of HPAECs to hyperoxia for 3 h induced NADPH oxidase activation, as demonstrated by enhanced superoxide production. Hyperoxia also caused a thickening of the subcortical dense peripheral F-actin band and increased the localization of cortactin in the cortical regions and lamellipodia at cell-cell borders that protruded under neighboring cells. Pretreatment of HPAECs with the actin-stabilizing agent phallacidin attenuated hyperoxia-induced cortical actin thickening and ROS production, whereas cytochalasin D and latrunculin A enhanced basal and hyperoxia-induced ROS formation. In HPAECs, a 3-h hyperoxic exposure enhanced the tyrosine phosphorylation of cortactin and interaction between cortactin and p47(phox), a subcomponent of the EC NADPH oxidase, when compared with normoxic cells. Furthermore, transfection of HPAECs with cortactin small interfering RNA or myristoylated cortactin Src homology domain 3 blocking peptide attenuated ROS production and the hyperoxia-induced translocation of p47(phox) to the cell periphery. Similarly, down-regulation of Src with Src small interfering RNA attenuated the hyperoxia-mediated phosphorylation of cortactin tyrosines and blocked the association of cortactin with actin and p47(phox). In addition, the hyperoxia-induced generation of ROS was significantly lower in ECs expressing a tyrosine-deficient mutant of cortactin than in vector control or wild-type cells. These data demonstrate a novel function for cortactin and actin in hyperoxia-induced activation of NADPH oxidase and ROS generation in human lung endothelial cells.
Collapse
Affiliation(s)
- Peter V Usatyuk
- Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Tamura M, Itoh K, Akita H, Takano K, Oku S. Identification of an actin-binding site in p47phoxan organizer protein of NADPH oxidase. FEBS Lett 2005; 580:261-7. [PMID: 16375898 DOI: 10.1016/j.febslet.2005.11.080] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Revised: 11/16/2005] [Accepted: 11/30/2005] [Indexed: 11/16/2022]
Abstract
Actin has been reported to enhance the superoxide-generating activity of neutrophil NADPH oxidase in a cell-free system and to interact with p47phox, a regulatory subunit of the oxidase. In the present study, we searched for an actin-binding site in p47phox by far-western blotting and blot-binding assays using truncated forms of p47phox. The amino-acid sequence 319-337 was identified as an actin-binding site, and a synthetic peptide of this sequence bound to actin. The sequence shows no homology to other known actin-binding motifs. It is located in the autoinhibitory region of p47phox and includes Ser-328, a phosphorylation site essential for unmasking. Although a phosphorylation-mimetic p47phox mutant bound to actin with a lower affinity than the wild type, the same mutant interacted with filamentous actin more efficiently than the wild type. A mutant peptide p47phox (319-337, Ser328Glu) bound to filamentous actin more tightly than to monomer actin. These results suggest that p47phox moves to cortical actin when it becomes unmasked in the cells.
Collapse
Affiliation(s)
- Minoru Tamura
- Department of Applied Chemistry, Faculty of Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan.
| | | | | | | | | |
Collapse
|
20
|
Sheppard FR, Kelher MR, Moore EE, McLaughlin NJD, Banerjee A, Silliman CC. Structural organization of the neutrophil NADPH oxidase: phosphorylation and translocation during priming and activation. J Leukoc Biol 2005; 78:1025-42. [PMID: 16204621 DOI: 10.1189/jlb.0804442] [Citation(s) in RCA: 262] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is part of the microbicidal arsenal used by human polymorphonuclear neutrophils (PMNs) to eradicate invading pathogens. The production of a superoxide anion (O2-) into the phagolysosome is the precursor for the generation of more potent products, such as hydrogen peroxide and hypochlorite. However, this production of O2- is dependent on translocation of the oxidase subunits, including gp91phox, p22phox, p47phox, p67phox, p40phox, and Rac2 from the cytosol or specific granules to the plasma membrane. In response to an external stimuli, PMNs change from a resting, nonadhesive state to a primed, adherent phenotype, which allows for margination from the vasculature into the tissue and chemotaxis to the site of infection upon activation. Depending on the stimuli, primed PMNs display altered structural organization of the NADPH oxidase, in that there is phosphorylation of the oxidase subunits and/or translocation from the cytosol to the plasma or granular membrane, but there is not the complete assembly required for O2- generation. Activation of PMNs is the complete assembly of the membrane-linked and cytosolic NADPH oxidase components on a PMN membrane, the plasma or granular membrane. This review will discuss the individual components associated with the NADPH oxidase complex and the function of each of these units in each physiologic stage of the PMN: rested, primed, and activated.
Collapse
|
21
|
Zhan Y, He D, Newburger PE, Zhou GW. p47(phox) PX domain of NADPH oxidase targets cell membrane via moesin-mediated association with the actin cytoskeleton. J Cell Biochem 2005; 92:795-809. [PMID: 15211576 DOI: 10.1002/jcb.20084] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Activation of phagocytic NADPH oxidase requires association of its cytosolic subunits with the membrane-bound flavocytochrome. Extensive phosphorylation of the p47(phox) subunit of NADPH oxidase marks the initiation of this activation process. The p47(phox) subunit then translocates to the plasma membrane, bringing the p67(phox) subunit to cytochrome b558 to form the active NADPH oxidase complex. However, the detailed mechanism for targeting the p47(phox) subunit to the cell membrane during activation still remains unclear. Here, we show that the p47(phox) PX domain is responsible for translocating the p47(phox) subunit to the plasma membrane for subsequent activation of NADPH oxidase. We also demonstrate that translocation of the p47(phox) PX domain to the plasma membrane is not due to interactions with phospholipids but rather to association with the actin cytoskeleton. This association is mediated by direct interaction between the p47(phox) PX domain and moesin.
Collapse
Affiliation(s)
- Yong Zhan
- Department of Biological Science, LSB 206, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | | | | |
Collapse
|
22
|
Qian Y, Liu KJ, Chen Y, Flynn DC, Castranova V, Shi X. Cdc42 Regulates Arsenic-induced NADPH Oxidase Activation and Cell Migration through Actin Filament Reorganization. J Biol Chem 2005; 280:3875-84. [PMID: 15492012 DOI: 10.1074/jbc.m403788200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although arsenic is a human carcinogen, the molecular mechanisms of its action remain to be understood. The present study reports that exposure to arsenic induced actin filament reorganization, resulting in lamellipodia and filopodia structures through the activation of Cdc42 in SVEC4-10 endothelial cells. It was also found that arsenic induced the formation of the superoxide anion (O2*) in SVEC4-10 cells. Immunoprecipitation and Western blotting analysis demonstrated that arsenic stimulation induced serine phosphorylation of p47phox, a key component of NADPH oxidase, indicating that arsenic induces O2* formation through NADPH oxidase activation. Inhibition of arsenic-induced actin filament reorganization by either overexpression of a dominant negative Cdc42 or pretreatment of an actin filament stabilizing regent, jasplakinolide, abrogated arsenic-induced NADPH oxidase activation, showing that the activation of NADPH oxidase was regulated by Cdc42-mediated actin filament reorganization. This study also showed that overexpression of a dominant negative Rac1 was sufficient to abolish arsenic-induced O2*- production, implying that Rac1 activities are required for Cdc42-mediated NADPH oxidase activation in response to arsenic stimulation. Furthermore, arsenic stimulation induced cell migration, which can be inhibited by the inactivation of either Cdc42 or NADPH oxidase. Taken together, the results indicate that arsenic is able to activate NADPH oxidase through Cdc42-mediated actin filament reorganization, leading to the induction of an increase in cell migration in SVEC4-10 endothelial cells.
Collapse
Affiliation(s)
- Yong Qian
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Vrba J, Modrianský M. N-FORMYL-MET-LEU-PHE-INDUCED OXIDATIVE BURST IN DMSO-DIFFERENTIATED HL-60 CELLS REQUIRES ACTIVE HSP90, BUT NOT INTACT MICROTUBULES. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2004. [DOI: 10.5507/bp.2004.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
24
|
Miyano K, Kitahara H, Ohmi S, Kakinuma K, Tamura M. Inactivation of neutrophil NADPH oxidase upon dilution and its prevention by cross-link and fusion of phox proteins. Arch Biochem Biophys 2004; 431:129-37. [PMID: 15464735 DOI: 10.1016/j.abb.2004.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Revised: 08/09/2004] [Indexed: 11/15/2022]
Abstract
Activation of the phagocyte NADPH oxidase involves assembly of p47(phox), p67(phox), Rac, and flavocytochrome b(558), and the activation can be triggered in a cell-free system with an anionic amphiphile. We find that the activated oxidase in a pure cell-free system was rapidly inactivated upon dilution. When the activated oxidase was treated with a chemical cross-linker, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, the half-life of the oxidase in dilution was extended from 1min to 4h at 25 degrees C. The cross-linked oxidase was resistant to inhibition by inactive flavin analogs, indicating that cross-linking prevents flavin exchange. When a fusion protein p67N-p47N plus RacQ61L was added, flavocytochrome b(558) became spontaneously active. Cross-linking of this mixture produced an oxidase that was extremely stable to dilution (t(1/2)=6.6h). Western blotting analysis showed the presence of a cross-link between p67N-p47N and RacQ61L. These results suggest that covalently linked phox components prevents FAD loss and stabilizes the longevity of the stoichiometric complex, extending the lifespan of the active oxidase.
Collapse
Affiliation(s)
- Kei Miyano
- Department of Applied Chemistry, Faculty of Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | | | | | | | | |
Collapse
|
25
|
Noda Y, Horikawa S, Katayama Y, Sasaki S. Water channel aquaporin-2 directly binds to actin. Biochem Biophys Res Commun 2004; 322:740-5. [PMID: 15336526 DOI: 10.1016/j.bbrc.2004.07.195] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Indexed: 11/23/2022]
Abstract
Water channel aquaporin-2 (AQP2) strictly regulates body water homeostasis in mammals. Trafficking of AQP2 to the apical membrane is critical to the reabsorption of water in renal collecting ducts. Controlled apical positioning of AQP2 suggests the interaction of AQP2 with other proteins. To isolate AQP2-binding proteins, immunoaffinity chromatography of extracts from rat kidney papilla was performed using a column covalently coupled with anti-AQP2 antibody. Using this method 42-kDa protein was purified and subsequently identified as beta- and gamma-isoforms of actin by two-dimensional gel analysis and matrix-assisted laser desorption-ionization time-of-flight mass spectrometry. AQP2 was indeed coimmunoprecipitated with actin from cell lysates of rat kidney papilla. In addition, surface plasmon resonance analyses showed that the C-terminal fragment of AQP2 strongly bound to actin and the K(D) value was 3.18x10(-8)M. In this experiment we have elucidated the direct binding of channel protein AQP2 to cytoskeletal protein actin, providing a novel mechanism for trafficking of not only AQP2 but also recycling channel proteins.
Collapse
Affiliation(s)
- Yumi Noda
- Department of Nephrology, Tokyo Medical and Dental University, Tokyo 113-8519, Japan.
| | | | | | | |
Collapse
|
26
|
Moldovan L, Moldovan NI. Oxygen free radicals and redox biology of organelles. Histochem Cell Biol 2004; 122:395-412. [PMID: 15452718 DOI: 10.1007/s00418-004-0676-y] [Citation(s) in RCA: 300] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2004] [Indexed: 10/26/2022]
Abstract
The presence and supposed roles of reactive oxygen species (ROS) were reported in literature in a myriad of instances. However, the breadth and depth of their involvement in cellular physiology and pathology, as well as their relationship to the redox environment can only be guessed from specialized reports. Whatever their circumstances of formation or consequences, ROS seem to be conspicuous components of intracellular milieu. We sought to verify this assertion, by collecting the available evidence derived from the most recent publications in the biomedical field. Unlike other reviews with similar objectives, we centered our analysis on the subcellular compartments, namely on organelles, grouped according to their major functions. Thus, plasma membrane is a major source of ROS through NAD(P)H oxidases located on either side. Enzymes of the same class displaying low activity, as well as their components, are also present free in cytoplasm, regulating the actin cytoskeleton and cell motility. Mitochondria can be a major source of ROS, mainly in processes leading to apoptosis. The protein synthetic pathway (endoplasmic reticulum and Golgi apparatus), including the nucleus, as well as protein turnover, are all exquisitely sensitive to ROS-related redox conditions. The same applies to the degradation pathways represented by lysosomes and peroxisomes. Therefore, ROS cannot be perceived anymore as a mere harmful consequence of external factors, or byproducts of altered cellular metabolism. This may explain why the indiscriminate use of anti-oxidants did not produce the expected "beneficial" results in many medical applications attempted so far, underlying the need for a deeper apprehension of the biological roles of ROS, particularly in the context of the higher cellular order of organelles.
Collapse
Affiliation(s)
- Leni Moldovan
- Davis Heart and Lung Research Institute, Room. 305D, The Ohio State University, 473 W 12th Avenue, Columbus, OH 43210, USA.
| | | |
Collapse
|
27
|
Cross AR, Segal AW. The NADPH oxidase of professional phagocytes--prototype of the NOX electron transport chain systems. BIOCHIMICA ET BIOPHYSICA ACTA 2004; 1657:1-22. [PMID: 15238208 PMCID: PMC2636547 DOI: 10.1016/j.bbabio.2004.03.008] [Citation(s) in RCA: 335] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2003] [Revised: 03/16/2004] [Accepted: 03/16/2004] [Indexed: 02/06/2023]
Abstract
The NADPH oxidase is an electron transport chain in "professional" phagocytic cells that transfers electrons from NADPH in the cytoplasm, across the wall of the phagocytic vacuole, to form superoxide. The electron transporting flavocytochrome b is activated by the integrated function of four cytoplasmic proteins. The antimicrobial function of this system involves pumping K+ into the vacuole through BKCa channels, the effect of which is to elevate the vacuolar pH and activate neutral proteases. A number of homologous systems have been discovered in plants and lower animals as well as in man. Their function remains to be established.
Collapse
Affiliation(s)
- Andrew R. Cross
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Anthony W. Segal
- Centre for Molecular Medicine, Department of Medicine, University College London, 5 University Street, London WC1E 6JJ, UK
| |
Collapse
|
28
|
Tsunawaki S, Yoshida LS, Nishida S, Kobayashi T, Shimoyama T. Fungal metabolite gliotoxin inhibits assembly of the human respiratory burst NADPH oxidase. Infect Immun 2004; 72:3373-82. [PMID: 15155643 PMCID: PMC415710 DOI: 10.1128/iai.72.6.3373-3382.2004] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reactive oxygen species are a critical weapon in the killing of Aspergillus fumigatus by polymorphonuclear leukocytes (PMN), as demonstrated by severe aspergillosis in chronic granulomatous disease. In the present study, A. fumigatus-produced mycotoxins (fumagillin, gliotoxin [GT], and helvolic acid) are examined for their effects on the NADPH oxidase activity in human PMN. Of these mycotoxins, only GT significantly and stoichiometrically inhibits phorbol myristate acetate (PMA)-stimulated O2- generation, while the other two toxins are ineffective. The inhibition is dependent on the disulfide bridge of GT, which interferes with oxidase activation but not catalysis of the activated oxidase. Specifically, GT inhibits PMA-stimulated events: p47phox phosphorylation, its incorporation into the cytoskeleton, and the membrane translocation of p67phox, p47phox, and p40phox, which are crucial steps in the assembly of the active NADPH oxidase. Thus, damage to p47phox phosphorylation is likely a key to inhibiting NADPH oxidase activation. GT does not inhibit the membrane translocation of Rac2. The inhibition of p47phox phosphorylation is due to the defective membrane translocation of protein kinase C (PKC) betaII rather than an effect of GT on PKC betaII activity, suggesting a failure of PKC betaII to associate with the substrate, p47phox, on the membrane. These results suggest that A. fumigatus may confront PMN by inhibiting the assembly of the NADPH oxidase with its hyphal product, GT.
Collapse
Affiliation(s)
- Shohko Tsunawaki
- Department of Infectious Diseases, National Research Institute for Child Health and Development, Setagaya, Tokyo 154-8567, Japan.
| | | | | | | | | |
Collapse
|
29
|
van Bruggen R, Anthony E, Fernandez-Borja M, Roos D. Continuous translocation of Rac2 and the NADPH oxidase component p67(phox) during phagocytosis. J Biol Chem 2004; 279:9097-102. [PMID: 14623873 DOI: 10.1074/jbc.m309284200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, the translocation of the NADPH oxidase components p67(phox) and Rac2 was studied during phagocytosis in living cells. For this purpose, green fluorescent protein (GFP)-tagged versions of these proteins were expressed in the myeloid cell line PLB-985. First, the correct localization of p67GFP and GFP-Rac2 was shown during phagocytosis of serum-treated zymosan by wild-type PLB-985 cells and PLB-985 X-CGD (chronic granulomatous disease) cells, which lack expression of flavocytochrome b(558). Subsequently, these constructs were used for fluorescence recovery after photobleaching studies to elucidate the turnover of these proteins on the phagosomal membrane. The turnover of p67GFP and GFP-Rac2 proved to be very high, indicating a continuous exchange of flavocytochrome b(558)-bound p67GFP and GFP-Rac2 for cytosolic, free p67GFP and GFP-Rac2. Furthermore, the importance of an intact actin cytoskeleton for correct localization of these proteins was investigated by disrupting the actin cytoskeleton with cytochalasin B. However, cytochalasin B treatment of PLB-985 cells did not alter the localization of p67GFP and GFP-Rac2 once phagocytosis was initiated. In addition, the continuous exchange of flavocytochrome b(558)-bound p67GFP and GFP-Rac2 for cytosolic p67GFP and GFP-Rac2 was still intact in cytochalasin B-treated cells, indicating that the translocation of these proteins does not depend on a rearrangement of the actin cytoskeleton.
Collapse
Affiliation(s)
- Robin van Bruggen
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, 1066 CX Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
30
|
Matalon S, Hardiman KM, Jain L, Eaton DC, Kotlikoff M, Eu JP, Sun J, Meissner G, Stamler JS. Regulation of ion channel structure and function by reactive oxygen-nitrogen species. Am J Physiol Lung Cell Mol Physiol 2003; 285:L1184-9. [PMID: 14604848 DOI: 10.1152/ajplung.00281.2003] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Ion channels subserve diverse cellular functions. Reactive oxygen and nitrogen species modulate ion channel function by a number of mechanisms including 1) transcriptional regulation of gene expression, 2) posttranslational modifications of channel proteins, i.e. nitrosylation, nitration, and oxidation of key amino acid residues, 3) by altering the gain in other signaling pathways that may in turn lead to changes in channel activity or channel gene expression, and 4) by modulating trafficking or turnover of channel proteins, as typified by oxygen radical activation of NF-kappa B, with subsequent changes in proteasomal degradation of channel degradation. Regardless of the mechanism, as was discussed in a symposium at the 2003 Experimental Biology Meeting in San Diego, CA, changes in the cellular level of reactive oxygen and nitrogen species can have profound effects on the activity of ion channels and cellular function.
Collapse
Affiliation(s)
- Sadis Matalon
- Department of Physiology, University of Alabama at Birmingham, Rm. 224, BMR II, 901 S. 19th St., Birmingham, AL 35205-3703, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Neutrophils and other phagocytic leukocytes contain a phagocyte NADPH oxidase enzyme that generates superoxide after cell activation. Reactive oxygen species derived from superoxide, together with proteases liberated from the granules, are used to kill ingested microbes. Dysfunction of the phagocyte NADPH oxidase results in chronic granulomatous disease, with life-threatening infections.
Collapse
Affiliation(s)
- Dirk Roos
- Sanquin Research at CLB, and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands.
| | | | | |
Collapse
|
32
|
Berg C, Trofast C, Bengtsson T. Platelets induce reactive oxygen species-dependent growth of human skin fibroblasts. Eur J Cell Biol 2003; 82:565-71. [PMID: 14703013 DOI: 10.1078/0171-9335-00344] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A growing amount of evidence suggests that reactive oxygen species (ROS), such as hydrogen peroxide and superoxide anion, regulate intracellular signalling and have a role in cell proliferation. In the present study, we show that platelets increase the mitogenic rate in human fibroblasts and that this effect was inhibited by the intracellular antioxidant N-acetyl-L-cysteine (NAC) and the NADPH-oxidase inhibitor diphenyleneiodonium chloride (DPI). The mitogenic effects of platelets were mimicked by the platelet factors platelet-derived growth factor BB-isoform (PDGF-BB), transforming growth factor beta1 (TGF-beta1) and sphingosine-1-phosphate (S1P). The sphingosine kinase inhibitor DL-threo-dihydrosphingosine (DL-dihydro) abrogated the platelet-induced growth, while antibodies directed against PDGF or TGF-beta had modest effects. Exposure of fibroblasts to platelets, PDGF-BB, TGF-beta1 or S1P caused an extensive intracellular ROS production, measured as changes in dichlorofluorescein fluorescence. This ROS production was totally inhibited by NAC, pyrrolidinethiocarbamate (PDTC), DPI and apocynin. In conclusion, the results presented are indicative of a crucial role of ROS in the platelet-mediated regulation of fibroblast proliferation.
Collapse
Affiliation(s)
- Cecilia Berg
- Division of Medical Microbiology, Department of Molecular and Clinical Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden.
| | | | | |
Collapse
|
33
|
Nagasawa T, Ebisu K, Inoue Y, Miyano K, Tamura M. A new role of Pro-73 of p47phox in the activation of neutrophil NADPH oxidase. Arch Biochem Biophys 2003; 416:92-100. [PMID: 12859985 DOI: 10.1016/s0003-9861(03)00296-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The PX domain of p47phox is thought to be involved in autoinhibition. However, when the domain was deleted, the ability to activate the phagocyte NADPH oxidase was markedly diminished. We have mutated the proline-rich region of the PX domain and examined the mutants for the ability to activate. Substitution of Gln for Pro-73 of p47phox(1-286) (P73Q) resulted in a considerably lower activity than the wild type and P73Q had a much lower affinity for the oxidase complex. Whereas, Gln substitution for Pro-76 (P76Q) showed a slightly enhanced activation and the mutant had a slightly higher affinity for the complex than the wild type. Affinity for p67phox(1-210) was slightly decreased either by P73Q or P76Q. Optimal SDS concentration for the activation was lowered by these mutations. Binding of PX domain with phosphatidylinositol-3,4-bisphosphate was diminished by P73Q mutation. The results in this study suggest that Pro-73 has a role in interaction with the catalytic component cytochrome b558.
Collapse
Affiliation(s)
- Teruaki Nagasawa
- Department of Applied Chemistry, Faculty of Engineering, Ehime University, Matsuyama, 790-8577, Ehime, Japan
| | | | | | | | | |
Collapse
|
34
|
O'Reilly PJ, Hickman-Davis JM, Davis IC, Matalon S. Hyperoxia impairs antibacterial function of macrophages through effects on actin. Am J Respir Cell Mol Biol 2003; 28:443-50. [PMID: 12654633 DOI: 10.1165/rcmb.2002-0153oc] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Oxidative stress may impair alveolar macrophage function in patients with inflammatory lung diseases or those exposed to high concentrations of oxygen. We investigated putative mechanisms of injury to macrophages by oxidative stress, using RAW 264.7 cells exposed to 95% oxygen for 48 h. Hyperoxia-exposed macrophages were less able to phagocytose and kill Klebsiella pneumoniae than normoxic controls, despite increased production of nitric oxide, a free radical important in pathogen killing. Exposure of macrophages to hyperoxia had marked effects on the actin cytoskeleton, including increased actin polymerization, loss of cortical actin, formation of stress fibers, de novo synthesis of actin, and actin oxidation. Hyperoxia induced changes in cell morphology, with increased cell size and pseudopod formation. Exposure of macrophages to jasplakinolide, an agent that increases actin polymerization, also impaired their ability to phagocytose Klebsiella. Alveolar macrophages isolated from mice exposed to 100% oxygen for 84 h also demonstrated impaired phagocytic function, as well as similar effects on the actin cytoskeleton and cell morphology to macrophages exposed to hyperoxia in vitro. We conclude that oxidative stress in vitro and in vivo impairs macrophage antibacterial function through effects on actin.
Collapse
Affiliation(s)
- Philip J O'Reilly
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Alabama at Birmingham, 35205-3703, USA
| | | | | | | |
Collapse
|
35
|
Clements MK, Siemsen DW, Swain SD, Hanson AJ, Nelson-Overton LK, Rohn TT, Quinn MT. Inhibition of actin polymerization by peroxynitrite modulates neutrophil functional responses. J Leukoc Biol 2003; 73:344-55. [PMID: 12629148 DOI: 10.1189/jlb.0802401] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Peroxynitrite, a potent oxidant generated in inflammatory tissues, can nitrate tyrosine residues on a variety of proteins. Based on previous studies suggesting that actin might be a potential target for peroxynitrite-mediated nitration in neutrophils, we investigated the effects of peroxynitrite on actin function. We show here that peroxynitrite and the peroxynitrite generator (SIN-1) modified actin in a concentration-dependent manner, resulting in an inhibition of globular-actin polymerization and filamentous-actin depolymerization in vitro. The effects of peroxynitrite were inhibited by the pyrrolopyrimidine antioxidant PNU-101033E, which has been shown previously to specifically block peroxynitrite-mediated tyrosine nitration. Furthermore, spectrophotometric and immunoblot analysis of peroxynitrite-treated actin demonstrated a concentration-dependent increase in nitrotyrosine, which was also blocked by PNU-101033E. Activation of neutrophils in the presence of a nitric oxide donor (S-nitroso-N-acetylpenicillamine) resulted in nitration of exogenously added actin. Nitrated actin was also found in peroxynitrite-treated neutrophils, suggesting that actin may be an important intracellular target during inflammation. To investigate this issue, we analyzed the effect of peroxynitrite treatment on a number of actin-dependent neutrophil processes. Indeed, neutrophil actin polymerization, migration, phagocytosis, and respiratory burst activity were all inhibited by SIN-1 treatment in a concentration-dependent manner. Therefore, the ability of peroxynitrite to inhibit actin dynamics has a significant effect on actin-dependent, cellular processes in phagocytic cells and may modulate their host defense function.
Collapse
Affiliation(s)
- Mark K Clements
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, 59717, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Doussiere J, Bouzidi F, Vignais PV. The S100A8/A9 protein as a partner for the cytosolic factors of NADPH oxidase activation in neutrophils. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:3246-55. [PMID: 12084065 DOI: 10.1046/j.1432-1033.2002.03002.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In a previous study, the S100A8/A9 protein, a Ca2+- and arachidonic acid-binding protein, abundant in neutrophil cytosol, was found to potentiate the activation of the redox component of the O2- generating oxidase in neutrophils, namely the membrane-bound flavocytochrome b, by the cytosolic phox proteins p67phox, p47phox and Rac (Doussière J., Bouzidi F. and Vignais P.V. (2001) Biochem. Biophys. Res. Commun.285, 1317-1320). This led us to check by immunoprecipitation and protein fractionation whether the cytosolic phox proteins could bind to S100A8/A9. Following incubation of a cytosolic extract from nonactivated bovine neutrophil with protein A-Sepharose bound to anti-p67phox antibodies, the recovered immunoprecipitate contained the S100 protein, p47phox and p67phox. Cytosolic protein fractionation comprised two successive chromatographic steps on hydroxyapatite and DEAE cellulose, followed by isoelectric focusing. The S100A8/A9 heterodimeric protein comigrated with the cytosolic phox proteins, and more particularly with p67phox and Rac2, whereas the isolated S100A8 protein displayed a tendancy to bind to p47phox. Using a semirecombinant cell-free system of oxidase activation consisting of recombinant p67phox, p47phox and Rac2, neutrophil membranes and arachidonic acid, we found that the S100A8/A9-dependent increase in the elicited oxidase activity corresponded to an increase in the turnover of the membrane-bound flavocytochrome b, but not to a change of affinity for NADPH or O2. In the absence of S100A8/A9, oxidase activation departed from michaelian kinetics above a critical threshold concentration of cytosolic phox proteins. Addition of S100A8/A9 to the cell-free system rendered the kinetics fully michaelian. The propensity of S100A8/A9 to bind the cytosolic phox proteins, and the effects of S100A8/A9 on the kinetics of oxidase activation, suggest that S100A8/A9 might be a scaffold protein for the cytosolic phox proteins or might help to deliver arachidonic acid to the oxidase, thus favoring the productive interaction of the cytosolic phox proteins with the membrane-bound flavocytochrome b.
Collapse
Affiliation(s)
- Jacques Doussiere
- Laboratoire de Biochimie et Biophysique des Systèmes Intégrés (UMR 5092 CEA-CNRS-UJF), Département Réponse et Dynamique Cellulaires, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble cedex 9, France.
| | | | | |
Collapse
|
37
|
Li JM, Shah AM. Intracellular localization and preassembly of the NADPH oxidase complex in cultured endothelial cells. J Biol Chem 2002; 277:19952-60. [PMID: 11893732 DOI: 10.1074/jbc.m110073200] [Citation(s) in RCA: 289] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phagocyte-type NADPH oxidase expressed in endothelial cells differs from the neutrophil enzyme in that it exhibits low level activity even in the absence of agonist stimulation, and it generates intracellular reactive oxygen species. The mechanisms underlying these differences are unknown. We studied the subcellular location of (a) oxidase subunits and (b) functionally active enzyme in unstimulated endothelial cells. Confocal microscopy revealed co-localization of the major oxidase subunits, i.e. gp91(phox), p22(phox), p47(phox), and p67(phox), in a mainly perinuclear distribution. Plasma membrane biotinylation experiments confirmed the predominantly (>90%) intracellular distribution of gp91(phox) and p22(phox). After subcellular protein fractionation, approximately 50% of the gp91(phox) (91-kDa band), p22(phox), p67(phox), and p40(phox) pools and approximately 30% of the p47(phox) were present in the 1475 x g ("nucleus-rich") fraction. Likewise, approximately 50% of total NADPH-dependent O(2)() production (assessed by lucigenin (5 microm) chemiluminescence) was found in the 1475 x g fraction. Co-immunoprecipitation studies and measurement of NADPH-dependent reactive oxygen species production (cytochrome c reduction assay) demonstrated that p22(phox), gp91(phox), p47(phox), p67(phox), and p40(phox) existed as a functional complex in the cytoskeletal fraction. These results indicate that, in contrast to the neutrophil enzyme, a substantial proportion of the NADPH oxidase in unstimulated endothelial cells exists as a preassembled intracellular complex associated with the cytoskeleton.
Collapse
Affiliation(s)
- Jian-Mei Li
- Department of Cardiology, Guy's King's & St. Thomas's School of Medicine, King's College London, London SE5 9PJ, United Kingdom
| | | |
Collapse
|
38
|
Ferrario CM, Smith R, Levy P, Strawn W. The hypertension-lipid connection: insights into the relation between angiotensin II and cholesterol in atherogenesis. Am J Med Sci 2002; 323:17-24. [PMID: 11814137 DOI: 10.1097/00000441-200201000-00004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Clinical data and experimental studies have established the important role of abnormal lipid metabolism in the causation of atherosclerosis and enthroned the hydroxymethylglutaryl coenzyme reductase inhibitors (statins) as a mainstay in management of patients with coronary heart disease. However, emerging experimental data underline the role of vascular renin-angiotensin systems in mediating the early stages of vascular endothelial dysfunction and inflammation as prerequisites for unleashing the cascade of cellular and molecular events that lead to the deposition of foam cells and their eventual progression to the atherosclerotic plaque. We discuss here the biological effects of statins and angiotensin II in the evolution of atherogenesis, underscoring possible links between statins and angiotensin receptor blockers. From the assessment of the commonality of effects resulting from the nonlipidic actions of statins and angiotensin II on the process of atherogenesis, we develop the argument that dyslipidemia may influence the ability to control blood pressure in hypertensive subjects and hypothesize that the combined use of statins and blockers of the renin-angiotensin system may have an additive effect in the management of hypertensive subjects.
Collapse
Affiliation(s)
- Carlos M Ferrario
- Hypertension and Vascular Disease Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.
| | | | | | | |
Collapse
|
39
|
Abstract
The bacteria-phagocyte interaction is of central importance in Salmonella pathogenesis. Immediately following phagocytosis, the NADPH phagocyte oxidase complex assembles in vesicles and produces highly toxic reactive oxygen species that play a major role in initial Salmonella killing by phagocytes. However, Salmonella has evolved a number of strategies to reduce the efficacy of oxygen-dependent phagocyte antimicrobial systems. Some of these strategies, such as superoxide dismutases, hydroperoxidases, oxidoreductases, scavengers and repair systems are common to most aerobic bacteria. In addition, Salmonella has acquired, by horizontal gene transfer, a type III secretory system encoded by Salmonella pathogenicity island 2 that interferes with the trafficking of vesicles containing functional NADPH phagocyte oxidase to the phagosome, thereby enhancing the survival of Salmonella within macrophages.
Collapse
Affiliation(s)
- A Vazquez-Torres
- Department of Medicine, University of Colorado Health Sciences Center, 4200 E. 9th Ave, B168, Denver, CO 80262, USA
| | | |
Collapse
|
40
|
Abstract
We have compiled a comprehensive list of the articles published in the year 2000 that describe work employing commercial optical biosensors. Selected reviews of interest for the general biosensor user are highlighted. Emerging applications in areas of drug discovery, clinical support, food and environment monitoring, and cell membrane biology are emphasized. In addition, the experimental design and data processing steps necessary to achieve high-quality biosensor data are described and examples of well-performed kinetic analysis are provided.
Collapse
Affiliation(s)
- R L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|