1
|
Ma MY, Deng G, Zhu WZ, Sun M, Jiang LY, Li WH, Liu YB, Guo L, Song BL, Zhao X. Defects in CYB5A and CYB5B impact sterol-C4 oxidation in cholesterol biosynthesis and demonstrate regulatory roles of dimethyl sterols. Cell Rep 2024; 43:114912. [PMID: 39489939 DOI: 10.1016/j.celrep.2024.114912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/13/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
Cytochrome b5 (CYB5) is a hemoprotein crucial for electron transfer to oxygenases. Although microsomal CYB5A is required for sterol C4-demethylation in vitro, cholesterol biosynthesis remains intact in Cyb5a knockout mice. Here, we show that knockout of mitochondrial CYB5B, rather than CYB5A, blocks cholesterol biosynthesis at the sterol-C4 oxidation step in HeLa cells, causing an accumulation of testis meiosis-activating sterol (T-MAS) and dihydro-T-MAS. Surprisingly, liver-specific Cyb5b knockout (L-Cyb5b-/-) mice exhibit normal cholesterol metabolism. Further knockdown of Cyb5a in L-Cyb5b-/- (L-Cyb5b-/-/short hairpin [sh]Cyb5a) mice leads to a marked accumulation of T-MAS and dihydro-T-MAS, indicating that either CYB5A or CYB5B is required for sterol C4-demethylation. The L-Cyb5b-/-/shCyb5a mice are largely normal, with lower sterol regulatory element-binding protein (SREBP)-target gene expression during refeeding and higher liver triglyceride levels while fasting, as T-MAS and dihydro-T-MAS inhibit the SREBP pathway and activate the PPARγ pathway. In summary, CYB5A and CYB5B compensate for sterol C4-demethylation, and T-MAS and dihydro-T-MAS can modulate the SREBP and PPARγ pathways.
Collapse
Affiliation(s)
- Mei-Yan Ma
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China
| | - Gang Deng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China
| | - Wen-Zhuo Zhu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China
| | - Ming Sun
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China
| | - Lu-Yi Jiang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China
| | - Wei-Hui Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China
| | - Yuan-Bin Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China
| | - Lin Guo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China
| | - Bao-Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China.
| | - Xiaolu Zhao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China.
| |
Collapse
|
2
|
Gao Y, Zhao K, Huang Y, Zhang D, Luo N, Peng X, Yang F, Xiao W, Wang M, Shi R, Miao H. Lanosterol synthase deficiency promotes tumor progression by orchestrating PDL1-dependent tumor immunosuppressive microenvironment. MedComm (Beijing) 2024; 5:e528. [PMID: 38606362 PMCID: PMC11006713 DOI: 10.1002/mco2.528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 04/13/2024] Open
Abstract
Lipid metabolic reprogramming is closely related to tumor progression with the mechanism not fully elucidated. Here, we report the immune-regulated role of lanosterol synthase (LSS), an essential enzyme in cholesterol synthesis. Database analysis and clinical sample experiments suggest that LSS was lowly expressed in colon and breast cancer tissues, which indicates poor prognosis. The biological activity of tumor cell lines and tumor progression in NOD scid gamma (NSG) mice were not affected after LSS knockdown, whereas LSS deficiency obviously aggravated tumor burden in fully immunized mice. Flow cytometry analysis showed that LSS knockdown significantly promoted the formation of tumor immunosuppressive microenvironment, characterized by the increase in M2 macrophages and polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs), as well as the decrease in anti-tumoral T lymphocytes. With the inhibition of myeloid infiltration or loss function of T lymphocytes, the propulsive effect of LSS knockdown on tumor progression disappeared. Mechanistically, LSS knockdown increased programmed death ligand 1 (PDL1) protein stability by 2,3-oxidosqualene (OS) binding to PDL1 protein. Anti-PDL1 therapy abolished LSS deficiency-induced immunosuppressive microenvironment and cancer progression. In conclusion, our results show that LSS deficiency promotes tumor progression by establishing an OS-PDL1 axis-dependent immunosuppressive microenvironment, indicative of LSS or OS as a potential hallmark of response to immune checkpoint blockade.
Collapse
Affiliation(s)
- Yuan Gao
- Department of PathophysiologyCollege of High Altitude Military MedicineThird Military Medical University (Army Medical University)ChongqingChina
| | - Kun Zhao
- Department of PathophysiologyCollege of High Altitude Military MedicineThird Military Medical University (Army Medical University)ChongqingChina
| | - Yulan Huang
- Department of PathophysiologyCollege of High Altitude Military MedicineThird Military Medical University (Army Medical University)ChongqingChina
| | - Dapeng Zhang
- Department of PathophysiologyCollege of High Altitude Military MedicineThird Military Medical University (Army Medical University)ChongqingChina
| | - Na Luo
- Department of PathophysiologyCollege of High Altitude Military MedicineThird Military Medical University (Army Medical University)ChongqingChina
| | - Xiaoqing Peng
- Department of OncologyFuling HospitalChongqing UniversityChongqingChina
| | - Feng Yang
- Department of General SurgeryXinqiao HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Weidong Xiao
- Department of General SurgeryXinqiao HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Meng Wang
- Department of PathophysiologyCollege of High Altitude Military MedicineThird Military Medical University (Army Medical University)ChongqingChina
| | - Rongchen Shi
- Frontier Medical Training BrigadeThird Military Medical University (Army Medical University)XinjiangChina
| | - Hongming Miao
- Department of PathophysiologyCollege of High Altitude Military MedicineThird Military Medical University (Army Medical University)ChongqingChina
- Jinfeng LaboratoryChongqingChina
| |
Collapse
|
3
|
Faulkner RA, Yang Y, Tsien J, Qin T, DeBose-Boyd RA. Direct binding to sterols accelerates endoplasmic reticulum-associated degradation of HMG CoA reductase. Proc Natl Acad Sci U S A 2024; 121:e2318822121. [PMID: 38319967 PMCID: PMC10873557 DOI: 10.1073/pnas.2318822121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/09/2024] [Indexed: 02/08/2024] Open
Abstract
The maintenance of cholesterol homeostasis is crucial for normal function at both the cellular and organismal levels. Two integral membrane proteins, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) and Scap, are key targets of a complex feedback regulatory system that operates to ensure cholesterol homeostasis. HMGCR catalyzes the rate-limiting step in the transformation of the 2-carbon precursor acetate to 27-carbon cholesterol. Scap mediates proteolytic activation of sterol regulatory element-binding protein-2 (SREBP-2), a membrane-bound transcription factor that controls expression of genes involved in the synthesis and uptake of cholesterol. Sterol accumulation triggers binding of HMGCR to endoplasmic reticulum (ER)-localized Insig proteins, leading to the enzyme's ubiquitination and proteasome-mediated ER-associated degradation (ERAD). Sterols also induce binding of Insigs to Scap, which leads to sequestration of Scap and its bound SREBP-2 in the ER, thereby preventing proteolytic activation of SREBP-2 in the Golgi. The oxygenated cholesterol derivative 25-hydroxycholesterol (25HC) and the methylated cholesterol synthesis intermediate 24,25-dihydrolanosterol (DHL) differentially modulate HMGCR and Scap. While both sterols promote binding of HMGCR to Insigs for ubiquitination and subsequent ERAD, only 25HC inhibits the Scap-mediated proteolytic activation of SREBP-2. We showed previously that 1,1-bisphosphonate esters mimic DHL, accelerating ERAD of HMGCR while sparing SREBP-2 activation. Building on these results, our current studies reveal specific, Insig-independent photoaffinity labeling of HMGCR by photoactivatable derivatives of the 1,1-bisphosphonate ester SRP-3042 and 25HC. These findings disclose a direct sterol binding mechanism as the trigger that initiates the HMGCR ERAD pathway, providing valuable insights into the intricate mechanisms that govern cholesterol homeostasis.
Collapse
Affiliation(s)
- Rebecca A. Faulkner
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX75390-9046
| | - Yangyan Yang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX75390-9046
| | - Jet Tsien
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX75390-9046
| | - Tian Qin
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX75390-9046
| | - Russell A. DeBose-Boyd
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX75390-9046
| |
Collapse
|
4
|
Nguyen VH, Wemheuer B, Song W, Bennett H, Webster N, Thomas T. Identification, classification, and functional characterization of novel sponge-associated acidimicrobiial species. Syst Appl Microbiol 2023; 46:126426. [PMID: 37141831 DOI: 10.1016/j.syapm.2023.126426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/11/2023] [Accepted: 04/23/2023] [Indexed: 05/06/2023]
Abstract
Sponges are known to harbour an exceptional diversity of uncultured microorganisms, including members of the phylum Actinobacteriota. While members of the actinobacteriotal class Actinomycetia have been studied intensively due to their potential for secondary metabolite production, the sister class of Acidimicrobiia is often more abundant in sponges. However, the taxonomy, functions, and ecological roles of sponge-associated Acidimicrobiia are largely unknown. Here, we reconstructed and characterized 22 metagenome-assembled genomes (MAGs) of Acidimicrobiia from three sponge species. These MAGs represented six novel species, belonging to five genera, four families, and two orders, which are all uncharacterized (except the order Acidimicrobiales) and for which we propose nomenclature. These six uncultured species have either only been found in sponges and/or corals and have varying degrees of specificity to their host species. Functional gene profiling indicated that these six species shared a similar potential to non-symbiotic Acidimicrobiia with respect to amino acid biosynthesis and utilization of sulfur compounds. However, sponge-associated Acidimicrobiia differed from their non-symbiotic counterparts by relying predominantly on organic rather than inorganic sources of energy, and their predicted capacity to synthesise bioactive compounds or their precursors implicated in host defence. Additionally, the species possess the genetic capacity to degrade aromatic compounds that are frequently found in sponges. The novel Acidimicrobiia may also potentially mediate host development by modulating Hedgehog signalling and by the production of serotonin, which can affect host body contractions and digestion. These results highlight unique genomic and metabolic features of six new acidimicrobiial species that potentially support a sponge-associated lifestyle.
Collapse
Affiliation(s)
- Viet Hung Nguyen
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Bernd Wemheuer
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Weizhi Song
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Holly Bennett
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Nicole Webster
- Australian Institute of Marine Science, Townsville, Queensland, Australia; Australian Antarctic Division, Hobart, Tasmania, Australia
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
5
|
Chattopadhyay A, Sharma A. Smith-Lemli-Opitz syndrome: A pathophysiological manifestation of the Bloch hypothesis. Front Mol Biosci 2023; 10:1120373. [PMID: 36714259 PMCID: PMC9878332 DOI: 10.3389/fmolb.2023.1120373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
The biosynthesis of cholesterol, an essential component of higher eukaryotic membranes, was worked out by Konrad Bloch (and Feodor Lynen) in the 1960s and they received the Nobel Prize around that time in recognition of their pioneering contributions. An elegant consequence of this was a hypothesis proposed by Konrad Bloch (the Bloch hypothesis) which suggests that each subsequent intermediate in the cholesterol biosynthesis pathway is superior in supporting membrane function in higher eukaryotes relative to its precursor. In this review, we discuss an autosomal recessive metabolic disorder, known as Smith-Lemli-Opitz syndrome (SLOS), associated with a defect in the Kandutsch-Russell pathway of cholesterol biosynthesis that results in accumulation of the immediate precursor of cholesterol in its biosynthetic pathway (7-dehydrocholesterol) and an altered cholesterol to total sterol ratio. Patients suffering from SLOS have several developmental, behavioral and cognitive abnormalities for which no drug is available yet. We characterize SLOS as a manifestation of the Bloch hypothesis and review its molecular etiology and current treatment. We further discuss defective Hedgehog signaling in SLOS and focus on the role of the serotonin1A receptor, a representative neurotransmitter receptor belonging to the GPCR family, in SLOS. Notably, ligand binding activity and cellular signaling of serotonin1A receptors are impaired in SLOS-like condition. Importantly, cellular localization and intracellular trafficking of the serotonin1A receptor (which constitute an important determinant of a GPCR cellular function) are compromised in SLOS. We highlight some of the recent developments and emerging concepts in SLOS pathobiology and suggest that novel therapies based on trafficking defects of target receptors could provide new insight into treatment of SLOS.
Collapse
Affiliation(s)
- Amitabha Chattopadhyay
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India,Academy of Scientific and Innovative Research, Ghaziabad, India,*Correspondence: Amitabha Chattopadhyay,
| | - Ashwani Sharma
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India,Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
6
|
Rosenhouse-Dantsker A, Gazgalis D, Logothetis DE. PI(4,5)P 2 and Cholesterol: Synthesis, Regulation, and Functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:3-59. [PMID: 36988876 DOI: 10.1007/978-3-031-21547-6_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is the most abundant membrane phosphoinositide and cholesterol is an essential component of the plasma membrane (PM). Both lipids play key roles in a variety of cellular functions including as signaling molecules and major regulators of protein function. This chapter provides an overview of these two important lipids. Starting from a brief description of their structure, synthesis, and regulation, the chapter continues to describe the primary functions and signaling processes in which PI(4,5)P2 and cholesterol are involved. While PI(4,5)P2 and cholesterol can act independently, they often act in concert or affect each other's impact. The chapters in this volume on "Cholesterol and PI(4,5)P2 in Vital Biological Functions: From Coexistence to Crosstalk" focus on the emerging relationship between cholesterol and PI(4,5)P2 in a variety of biological systems and processes. In this chapter, the next section provides examples from the ion channel field demonstrating that PI(4,5)P2 and cholesterol can act via common mechanisms. The chapter ends with a discussion of future directions.
Collapse
Affiliation(s)
| | - Dimitris Gazgalis
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Diomedes E Logothetis
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| |
Collapse
|
7
|
Hartmann H, Ho WY, Chang JC, Ling SC. Cholesterol dyshomeostasis in amyotrophic lateral sclerosis: cause, consequence, or epiphenomenon? FEBS J 2022; 289:7688-7709. [PMID: 34469619 DOI: 10.1111/febs.16175] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/10/2021] [Accepted: 08/31/2021] [Indexed: 01/14/2023]
Abstract
Amyotrophic lateral sclerosis (ALS), the most common adult-onset motor neuron disease, is characterized by the selective degeneration of motor neurons leading to paralysis and eventual death. Multiple pathogenic mechanisms, including systemic dysmetabolism, have been proposed to contribute to ALS. Among them, dyslipidemia, i.e., abnormal level of cholesterol and other lipids in the circulation and central nervous system (CNS), has been reported in ALS patients, but without a consensus. Cholesterol is a constituent of cellular membranes and a precursor of steroid hormones, oxysterols, and bile acids. Consequently, optimal cholesterol levels are essential for health. Due to the blood-brain barrier (BBB), cholesterol cannot move between the CNS and the rest of the body. As such, cholesterol metabolism in the CNS is proposed to operate autonomously. Despite its importance, it remains elusive how cholesterol dyshomeostasis may contribute to ALS. In this review, we aim to describe the current state of cholesterol metabolism research in ALS, identify unresolved issues, and provide potential directions.
Collapse
Affiliation(s)
- Hannelore Hartmann
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wan Yun Ho
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jer-Cherng Chang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shuo-Chien Ling
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Healthy Longevity Translational Research Programme, National University Health System, Singapore, Singapore.,Program in Neuroscience and Behavior Disorders, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
8
|
Feng Q, Xia W, Dai G, Lv J, Yang J, Liu D, Zhang G. The Aging Features of Thyrotoxicosis Mice: Malnutrition, Immunosenescence and Lipotoxicity. Front Immunol 2022; 13:864929. [PMID: 35720307 PMCID: PMC9201349 DOI: 10.3389/fimmu.2022.864929] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/21/2022] [Indexed: 12/24/2022] Open
Abstract
The problem of aging is mainly the increase of age-related diseases, and elderly patients have longer hospitalization and worse prognosis. Poorer nutritional status and immunosenescence may be predisposing and severe factors. The mechanism of the high incidence of diseases and poor prognosis behind aging is complex. Finding suitable aging models is of great significance to find strategies to prevent aging related events. In this study, the relationship between thyrotoxicosis and aging was investigated in mice. The results of routine blood tests and flow cytometry showed that immunosenescence occurred in thyrotoxicosis mice, which was characterized by a significant decrease in neutrophils, lymphocytes, CD4+/CD8+ and CD4+IFN-γ+ lymphocytes. Biochemical examination results showed that there were hypocholesterolemia, hypolipoproteinemia, and hyperlipidemia in thyrotoxicosis mice. Serum proteomics analysis showed that the downregulation of complement and coagulation proteins was another manifestation of declined immunity. Moreover, proteomics analysis showed that many downregulated proteins were related to homeostasis, mainly transport proteins. Their downregulation led to the disturbance of osmotic pressure, ion homeostasis, vitamin utilization, lipid transport, hyaluronic acid processing, and pH maintenance. Serum metabolomics analysis provided more detailed evidence of homeostasis disturbance, especially lipid metabolism disorder, including the downregulation of cholesterol, vitamin D, bile acids, docosanoids, and the upregulation of glucocorticoids, triglycerides, sphingolipids, and free fatty acids. The upregulated lipid metabolites were related to lipotoxicity, which might be one cause of immunosenescence and many aging related syndromes. This study provides evidence for the aging model of thyrotoxicosis mice, which can be used for exploring anti-aging drugs and strategies.
Collapse
Affiliation(s)
- Qin Feng
- Center for Pharmacological Research, State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Wenkai Xia
- Center for Pharmacological Research, State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Guoxin Dai
- Center for Pharmacological Research, State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Jingang Lv
- Center for Pharmacological Research, State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Jian Yang
- Center for Pharmacological Research, State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Deshan Liu
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Guimin Zhang
- Center for Pharmacological Research, State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| |
Collapse
|
9
|
Kacher R, Mounier C, Caboche J, Betuing S. Altered Cholesterol Homeostasis in Huntington’s Disease. Front Aging Neurosci 2022; 14:797220. [PMID: 35517051 PMCID: PMC9063567 DOI: 10.3389/fnagi.2022.797220] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/18/2022] [Indexed: 12/25/2022] Open
Abstract
Huntington’s disease (HD) is an autosomal dominant genetic disorder caused by an expansion of the CAG repeat in the first exon of Huntingtin’s gene. The associated neurodegeneration mainly affects the striatum and the cortex at early stages and progressively spreads to other brain structures. Targeting HD at its earlier stages is under intense investigation. Numerous drugs were tested, with a rate of success of only 3.5% approved molecules used as symptomatic treatment. The restoration of cholesterol metabolism, which is central to the brain homeostasis and strongly altered in HD, could be an interesting disease-modifying strategy. Cholesterol is an essential membrane component in the central nervous system (CNS); alterations of its homeostasis have deleterious consequences on neuronal functions. The levels of several sterols, upstream of cholesterol, are markedly decreased within the striatum of HD mouse model. Transcription of cholesterol biosynthetic genes is reduced in HD cell and mouse models as well as post-mortem striatal and cortical tissues from HD patients. Since the dynamic of brain cholesterol metabolism is complex, it is essential to establish the best method to target it in HD. Cholesterol, which does not cross the blood-brain-barrier, is locally synthesized and renewed within the brain. All cell types in the CNS synthesize cholesterol during development but as they progress through adulthood, neurons down-regulate their cholesterol synthesis and turn to astrocytes for their full supply. Cellular levels of cholesterol reflect the dynamic balance between synthesis, uptake and export, all integrated into the context of the cross talk between neurons and glial cells. In this review, we describe the latest advances regarding the role of cholesterol deregulation in neuronal functions and how this could be a determinant factor in neuronal degeneration and HD progression. The pathways and major mechanisms by which cholesterol and sterols are regulated in the CNS will be described. From this overview, we discuss the main clinical strategies for manipulating cholesterol metabolism in the CNS, and how to reinstate a proper balance in HD.
Collapse
Affiliation(s)
- Radhia Kacher
- Institut du Cerveau - Paris Brain Institute (ICM), AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, Sorbonne Université, Paris, France
- INSERM, U1216, Grenoble Institut Neurosciences, Université Grenoble Alpes, Grenoble, France
| | - Coline Mounier
- Neuroscience Paris Seine, Institut de Biologie Paris-Seine, Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
- Centre National de la Recherche Scientifique, UMR 8246, Paris, France
- U1130, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Jocelyne Caboche
- Neuroscience Paris Seine, Institut de Biologie Paris-Seine, Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
- Centre National de la Recherche Scientifique, UMR 8246, Paris, France
- U1130, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Sandrine Betuing
- Neuroscience Paris Seine, Institut de Biologie Paris-Seine, Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
- Centre National de la Recherche Scientifique, UMR 8246, Paris, France
- U1130, Institut National de la Santé et de la Recherche Médicale, Paris, France
- *Correspondence: Sandrine Betuing,
| |
Collapse
|
10
|
Schumacher MM, DeBose-Boyd RA. Posttranslational Regulation of HMG CoA Reductase, the Rate-Limiting Enzyme in Synthesis of Cholesterol. Annu Rev Biochem 2021; 90:659-679. [PMID: 34153214 DOI: 10.1146/annurev-biochem-081820-101010] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The polytopic, endoplasmic reticulum (ER) membrane protein 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase produces mevalonate, the key intermediate in the synthesis of cholesterol and many nonsterol isoprenoids including geranylgeranyl pyrophosphate (GGpp). Transcriptional, translational, and posttranslational feedback mechanisms converge on this reductase to ensure cells maintain a sufficient supply of essential nonsterol isoprenoids but avoid overaccumulation of cholesterol and other sterols. The focus of this review is mechanisms for the posttranslational regulation of HMG CoA reductase, which include sterol-accelerated ubiquitination and ER-associated degradation (ERAD) that is augmented by GGpp. We discuss how GGpp-induced ER-to-Golgi trafficking of the vitamin K2 synthetic enzyme UbiA prenyltransferase domain-containing protein-1 (UBIAD1) modulates HMG CoA reductase ERAD to balance the synthesis of sterol and nonsterol isoprenoids. We also summarize the characterization of genetically manipulated mice, which established that sterol-accelerated, UBIAD1-modulated ERAD plays a major role in regulation of HMG CoA reductase and cholesterol metabolism in vivo.
Collapse
Affiliation(s)
- Marc M Schumacher
- Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA;
| | - Russell A DeBose-Boyd
- Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA;
| |
Collapse
|
11
|
Nanjundaiah S, Chidambaram H, Chandrashekar M, Chinnathambi S. Role of Microglia in Regulating Cholesterol and Tau Pathology in Alzheimer's Disease. Cell Mol Neurobiol 2021; 41:651-668. [PMID: 32468440 DOI: 10.1007/s10571-020-00883-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 05/19/2020] [Indexed: 01/21/2023]
Abstract
Cholesterol, a principal constituent of the cell membrane, plays a crucial role in the brain by regulating the synaptic transmission, neuronal signaling, as well as neurodegenerative diseases. Defects in the cholesterol trafficking are associated with enhanced generation of hyperphosphorylated Tau and Amyloid-β protein. Tau, a major microtubule-associated protein in the brain, is the key regulator of the mature neuron. Abnormally hyperphosphorylated Tau hampers the major functions related to microtubule assembly by promoting neurofibrillary tangles of paired helical filaments, twisted ribbons, and straight filaments. The observed pathological changes due to impaired cholesterol and Tau protein accumulation cause Alzheimer's disease. Thus, in order to regulate the pathogenesis of Alzheimer's disease, regulation of cholesterol metabolism, as well as Tau phosphorylation, is essential. The current review provides an overview of (1) cholesterol synthesis in the brain, neurons, astrocytes, and microglia; (2) the mechanism involved in modulating cholesterol concentration between the astrocytes and brain; (3) major mechanisms involved in the hyperphosphorylation of Tau and amyloid-β protein; and (4) microglial involvement in its regulation. Thus, the answering key questions will provide an in-depth information on microglia involvement in managing the pathogenesis of cholesterol-modulated hyperphosphorylated Tau protein.
Collapse
Affiliation(s)
- Shwetha Nanjundaiah
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008, India
| | - Hariharakrishnan Chidambaram
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India
| | - Madhura Chandrashekar
- School of Biomedical Engineering and Sciences, MIT University, Loni Kalbhor, Pune, 412201, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India.
| |
Collapse
|
12
|
Sharpe LJ, Coates HW, Brown AJ. Post-translational control of the long and winding road to cholesterol. J Biol Chem 2021; 295:17549-17559. [PMID: 33453997 DOI: 10.1074/jbc.rev120.010723] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/12/2020] [Indexed: 01/19/2023] Open
Abstract
The synthesis of cholesterol requires more than 20 enzymes, many of which are intricately regulated. Post-translational control of these enzymes provides a rapid means for modifying flux through the pathway. So far, several enzymes have been shown to be rapidly degraded through the ubiquitin-proteasome pathway in response to cholesterol and other sterol intermediates. Additionally, several enzymes have their activity altered through phosphorylation mechanisms. Most work has focused on the two rate-limiting enzymes: 3-hydroxy-3-methylglutaryl CoA reductase and squalene monooxygenase. Here, we review current literature in the area to define some common themes in the regulation of the entire cholesterol synthesis pathway. We highlight the rich variety of inputs controlling each enzyme, discuss the interplay that exists between regulatory mechanisms, and summarize findings that reveal an intricately coordinated network of regulation along the cholesterol synthesis pathway. We provide a roadmap for future research into the post-translational control of cholesterol synthesis, and no doubt the road ahead will reveal further twists and turns for this fascinating pathway crucial for human health and disease.
Collapse
Affiliation(s)
- Laura J Sharpe
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Hudson W Coates
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
13
|
Diao H, Chen N, Wang K, Zhang F, Wang YH, Wu R. Biosynthetic Mechanism of Lanosterol: A Completed Story. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05221] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hongjuan Diao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Nanhao Chen
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Kai Wang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Fan Zhang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Yong-Heng Wang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Ruibo Wu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| |
Collapse
|
14
|
Fujimori H, Zhou YJ, Fukumura K, Matsumoto S, Tukamoto Y, Nagata S. Specific distribution of expression and enzymatic activity of cholesterol biosynthetic enzyme DHCR24 orthologs in the phytophagous insect. Biosci Biotechnol Biochem 2019; 84:126-133. [PMID: 31538545 DOI: 10.1080/09168451.2019.1667221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Insects must intake sterol compounds because of their inability to synthesize cholesterol de novo. In phytophagous insects, enzymatic conversion of phytosterols to cholesterol involving 24-dehydrocholesterol reductase (DHCR24) exerts to acquire cholesterol. Here, we reported the presence of two DHCR24 homologs in the silkworm Bombyx mori, BmDHCR24-1 and -2, with several transcript variants. Consistent with the data of spatial expression analyses by RT-PCR, predominant enzymatic activity of DHCR24 was observed in B. mori larval midgut whereas weak activity was observed in the other tissues examined. In addition, BmDHCR24-1 expression in HEK293 cells showed an enzymatic activity, but BmDHCR24-2 did not, although both BmDHCR24s were localized in the endoplasmic reticulum, where the mammalian DHCR24s are located to exert their enzymatic activities. The present data indicated that BmDHCR24-1 but not BmDHCR24-2 contributes to conversion of phytosterols to cholesterol mainly in the midgut of the phytophagous lepidopteran larvae.
Collapse
Affiliation(s)
- Haruna Fujimori
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa City, Chiba, Japan
| | - Yi Jun Zhou
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa City, Chiba, Japan.,Research Fellow of Japan Society for the Promotion of Science (JSPS), Chiyoda-ku, Tokyo, Japan
| | - Keisuke Fukumura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa City, Chiba, Japan.,Research Fellow of Japan Society for the Promotion of Science (JSPS), Chiyoda-ku, Tokyo, Japan
| | - Sumihiro Matsumoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa City, Chiba, Japan
| | - Yusuke Tukamoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa City, Chiba, Japan.,Research Fellow of Japan Society for the Promotion of Science (JSPS), Chiyoda-ku, Tokyo, Japan
| | - Shinji Nagata
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa City, Chiba, Japan
| |
Collapse
|
15
|
Walsh CT. Biologically generated carbon dioxide: nature's versatile chemical strategies for carboxy lyases. Nat Prod Rep 2019; 37:100-135. [PMID: 31074473 DOI: 10.1039/c9np00015a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Covering: up to 2019Metabolic production of CO2 is natural product chemistry on a mammoth scale. Just counting humans, among all other respiring organisms, the seven billion people on the planet exhale about 3 billion tons of CO2 per year. Essentially all of the biogenic CO2 arises by action of discrete families of decarboxylases. The mechanistic routes to CO2 release from carboxylic acid metabolites vary with the electronic demands and structures of specific substrates and illustrate the breadth of chemistry employed for C-COO (C-C bond) disconnections. Most commonly decarboxylated are α-keto acid and β-keto acid substrates, the former requiring thiamin-PP as cofactor, the latter typically cofactor-free. The extensive decarboxylation of amino acids, e.g. to neurotransmitter amines, is synonymous with the coenzyme form of vitamin B6, pyridoxal-phosphate, although covalent N-terminal pyruvamide residues serve in some amino acid decarboxylases. All told, five B vitamins (B1, B2, B3, B6, B7), ATP, S-adenosylmethionine, manganese and zinc ions are pressed into service for specific decarboxylase catalyses. There are additional cofactor-independent decarboxylases that operate by distinct chemical routes. Finally, while most decarboxylases use heterolytic ionic mechanisms, a small number of decarboxylases carry out radical pathways.
Collapse
|
16
|
Depaoli MR, Hay JC, Graier WF, Malli R. The enigmatic ATP supply of the endoplasmic reticulum. Biol Rev Camb Philos Soc 2018; 94:610-628. [PMID: 30338910 PMCID: PMC6446729 DOI: 10.1111/brv.12469] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/20/2018] [Accepted: 08/30/2018] [Indexed: 12/11/2022]
Abstract
The endoplasmic reticulum (ER) is a functionally and morphologically complex cellular organelle largely responsible for a variety of crucial functions, including protein folding, maturation and degradation. Furthermore, the ER plays an essential role in lipid biosynthesis, dynamic Ca2+ storage, and detoxification. Malfunctions in ER‐related processes are responsible for the genesis and progression of many diseases, such as heart failure, cancer, neurodegeneration and metabolic disorders. To fulfill many of its vital functions, the ER relies on a sufficient energy supply in the form of adenosine‐5′‐triphosphate (ATP), the main cellular energy source. Despite landmark discoveries and clarification of the functional principles of ER‐resident proteins and key ER‐related processes, the mechanism underlying ER ATP transport remains somewhat enigmatic. Here we summarize ER‐related ATP‐consuming processes and outline our knowledge about the nature and function of the ER energy supply.
Collapse
Affiliation(s)
- Maria R Depaoli
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Jesse C Hay
- Division of Biological Sciences and Center for Structural and Functional Neuroscience, The University of Montana, 32 Campus Drive, HS410, Missoula, MT 59812-4824, U.S.A
| | - Wolfgang F Graier
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria.,BioTechMed Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Roland Malli
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria.,BioTechMed Graz, Mozartgasse 12/II, 8010 Graz, Austria
| |
Collapse
|
17
|
Pool F, Currie R, Sweby PK, Salazar JD, Tindall MJ. A mathematical model of the mevalonate cholesterol biosynthesis pathway. J Theor Biol 2018; 443:157-176. [DOI: 10.1016/j.jtbi.2017.12.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 12/15/2022]
|
18
|
Laaksonen J, Taipale T, Seppälä I, Raitoharju E, Mononen N, Lyytikäinen LP, Waldenberger M, Illig T, Hutri-Kähönen N, Rönnemaa T, Juonala M, Viikari J, Kähönen M, Raitakari O, Lehtimäki T. Blood pathway analyses reveal differences between prediabetic subjects with or without dyslipidaemia. The Cardiovascular Risk in Young Finns Study. Diabetes Metab Res Rev 2017; 33. [PMID: 28609607 DOI: 10.1002/dmrr.2914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 04/21/2017] [Accepted: 05/22/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Prediabetes often occurs together with dyslipidaemia, which is paradoxically treated with statins predisposing to type 2 diabetes mellitus. We examined peripheral blood pathway profiles in prediabetic subjects with (PRD ) and without dyslipidaemia (PR0 ) and compared these to nonprediabetic controls without dyslipidaemia (C0 ). METHODS The participants were from the Cardiovascular Risk in Young Finns Study, including 1240 subjects aged 34 to 49 years. Genome-wide expression data of peripheral blood and gene set enrichment analysis were used to investigate the differentially expressed genes and enriched pathways between different subtypes of prediabetes. RESULTS Pathways for cholesterol synthesis, interleukin-12-mediated signalling events, and downstream signalling in naïve CD8+ T-cells were upregulated in the PR0 group in comparison with controls (C0 ). The upregulation of these pathways was independent of waist circumference, blood pressure, smoking status, and insulin. Adjustment for CRP left the CD8+ T-cell signalling and interleukin-12-mediated signalling event pathway upregulated. The cholesterol synthesis pathway was also upregulated when all prediabetic subjects (PR0 and PRD ) were compared with the nonprediabetic control group. No pathways were upregulated or downregulated when the PRD group was compared with the C0 group. Five genes in the PR0 group and 1 in the PRD group were significantly differentially expressed in comparison with the C0 group. CONCLUSIONS Blood cell gene expression profiles differ significantly between prediabetic subjects with and without dyslipidaemia. Whether this classification may be used in detection of prediabetic individuals at a high risk of cardiovascular complications remains to be examined.
Collapse
Affiliation(s)
- Jaakko Laaksonen
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Tuukka Taipale
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Ilkka Seppälä
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Emma Raitoharju
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Nina Mononen
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, München, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, München, Germany
| | - Thomas Illig
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, München, Germany
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
- Institute for Human Genetics, Hannover Medical School, Hannover, Germany
| | - Nina Hutri-Kähönen
- Department of Paediatrics, Tampere University Hospital and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Tapani Rönnemaa
- Department of Medicine, University of Turku, Turku, Finland
- Division of Medicine, Turku University Hospital, Turku, Finland
| | - Markus Juonala
- Department of Medicine, University of Turku, Turku, Finland
- Division of Medicine, Turku University Hospital, Turku, Finland
| | - Jorma Viikari
- Department of Medicine, University of Turku, Turku, Finland
- Division of Medicine, Turku University Hospital, Turku, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Olli Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, University of Turku, Turku, Finland
- Research Centre for Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| |
Collapse
|
19
|
Corso G, Dello Russo A, Gelzo M. Liver and the defects of cholesterol and bile acids biosynthesis: Rare disorders many diagnostic pitfalls. World J Gastroenterol 2017; 23:5257-5265. [PMID: 28839426 PMCID: PMC5550775 DOI: 10.3748/wjg.v23.i29.5257] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 05/01/2017] [Accepted: 07/04/2017] [Indexed: 02/06/2023] Open
Abstract
In recent decades, biotechnology produced a growth of knowledge on the causes and mechanisms of metabolic diseases that have formed the basis for their study, diagnosis and treatment. Unfortunately, it is well known that the clinical features of metabolic diseases can manifest themselves with very different characteristics and escape early detection. Also, it is well known that the prognosis of many metabolic diseases is excellent if diagnosed and treated early. In this editorial we briefly summarized two groups of inherited metabolic diseases, the defects of cholesterol biosynthesis and those of bile acids. Both groups show variable clinical manifestations but some clinical signs and symptoms are common in both the defects of cholesterol and bile acids. The differential diagnosis can be made analyzing sterol profiles in blood and/or bile acids in blood and urine by chromatographic techniques (GC-MS and LC-MS/MS). Several defects of both biosynthetic pathways are treatable so early diagnosis is crucial. Unfortunately their diagnosis is made too late, due either to the clinical heterogeneity of the syndromes (severe, mild and very mild) that to the scarcity of scientific dissemination of these rare diseases. Therefore, the delay in diagnosis leads the patient to the medical observation when the disease has produced irreversible damages to the body. Here, we highlighted simple clinical and laboratory descriptions that can potentially make you to suspect a defect in cholesterol biosynthesis and/or bile acids, as well, we suggest appropriate request of the laboratory tests that along with common clinical features can help to diagnose these defects.
Collapse
|
20
|
Czuba E, Steliga A, Lietzau G, Kowiański P. Cholesterol as a modifying agent of the neurovascular unit structure and function under physiological and pathological conditions. Metab Brain Dis 2017; 32:935-948. [PMID: 28432486 PMCID: PMC5504126 DOI: 10.1007/s11011-017-0015-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/17/2017] [Indexed: 02/08/2023]
Abstract
The brain, demanding constant level of cholesterol, precisely controls its synthesis and homeostasis. The brain cholesterol pool is almost completely separated from the rest of the body by the functional blood-brain barrier (BBB). Only a part of cholesterol pool can be exchanged with the blood circulation in the form of the oxysterol metabolites such, as 27-hydroxycholesterol (27-OHC) and 24S-hydroxycholesterol (24S-OHC). Not only neurons but also blood vessels and neuroglia, constituting neurovascular unit (NVU), are crucial for the brain cholesterol metabolism and undergo precise regulation by numerous modulators, metabolites and signal molecules. In physiological conditions maintaining the optimal cholesterol concentration is important for the energetic metabolism, composition of cell membranes and myelination. However, a growing body of evidence indicates the consequences of the cholesterol homeostasis dysregulation in several pathophysiological processes. There is a causal relationship between hypercholesterolemia and 1) development of type 2 diabetes due to long-term high-fat diet consumption, 2) significance of the oxidative stress consequences for cerebral amyloid angiopathy and neurodegenerative diseases, 3) insulin resistance on progression of the neurodegenerative brain diseases. In this review, we summarize the current state of knowledge concerning the cholesterol influence upon functioning of the NVU under physiological and pathological conditions.
Collapse
Affiliation(s)
- Ewelina Czuba
- Department of Anatomy and Neurobiology, Medical University of Gdańsk, 1 Dębinki Str, 80-211, Gdańsk, Poland.
| | - Aleksandra Steliga
- Department of Health Sciences, Pomeranian University of Słupsk, 64 Bohaterów Westerplatte Str, 76-200, Słupsk, Poland
| | - Grażyna Lietzau
- Department of Anatomy and Neurobiology, Medical University of Gdańsk, 1 Dębinki Str, 80-211, Gdańsk, Poland
| | - Przemysław Kowiański
- Department of Anatomy and Neurobiology, Medical University of Gdańsk, 1 Dębinki Str, 80-211, Gdańsk, Poland
- Department of Health Sciences, Pomeranian University of Słupsk, 64 Bohaterów Westerplatte Str, 76-200, Słupsk, Poland
| |
Collapse
|
21
|
Flasiński M, Wydro P, Broniatowski M, Hąc-Wydro K, Fontaine P. Crucial Role of the Double Bond Isomerism in the Steroid B-Ring on the Membrane Properties of Sterols. Grazing Incidence X-Ray Diffraction and Brewster Angle Microscopy Studies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:7364-7373. [PMID: 26061794 DOI: 10.1021/acs.langmuir.5b00896] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Three cholesterol precursors-desmosterol, zymosterol, and lanosterol-were comprehensively characterized in monolayers formed at the air/water interface. The studies were based on registration of the surface pressure (π)-area (A) isotherms complemented with in situ analysis performed with application of modern physicochemical techniques: grazing incidence X-ray diffraction (GIXD) and Brewster angle microscopy (BAM). In this approach we were interested in the correlation between molecular structures of the studied sterols found in the cholesterol biosynthetic pathway and their membrane properties. Our results revealed that only desmosterol behaves in Langmuir monolayers comparably to cholesterol, the molecules of which arrange in the monolayers into a hexagonal lattice, while the two remaining sterols possess extremely different properties. We found that molecules of both zymosterol and lanosterol are organized on the water surface in the two-dimensional oblique unit cells despite the fact that they are oriented perpendicular to the monolayer plane. The comparison of chemical structures of the investigated sterols leads to the conclusion that the only structural motive that can be responsible for such unusual behavior is the double bond in the B sterol ring, which is located in desmosterol in a different position from in the other two sterols. This issue, which was neglected in the scientific literature, seems to have crucial importance for sterol activity in biomembranes. We showed that this structural modification in sterol molecules is directly responsible for their adaptation to proper functioning in biomembranes.
Collapse
Affiliation(s)
- Michał Flasiński
- †Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 3, 30-387, Kraków, Poland
| | - Paweł Wydro
- ‡Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060, Kraków, Poland
| | - Marcin Broniatowski
- †Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 3, 30-387, Kraków, Poland
| | - Katarzyna Hąc-Wydro
- †Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 3, 30-387, Kraków, Poland
| | - Philippe Fontaine
- §Synchrotron Soleil, L'Orme des Merisiers, Saint Aubin, BP 48, 91192 Gif-sur-Yvette Cedex, France
| |
Collapse
|
22
|
Slominski AT, Li W, Kim TK, Semak I, Wang J, Zjawiony JK, Tuckey RC. Novel activities of CYP11A1 and their potential physiological significance. J Steroid Biochem Mol Biol 2015; 151:25-37. [PMID: 25448732 PMCID: PMC4757911 DOI: 10.1016/j.jsbmb.2014.11.010] [Citation(s) in RCA: 241] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/31/2014] [Accepted: 11/10/2014] [Indexed: 01/08/2023]
Abstract
CYP11A1, found only in vertebrates, catalyzes the first step of steroidogenesis where cholesterol is converted to pregnenolone. The purified enzyme, also converts desmosterol and plant sterols including campesterol and β-sitosterol, to pregnenolone. Studies, initially with purified enzyme, reveal that 7-dehydrocholesterol (7DHC), ergosterol, lumisterol 3, and vitamins D3 and D2 also serve as substrates for CYP11A1, with 7DHC being better and vitamins D3 and D2 being poorer substrates than cholesterol. Adrenal glands, placenta, and epidermal keratinocytes can also carry out these conversions and 7-dehydropregnenolone has been detected in the epidermis, adrenal glands, and serum, and 20-hydroxyvitamin D3 was detected in human serum and the epidermis. Thus, this metabolism does appear to occur in vivo, although its quantitative importance and physiological role remain to be established. CYP11A1 action on 7DHC in vivo is further supported by detection of Δ(7)steroids in Smith-Lemli-Opitz syndrome patients. The activity of CYP11A1 is affected by the structure of the substrate with sterols having steroidal or Δ(7)-steroidal structures undergoing side chain cleavage following hydroxylations at C22 and C20. In contrast, metabolism of vitamin D involves sequential hydroxylations that start at C20 but do not lead to cleavage. Molecular modeling using the crystal structure of CYP11A1 predicts that other intermediates of cholesterol synthesis could also serve as substrates for CYP11A1. Finally, CYP11A1-derived secosteroidal hydroxy-derivatives and Δ(7)steroids are biologically active when administered in vitro in a manner dependent on the structure of the compound and the lineage of the target cells, suggesting physiological roles for these metabolites. This article is part of a special issue entitled 'SI: Steroid/Sterol signaling'.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Pathology and Laboratory Medicine, University of Tennessee HSC, Memphis, TN, USA; Division of Rheumatology of the Department of Medicine, University of Tennessee HSC, Memphis, TN, USA.
| | - Wei Li
- Department of Pharmaceutical Sciences, University of Tennessee HSC, Memphis, TN, USA
| | - Tae-Kang Kim
- Department of Pathology and Laboratory Medicine, University of Tennessee HSC, Memphis, TN, USA
| | - Igor Semak
- Department of Biochemistry, Belarusian State University, Minsk, Belarus
| | - Jin Wang
- Department of Pharmaceutical Sciences, University of Tennessee HSC, Memphis, TN, USA
| | - Jordan K Zjawiony
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677-1848, USA
| | - Robert C Tuckey
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA, Australia.
| |
Collapse
|
23
|
Cunningham D, DeBarber AE, Bir N, Binkley L, Merkens LS, Steiner RD, Herman GE. Analysis of hedgehog signaling in cerebellar granule cell precursors in a conditional Nsdhl allele demonstrates an essential role for cholesterol in postnatal CNS development. Hum Mol Genet 2015; 24:2808-25. [PMID: 25652406 DOI: 10.1093/hmg/ddv042] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/02/2015] [Indexed: 12/21/2022] Open
Abstract
NSDHL is a 3β-hydroxysterol dehydrogenase that is involved in the removal of two C-4 methyl groups in one of the later steps of cholesterol biosynthesis. Mutations in the gene encoding the enzyme are responsible for the X-linked, male lethal mouse mutations bare patches and striated, as well as most cases of human CHILD syndrome. Rare, hypomorphic NSDHL mutations are also associated with X-linked intellectual disability in males with CK syndrome. Since hemizygous male mice with Nsdhl mutations die by midgestation, we generated a conditional targeted Nsdhl mutation (Nsdhl(tm1.1Hrm)) to investigate the essential role of cholesterol in the early postnatal CNS. Ablation of Nsdhl in radial glia using GFAP-cre resulted in live-born, normal appearing affected male pups. However, the pups develop overt ataxia by postnatal day 8-10 and die shortly thereafter. Histological abnormalities include progressive loss of cortical and hippocampal neurons, as well as deficits in the proliferation and migration of cerebellar granule precursors and subsequent massive apoptosis of the cerebellar cortex. We replicated the granule cell precursor proliferation defect in vitro and demonstrate that it results from defective signaling by SHH. Furthermore, this defect is almost completely rescued by supplementation of the culture media with exogenous cholesterol, while methylsterol accumulation above the enzymatic block appears to be associated with increased cell death. These data support the absolute requirement for cholesterol synthesis in situ once the blood-brain-barrier forms and cholesterol transport to the fetus is abolished. They further emphasize the complex ramifications of cholesterogenic enzyme deficiency on cellular metabolism.
Collapse
Affiliation(s)
- David Cunningham
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | | | - Natalie Bir
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Laura Binkley
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | | | - Robert D Steiner
- Department of Pediatrics, Department of Molecular and Medical Genetics and Institute on Development and Disability, Doernbecher Children's Hospital, Oregon Health & Science University, Portland, OR, USA and Marshfield Clinic Research Foundation and the Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Marshfield and Madison, WI, USA
| | - Gail E Herman
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University, Columbus, OH, USA,
| |
Collapse
|
24
|
Xu W, Hsu FF, Baykal E, Huang J, Zhang K. Sterol biosynthesis is required for heat resistance but not extracellular survival in leishmania. PLoS Pathog 2014; 10:e1004427. [PMID: 25340392 PMCID: PMC4207814 DOI: 10.1371/journal.ppat.1004427] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 08/27/2014] [Indexed: 12/25/2022] Open
Abstract
Sterol biosynthesis is a crucial pathway in eukaryotes leading to the production of cholesterol in animals and various C24-alkyl sterols (ergostane-based sterols) in fungi, plants, and trypanosomatid protozoa. Sterols are important membrane components and precursors for the synthesis of powerful bioactive molecules, including steroid hormones in mammals. Their functions in pathogenic protozoa are not well characterized, which limits the development of sterol synthesis inhibitors as drugs. Here we investigated the role of sterol C14α-demethylase (C14DM) in Leishmania parasites. C14DM is a cytochrome P450 enzyme and the primary target of azole drugs. In Leishmania, genetic or chemical inactivation of C14DM led to a complete loss of ergostane-based sterols and accumulation of 14-methylated sterols. Despite the drastic change in lipid composition, C14DM-null mutants (c14dm(-)) were surprisingly viable and replicative in culture. They did exhibit remarkable defects including increased membrane fluidity, failure to maintain detergent resistant membrane fraction, and hypersensitivity to heat stress. These c14dm(-) mutants showed severely reduced virulence in mice but were highly resistant to itraconazole and amphotericin B, two drugs targeting sterol synthesis. Our findings suggest that the accumulation of toxic sterol intermediates in c14dm(-) causes strong membrane perturbation and significant vulnerability to stress. The new knowledge may help improve the efficacy of current drugs against pathogenic protozoa by exploiting the fitness loss associated with drug resistance.
Collapse
Affiliation(s)
- Wei Xu
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Fong-Fu Hsu
- Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Eda Baykal
- Department of Physics, Texas Tech University, Lubbock, Texas, United States of America
| | - Juyang Huang
- Department of Physics, Texas Tech University, Lubbock, Texas, United States of America
| | - Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
- * E-mail:
| |
Collapse
|
25
|
Arya N, Kharjul MD, Shishoo CJ, Thakare VN, Jain KS. Some molecular targets for antihyperlipidemic drug research. Eur J Med Chem 2014; 85:535-68. [DOI: 10.1016/j.ejmech.2014.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 08/01/2014] [Accepted: 08/05/2014] [Indexed: 12/17/2022]
|
26
|
Yeganeh B, Wiechec E, Ande SR, Sharma P, Moghadam AR, Post M, Freed DH, Hashemi M, Shojaei S, Zeki AA, Ghavami S. Targeting the mevalonate cascade as a new therapeutic approach in heart disease, cancer and pulmonary disease. Pharmacol Ther 2014; 143:87-110. [PMID: 24582968 DOI: 10.1016/j.pharmthera.2014.02.007] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 02/04/2014] [Indexed: 12/21/2022]
Abstract
The cholesterol biosynthesis pathway, also known as the mevalonate (MVA) pathway, is an essential cellular pathway that is involved in diverse cell functions. The enzyme 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase (HMGCR) is the rate-limiting step in cholesterol biosynthesis and catalyzes the conversion of HMG-CoA to MVA. Given its role in cholesterol and isoprenoid biosynthesis, the regulation of HMGCR has been intensely investigated. Because all cells require a steady supply of MVA, both the sterol (i.e. cholesterol) and non-sterol (i.e. isoprenoid) products of MVA metabolism exert coordinated feedback regulation on HMGCR through different mechanisms. The proper functioning of HMGCR as the proximal enzyme in the MVA pathway is essential under both normal physiologic conditions and in many diseases given its role in cell cycle pathways and cell proliferation, cholesterol biosynthesis and metabolism, cell cytoskeletal dynamics and stability, cell membrane structure and fluidity, mitochondrial function, proliferation, and cell fate. The blockbuster statin drugs ('statins') directly bind to and inhibit HMGCR, and their use for the past thirty years has revolutionized the treatment of hypercholesterolemia and cardiovascular diseases, in particular coronary heart disease. Initially thought to exert their effects through cholesterol reduction, recent evidence indicates that statins also have pleiotropic immunomodulatory properties independent of cholesterol lowering. In this review we will focus on the therapeutic applications and mechanisms involved in the MVA cascade including Rho GTPase and Rho kinase (ROCK) signaling, statin inhibition of HMGCR, geranylgeranyltransferase (GGTase) inhibition, and farnesyltransferase (FTase) inhibition in cardiovascular disease, pulmonary diseases (e.g. asthma and chronic obstructive pulmonary disease (COPD)), and cancer.
Collapse
Affiliation(s)
- Behzad Yeganeh
- Hospital for Sick Children Research Institute, Department of Physiology & Experimental Medicine, University of Toronto, Toronto, Canada
| | - Emilia Wiechec
- Dept. Clinical & Experimental Medicine, Division of Cell Biology & Integrative Regenerative Med. Center (IGEN), Linköping University, Sweden
| | - Sudharsana R Ande
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Pawan Sharma
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Faculty of Medicine, University of Calgary, 4C46 HRIC, 3280 Hospital Drive NW, Calgary, Alberta, Canada
| | - Adel Rezaei Moghadam
- Scientific Association of Veterinary Medicine, Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran; Young Researchers and Elite Club, Ardabil Branch, Islamic Azad University, Ardabil, Iran
| | - Martin Post
- Hospital for Sick Children Research Institute, Department of Physiology & Experimental Medicine, University of Toronto, Toronto, Canada
| | - Darren H Freed
- Department of Physiology, St. Boniface Research Centre, University of Manitoba, Winnipeg, Canada
| | - Mohammad Hashemi
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Shahla Shojaei
- Department of Biochemistry, Recombinant Protein Laboratory, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir A Zeki
- U.C. Davis, School of Medicine, U.C. Davis Medical Center, Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Center for Comparative Respiratory Biology & Medicine, Davis, CA, USA.
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, St. Boniface Research Centre, Manitoba Institute of Child Health, Biology of Breathing Theme, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
27
|
Fryer LGD, Jones B, Duncan EJ, Hutchison CE, Ozkan T, Williams PA, Alder O, Nieuwdorp M, Townley AK, Mensenkamp AR, Stephens DJ, Dallinga-Thie GM, Shoulders CC. The endoplasmic reticulum coat protein II transport machinery coordinates cellular lipid secretion and cholesterol biosynthesis. J Biol Chem 2013; 289:4244-61. [PMID: 24338480 PMCID: PMC3924288 DOI: 10.1074/jbc.m113.479980] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Triglycerides and cholesterol are essential for life in most organisms. Triglycerides serve as the principal energy storage depot and, where vascular systems exist, as a means of energy transport. Cholesterol is essential for the functional integrity of all cellular membrane systems. The endoplasmic reticulum is the site of secretory lipoprotein production and de novo cholesterol synthesis, yet little is known about how these activities are coordinated with each other or with the activity of the COPII machinery, which transports endoplasmic reticulum cargo to the Golgi. The Sar1B component of this machinery is mutated in chylomicron retention disorder, indicating that this Sar1 isoform secures delivery of dietary lipids into the circulation. However, it is not known why some patients with chylomicron retention disorder develop hepatic steatosis, despite impaired intestinal fat malabsorption, and why very severe hypocholesterolemia develops in this condition. Here, we show that Sar1B also promotes hepatic apolipoprotein (apo) B lipoprotein secretion and that this promoting activity is coordinated with the processes regulating apoB expression and the transfer of triglycerides/cholesterol moieties onto this large lipid transport protein. We also show that although Sar1A antagonizes the lipoprotein secretion-promoting activity of Sar1B, both isoforms modulate the expression of genes encoding cholesterol biosynthetic enzymes and the synthesis of cholesterol de novo. These results not only establish that Sar1B promotes the secretion of hepatic lipids but also adds regulation of cholesterol synthesis to Sar1B's repertoire of transport functions.
Collapse
Affiliation(s)
- Lee G D Fryer
- From the Endocrinology Centre, William Harvey Research Institute, Queen Mary University of London and Barts and The London School of Medicine and Dentistry, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Mialoundama AS, Jadid N, Brunel J, Di Pascoli T, Heintz D, Erhardt M, Mutterer J, Bergdoll M, Ayoub D, Van Dorsselaer A, Rahier A, Nkeng P, Geoffroy P, Miesch M, Camara B, Bouvier F. Arabidopsis ERG28 tethers the sterol C4-demethylation complex to prevent accumulation of a biosynthetic intermediate that interferes with polar auxin transport. THE PLANT CELL 2013; 25:4879-93. [PMID: 24326590 PMCID: PMC3903993 DOI: 10.1105/tpc.113.115576] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 10/10/2013] [Accepted: 11/20/2013] [Indexed: 05/22/2023]
Abstract
Sterols are vital for cellular functions and eukaryotic development because of their essential role as membrane constituents. Sterol biosynthetic intermediates (SBIs) represent a potential reservoir of signaling molecules in mammals and fungi, but little is known about their functions in plants. SBIs are derived from the sterol C4-demethylation enzyme complex that is tethered to the membrane by Ergosterol biosynthetic protein28 (ERG28). Here, using nonlethal loss-of-function strategies focused on Arabidopsis thaliana ERG28, we found that the previously undetected SBI 4-carboxy-4-methyl-24-methylenecycloartanol (CMMC) inhibits polar auxin transport (PAT), a key mechanism by which the phytohormone auxin regulates several aspects of plant growth, including development and responses to environmental factors. The induced accumulation of CMMC in Arabidopsis erg28 plants was associated with diagnostic hallmarks of altered PAT, including the differentiation of pin-like inflorescence, loss of apical dominance, leaf fusion, and reduced root growth. PAT inhibition by CMMC occurs in a brassinosteroid-independent manner. The data presented show that ERG28 is required for PAT in plants. Furthermore, it is accumulation of an atypical SBI that may act to negatively regulate PAT in plants. Hence, the sterol pathway offers further prospects for mining new target molecules that could regulate plant development.
Collapse
Affiliation(s)
- Alexis Samba Mialoundama
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique and Université de Strasbourg, 67084 Strasbourg cedex, France
| | - Nurul Jadid
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique and Université de Strasbourg, 67084 Strasbourg cedex, France
- Department of Biology Botanical and Plant Tissue Culture Laboratory, Sepuluh Nopember Institut of Technology, 60111 East-Java, Indonesia
| | - Julien Brunel
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique and Université de Strasbourg, 67084 Strasbourg cedex, France
| | - Thomas Di Pascoli
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique and Université de Strasbourg, 67084 Strasbourg cedex, France
| | - Dimitri Heintz
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique and Université de Strasbourg, 67084 Strasbourg cedex, France
| | - Mathieu Erhardt
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique and Université de Strasbourg, 67084 Strasbourg cedex, France
| | - Jérôme Mutterer
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique and Université de Strasbourg, 67084 Strasbourg cedex, France
| | - Marc Bergdoll
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique and Université de Strasbourg, 67084 Strasbourg cedex, France
| | - Daniel Ayoub
- Laboratoire de Spectrométrie de Masse Bio-Organique, Département des Sciences Analytiques, Institut Pluridisciplinaire Hubert Curien, 67087 Strasbourg cedex 2, France
| | - Alain Van Dorsselaer
- Laboratoire de Spectrométrie de Masse Bio-Organique, Département des Sciences Analytiques, Institut Pluridisciplinaire Hubert Curien, 67087 Strasbourg cedex 2, France
| | - Alain Rahier
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique and Université de Strasbourg, 67084 Strasbourg cedex, France
| | - Paul Nkeng
- Laboratoire Interuniversitaire des Sciences de l'Education et de la Communication, 67000 Strasbourg, France
| | - Philippe Geoffroy
- Laboratoire de Chimie Organique Synthétique, Université de Strasbourg-Institut de Chimie, 67008 Strasbourg cedex, France
| | - Michel Miesch
- Laboratoire de Chimie Organique Synthétique, Université de Strasbourg-Institut de Chimie, 67008 Strasbourg cedex, France
| | - Bilal Camara
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique and Université de Strasbourg, 67084 Strasbourg cedex, France
| | - Florence Bouvier
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique and Université de Strasbourg, 67084 Strasbourg cedex, France
- Address correspondence to
| |
Collapse
|
29
|
Wertz PW. Current understanding of skin biology pertinent to skin penetration: skin biochemistry. Skin Pharmacol Physiol 2013; 26:217-26. [PMID: 23921108 DOI: 10.1159/000351949] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 04/08/2013] [Indexed: 11/19/2022]
Abstract
The purpose of this review is to summarize some of the biochemical or chemical findings that have contributed most significantly to our current understanding of the permeability barrier of the skin. This literature survey covers the period from the 1970s up to the present. This seems appropriate since earlier progress was comprehensively covered in a 1978 review by Bob Scheuplein entitled 'Permeability of the skin: a review of major concepts' and in the earlier review by Scheuplein and Blank entitled 'Permeability of the skin'. Both of these review articles are still being cited, and the earlier one has been cited more than 800 times. Overlap with material covered in these earlier publications will be minimized. The overall significance of findings from some of the most recent years may not yet be determined. The emphasis will be placed on the determination of the composition and structures of the epidermal lipids, especially those of the stratum corneum, key enzymes in the biosynthesis of these lipids and some of the physical chemical properties of these lipids as revealed by X-ray diffraction, infrared spectroscopy and other physical methods.
Collapse
Affiliation(s)
- P W Wertz
- Dows Institute, University of Iowa, Iowa City,IA 52242, USA.
| |
Collapse
|
30
|
Cholesterol: its regulation and role in central nervous system disorders. CHOLESTEROL 2012; 2012:292598. [PMID: 23119149 PMCID: PMC3483652 DOI: 10.1155/2012/292598] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 09/03/2012] [Accepted: 09/10/2012] [Indexed: 02/08/2023]
Abstract
Cholesterol is a major constituent of the human brain, and the brain is the most cholesterol-rich organ. Numerous lipoprotein receptors and apolipoproteins are expressed in the brain. Cholesterol is tightly regulated between the major brain cells and is essential for normal brain development. The metabolism of brain cholesterol differs markedly from that of other tissues. Brain cholesterol is primarily derived by de novo synthesis and the blood brain barrier prevents the uptake of lipoprotein cholesterol from the circulation. Defects in cholesterol metabolism lead to structural and functional central nervous system diseases such as Smith-Lemli-Opitz syndrome, Niemann-Pick type C disease, and Alzheimer's disease. These diseases affect different metabolic pathways (cholesterol biosynthesis, lipid transport and lipoprotein assembly, apolipoproteins, lipoprotein receptors, and signaling molecules). We review the metabolic pathways of cholesterol in the CNS and its cell-specific and microdomain-specific interaction with other pathways such as the amyloid precursor protein and discuss potential treatment strategies as well as the effects of the widespread use of LDL cholesterol-lowering drugs on brain functions.
Collapse
|
31
|
Affiliation(s)
- W David Nes
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA.
| |
Collapse
|
32
|
Pfrieger FW, Ungerer N. Cholesterol metabolism in neurons and astrocytes. Prog Lipid Res 2011; 50:357-71. [PMID: 21741992 DOI: 10.1016/j.plipres.2011.06.002] [Citation(s) in RCA: 334] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 06/11/2011] [Accepted: 06/22/2011] [Indexed: 12/20/2022]
Abstract
Cells in the mammalian body must accurately maintain their content of cholesterol, which is an essential membrane component and precursor for vital signalling molecules. Outside the brain, cholesterol homeostasis is guaranteed by a lipoprotein shuttle between the liver, intestine and other organs via the blood circulation. Cells inside the brain are cut off from this circuit by the blood-brain barrier and must regulate their cholesterol content in a different manner. Here, we review how this is accomplished by neurons and astrocytes, two cell types of the central nervous system, whose cooperation is essential for normal brain development and function. The key observation is a remarkable cell-specific distribution of proteins that mediate different steps of cholesterol metabolism. This form of metabolic compartmentalization identifies astrocytes as net producers of cholesterol and neurons as consumers with unique means to prevent cholesterol overload. The idea that cholesterol turnover in neurons depends on close cooperation with astrocytes raises new questions that need to be addressed by new experimental approaches to monitor and manipulate cholesterol homeostasis in a cell-specific manner. We conclude that an understanding of cholesterol metabolism in the brain and its role in disease requires a close look at individual cell types.
Collapse
Affiliation(s)
- Frank W Pfrieger
- CNRS UPR 3212, University of Strasbourg, Institute of Cellular and Integrative Neurosciences (INCI), 67084 Strasbourg Cedex, France.
| | | |
Collapse
|
33
|
Saher G, Quintes S, Nave KA. Cholesterol: a novel regulatory role in myelin formation. Neuroscientist 2011; 17:79-93. [PMID: 21343408 DOI: 10.1177/1073858410373835] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Myelin consists of tightly compacted membranes that form an insulating sheath around axons. The function of myelin for rapid saltatory nerve conduction is dependent on its unique composition, highly enriched in glycosphingolipids and cholesterol. Cholesterol emerged as the only integral myelin component that is essential and rate limiting for the development of CNS and PNS myelin. Experiments with conditional mouse mutants that lack cholesterol biosynthesis in oligodendrocytes revealed that only minimal changes of the CNS myelin lipid composition are tolerated. In Schwann cells of the PNS, protein trafficking and myelin compaction depend on cholesterol. In this review, the authors summarize the role of cholesterol in myelin biogenesis and myelin disease.
Collapse
Affiliation(s)
- Gesine Saher
- Max Planck Institute of Experimental Medicine, Neurogenetics, Göttingen, Germany.
| | | | | |
Collapse
|
34
|
Hannich JT, Umebayashi K, Riezman H. Distribution and functions of sterols and sphingolipids. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a004762. [PMID: 21454248 DOI: 10.1101/cshperspect.a004762] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sterols and sphingolipids are considered mainly eukaryotic lipids even though both are present in some prokaryotes, with sphingolipids being more widespread than sterols. Both sterols and sphingolipids differ in their structural features in vertebrates, plants, and fungi. Interestingly, some invertebrates cannot synthesize sterols de novo and seem to have a reduced dependence on sterols. Sphingolipids and sterols are found in the plasma membrane, but we do not have a clear picture of their precise intracellular localization. Advances in lipidomics and subcellular fractionation should help to improve this situation. Genetic approaches have provided insights into the diversity of sterol and sphingolipid functions in eukaryotes providing evidence that these two lipid classes function together. Intermediates in sphingolipid biosynthesis and degradation are involved in signaling pathways, whereas sterol structures are converted to hormones. Both lipids have been implicated in regulating membrane trafficking.
Collapse
Affiliation(s)
- J Thomas Hannich
- Department of Biochemistry, University of Geneva, Geneva 4, Switzerland
| | | | | |
Collapse
|
35
|
Fakheri RJ, Javitt NB. Autoregulation of cholesterol synthesis: physiologic and pathophysiologic consequences. Steroids 2011; 76:211-5. [PMID: 20951718 DOI: 10.1016/j.steroids.2010.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 10/06/2010] [Accepted: 10/07/2010] [Indexed: 10/18/2022]
Abstract
Autoregulation of cholesterol synthesis focuses on the 19 metabolic steps from lanosterol to cholesterol. Although synchronization of their rates of synthesis in all tissues was the paradigm, a known exception occurs in the ovary where a local increase in a sterol intermediate, FF-MAS (follicular fluid meiosis activating sterol), activates meiosis during oocyte maturation. Mutations in the genes that govern synchronization cause an increase in sterol intermediates that follow an alternate, oxysterol, pathway of metabolism. Experimental models in animals imply that oxysterol metabolites are determinants of the dysmorphism that occurs during fetal development in these genetic diseases. These few examples may portend a much broader role for sterol intermediates and their novel oxysterol metabolites in physiologic and pathophysiologic processes.
Collapse
Affiliation(s)
- Robert J Fakheri
- Department of Medicine, NYU School of Medicine, New York, NY 10016, United States
| | | |
Collapse
|
36
|
Jo Y, Debose-Boyd RA. Control of cholesterol synthesis through regulated ER-associated degradation of HMG CoA reductase. Crit Rev Biochem Mol Biol 2010; 45:185-98. [PMID: 20482385 DOI: 10.3109/10409238.2010.485605] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Multiple mechanisms for feedback control of cholesterol synthesis converge on the rate-limiting enzyme in the pathway, 3-hydroxy-3-methylglutaryl coenzyme A reductase. This complex feedback regulatory system is mediated by sterol and nonsterol metabolites of mevalonate, the immediate product of reductase activity. One mechanism for feedback control of reductase involves rapid degradation of the enzyme from membranes of the endoplasmic reticulum (ER). This degradation results from the accumulation of sterols in ER membranes, which triggers binding of reductase to ER membrane proteins called Insig-1 and Insig-2. Insig binding leads to the recruitment of a membrane-associated ubiquitin ligase called gp78 that initiates ubiquitination of reductase. Ubiquitinated reductase then becomes extracted from ER membranes and is delivered to cytosolic 26S proteasomes through an unknown mechanism that is mediated by the gp78-associated ATPase Valosin-containing protein/p97 and appears to be augmented by nonsterol isoprenoids. Here, we will highlight several advances that have led to the current view of mechanisms for sterol-accelerated, ER-associated degradation of reductase. In addition, we will discuss potential mechanisms for other aspects of the pathway such as selection of reductase for gp78-mediated ubiquitination, extraction of the ubiquitinated enzyme from ER membranes, and the contribution of Insig-mediated degradation to overall regulation of reductase in whole animals.
Collapse
Affiliation(s)
- Youngah Jo
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | |
Collapse
|
37
|
Fon Tacer K, Pompon D, Rozman D. Adaptation of cholesterol synthesis to fasting and TNF-alpha: profiling cholesterol intermediates in the liver, brain, and testis. J Steroid Biochem Mol Biol 2010; 121:619-25. [PMID: 20206258 DOI: 10.1016/j.jsbmb.2010.02.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 02/16/2010] [Accepted: 02/24/2010] [Indexed: 12/18/2022]
Abstract
Key players in pathogenesis of metabolic disorders are disturbed cholesterol balance and inflammation. In addition to cholesterol also sterol intermediates are biologically active, however, surprisingly little is known about their synthesis and roles. The aim of our study was to assess the interplay between the inflammatory cytokine TNF-alpha and cholesterol synthesis by measuring cholesterol and its intermediates in the liver, brain, and testis. Liquid chromatography-mass spectrometry has been applied to profile sterols of normally fed mice, during fasting and after TNF-alpha administration. In mice on normal chow diet, sterols other than cholesterol represent 0.5% in the liver, 1% in brain and 5% in testis. In the liver only 7-dehydrocholesterol, lanosterol and desmosterol were detected. Major sterol intermediates of the brain are desmosterol, testis meiosis activating sterol (T-MAS), and 7-dehydrocholesterol while in testis T-MAS predominates (4%), followed by desmosterol, lanosterol, 7-dehydrocholesterol and others. In 20h fasting there is no significant change in cholesterol of the three tissues, and no significant change in intermediates of the liver. In the brain sterol intermediates are lowered (significant for zymosterol) while in the testis the trend is opposite. TNF-alpha provokes a significant raise of some intermediates whereas the level of cholesterol is again unchanged. The proportion of sterols in the liver rises from 0.5% in controls to 1.2% in TNF-alpha-treated mice, which is in accordance with published expression profiling data. In conclusion, our data provide novel insights into the interaction between the inflammatory cytokine TNF-alpha and the tissue-specific cholesterol biosynthesis of the liver, brain and testis.
Collapse
Affiliation(s)
- Klementina Fon Tacer
- Center for Functional Genomic and Biochips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Zaloska 4, SI-1000 Ljubljana, Slovenia
| | | | | |
Collapse
|
38
|
Hannich JT, Entchev EV, Mende F, Boytchev H, Martin R, Zagoriy V, Theumer G, Riezman I, Riezman H, Knölker HJ, Kurzchalia TV. Methylation of the sterol nucleus by STRM-1 regulates dauer larva formation in Caenorhabditis elegans. Dev Cell 2009; 16:833-43. [PMID: 19531354 DOI: 10.1016/j.devcel.2009.04.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2008] [Revised: 02/24/2009] [Accepted: 04/24/2009] [Indexed: 10/20/2022]
Abstract
In response to pheromone(s), Caenorhabditis elegans interrupts its reproductive life cycle and enters diapause as a stress-resistant dauer larva. This decision is governed by a complex system of neuronal and hormonal regulation. All the signals converge onto the nuclear hormone receptor DAF-12. A sterol-derived hormone, dafachronic acid (DA), supports reproductive development by binding to DAF-12 and inhibiting its dauer-promoting activity. Here, we identify a methyltransferase, STRM-1, that modulates DA levels and thus dauer formation. By modifying the substrates that are used for the synthesis of DA, STRM-1 can reduce the amount of hormone produced. Loss of STRM-1 function leads to elevated levels of DA and inefficient dauer formation. Sterol methylation was not previously recognized as a mechanism for regulating hormone activity. Moreover, the C-4 sterol nucleus methylation catalyzed by STRM-1 is unique to nematodes and thus could be a target for therapeutic strategies against parasitic nematode infections.
Collapse
Affiliation(s)
- J Thomas Hannich
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
DeBose-Boyd RA. Feedback regulation of cholesterol synthesis: sterol-accelerated ubiquitination and degradation of HMG CoA reductase. Cell Res 2008; 18:609-21. [PMID: 18504457 DOI: 10.1038/cr.2008.61] [Citation(s) in RCA: 270] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase produces mevalonate, an important intermediate in the synthesis of cholesterol and essential nonsterol isoprenoids. The reductase is subject to an exorbitant amount of feedback control through multiple mechanisms that are mediated by sterol and nonsterol end-products of mevalonate metabolism. Here, I will discuss recent advances that shed light on one mechanism for control of reductase, which involves rapid degradation of the enzyme. Accumulation of certain sterols triggers binding of reductase to endoplasmic reticulum (ER) membrane proteins called Insig-1 and Insig-2. Reductase-Insig binding results in recruitment of a membrane-associated ubiquitin ligase called gp78, which initiates ubiquitination of reductase. This ubiquitination is an obligatory reaction for recognition and degradation of reductase from ER membranes by cytosolic 26S proteasomes. Thus, sterol-accelerated degradation of reductase represents an example of how a general cellular process (ER-associated degradation) is used to control an important metabolic pathway (cholesterol synthesis).
Collapse
Affiliation(s)
- Russell A DeBose-Boyd
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA.
| |
Collapse
|
40
|
Cellular sterol trafficking and metabolism: spotlight on structure. Curr Opin Cell Biol 2008; 20:371-7. [DOI: 10.1016/j.ceb.2008.03.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 03/30/2008] [Accepted: 03/31/2008] [Indexed: 11/20/2022]
|
41
|
Jiménez-Jiménez C, Carrero-Lérida J, Sealey-Cardona M, Ruiz Pérez LM, Urbina JA, González Pacanowska D. Delta24(25)-sterol methenyltransferase: intracellular localization and azasterol sensitivity in Leishmania major promastigotes overexpressing the enzyme. Mol Biochem Parasitol 2008; 160:52-9. [PMID: 18485498 DOI: 10.1016/j.molbiopara.2008.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 03/19/2008] [Accepted: 03/31/2008] [Indexed: 11/25/2022]
Abstract
Trypanosomatids contain predominantly ergostane-based sterols, which differ from cholesterol, the main sterol in mammalian cells, in the presence of a methyl group in the 24 position. The methylation is initiated by S-adenosyl-L-methionine:Delta(24 (25))-sterol methenyltransferase, an enzyme present in protozoa, but absent in mammals. The importance of this enzyme is underscored by its potential as a drug target in the treatment of the leishmaniases. Here, we report studies concerning the intracellular distribution of sterol methenyltransferase in Leishmania major promastigotes and overexpressing cells using a specific antibody raised against highly purified recombinant protein. It was found by immunofluorescence and electron microscopy studies that in L. major wild-type cells sterol methenyltransferase was primarily associated to the endoplasmic reticulum. In addition to this location, the protein was incorporated into translucent vesicles presumably of the endocytic pathway. We also found in this study that cells overproducing the enzyme do not have increased resistance to the sterol methenyltransferase inhibitor 22, 26 azasterol.
Collapse
Affiliation(s)
- Carmen Jiménez-Jiménez
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, s/n 18100 Armilla, Granada, Spain
| | | | | | | | | | | |
Collapse
|
42
|
Jansen M, Pietiaïnen VM, Pölönen H, Rasilainen L, Koivusalo M, Ruotsalainen U, Jokitalo E, Ikonen E. Cholesterol substitution increases the structural heterogeneity of caveolae. J Biol Chem 2008; 283:14610-8. [PMID: 18353778 DOI: 10.1074/jbc.m710355200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Caveolin-1 binds cholesterol and caveola formation involves caveolin-1 oligomerization and cholesterol association. The role of cholesterol in caveolae has so far been addressed by methods that compromise membrane integrity and abolish caveolar invaginations. To study the importance of sterol specificity for the structure and function of caveolae, we replaced cholesterol in mammalian cells with its immediate precursor desmosterol by inhibiting 24-dehydrocholesterol reductase. Desmosterol could substitute for cholesterol in maintaining cell growth, membrane integrity, and preserving caveolar invaginations. However, in desmosterol cells the affinity of caveolin-1 for sterol and the stability of caveolin oligomers were decreased. Moreover, caveolar invaginations became more heterogeneous in dimensions and in the number of caveolin-1 molecules per caveola. Despite the altered caveolar structure, caveolar ligand uptake was only moderately inhibited. We found that in desmosterol cells, Src kinase phosphorylated Cav1 at Tyr(14) more avidly than in cholesterol cells. Taken the role of Cav1 Tyr(14) phosphorylation in caveolar endocytosis, this may help to preserve caveolar uptake in desmosterol cells. We conclude that a sterol C24 double bond interferes with caveolin-sterol interaction and perturbs caveolar morphology but facilitates Cav1 Src phosphorylation and allows caveolar endocytosis. More generally, substitution of cholesterol by a structurally closely related sterol provides a method to selectively modify membrane protein-sterol affinity, structure and function of cholesterol-dependent domains without compromising membrane integrity.
Collapse
Affiliation(s)
- Maurice Jansen
- Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Eapen BR. Photosensitivity in Smith-Lemli-Opitz syndrome: a flux balance analysis of altered metabolism. Bioinformation 2007; 2:78-82. [PMID: 18188427 PMCID: PMC2174425 DOI: 10.6026/97320630002078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 08/18/2007] [Accepted: 10/24/2007] [Indexed: 11/23/2022] Open
Abstract
Ultraviolet A photosensitivity is a debilitating symptom associated with the metabolic disorder Smith-Lemli-Opitz syndrome (SLOS). SLOS is a manifestation
of the deficiency of 7-dehydrocholesterol reductase, an enzyme involved in the cholesterol biosynthesis. As a result several abnormal intermediary compounds
are formed among which Cholesta 5, 7, 9(11)-trien-3beta-ol is the most likely cause of photosensitivity. The effect of various drugs acting on cholesterol
biosynthetic pathway on SLOS is not clear as clinical trials are not available for this rare disorder. A Flux Balance Analysis (FBA) has been carried out using
the software CellNetAnalyzer or FluxAnalyzer to gain insight into the probable effects of various drugs acting on cholesterol biosynthetic pathway on photosensitivity
in SLOS. The model consisted of 44 metabolites and 40 reactions. The formation flux of Cholesta 5, 7, 9(11)-trien-3beta-ol increased in SLOS and remained unchanged on
simulation of the effect of miconazole and SR31747. However zaragozic acid can potentially reduce the flux through the entire pathway. FBA predicts zaragozic acid
along with cholesterol supplementation as an effective treatment for photosensitivity in SLOS.
Collapse
|
44
|
Nguyen AD, McDonald JG, Bruick RK, DeBose-Boyd RA. Hypoxia Stimulates Degradation of 3-Hydroxy-3-methylglutaryl-coenzyme A Reductase through Accumulation of Lanosterol and Hypoxia-Inducible Factor-mediated Induction of Insigs. J Biol Chem 2007; 282:27436-27446. [PMID: 17635920 DOI: 10.1074/jbc.m704976200] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Endoplasmic reticulum-associated degradation of the enzyme 3-hydroxy-3-methylglutaryl-CoA reductase represents one mechanism by which cholesterol synthesis is controlled in mammalian cells. The key reaction in this degradation is binding of reductase to Insig proteins in the endoplasmic reticulum, which is stimulated by the cholesterol precursor lanosterol. Conversion of lanosterol to cholesterol requires removal of three methyl groups, which consumes nine molecules of dioxygen. Here, we report that oxygen deprivation (hypoxia) slows demethylation of lanosterol and its metabolite 24,25-dihydrolanosterol, causing both sterols to accumulate in cells. In addition, hypoxia increases the amount of Insig-1 and Insig-2 in a response mediated by hypoxia-inducible factor (HIF)-1alpha. Accumulation of lanosterol together with increased Insigs accelerates degradation of reductase, which ultimately slows a rate-determining step in cholesterol synthesis. These results define a novel oxygen-sensing mechanism mediated by the combined actions of methylated intermediates in cholesterol synthesis and the hypoxia-activated transcription factor HIF-1alpha.
Collapse
Affiliation(s)
- Andrew D Nguyen
- Departments of Molecular Genetics and University of Texas Southwestern Medical Center, Dallas, Texas 75390-9046
| | - Jeffrey G McDonald
- Departments of Molecular Genetics and University of Texas Southwestern Medical Center, Dallas, Texas 75390-9046
| | - Richard K Bruick
- Departments of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9046
| | - Russell A DeBose-Boyd
- Departments of Molecular Genetics and University of Texas Southwestern Medical Center, Dallas, Texas 75390-9046.
| |
Collapse
|
45
|
Javitt NB. Oxysterols: functional significance in fetal development and the maintenance of normal retinal function. Curr Opin Lipidol 2007; 18:283-8. [PMID: 17495602 DOI: 10.1097/mol.0b013e328133851e] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Recent findings extend the biologic activities of oxysterols as ligands for nuclear receptors to a role in morphogenesis during fetal development and to a role in the metabolism of photooxidation products of cholesterol in the retina. RECENT FINDINGS A 1000-fold increase of the 27-hydroxy metabolite of 7-dehydrocholesterol in the plasma of children with Smith-Lemli-Opitz syndrome imply that intermediates in cholesterol synthesis follow alternate pathways of metabolism that generate novel oxysterols. A mouse model also finds an increase in sterol intermediates as the proximate cause of dysmorphisms. A role for oxysterols in the effects of Sonic hedgehog protein focuses on their role in normal fetal development. Both CYP27A1 and CYP46A1 are expressed in primate retina indicating that local metabolism of 7-ketocholesterol to nontoxic derivatives is important for preventing retinal degeneration. SUMMARY Recent data expand the functional roles of oxysterols to fetal development and to the detoxification of oxidation products of cholesterol. This review shifts the focus of attention from studies of their ligand-binding activity to studies of animal models that indicate a number of important biologic effects during fetal development and during the aging process.
Collapse
Affiliation(s)
- Norman B Javitt
- New York University School of Medicine, New York, New York, USA.
| |
Collapse
|
46
|
Semeralul MO, Boutros PC, Likhodi O, Okey AB, Van Tol HHM, Wong AHC. Microarray analysis of the developing cortex. ACTA ACUST UNITED AC 2007; 66:1646-58. [PMID: 17013924 DOI: 10.1002/neu.20302] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abnormal development of the prefrontal cortex (PFC) is associated with a number of neuropsychiatric disorders that have an onset in childhood or adolescence. Although the basic laminar structure of the PFC is established in utero, extensive remodeling continues into adolescence. To map the overall pattern of changes in cortical gene transcripts during postnatal development, we made serial measurements of mRNA levels in mouse PFC using oligonucleotide microarrays. We observed changes in mRNA transcripts consistent with known postnatal morphological and biochemical events. Overall, most transcripts that changed significantly showed a progressive decrease in abundance after birth, with the majority of change between postnatal weeks 2 and 4. Genes with cell proliferative, cytoskeletal, extracellular matrix, plasma membrane lipid/transport, protein folding, and regulatory functions had decreases in mRNA levels. Quantitative PCR verified the microarray results for six selected genes: DNA methyltransferase 3A (Dnmt3a), procollagen, type III, alpha 1 (Col3a1), solute carrier family 16 (monocarboxylic acid transporters), member 1 (Slc16a1), MARCKS-like 1 (Marcksl1), nidogen 1 (Nid1) and 3-hydroxybutyrate dehydrogenase (heart, mitochondrial) (Bdh).
Collapse
Affiliation(s)
- Mawahib O Semeralul
- Department of Pharmacology, Faculty of Medicine, University of Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
Eight distinct inherited disorders have been linked to different enzyme defects in the isoprenoid/cholesterol biosynthetic pathway following the finding of abnormally increased levels of intermediate metabolites in patients and confirmed by the demonstration of disease-causing mutations in genes encoding the implicated enzymes. Patients afflicted with these disorders are characterized by multiple morphogenic and congenital anomalies including internal organ, skeletal and/or skin abnormalities underlining an important role for cholesterol in human embryogenesis and development. The etiology of the underlying pathophysiology may involve multiple affected processes due to lowered cholesterol and/or the elevated, teratogenic levels of the intermediate sterol precursors.
Collapse
Affiliation(s)
- Hans R Waterham
- Laboratory Genetic Metabolic Diseases, F0-224, Department of Pediatrics/Emma Children's Hospital, Academic Medical Center, University of Amsterdam, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands.
| |
Collapse
|
48
|
Seth G, McIvor RS, Hu WS. 17β-Hydroxysteroid dehydrogenase type 7 (Hsd17b7) reverts cholesterol auxotrophy in NS0 cells. J Biotechnol 2006; 121:241-52. [PMID: 16126295 DOI: 10.1016/j.jbiotec.2005.07.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Revised: 06/11/2005] [Accepted: 07/04/2005] [Indexed: 11/20/2022]
Abstract
NS0 is a host cell line widely used for the production of recombinant therapeutic proteins. In this work, we investigated the cholesterol-dependent phenotype of NS0 cells. Growth response to different precursors and comparative transcript analyses pointed to deficiency of 17beta-hydroxysteroid dehydrogenase type 7 (Hsd17b7) in NS0 cells. Hsd17b7 was previously shown to encode for an enzyme involved in estrogenic steroid biosynthesis. Its recent cloning into a yeast mutant deficient in ERG27 led to its functional characterization as the 3-ketoreductase of the cholesterol biosynthesis pathway. To ascertain that its cholesterol biosynthesis is blocked at the reduction reaction catalyzed by Hsd17b7, we genetically engineered NS0 cells to over express Hsd17b7. The stable transfectants of Hsd17b7 were able to grow independent of cholesterol. The results affirm the role of Hsd17b7 in the cholesterol biosynthesis pathway in mammals. Further, the findings allow for rational engineering of this industrially important cell line to alleviate their cholesterol dependence.
Collapse
Affiliation(s)
- Gargi Seth
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN 55455-0132, USA
| | | | | |
Collapse
|
49
|
Mo C, Bard M. A systematic study of yeast sterol biosynthetic protein-protein interactions using the split-ubiquitin system. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1737:152-60. [PMID: 16300994 DOI: 10.1016/j.bbalip.2005.11.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Revised: 11/01/2005] [Accepted: 11/02/2005] [Indexed: 10/25/2022]
Abstract
Sterol biosynthesis occurs in the ER and most sterol biosynthetic enzymes have transmembrane domains. However, due to difficulties in characterizing membrane protein-protein interactions, the nature of the sterol biosynthetic complex as well as in vivo interactions between various enzymes have not been described. We employed a split-ubiquitin membrane protein yeast two-hybrid system to characterize interactions between sterol biosynthetic proteins. Fourteen bait constructs were co-transformed into a reporter yeast strain with 14 prey constructs representing all sterol enzymatic reactions beginning with the synthesis of squalene. Our results not only confirmed several previous interactions, but also allowed us to identify novel interactions. Based on these results, ergosterol biosynthetic enzymes display specific protein-protein interactions forming a functional complex we designate, the ergosome. In this complex, Erg11p, Erg25p, Erg27p, and Erg28p appear to form a core center that can interact with other enzymes in the pathway. Also Erg24p and Erg2p, two enzymes that are sensitive to morpholine antifungals, appear to interact with one another; however, the profile of protein interaction partners appears to be unique. Erg2p and Erg3p, two enzymes catalyzing sequential reactions also appear to have different interaction partners. Our results provide a working model as to how sterol biosynthetic enzymes are topologically organized not only in yeast but in plant and animal systems that share many of these biosynthetic reactions.
Collapse
Affiliation(s)
- Caiqing Mo
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 W. Michigan St. Indianapolis, IN 46202, USA
| | | |
Collapse
|
50
|
Giambonini-Brugnoli G, Buchstaller J, Sommer L, Suter U, Mantei N. Distinct disease mechanisms in peripheral neuropathies due to altered peripheral myelin protein 22 gene dosage or a Pmp22 point mutation. Neurobiol Dis 2005; 18:656-68. [PMID: 15755691 DOI: 10.1016/j.nbd.2004.10.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Revised: 10/27/2004] [Accepted: 10/28/2004] [Indexed: 01/25/2023] Open
Abstract
Point mutations affecting PMP22 can cause hereditary demyelinating and dysmyelinating peripheral neuropathies. In addition, duplication and deletion of PMP22 are associated with Charcot-Marie-Tooth disease Type 1A (CMT1A) and Hereditary Neuropathy with Liability to Pressure Palsy (HNPP), respectively. This study was designed to elucidate disease processes caused by misexpression of Pmp22 and, at the same time, to gain further information on the controversial molecular function of PMP22. To this end, we took advantage of the unique resource of a set of various Pmp22 mutant mice to carry out comparative expression profiling of mutant and wild-type sciatic nerves. Tissues derived from Pmp22-/- ("knockout"), Pmp22tg (increased Pmp22 copy number), and Trembler (Tr; point mutation in Pmp22) mutant mice were analyzed at two developmental stages: (i) at postnatal day (P)4, when normal myelination has just started and primary causative defects of the mutations are expected to be apparent, and (ii) at P60, with the goal of obtaining information on secondary disease effects. Interestingly, the three Pmp22 mutants exhibited distinct profiles of gene expression, suggesting different disease mechanisms. Increased expression of genes involved in cell cycle regulation and DNA replication is characteristic and specific for the early stage in Pmp22-/- mice, supporting a primary function of PMP22 in the regulation of Schwann cell proliferation. In the Tr mutant, a distinguishing feature is the high expression of stress response genes. Both Tr and Pmp22tg mice show strongly reduced expression of genes important for cholesterol synthesis at P4, a characteristic that is common to all three mutants at P60. Finally, we have identified a number of candidate genes that may play important roles in the disease process or in myelination per se.
Collapse
Affiliation(s)
- Guya Giambonini-Brugnoli
- Institute for Cell Biology, Department of Biology, ETH-Hönggerberg, Swiss Federal Institute of Technology, Schafmattstrasse 18, CH-8093 Zürich, Switzerland
| | | | | | | | | |
Collapse
|