1
|
Kelso C, Maccarone AT, de Kroon AIPM, Mitchell TW, Renne MF. Temperature adaptation of yeast phospholipid molecular species at the acyl chain positional level. FEBS Lett 2024. [PMID: 39673166 DOI: 10.1002/1873-3468.15060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/02/2024] [Accepted: 10/22/2024] [Indexed: 12/16/2024]
Abstract
Yeast is a poikilothermic organism and adapts its lipid composition to the environmental temperature to maintain membrane physical properties. Studies addressing temperature-dependent adaptation of the lipidome have described changes in the phospholipid composition at the level of sum composition (e.g. PC 32:1) and molecular composition (e.g. PC 16:0_16:1). However, there is little information at the level of positional isomers (e.g. PC 16:0/16:1 versus PC 16:1/16:0). Here, we used collision- and ozone-induced dissociation (CID/OzID) mass spectrometry to investigate homeoviscous adaptation of PC, PE and PS to determine the phospholipid acyl chains at the sn-1 and sn-2 position. Our data establish the sn-molecular species composition of PC, PE and PS in the lipidome of yeast cultured at different temperatures.
Collapse
Affiliation(s)
- Celine Kelso
- School of Chemistry and Molecular Bioscience, University of Wollongong, Australia
- Molecular Horizons Institute, University of Wollongong, Australia
| | - Alan T Maccarone
- School of Chemistry and Molecular Bioscience, University of Wollongong, Australia
- Molecular Horizons Institute, University of Wollongong, Australia
| | - Anton I P M de Kroon
- Membrane Biochemistry & Biophysics, Department of Chemistry, Utrecht University, The Netherlands
| | - Todd W Mitchell
- Molecular Horizons Institute, University of Wollongong, Australia
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Australia
| | - Mike F Renne
- Membrane Biochemistry & Biophysics, Department of Chemistry, Utrecht University, The Netherlands
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Homburg, Germany
- Preclinical Center for Molecular Signalling (PZMS), Medical Faculty, Saarland University, Homburg, Germany
| |
Collapse
|
2
|
Wang J, Chen G. Engineering Saccharomyces cerevisiae for the Production of Punicic Acid-Rich Yeast Biomass. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23917-23927. [PMID: 39431914 DOI: 10.1021/acs.jafc.4c08252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Punicic acid (PuA), an unusual conjugated linolenic acid found in pomegranate, offers diverse health benefits and has potential applications in the food industry. Due to the limited availability of PuA from natural plant sources, there is growing interest in producing it through microbial fermentation. In this study, the yeast Saccharomyces cerevisiae, which is classified as "generally recognized as safe", was engineered to produce PuA using a results-driven approach. Genes potentially involved in PuA synthesis were integrated directly into the yeast genome, targeting Ty retrotransposon sites. Screening of the yeast transformants, followed by optimization of culture conditions, resulted in the production of 26.7% PuA within the yeast's total fatty acids. Further analysis revealed that the strain's triacylglycerol fraction contained over 22% PuA. By incorporating this health-promoting lipid into the nutritional profile of S. cerevisiae, the engineered strain could serve as a sustainable source of yeast biomass with enhanced nutritional value.
Collapse
Affiliation(s)
- Juli Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| |
Collapse
|
3
|
Nagao K, Suito T, Murakami A, Umeda M. Lipid-Mediated Mechanisms of Thermal Adaptation and Thermoregulatory Behavior in Animals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1461:79-95. [PMID: 39289275 DOI: 10.1007/978-981-97-4584-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Temperature affects a variety of cellular processes because the molecular motion of cellular constituents and the rate of biochemical reactions are sensitive to temperature changes. Thus, the adaptation to temperature is necessary to maintain cellular functions during temperature fluctuation, particularly in poikilothermic organisms. For a wide range of organisms, cellular lipid molecules play a pivotal role during thermal adaptation. Temperature changes affect the physicochemical properties of lipid molecules, resulting in the alteration of cell membrane-related functions and energy metabolism. Since the chemical structures of lipid molecules determine their physicochemical properties and cellular functions, cellular lipids, particularly fatty acid-containing lipid molecules, are remodeled as a thermal adaptation response to compensate for the effects of temperature change. In this chapter, we first introduce the structure and biosynthetic pathway of fatty acid-containing lipid molecules, such as phospholipid and triacylglycerol, followed by a description of the cellular lipid-mediated mechanisms of thermal adaptation and thermoregulatory behavior in animals.
Collapse
Affiliation(s)
- Kohjiro Nagao
- Laboratory of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan.
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan.
| | - Takuto Suito
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Akira Murakami
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Masato Umeda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
- HOLO BIO Co., Ltd., Kyoto, Japan
| |
Collapse
|
4
|
Bartolo-Aguilar Y, Chávez-Cabrera C, Flores-Cotera LB, Badillo-Corona JA, Oliver-Salvador C, Marsch R. The potential of cold-shock promoters for the expression of recombinant proteins in microbes and mammalian cells. J Genet Eng Biotechnol 2022; 20:173. [PMID: 36580173 PMCID: PMC9800685 DOI: 10.1186/s43141-022-00455-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/15/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Low-temperature expression of recombinant proteins may be advantageous to support their proper folding and preserve bioactivity. The generation of expression vectors regulated under cold conditions can improve the expression of some target proteins that are difficult to express in different expression systems. The cspA encodes the major cold-shock protein from Escherichia coli (CspA). The promoter of cspA has been widely used to develop cold shock-inducible expression platforms in E. coli. Moreover, it is often necessary to employ expression systems other than bacteria, particularly when recombinant proteins require complex post-translational modifications. Currently, there are no commercial platforms available for expressing target genes by cold shock in eukaryotic cells. Consequently, genetic elements that respond to cold shock offer the possibility of developing novel cold-inducible expression platforms, particularly suitable for yeasts, and mammalian cells. CONCLUSIONS This review covers the importance of the cellular response to low temperatures and the prospective use of cold-sensitive promoters to direct the expression of recombinant proteins. This concept may contribute to renewing interest in applying white technologies to produce recombinant proteins that are difficult to express.
Collapse
Affiliation(s)
- Yaneth Bartolo-Aguilar
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Mexico City, Mexico
- Instituto Politécnico Nacional-Unidad Profesional Interdisciplinaria de Biotecnología, Av. Acueducto s/n, Colonia Barrio La Laguna Ticomán, 07340, Mexico City, Mexico
| | - Cipriano Chávez-Cabrera
- Colegio de Estudios Científicos y Tecnológicos del Estado de Michoacán, CECyTE Michoacán, Héroes de la Revolución S/N, Col. Centro, 61880, Churumuco de Morelos, Michoacán, Mexico.
| | - Luis Bernardo Flores-Cotera
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Mexico City, Mexico
| | - Jesús Agustín Badillo-Corona
- Instituto Politécnico Nacional-Unidad Profesional Interdisciplinaria de Biotecnología, Av. Acueducto s/n, Colonia Barrio La Laguna Ticomán, 07340, Mexico City, Mexico
| | - Carmen Oliver-Salvador
- Instituto Politécnico Nacional-Unidad Profesional Interdisciplinaria de Biotecnología, Av. Acueducto s/n, Colonia Barrio La Laguna Ticomán, 07340, Mexico City, Mexico
| | - Rodolfo Marsch
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Mexico City, Mexico
| |
Collapse
|
5
|
Murakami A, Nagao K, Sakaguchi R, Kida K, Hara Y, Mori Y, Okabe K, Harada Y, Umeda M. Cell-autonomous control of intracellular temperature by unsaturation of phospholipid acyl chains. Cell Rep 2022; 38:110487. [PMID: 35294880 DOI: 10.1016/j.celrep.2022.110487] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 12/03/2021] [Accepted: 02/14/2022] [Indexed: 11/25/2022] Open
Abstract
Intracellular temperature affects a wide range of cellular functions in living organisms. However, it remains unclear whether temperature in individual animal cells is controlled autonomously as a response to fluctuations in environmental temperature. Using two distinct intracellular thermometers, we find that the intracellular temperature of steady-state Drosophila S2 cells is maintained in a manner dependent on Δ9-fatty acid desaturase DESAT1, which introduces a double bond at the Δ9 position of the acyl moiety of acyl-CoA. The DESAT1-mediated increase of intracellular temperature is caused by the enhancement of F1Fo-ATPase-dependent mitochondrial respiration, which is coupled with thermogenesis. We also reveal that F1Fo-ATPase-dependent mitochondrial respiration is potentiated by cold exposure through the remodeling of mitochondrial cristae structures via DESAT1-dependent unsaturation of mitochondrial phospholipid acyl chains. Based on these findings, we propose a cell-autonomous mechanism for intracellular temperature control during environmental temperature changes.
Collapse
Affiliation(s)
- Akira Murakami
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan; Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kohjiro Nagao
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan.
| | - Reiko Sakaguchi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Keisuke Kida
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Yuji Hara
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Kohki Okabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yoshie Harada
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Masato Umeda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan.
| |
Collapse
|
6
|
Zhang Y, Pang J, Liu S, Nie K, Deng L, Wang F, Liu J. Harnessing transcription factor Mga2 and fatty acid elongases to overproduce palmitoleic acid in Saccharomyces cerevisiae. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
7
|
Triacyl Glycerols from Yeast-Catalyzed Batch and Fed-Batch Bioconversion of Hydrolyzed Lignocellulose from Cardoon Stalks. FERMENTATION 2021. [DOI: 10.3390/fermentation7040315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The lipogenic ability of the yeast Solicoccozyma terricola DBVPG 5870 grown on hydrolyzed lignocellulose obtained from cardoon stalks was evaluated. Data on cell biomass, lipid production, and fatty acid profiles of triacylglycerols obtained in batch and fed-batch experiments were carried out at the laboratory scale in a 5L fermenter, and at two different temperatures (20 and 25 °C) were reported. The higher production of total intracellular lipids (13.81 g/L) was found in the fed-batch experiments carried out at 20 °C. S. terricola exhibited the ability to produce high amounts of triacylglycerol (TAGs) with a characteristic fatty acids profile close to that of palm oil. The TAGs obtained from S. terricola grown on pre-treated lignocellulose could be proposed as a supplementary source of oleochemicals. Indeed, due to the rising prices of fossil fuels and because of the environmental-related issues linked to their employment, the use of TAGs produced by S. terricola grown on lignocellulose could represent a promising option as a supplementary oleochemical, especially for biodiesel production.
Collapse
|
8
|
Shaigani P, Awad D, Redai V, Fuchs M, Haack M, Mehlmer N, Brueck T. Oleaginous yeasts- substrate preference and lipid productivity: a view on the performance of microbial lipid producers. Microb Cell Fact 2021; 20:220. [PMID: 34876116 PMCID: PMC8650408 DOI: 10.1186/s12934-021-01710-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/20/2021] [Indexed: 11/12/2022] Open
Abstract
Background Oleaginous yeasts are promising microbial platforms for sustainable, bio-based production of biofuels and oleochemical building blocks. Bio-based residues provide sustainable and cost-effective carbon sources for fermentative yeast oil production without land-use change. Considering the regional abundancy of different waste streams, we chose complex biomass residue streams of marine origin; macroalgae hydrolysate, and terrestrial origin; wheat straw hydrolysate in the presence, and absence of corn steep liquor as a complex nitrogen source. We investigated the biomass and lipid yields of an array of well-described oleaginous yeasts; R. glutinis, T. asahii, R. mucilaginosa, R. toruloides, C. oleaginosus growing on these hydrolysates. Furthermore, their sugar utilization, fatty acid profile, and inhibitory effect of the hydrolysates on yeast growth were compared. For correlative reference, we initially performed comparative growth experiments for the strains on individual monomeric sugars separately. Each of these monomeric sugars was a dominant carbon source in the complex biomass hydrolysates evaluated in this study. In addition, we evaluated N-acetylglucosamine, the monomeric building block of chitin, as a low-cost nitrogen and carbon source in yeast fermentation. Results C. oleaginosus provided the highest biomass and lipid yields. In the wheat straw and brown algae hydrolysates, this yeast strain gained 7.5 g/L and 3.8 g/L lipids, respectively. Cultivation in algae hydrolysate resulted in a higher level of unsaturated fatty acids in the lipids accumulated by all yeast strains. R. toruloides and C. oleaginosus were able to effectively co-utilize mannitol, glucose, and xylose. Growth rates on wheat straw hydrolysate were enhanced in presence of corn steep liquor. Conclusions Among the yeast strains investigated in this study, C. oleaginosus proved to be the most versatile strain in terms of substrate utilization, productivity, and tolerance in the complex media. Various fatty acid profiles obtained on each substrate encourage the manipulation of culture conditions to achieve the desired fatty acid composition for each application. This could be accomplished by combining the element of carbon source with other formerly studied factors such as temperature and oxygen. Moreover, corn steep liquor showed promise for enhancement of growth in the oleaginous strains provided that carbon substrate is available. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01710-3.
Collapse
Affiliation(s)
- Pariya Shaigani
- Werner Siemens-Chair of Synthetic Biotechnology (WSSB), Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Dania Awad
- Werner Siemens-Chair of Synthetic Biotechnology (WSSB), Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Veronika Redai
- Werner Siemens-Chair of Synthetic Biotechnology (WSSB), Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Monika Fuchs
- Werner Siemens-Chair of Synthetic Biotechnology (WSSB), Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Martina Haack
- Werner Siemens-Chair of Synthetic Biotechnology (WSSB), Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Norbert Mehlmer
- Werner Siemens-Chair of Synthetic Biotechnology (WSSB), Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany.
| | - Thomas Brueck
- Werner Siemens-Chair of Synthetic Biotechnology (WSSB), Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany.
| |
Collapse
|
9
|
Ianutsevich EA, Danilova OA, Bondarenko SA, Tereshina VM. Membrane lipid and osmolyte readjustment in the alkaliphilic micromycete Sodiomyces tronii under cold, heat and osmotic shocks. MICROBIOLOGY (READING, ENGLAND) 2021; 167. [PMID: 34816793 DOI: 10.1099/mic.0.001112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Previously, we showed for the first time that alkaliphilic fungi, in contrast to alkalitolerant fungi, accumulated trehalose under extremely alkaline conditions, and we have proposed its key role in alkaliphilia. We propose that high levels of trehalose in the mycelium of alkaliphiles may promote adaptation not only to alkaline conditions, but also to other stressors. Therefore, we studied changes in the composition of osmolytes, and storage and membrane lipids under the action of cold (CS), heat (HS) and osmotic (OS) shocks in the obligate alkaliphilic micromycete Sodiomyces tronii. During adaptation to CS, an increase in the degree of unsaturation of phospholipids was observed while the composition of osmolytes, membrane and storage lipids remained the same. Under HS conditions, a twofold increase in the level of trehalose and an increase in the proportion of phosphatidylethanolamines were observed against the background of a decrease in the proportion of phosphatidic acids. OS was accompanied by a decrease in the amount of membrane lipids, while their ratio remained unchanged, and an increase in the level of polyols (arabitol and mannitol) in the fungal mycelium, which suggests their role for adaptation to OS. Thus, the observed consistency of the composition of membrane lipids suggests that trehalose can participate in adaptation not only to extremely alkaline conditions, but also to other stressors - HS, CS and OS. Taken together, the data obtained indicate the adaptability of the fungus to the action of various stressors, which can point to polyextremotolerance.
Collapse
Affiliation(s)
- Elena A Ianutsevich
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow 119071, Russia
| | - Olga A Danilova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow 119071, Russia
| | - Sofiya A Bondarenko
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow 119071, Russia.,Lomonosov Moscow State University, Faculty of Biology, Russia
| | - Vera M Tereshina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow 119071, Russia
| |
Collapse
|
10
|
Oleaginous Yeasts as Cell Factories for the Sustainable Production of Microbial Lipids by the Valorization of Agri-Food Wastes. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7020050] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The agri-food industry annually produces huge amounts of crops residues and wastes, the suitable management of these products is important to increase the sustainability of agro-industrial production by optimizing the entire value chain. This is also in line with the driving principles of the circular economy, according to which residues can become feedstocks for novel processes. Oleaginous yeasts represent a versatile tool to produce biobased chemicals and intermediates. They are flexible microbial factories able to grow on different side-stream carbon sources such as those deriving from agri-food wastes, and this characteristic makes them excellent candidates for integrated biorefinery processes through the production of microbial lipids, known as single cell oils (SCOs), for different applications. This review aims to present an extensive overview of research progress on the production and use of oleaginous yeasts and present discussions on the current bottlenecks and perspectives of their exploitation in different sectors, such as foods, biofuels and fine chemicals.
Collapse
|
11
|
Fedoseeva EV, Danilova OA, Ianutsevich EA, Terekhova VA, Tereshina VM. Micromycete Lipids and Stress. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261721010045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
12
|
Chawla K, Kaur S, Kaur R, Bhunia RK. Metabolic engineering of oleaginous yeasts to enhance single cell oil production. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kirti Chawla
- Plant Tissue Culture and Genetic Engineering National Agri‐Food Biotechnology Institute (NABI) Mohali Punjab India
| | - Sumandeep Kaur
- Department of Biotechnology, Sector‐25 Panjab University Chandigarh India
| | - Ranjeet Kaur
- Department of Genetics University of Delhi South Campus New Delhi India
| | - Rupam Kumar Bhunia
- Plant Tissue Culture and Genetic Engineering National Agri‐Food Biotechnology Institute (NABI) Mohali Punjab India
| |
Collapse
|
13
|
Matsuzawa T, Maehara T, Kamisaka Y, Ayabe-Chujo Y, Takaku H, Yaoi K. Identification and characterization of Pseudozyma antarctica Δ12 fatty acid desaturase and its utilization for the production of polyunsaturated fatty acids. J Biosci Bioeng 2020; 130:604-609. [PMID: 32847739 DOI: 10.1016/j.jbiosc.2020.07.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 10/23/2022]
Abstract
Fatty acid desaturases, especially Δ12 fatty acid desaturases, are key enzymes for the production of unsaturated fatty acids in oleaginous yeasts. In this study, we identified and characterized a gene encoding Δ12 fatty acid desaturase of Pseudozyma antarctica named PaFAD2. Almost all oleic acid (C18:1) was converted to linoleic acid by the heterologous expression of the PaFAD2 gene in Saccharomyces cerevisiae and Lipomyces starkeyi oleaginous yeast. Notably, PaFad2 converted not only oleic acid to linoleic acid, but also palmitoleic acid (C16:1) to 9,12-hexadecadienoic acid (C16:2). These results indicated that the PaFAD2 gene was very useful for the production of polyunsaturated fatty acids in yeast, including oleaginous yeast.
Collapse
Affiliation(s)
- Tomohiko Matsuzawa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | - Tomoko Maehara
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Yasushi Kamisaka
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Yuko Ayabe-Chujo
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Hiroaki Takaku
- Department of Applied Life Science, Niigata University of Pharmacy and Applied Life Science, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan
| | - Katsuro Yaoi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| |
Collapse
|
14
|
Wu CC, Ohashi T, Misaki R, Limtong S, Fujiyama K. Ethanol and H2O2 stresses enhance lipid production in an oleaginous Rhodotorula toruloides thermotolerant mutant L1-1. FEMS Yeast Res 2020; 20:5859489. [DOI: 10.1093/femsyr/foaa030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/02/2020] [Indexed: 01/07/2023] Open
Abstract
Abstract
Stress tolerance is a desired characteristic of yeast strains for industrial applications. Stress tolerance has been well described in Saccharomyces yeasts but has not yet been characterized in oleaginous Rhodotorula yeasts even though they are considered promising platforms for lipid production owing to their outstanding lipogenicity. In a previous study, the thermotolerant strain L1–1 was isolated from R. toruloides DMKU3-TK16 (formerly Rhodosporidium toruloides). In this study, we aimed to further examine the ability of this strain to tolerate other stresses and its lipid productivity under various stress conditions. We found that the L1–1 strain could tolerate not only thermal stress but also oxidative stress (ethanol and H2O2), osmotic stress (glucose) and a cell membrane disturbing reagent (DMSO). Our results also showed that the L1–1 strain exhibited enhanced ability to maintain ROS homeostasis, stronger cell wall strength and increased levels of unsaturated membrane lipids under various stresses. Moreover, we also demonstrated that ethanol-induced stress significantly increased the lipid productivity of the thermotolerant L1–1. The thermotolerant L1–1 was also found to produce a higher lipid titer under the dual ethanol-H2O2 stress than under non-stress conditions. This is the first report to indicate that ethanol stress can induce lipid production in an R. toruloides thermotolerant strain.
Collapse
Affiliation(s)
- Chih-Chan Wu
- International Center for Biotechnology, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565–0871, Japan
| | - Takao Ohashi
- Department of Microbiology, Faculty of Science, Kasetsart University, 50 Phaholyothin Road, Bangkok 10900, Bangkok 10900, Thailand
| | - Ryo Misaki
- International Center for Biotechnology, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565–0871, Japan
| | - Savitree Limtong
- Department of Microbiology, Faculty of Science, Kasetsart University, 50 Phaholyothin Road, Bangkok 10900, Bangkok 10900, Thailand
| | - Kazuhito Fujiyama
- International Center for Biotechnology, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565–0871, Japan
| |
Collapse
|
15
|
Burnet MC, Zamith-Miranda D, Heyman HM, Weitz KK, Bredeweg EL, Nosanchuk JD, Nakayasu ES. Remodeling of the Histoplasma Capsulatum Membrane Induced by Monoclonal Antibodies. Vaccines (Basel) 2020; 8:E269. [PMID: 32498228 PMCID: PMC7349930 DOI: 10.3390/vaccines8020269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/27/2020] [Accepted: 05/31/2020] [Indexed: 02/06/2023] Open
Abstract
Antibodies play a central role in host immunity by directly inactivating or recognizing an invading pathogen to enhance different immune responses to combat the invader. However, the cellular responses of pathogens to the presence of antibodies are not well-characterized. Here, we used different mass spectrometry techniques to study the cellular responses of the pathogenic fungus Histoplasma capsulatum to monoclonal antibodies (mAb) against HSP60, the surface protein involved in infection. A proteomic analysis of H. capsulatum yeast cells revealed that mAb binding regulates a variety of metabolic and signaling pathways, including fatty acid metabolism, sterol metabolism, MAPK signaling and ubiquitin-mediated proteolysis. The regulation of the fatty acid metabolism was accompanied by increases in the level of polyunsaturated fatty acids, which further augmented the degree of unsaturated lipids in H. capsulatum's membranes and energy storage lipids, such as triacylglycerols, phosphatidylcholines, phosphatidylethanolamines and phosphatidylinositols. MAb treatment also regulated sterol metabolism by increasing the levels of cholesterol and ergosterol in the cells. We also showed that global changes in the lipid profiles resulted in an increased susceptibility of H. capsulatum to the ergosterol-targeting drug amphotericin B. Overall, our data showed that mAb induction of global changes in the composition of H. capsulatum membranes can potentially impact antifungal treatment during histoplasmosis.
Collapse
Affiliation(s)
- Meagan C. Burnet
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA; (M.C.B.); (H.M.H.); (K.K.W.)
| | - Daniel Zamith-Miranda
- Department of Microbiology and Immunology and Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Heino M. Heyman
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA; (M.C.B.); (H.M.H.); (K.K.W.)
| | - Karl K. Weitz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA; (M.C.B.); (H.M.H.); (K.K.W.)
| | - Erin L. Bredeweg
- Environmental and Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA;
| | - Joshua D. Nosanchuk
- Department of Microbiology and Immunology and Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Ernesto S. Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA; (M.C.B.); (H.M.H.); (K.K.W.)
| |
Collapse
|
16
|
Jordá T, Romero AM, Perea-García A, Rozès N, Puig S. The lipid composition of yeast cells modulates the response to iron deficiency. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158707. [PMID: 32251724 DOI: 10.1016/j.bbalip.2020.158707] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/18/2020] [Accepted: 03/31/2020] [Indexed: 01/19/2023]
Abstract
Iron is a vital micronutrient for all eukaryotes because it participates as a redox cofactor in multiple metabolic pathways, including lipid biosynthesis. In response to iron deficiency, the Saccharomyces cerevisiae iron-responsive transcription factor Aft1 accumulates in the nucleus and activates a set of genes that promote iron acquisition at the cell surface. In this study, we report that yeast cells lacking the transcription factor Mga2, which promotes the expression of the iron-dependent Δ9-fatty acid desaturase Ole1, display a defect in the activation of the iron regulon during the adaptation to iron limitation. Supplementation with exogenous unsaturated fatty acids (UFAs) or OLE1 expression rescues the iron regulon activation defect of mga2Δ cells. These observations and fatty acid measurements suggest that the mga2Δ defect in iron regulon expression is due to low UFA levels. Subcellular localization studies reveal that low UFAs cause a mislocalization of Aft1 protein to the vacuole upon iron deprivation that prevents its nuclear accumulation. These results indicate that Mga2 and Ole1 are essential to maintain the UFA levels required for Aft1-dependent activation of the iron regulon in response to iron deficiency, and directly connect the biosynthesis of fatty acids to the response to iron depletion.
Collapse
Affiliation(s)
- Tania Jordá
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), , Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Antonia María Romero
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), , Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Ana Perea-García
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), , Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Nicolas Rozès
- Departament de Bioquímica i Biotecnología, Facultat d'Enologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), , Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain.
| |
Collapse
|
17
|
Matsuzawa T, Kamisaka Y, Maehara T, Takaku H, Yaoi K. Identification and characterization of two fatty acid elongases in Lipomyces starkeyi. Appl Microbiol Biotechnol 2020; 104:2537-2544. [PMID: 32025762 DOI: 10.1007/s00253-020-10401-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 11/28/2022]
Abstract
The oleaginous yeast Lipomyces starkeyi is a potential cost-effective source for the production of microbial lipids. Fatty acid elongases have vital roles in the syntheses of long-chain fatty acids. In this study, two genes encoding fatty acid elongases of L. starkeyi, LsELO1, and LsELO2 were identified and characterized. Heterologous expression of these genes in Saccharomyces cerevisiae revealed that LsElo1 is involved in the production of saturated long-chain fatty acids with 24 carbon atoms (C24:0) and that LsElo2 is involved in the conversion of C16 fatty acids to C18 fatty acids. In addition, both LsElo1 and LsElo2 were able to elongate polyunsaturated fatty acids. LsElo1 elongated linoleic acid (C18:2) to eicosadienoic acid (C20:2), and LsElo2 elongated α-linolenic acid (C18:3) to eicosatrienoic acid (C20:3). Overexpression of LsElo2 in L. starkeyi caused a reduction in C16 fatty acids, such as palmitic and palmitoleic acids, and an accumulation of C18 fatty acids such as oleic and linoleic acids. Our findings have the potential to contribute to the remodeling of fatty acid composition and the production of polyunsaturated long-chain fatty acids in oleaginous yeasts.
Collapse
Affiliation(s)
- Tomohiko Matsuzawa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Yasushi Kamisaka
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Tomoko Maehara
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Hiroaki Takaku
- Department of Applied Life Science, Niigata University of Pharmacy and Applied Life Science, 265-1 Higashijima, Akiha-ku, Niigata, 956-8603, Japan
| | - Katsuro Yaoi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
| |
Collapse
|
18
|
A Transcriptional Regulatory System of the S. cerevisiae OLE1Gene Responds to Fatty Acid Species and Intracellular Amount, and not Simply Membrane Status. J Lipids 2020. [DOI: 10.1155/2020/3903257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We examined the effects of unsaturated fatty acid (UFA) species and their concentration on the expression ofOLE1,which encodes the stearoyl CoA desaturase, inSaccharomyces cerevisiae. We controlled the amount of UFA taken up by the cell by varying the concentration of tergitol in the medium. When cultured with 1 mM fatty acid in 0.1% tergitol, cells took up much more fatty acid than when cultured with the same concentration of fatty acid at 1% tergitol, although the amount incorporated was dependent on UFA species. For each fatty acid tested, we found that the higher uptake (0.1% tergitol condition) had a stronger impact onOLE1regulation. A principal product of the desaturase 16:1∆9, and the nonnative UFA 18:2∆9,12, most strongly repressed the reporter constructOLE1-lacZtranscription, while the other major product of the desaturase, 18:1∆9, and the nonnative UFA 17:1∆10 caused a more diminished response. Based on these results, our initial hypothesis was thatOLE1was regulated in response to membrane fluidity; however, subsequent work does not support that idea; we have found that conditions that affect membrane fluidity such as growth temperature and growth with saturated ortransfatty acid supplementation, do not regulateOLE1in the direction predicted by fluidity changes. We conclude that at least one signal that regulatesOLE1transcriptional expression is most likely based on the fatty acids themselves.
Collapse
|
19
|
de Mendoza D, Pilon M. Control of membrane lipid homeostasis by lipid-bilayer associated sensors: A mechanism conserved from bacteria to humans. Prog Lipid Res 2019; 76:100996. [DOI: 10.1016/j.plipres.2019.100996] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 12/31/2022]
|
20
|
Degreif D, Cucu B, Budin I, Thiel G, Bertl A. Lipid determinants of endocytosis and exocytosis in budding yeast. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1005-1016. [DOI: 10.1016/j.bbalip.2019.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/23/2019] [Accepted: 03/18/2019] [Indexed: 01/10/2023]
|
21
|
Holt S, Miks MH, de Carvalho BT, Foulquié-Moreno MR, Thevelein JM. The molecular biology of fruity and floral aromas in beer and other alcoholic beverages. FEMS Microbiol Rev 2019; 43:193-222. [PMID: 30445501 PMCID: PMC6524682 DOI: 10.1093/femsre/fuy041] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 11/13/2018] [Indexed: 12/03/2022] Open
Abstract
Aroma compounds provide attractiveness and variety to alcoholic beverages. We discuss the molecular biology of a major subset of beer aroma volatiles, fruity and floral compounds, originating from raw materials (malt and hops), or formed by yeast during fermentation. We introduce aroma perception, describe the most aroma-active, fruity and floral compounds in fruits and their presence and origin in beer. They are classified into categories based on their functional groups and biosynthesis pathways: (1) higher alcohols and esters, (2) polyfunctional thiols, (3) lactones and furanones, and (4) terpenoids. Yeast and hops are the main sources of fruity and flowery aroma compounds in beer. For yeast, the focus is on higher alcohols and esters, and particularly the complex regulation of the alcohol acetyl transferase ATF1 gene. We discuss the release of polyfunctional thiols and monoterpenoids from cysteine- and glutathione-S-conjugated compounds and glucosides, respectively, the primary biological functions of the yeast enzymes involved, their mode of action and mechanisms of regulation that control aroma compound production. Furthermore, we discuss biochemistry and genetics of terpenoid production and formation of non-volatile precursors in Humulus lupulus (hops). Insight in these pathways provides a toolbox for creating innovative products with a diversity of pleasant aromas.
Collapse
Affiliation(s)
- Sylvester Holt
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, B-3001 Leuven-Heverlee, Flanders, Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Marta H Miks
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark
- Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10–726 Olsztyn, Poland
| | - Bruna Trindade de Carvalho
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, B-3001 Leuven-Heverlee, Flanders, Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Maria R Foulquié-Moreno
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, B-3001 Leuven-Heverlee, Flanders, Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, B-3001 Leuven-Heverlee, Flanders, Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| |
Collapse
|
22
|
Sakamoto Y. Influences of environmental factors on fruiting body induction, development and maturation in mushroom-forming fungi. FUNGAL BIOL REV 2018. [DOI: 10.1016/j.fbr.2018.02.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Pichler H, Emmerstorfer-Augustin A. Modification of membrane lipid compositions in single-celled organisms – From basics to applications. Methods 2018; 147:50-65. [DOI: 10.1016/j.ymeth.2018.06.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/18/2018] [Accepted: 06/16/2018] [Indexed: 12/12/2022] Open
|
24
|
Romero AM, Jordá T, Rozès N, Martínez-Pastor MT, Puig S. Regulation of yeast fatty acid desaturase in response to iron deficiency. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:657-668. [PMID: 29627385 DOI: 10.1016/j.bbalip.2018.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/12/2018] [Accepted: 03/27/2018] [Indexed: 10/17/2022]
Abstract
Unsaturated fatty acids (UFA) are essential components of phospholipids that greatly contribute to the biophysical properties of cellular membranes. Biosynthesis of UFAs relies on a conserved family of iron-dependent fatty acid desaturases, whose representative in the model yeast Saccharomyces cerevisiae is Ole1. OLE1 expression is tightly regulated to adapt UFA biosynthesis and lipid bilayer properties to changes in temperature, and in UFA or oxygen availability. Despite iron deficiency being the most extended nutritional disorder worldwide, very little is known about the mechanisms and the biological relevance of fatty acid desaturases regulation in response to iron starvation. In this report, we show that endoplasmic reticulum-anchored transcription factor Mga2 activates OLE1 transcription in response to nutritional and genetic iron deficiencies. Cells lacking MGA2 display low UFA levels and do not grow under iron-limited conditions, unless UFAs are supplemented or OLE1 is overexpressed. The proteasome, E3 ubiquitin ligase Rsp5 and the Cdc48Npl4/Ufd1 complex are required for OLE1 activation during iron depletion. Interestingly, Mga2 also activates the transcription of its own mRNA in response to iron deficiency, hypoxia, low temperature and low UFAs. MGA2 up-regulation contributes to increase OLE1 expression in these situations. These results reveal the mechanism of OLE1 regulation when iron is scarce and identify the MGA2 auto-regulation as a potential activation strategy in multiple stresses.
Collapse
Affiliation(s)
- Antonia María Romero
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Tania Jordá
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Nicolas Rozès
- Departament de Bioquímica i Biotecnología, Facultat d'Enologia, Universitat Rovira i Virgili, Tarragona, Spain
| | | | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain.
| |
Collapse
|
25
|
Burr R, Espenshade PJ. Oxygen-responsive transcriptional regulation of lipid homeostasis in fungi: Implications for anti-fungal drug development. Semin Cell Dev Biol 2017; 81:110-120. [PMID: 28851600 DOI: 10.1016/j.semcdb.2017.08.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/08/2017] [Accepted: 08/22/2017] [Indexed: 01/01/2023]
Abstract
Low oxygen adaptation is essential for aerobic fungi that must survive in varied oxygen environments. Pathogenic fungi in particular must adapt to the low oxygen host tissue environment in order to cause infection. Maintenance of lipid homeostasis is especially important for cell growth and proliferation, and is a highly oxygen-dependent process. In this review, we focus on recent advances in our understanding of the transcriptional regulation and coordination of the low oxygen response across fungal species, paying particular attention to pathogenic fungi. Comparison of lipid homeostasis pathways in these organisms suggests common mechanisms of transcriptional regulation and points toward untapped potential to target low oxygen adaptation in antifungal development.
Collapse
Affiliation(s)
- Risa Burr
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Peter J Espenshade
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
26
|
Jordan HR, Tomberlin JK. Abiotic and Biotic Factors Regulating Inter-Kingdom Engagement between Insects and Microbe Activity on Vertebrate Remains. INSECTS 2017; 8:E54. [PMID: 28538664 PMCID: PMC5492068 DOI: 10.3390/insects8020054] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/10/2017] [Accepted: 05/18/2017] [Indexed: 11/17/2022]
Abstract
Abstract: A number of abiotic and biotic factors are known to regulate arthropod attraction, colonization, and utilization of decomposing vertebrate remains. Such information is critical when assessing arthropod evidence associated with said remains in terms of forensic relevance. Interactions are not limited to just between the resource and arthropods. There is another biotic factor that has been historically overlooked; however, with the advent of high-throughput sequencing, and other molecular techniques, the curtain has been pulled back to reveal a microscopic world that is playing a major role with regards to carrion decomposition patterns in association with arthropods. The objective of this publication is to review many of these factors and draw attention to their impact on microbial, specifically bacteria, activity associated with these remains as it is our contention that microbes serve as a primary mechanism regulating associated arthropod behavior.
Collapse
Affiliation(s)
- Heather R Jordan
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39705, USA.
| | - Jeffery K Tomberlin
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
27
|
Adelantado N, Tarazona P, Grillitsch K, García-Ortega X, Monforte S, Valero F, Feussner I, Daum G, Ferrer P. The effect of hypoxia on the lipidome of recombinant Pichia pastoris. Microb Cell Fact 2017; 16:86. [PMID: 28526017 PMCID: PMC5437588 DOI: 10.1186/s12934-017-0699-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 05/10/2017] [Indexed: 01/17/2023] Open
Abstract
Background Cultivation of recombinant Pichia pastoris (Komagataella sp.) under hypoxic conditions has a strong positive effect on specific productivity when the glycolytic GAP promoter is used for recombinant protein expression, mainly due to upregulation of glycolytic conditions. In addition, transcriptomic analyses of hypoxic P. pastoris pointed out important regulation of lipid metabolism and unfolded protein response (UPR). Notably, UPR that plays a role in the regulation of lipid metabolism, amino acid metabolism and protein secretion, was found to be upregulated under hypoxia. Results To improve our understanding of the interplay between lipid metabolism, UPR and protein secretion, the lipidome of a P. pastoris strain producing an antibody fragment was studied under hypoxic conditions. Furthermore, lipid composition analyses were combined with previously available transcriptomic datasets to further understand the impact of hypoxia on lipid metabolism. Chemostat cultures operated under glucose-limiting conditions under normoxic and hypoxic conditions were analyzed in terms of intra/extracellular product distribution and lipid composition. Integrated analysis of lipidome and transcriptome datasets allowed us to demonstrate an important remodeling of the lipid metabolism under limited oxygen availability. Additionally, cells with reduced amounts of ergosterol through fluconazole treatment were also included in the study to observe the impact on protein secretion and its lipid composition. Conclusions Our results show that cells adjust their membrane composition in response to oxygen limitation mainly by changing their sterol and sphingolipid composition. Although fluconazole treatment results a different lipidome profile than hypoxia, both conditions result in higher recombinant protein secretion levels. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0699-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Núria Adelantado
- Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Catalonia, Spain.,Evonik Nutrition & Care GmbH, Hanau, Germany
| | - Pablo Tarazona
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Karlheinz Grillitsch
- Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria.,Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010, Graz, Austria
| | - Xavier García-Ortega
- Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Catalonia, Spain
| | - Sergi Monforte
- Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Catalonia, Spain
| | - Francisco Valero
- Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Catalonia, Spain
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany.,Department of Plant Biochemistry, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Günther Daum
- Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria. .,Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010, Graz, Austria.
| | - Pau Ferrer
- Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Catalonia, Spain
| |
Collapse
|
28
|
Lipid engineering reveals regulatory roles for membrane fluidity in yeast flocculation and oxygen-limited growth. Metab Eng 2017; 41:46-56. [DOI: 10.1016/j.ymben.2017.03.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/10/2017] [Accepted: 03/08/2017] [Indexed: 12/20/2022]
|
29
|
Santomartino R, Riego-Ruiz L, Bianchi MM. Three, two, one yeast fatty acid desaturases: regulation and function. World J Microbiol Biotechnol 2017; 33:89. [PMID: 28390014 DOI: 10.1007/s11274-017-2257-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/31/2017] [Indexed: 01/01/2023]
Abstract
Fatty acid composition of biological membranes functionally adapts to environmental conditions by changing its composition through the activity of lipid biosynthetic enzymes, including the fatty acid desaturases. Three major desaturases are present in yeasts, responsible for the generation of double bonds in position C9-C10, C12-C13 and C15-C16 of the carbon backbone. In this review, we will report data addressed to define the functional role of basidiomycete and ascomycete yeast desaturase enzymes in response to various external signals and the regulation of the expression of their corresponding genes. Many yeast species have the complete set of three desaturases; however, only the Δ9 desaturase seems to be necessary and sufficient to ensure yeast viability. The evolutionary issue of this observation will be discussed.
Collapse
Affiliation(s)
- Rosa Santomartino
- Dip. di Biologia e Biotecnologie C. Darwin, Sapienza Università di Roma, p.le Aldo Moro 5, 00185, Rome, Italy
| | - Lina Riego-Ruiz
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), A.C., San Luis Potosí, Mexico
| | - Michele M Bianchi
- Dip. di Biologia e Biotecnologie C. Darwin, Sapienza Università di Roma, p.le Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
30
|
Oelkers P, Pokhrel K. Four Acyltransferases Uniquely Contribute to Phospholipid Heterogeneity in Saccharomyces cerevisiae. Lipid Insights 2016; 9:31-41. [PMID: 27920551 PMCID: PMC5127605 DOI: 10.4137/lpi.s40597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/25/2016] [Accepted: 10/25/2016] [Indexed: 11/14/2022] Open
Abstract
Diverse acyl-CoA species and acyltransferase isoenzymes are components of a complex system that synthesizes glycerophospholipids and triacylglycerols. Saccharomyces cerevisiae has four main acyl-CoA species, two main glycerol-3-phosphate 1-O-acyltransferases (Gat1p, Gat2p), and two main 1-acylglycerol-3-phosphate O-acyltransferases (Lpt1p, Slc1p). The in vivo contribution of these isoenzymes to phospholipid heterogeneity was determined using haploids with compound mutations: gat1Δlpt1Δ, gat2Δlpt1Δ, gat1Δslc1Δ, and gat2Δslc1Δ. All mutations mildly reduced [3H]palmitic acid incorporation into phospholipids relative to triacylglycerol. Electrospray ionization tandem mass spectrometry identified few differences from wild type in gat1Δlpt1Δ, dramatic differences in gat2Δslc1Δ, and intermediate changes in gat2Δlpt1Δ and gat1Δslc1Δ. Yeast expressing Gat1p and Lpt1p had phospholipids enriched with acyl chains that were unsaturated, 18 carbons long, and paired for length. These alterations prevented growth at 18.5°C and in 10% ethanol. Therefore, Gat2p and Slc1p dictate phospholipid acyl chain composition in rich media at 30°C. Slc1p selectively pairs acyl chains of different lengths.
Collapse
Affiliation(s)
- Peter Oelkers
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, USA
| | - Keshav Pokhrel
- Department of Mathematics and Statistics, University of Michigan-Dearborn, Dearborn, MI, USA
| |
Collapse
|
31
|
Trans 18-carbon monoenoic fatty acid has distinct effects from its isomeric cis fatty acid on lipotoxicity and gene expression in Saccharomyces cerevisiae. J Biosci Bioeng 2016; 123:33-38. [PMID: 27484790 DOI: 10.1016/j.jbiosc.2016.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 06/08/2016] [Accepted: 07/06/2016] [Indexed: 12/31/2022]
Abstract
Epidemiological studies have suggested that an excess intake of trans-unsaturated fatty acids increases the risk of coronary heart disease. However, the mechanisms of action of trans-unsaturated fatty acids in eukaryotic cells remain unclear. Since the budding yeast Saccharomyces cerevisiae can grow using fatty acids as the sole carbon source, it is a simple and suitable model organism for understanding the effects of trans-unsaturated fatty acids at the molecular and cellular levels. In this study, we compared the physiological effects of Δ9 cis and trans 18-carbon monoenoic fatty acids (oleic acid and elaidic acid) in yeast cells. The results obtained revealed that the two types have distinct effects on the expression of OLE1, which encodes Δ9 desaturase, and lipotoxicity in are1Δare2Δdga1Δlro1Δ and gat1Δ cells. Our results suggest that cis and trans 18-carbon monoenoic fatty acids exert different physiological effects in the regulation of gene expression and processing of excess fatty acids in yeast.
Collapse
|
32
|
Fakas S. Lipid biosynthesis in yeasts: A comparison of the lipid biosynthetic pathway between the model nonoleaginous yeast Saccharomyces cerevisiae and the model oleaginous yeast Yarrowia lipolytica. Eng Life Sci 2016; 17:292-302. [PMID: 32624775 DOI: 10.1002/elsc.201600040] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/20/2016] [Accepted: 06/09/2016] [Indexed: 01/08/2023] Open
Abstract
Lipid biosynthesis and its regulation have been studied mostly in the nonoleaginous yeast Saccharomyces cerevisiae that serves as a model for eukaryotic cells. On the other hand, the yeast Yarrowia lipolytica has been put forward as a model for oleaginous microorganisms because its genetics is known and tools for its genetic manipulation are becoming increasingly available. A comparison of the lipid biosynthetic pathways that function in these two microorganisms shows many similarities in key biosynthetic and regulatory steps. An example is the enzyme phosphatidic acid phosphatase that controls the synthesis of triacylglycerol (TAG) in both yeasts. Controlling the TAG synthesis is crucial for metabolic engineering efforts that aim to increase the production of microbial lipids (i.e. single cell oils) because TAG comprises the final product of these processes. At the same time the comparison reveals fundamental differences (e.g. in the generation of acetyl-CoA for lipid biosynthesis) stemming from the oleaginous nature of Y. lipolytica. These differences warranty more studies in Y. lipolytica where the biochemistry and molecular biology of oleaginicity can be further explored.
Collapse
Affiliation(s)
- Stylianos Fakas
- Department of Food and Animal Sciences Alabama A&M University Normal AL USA
| |
Collapse
|
33
|
De Angelis L, Rinaldi T, Cirigliano A, Bello C, Reverberi M, Amaretti A, Montanari A, Santomartino R, Raimondi S, Gonzalez A, Bianchi MM. Functional roles of the fatty acid desaturases encoded by KlOLE1, FAD2 and FAD3 in the yeast Kluyveromyces lactis. MICROBIOLOGY-SGM 2016; 162:1435-1445. [PMID: 27233577 DOI: 10.1099/mic.0.000315] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Functional properties of cell membranes depend on their composition, particularly on the relative amount of saturated, unsaturated and polyunsaturated fatty acids present in the phospholipids. The aim of this study was to investigate the effect of cell membrane composition on cell fitness, adaptation and stress response in Kluyveromyces lactis. To this purpose, we have deleted the genes FAD2 and FAD3 encoding Δ12 and ω3 desaturases in Kluyveromyces lactis, thus generating mutant strains with altered fatty acid composition of membranes. These strains were viable and able to grow in stressing conditions like hypoxia and low temperature. Deletion of the Δ9 desaturase-encoding gene KlOLE1 resulted in lethality, suggesting that this enzyme has an essential role in this yeast. Transcription of the desaturase genes KlOLE1, FAD2 and FAD3 and cellular localization of the corresponding enzymes, have been studied under hypoxia and cold stress. Our findings indicate that expression of these desaturase genes and membrane composition were modulated by hypoxia and temperature stress, although the changes induced by these and other assayed conditions did not dramatically affect the general cellular fitness.
Collapse
Affiliation(s)
- Lorenzo De Angelis
- Department of Biology and Biotechnology C. Darwin, Sapienza Università di Roma, p.le Aldo Moro 5, 00185, Roma, Italy
| | - Teresa Rinaldi
- Department of Biology and Biotechnology C. Darwin, Sapienza Università di Roma, p.le Aldo Moro 5, 00185, Roma, Italy.,Pasteur Institute Cenci-Bolognetti Foundation, Viale Regina Elena 291, 00161 Roma, Italy
| | - Angela Cirigliano
- Department of Biology and Biotechnology C. Darwin, Sapienza Università di Roma, p.le Aldo Moro 5, 00185, Roma, Italy
| | - Cristiano Bello
- Department of Environmental Biology, Sapienza Università di Roma, Roma, Italy
| | - Massimo Reverberi
- Department of Environmental Biology, Sapienza Università di Roma, Roma, Italy
| | - Alberto Amaretti
- Department of Life Sciences, Università di Modena e Reggio Emilia, Via Università, 4, 41121, Modena, Italy
| | - Arianna Montanari
- Department of Biology and Biotechnology C. Darwin, Sapienza Università di Roma, p.le Aldo Moro 5, 00185, Roma, Italy
| | - Rosa Santomartino
- Department of Biology and Biotechnology C. Darwin, Sapienza Università di Roma, p.le Aldo Moro 5, 00185, Roma, Italy
| | - Stefano Raimondi
- Department of Life Sciences, Università di Modena e Reggio Emilia, Via Università, 4, 41121, Modena, Italy
| | - Alicia Gonzalez
- Department of Biochemistry and Structural Biology, Universidad Nacional Autónoma de México, Mexico
| | - Michele M Bianchi
- Department of Biology and Biotechnology C. Darwin, Sapienza Università di Roma, p.le Aldo Moro 5, 00185, Roma, Italy
| |
Collapse
|
34
|
Suzuki S, Awai K, Ishihara A, Yamauchi K. Cold temperature blocks thyroid hormone-induced changes in lipid and energy metabolism in the liver of Lithobates catesbeianus tadpoles. Cell Biosci 2016; 6:19. [PMID: 26981232 PMCID: PMC4792105 DOI: 10.1186/s13578-016-0087-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/07/2016] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Exposure of the American bullfrog Lithobates catesbeianus tadpoles to low temperature affects many biological processes including lipid metabolism and the thyroid hormone (TH) signaling pathway, resulting in arrest of TH-induced metamorphosis. To clarify what molecular events occur in this phenomenon, we investigated the glycerophospholipid and fatty acid (FA) compositions, the activities of mitochondrial enzymes and the transcript levels of related genes in the liver of control (26 °C) and cold-treated (4 °C) tadpoles with or without 5 nM 3,3',5-triiodothyronine (T3). RESULTS Exposure to T3 decreased the tail height and polyunsaturation of FAs in the glycerophospholipids, and increased plasma glucose levels and transcript levels of primary TH-response genes including TH receptor, and some energy metabolic (cox4, srebp1 and fas) and FA chain elongase genes (elovl3 and elovl5). However, these T3-induced responses were abolished at 4 °C. Exposure to cold temperature enhanced plasma glucose, triglyceride and free FA levels, monounsaturation of FAs, mitochondrial enzymes activities (cytochrome c oxidase and carnitine palmitoyltransferase; U/g liver), with the upregulation of the genes involved in glycogenolysis (pygl), gluconeogenesis (pck1 and g6pc2), FA β-oxidation (acadl), and cholesterol uptake and synthesis (hmgcr, srebp2 and ldlr1), glycerophospholipids synthesis (pcyt1, pcyt2, pemt, and pparg), and FA monounsaturation (scd1) and chain elongation (elovl1 and elovl2). T3 had little effect on the cold-induced changes. CONCLUSIONS Our study demonstrated that exposures to T3 and cold temperature exert different effects on lipid metabolism, resulting in changes in the FA composition in glycerophospholipids, and suggests that a cold-induced signal may block TH-signaling pathway around primary TH-response genes.
Collapse
Affiliation(s)
- Shunsuke Suzuki
- />Department of Biological Science, Graduate School of Science, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8529 Japan
| | - Koichiro Awai
- />Department of Biological Science, Graduate School of Science, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8529 Japan
| | - Akinori Ishihara
- />Department of Biological Science, Graduate School of Science, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8529 Japan
- />Green Biology Research Division, Research Institute of Green Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8529 Japan
| | - Kiyoshi Yamauchi
- />Department of Biological Science, Graduate School of Science, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8529 Japan
- />Green Biology Research Division, Research Institute of Green Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8529 Japan
| |
Collapse
|
35
|
Chen L, Lee J, Ning Chen W. The use of metabolic engineering to produce fatty acid-derived biofuel and chemicals in Saccharomyces cerevisiae: a review. AIMS BIOENGINEERING 2016. [DOI: 10.3934/bioeng.2016.4.468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
36
|
Vicent I, Navarro A, Mulet JM, Sharma S, Serrano R. Uptake of inorganic phosphate is a limiting factor for Saccharomyces cerevisiae during growth at low temperatures. FEMS Yeast Res 2015; 15:fov008. [DOI: 10.1093/femsyr/fov008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2015] [Indexed: 11/14/2022] Open
|
37
|
Galafassi S, Toscano M, Vigentini I, Zambelli P, Simonetti P, Foschino R, Compagno C. Cold exposure affects carbohydrates and lipid metabolism, and induces Hog1p phosphorylation in Dekkera bruxellensis strain CBS 2499. Antonie van Leeuwenhoek 2015; 107:1145-53. [PMID: 25697274 DOI: 10.1007/s10482-015-0406-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/12/2015] [Indexed: 02/04/2023]
Abstract
Dekkera bruxellensis is a yeast known to affect the quality of wine and beer. This species, due to its high ethanol and acid tolerance, has been reported also to compete with Saccharomyces cerevisiae in distilleries producing fuel ethanol. In order to understand how this species responds when exposed to low temperatures, some mechanisms like synthesis and accumulation of intracellular metabolites, changes in lipid composition and activation of the HOG-MAPK pathway were investigated in the genome sequenced strain CBS 2499. We show that cold stress caused intracellular accumulation of glycogen, but did not induce accumulation of trehalose and glycerol. The cellular fatty acid composition changed after the temperature downshift, and a significant increase of palmitoleic acid was observed. RT-PCR analysis revealed that OLE1 encoding for Δ9-fatty acid desaturase was up-regulated, whereas TPS1 and INO1 didn't show changes in their expression. In D. bruxellensis Hog1p was activated by phosphorylation, as described in S. cerevisiae, highlighting a conserved role of the HOG-MAP kinase signaling pathway in cold stress response.
Collapse
Affiliation(s)
- Silvia Galafassi
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Via G. Celoria 2, 20133, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
38
|
Henriques R, Madeira SC. BicPAM: Pattern-based biclustering for biomedical data analysis. Algorithms Mol Biol 2014; 9:27. [PMID: 25649207 PMCID: PMC4302537 DOI: 10.1186/s13015-014-0027-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 11/12/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biclustering, the discovery of sets of objects with a coherent pattern across a subset of conditions, is a critical task to study a wide-set of biomedical problems, where molecular units or patients are meaningfully related with a set of properties. The challenging combinatorial nature of this task led to the development of approaches with restrictions on the allowed type, number and quality of biclusters. Contrasting, recent biclustering approaches relying on pattern mining methods can exhaustively discover flexible structures of robust biclusters. However, these approaches are only prepared to discover constant biclusters and their underlying contributions remain dispersed. METHODS The proposed BicPAM biclustering approach integrates existing principles made available by state-of-the-art pattern-based approaches with two new contributions. First, BicPAM is the first efficient attempt to exhaustively mine non-constant types of biclusters, including additive and multiplicative coherencies in the presence or absence of symmetries. Second, BicPAM provides strategies to effectively compose different biclustering structures and to handle arbitrary levels of noise inherent to data and with discretization procedures. RESULTS Results show BicPAM's superiority against its peers and its ability to retrieve unique types of biclusters of interest, to efficiently deliver exhaustive solutions and to successfully recover planted biclusters in datasets with varying levels of missing values and noise. Its application over gene expression data leads to unique solutions with heightened biological relevance. CONCLUSIONS BicPAM approaches integrate existing disperse efforts towards pattern-based biclustering and provides the first critical strategies to efficiently discover exhaustive solutions of biclusters with shifting, scaling and symmetric assumptions with varying quality and underlying structures. Additionally, BicPAM dynamically adapts its behavior to mine data with different levels of missing values and noise.
Collapse
Affiliation(s)
- Rui Henriques
- INESC-ID and Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Sara C Madeira
- INESC-ID and Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
39
|
Kamisaka Y, Kimura K, Uemura H, Yamaoka M. Addition of methionine and low cultivation temperatures increase palmitoleic acid production by engineered Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2014; 99:201-10. [DOI: 10.1007/s00253-014-6083-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/02/2014] [Accepted: 09/09/2014] [Indexed: 12/27/2022]
|
40
|
Membrane fluidity and temperature sensing are coupled via circuitry comprised of Ole1, Rsp5, and Hsf1 in Candida albicans. EUKARYOTIC CELL 2014; 13:1077-84. [PMID: 24951438 PMCID: PMC4135801 DOI: 10.1128/ec.00138-14] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Temperature is a ubiquitous environmental variable which can profoundly influence the physiology of living cells as it changes over time and space. When yeast cells are exposed to a sublethal heat shock, normal metabolic functions become repressed and the heat shock transcription factor Hsf1 is activated, inducing heat shock proteins (HSPs). Candida albicans, the most prevalent human fungal pathogen, is an opportunistic pathogen that has evolved as a relatively harmless commensal of healthy individuals. Even though C. albicans occupies thermally buffered niches, it has retained the classic heat shock response, activating Hsf1 during slow thermal transitions such as the increases in temperature suffered by febrile patients. However, the mechanism of temperature sensing in fungal pathogens remains enigmatic. A few studies with Saccharomyces cerevisiae suggest that thermal stress is transduced into a cellular signal at the level of the membrane. In this study, we manipulated the fluidity of C. albicans membrane to dissect mechanisms of temperature sensing. We determined that in response to elevated temperature, levels of OLE1, encoding a fatty acid desaturase, decrease. Subsequently, loss of OLE1 triggers expression of FAS2, encoding a fatty acid synthase. Furthermore, depletion of OLE1 prevents full activation of Hsf1, thereby reducing HSP expression in response to heat shock. This reduction in Hsf1 activation is attributable to the E3 ubiquitin ligase Rsp5, which regulates OLE1 expression. To our knowledge, this is the first study to define a molecular link between fatty acid synthesis and the heat shock response in the fungal kingdom.
Collapse
|
41
|
Koch B, Schmidt C, Daum G. Storage lipids of yeasts: a survey of nonpolar lipid metabolism in Saccharomyces cerevisiae, Pichia pastoris, and Yarrowia lipolytica. FEMS Microbiol Rev 2014; 38:892-915. [PMID: 24597968 DOI: 10.1111/1574-6976.12069] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 02/21/2014] [Accepted: 02/21/2014] [Indexed: 11/29/2022] Open
Abstract
Biosynthesis and storage of nonpolar lipids, such as triacylglycerols (TG) and steryl esters (SE), have gained much interest during the last decades because defects in these processes are related to severe human diseases. The baker's yeast Saccharomyces cerevisiae has become a valuable tool to study eukaryotic lipid metabolism because this single-cell microorganism harbors many enzymes and pathways with counterparts in mammalian cells. In this article, we will review aspects of TG and SE metabolism and turnover in the yeast that have been known for a long time and combine them with new perceptions of nonpolar lipid research. We will provide a detailed insight into the mechanisms of nonpolar lipid synthesis, storage, mobilization, and degradation in the yeast S. cerevisiae. The central role of lipid droplets (LD) in these processes will be addressed with emphasis on the prevailing view that this compartment is more than only a depot for TG and SE. Dynamic and interactive aspects of LD with other organelles will be discussed. Results obtained with S. cerevisiae will be complemented by recent investigations of nonpolar lipid research with Yarrowia lipolytica and Pichia pastoris. Altogether, this review article provides a comprehensive view of nonpolar lipid research in yeast.
Collapse
Affiliation(s)
- Barbara Koch
- Institute of Biochemistry, Graz University of Technology, Graz, Austria
| | | | | |
Collapse
|
42
|
Klug L, Daum G. Yeast lipid metabolism at a glance. FEMS Yeast Res 2014; 14:369-88. [DOI: 10.1111/1567-1364.12141] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/23/2014] [Accepted: 02/02/2014] [Indexed: 01/07/2023] Open
Affiliation(s)
- Lisa Klug
- Institute of Biochemistry; Graz University of Technology; Graz Austria
| | - Günther Daum
- Institute of Biochemistry; Graz University of Technology; Graz Austria
| |
Collapse
|
43
|
Cloning and functional analysis of HpFAD2 and HpFAD3 genes encoding Δ12- and Δ15-fatty acid desaturases in Hansenula polymorpha. Gene 2013; 533:110-8. [PMID: 24100086 DOI: 10.1016/j.gene.2013.09.115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 12/19/2022]
Abstract
Two fatty acid desaturase genes have been cloned: HpFAD2 and HpFAD3 encode Hansenula polymorpha Δ12-fatty acid desaturase (HpFad2) and Δ15-fatty acid desaturase (HpFad3), which are responsible for the production of linoleic acid (LA, C18:2, Δ9, Δ12) and α-linolenic acid (ALA, αC18:3, Δ9, Δ12, Δ15), respectively. The open reading frame of the HpFAD2 and HpFAD3 genes is 1215bp and 1239bp, encoding 405 and 413 amino acids, respectively. The putative amino acid sequences of HpFad2 and HpFad3 share more than 60% similarity and three conserved histidine-box motifs with other known yeast Fad homologs. Hpfad2Δ disruptant cannot produce C18:2 and αC18:3, while the deletion of HpFAD3 only causes the absence of αC18:3. Heterologous expression of either the HpFAD2 or the HpFAD3 gene in Saccharomyces cerevisiae resulted in the presence of C18:2 and αC18:3 when the C18:2 precursor was added. Taken together, these observations indicate that HpFAD2 and HpFAD3 indeed encode Δ12- and Δ15-fatty acid desaturases that function as the only ones responsible for desaturation of oleic acid (C18:1) and linoleic acid (C18:2), respectively, in H. polymorpha. Because a Fatty Acid Regulated (FAR) region and a Low Oxygen Response Element (LORE), which are responsible for regulation of a Δ9-fatty acid desaturase gene (ScOLE1) in S. cerevisiae, are present in the upstream regions of both genes, we investigated whether the transcriptional levels of HpFAD2 and HpFAD3 are affected by supplementation with nutrient unsaturated fatty acids or by low oxygen conditions. Whereas both genes were up-regulated under low oxygen conditions, only HpFAD3 transcription was repressed by an excess of C18:1, C18:2 and C18:3, while the HpFAD2 transcript level did not significantly change. These observations indicate that HpFAD2 expression is not controlled at the transcriptional level by fatty acids even though it contains a FAR-like region. This study indicates that HpFAD2 may be regulated by post-transcriptional mechanisms, whereas HpFAD3 may be mainly controlled at a transcriptional level.
Collapse
|
44
|
Alterations in growth and fatty acid profiles under stress conditions of Hansenula polymorpha defective in polyunsaturated fatty acid synthesis. Mol Biol Rep 2013; 40:4935-45. [PMID: 23645092 DOI: 10.1007/s11033-013-2594-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 04/29/2013] [Indexed: 10/26/2022]
Abstract
Using chemical mutagenesis, mutants of Hansenula polymorpha that were defective in fatty acid synthesis were selected based on their growth requirements on saturated fatty acid mixtures. One mutant (S7) was incapable of synthesizing polyunsaturated fatty acids (PUFA), linoleic and α-linolenic acids. A genetic analysis demonstrated that the S7 strain had a double lesion affecting fatty acid synthesis and Δ(12)-desaturation. A segregant with a defect in PUFA synthesis (H69-2C) displayed normal growth characteristics in the temperature range of 20-42 °C through a modulation of the cellular fatty acid composition. Compared with the parental strain, this yeast mutant had increased sensitivity at low and high temperatures (15 and 48 °C, respectively) with an increased tolerance to oxidative stress. The responses to ethanol stress were similar for the parental and PUFA-defective strains. Myristic acid was also determined to play an essential role in the cell growth of H. polymorpha. These findings suggest that both the type of cellular fatty acids and the composition of fatty acids might be involved in the stress responsive mechanisms in this industrially important yeast.
Collapse
|
45
|
Blein-Nicolas M, Albertin W, Valot B, Marullo P, Sicard D, Giraud C, Huet S, Bourgais A, Dillmann C, de Vienne D, Zivy M. Yeast proteome variations reveal different adaptive responses to grape must fermentation. Mol Biol Evol 2013; 30:1368-83. [PMID: 23493259 DOI: 10.1093/molbev/mst050] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Saccharomyces cerevisiae and S. uvarum are two domesticated species of the Saccharomyces sensu stricto clade that diverged around 100 Ma after whole-genome duplication. Both have retained many duplicated genes associated with glucose fermentation and are characterized by the ability to achieve grape must fermentation. Nevertheless, these two species differ for many other traits, indicating that they underwent different evolutionary histories. To determine how the evolutionary histories of S. cerevisiae and S. uvarum are mirrored on the proteome, we analyzed the genetic variability of the proteomes of domesticated strains of these two species by quantitative mass spectrometry. Overall, 445 proteins were quantified. Massive variations of protein abundances were found, that clearly differentiated the two species. Abundance variations in specific metabolic pathways could be related to phenotypic traits known to discriminate the two species. In addition, proteins encoded by duplicated genes were shown to be differently recruited in each species. Comparing the strain differentiation based on the proteome variability to those based on the phenotypic and genetic variations further revealed that the strains of S. uvarum and some strains of S. cerevisiae displayed similar fermentative performances despite strong proteomic and genomic differences. Altogether, these results indicate that the ability of S. cerevisae and S. uvarum to complete grape must fermentation arose through different evolutionary roads, involving different metabolic pathways and duplicated genes.
Collapse
|
46
|
Low temperature highlights the functional role of the cell wall integrity pathway in the regulation of growth in Saccharomyces cerevisiae. Biochem J 2012; 446:477-88. [PMID: 22747505 DOI: 10.1042/bj20120634] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Unlike other stresses, the physiological significance and molecular mechanisms involved in the yeast cold response are largely unknown. In the present study, we show that the CWI (cell wall integrity) pathway plays an important role in the growth of Saccharomyces cerevisiae at low temperatures. Cells lacking the Wsc1p (wall integrity and stress response component 1) membrane sensor or the MAPKs (mitogen-activated protein kinases) Bck1p (bypass of C kinase 1), Mkk (Mapk kinase) 1p/Mkk2p or Slt2p (suppressor of lyt2) exhibited cold sensitivity. However, there was no evidence of either a cold-provoked perturbation of the cell wall or a differential cold expression program mediated by Slt2p. The results of the present study suggest that Slt2p is activated by different inputs in response to nutrient signals and mediates growth control through TORC1 (target of rapamycin 1 complex)-Sch9p (suppressor of cdc25) and PKA (protein kinase A) at low temperatures. We found that absence of TOR1 (target of rapamycin 1) causes cold sensitivity, whereas a ras2Δ mutant shows increased cold growth. Lack of Sch9p alleviates the phenotype of slt2Δ and bck1Δ mutant cells, as well as attenuation of PKA activity by overexpression of BCY1 (bypass of cyclase mutations 1). Interestingly, swi4Δ mutant cells display cold sensitivity, but the phenotype is neither mediated by the Slt2p-regulated induction of Swi4p (switching deficient 4)-responsive promoters nor influenced by osmotic stabilization. Hence, cold signalling through the CWI pathway has distinct features and might mediate still unknown effectors and targets.
Collapse
|
47
|
Transcriptional regulation of desaturase genes in Pichia pastoris GS115. Lipids 2012; 47:1099-108. [PMID: 22961009 DOI: 10.1007/s11745-012-3712-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 08/06/2012] [Indexed: 10/27/2022]
Abstract
Here we investigated the regulation of Pichia pastoris desaturase genes by low temperature and exogenous fatty acids in the late-exponential phase at the transcriptional level. Time-course studies of gene expression showed that mRNA levels of four desaturase genes were rapidly and transiently enhanced by low temperature and suppressed by exogenous oleic acid. Stearic acid showed no obvious repression of mRNA levels of Fad12 and Fad15 and a slight increase in Fad9A and Fad9B mRNA levels. Using a promoter-reporter gene construct, we demonstrated that the pFAD15 promoter activity was induced by low temperature in a time-dependent manner and reduced in a dose- and time-dependent manner by unsaturated fatty acids. Also, there was no absolute correlation between mRNA abundance and production of corresponding fatty acids. Disruption of Spt23 resulted in a decrease in transcript levels of Fad9A and Fad9B, but had little effect on the other desaturase genes. Consistent with these observations, a decrease in the relative amount of oleic acid (OLA) and an increase in the relative content of linoleic acid and ALA with different degrees were clearly observed in the stationary phase cells of ΔSpt23 mutant. Further analysis showed that the effect of low-temperature activation and OLA inhibition on expression of Fad9A and Fad9B seemed to disappear after disruption of the Spt23 gene, which indicated that Spt23p is essential for the expression of two Δ9-desaturase genes internally and probably involved in the regulation of Δ9-desaturase genes transcription in response to external stimuli, and thereby plays a role in the synthesis of OLA.
Collapse
|
48
|
Micolonghi C, Ottaviano D, Di Silvio E, Damato G, Heipieper HJ, Bianchi MM. A dual signalling pathway for the hypoxic expression of lipid genes, dependent on the glucose sensor Rag4, is revealed by the analysis of the KlMGA2 gene in Kluyveromyces lactis. MICROBIOLOGY-SGM 2012; 158:1734-1744. [PMID: 22516223 DOI: 10.1099/mic.0.059402-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the respiratory yeast Kluyveromyces lactis, little is known about the factors regulating the metabolic response to oxygen shortage. After searching for homologues of characterized Saccharomyces cerevisiae regulators of the hypoxic response, we identified a gene that we named KlMGA2, which is homologous to MGA2. The deletion of KlMGA2 strongly reduced both the fermentative and respiratory growth rate and altered fatty acid composition and the unsaturation index of membranes. The reciprocal heterologous expression of MGA2 and KlMGA2 in the corresponding deletion mutant strains suggested that Mga2 and KlMga2 are functional homologues. KlMGA2 transcription was induced by hypoxia and the glucose sensor Rag4 mediated the hypoxic induction of KlMGA2. Transcription of lipid biosynthetic genes KlOLE1, KlERG1, KlFAS1 and KlATF1 was induced by hypoxia and was dependent on KlMga2, except for KlOLE1. Rag4 was required for hypoxic induction of transcription for both KlMga2-dependent (KlERG1) and KlMga2-independent (KlOLE1) structural genes.
Collapse
Affiliation(s)
- Chiara Micolonghi
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Daniela Ottaviano
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Eva Di Silvio
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Giuseppe Damato
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Hermann J Heipieper
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Michele M Bianchi
- Pasteur Institut Cenci-Bolognetti Foundation, Sapienza University of Rome, Italy.,Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
49
|
Cheawchanlertfa P, Cheevadhanarak S, Tanticharoen M, Maresca B, Laoteng K. Up-regulated expression of desaturase genes of Mucor rouxii in response to low temperature associates with pre-existing cellular fatty acid constituents. Mol Biol Rep 2010; 38:3455-62. [DOI: 10.1007/s11033-010-0455-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 11/08/2010] [Indexed: 11/24/2022]
|
50
|
|