1
|
Iskander D, Roy NBA, Payne E, Drasar E, Hennessy K, Harrington Y, Christodoulidou C, Karadimitris A, Batkin L, de la Fuente J. Diamond-Blackfan anemia in adults: In pursuit of a common approach for a rare disease. Blood Rev 2023; 61:101097. [PMID: 37263874 DOI: 10.1016/j.blre.2023.101097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/19/2023] [Accepted: 05/07/2023] [Indexed: 06/03/2023]
Abstract
Diamond-Blackfan anemia (DBA) is a rare bone marrow failure syndrome, usually caused by loss-of function variants in genes encoding ribosomal proteins. The hallmarks of DBA are anemia, congenital anomalies and cancer predisposition. Although DBA usually presents in childhood, the prevalence in later life is increasing due to an expanding repertoire of implicated genes, improvements in genetic diagnosis and increasing life expectancy. Adult patients uniquely suffer the manifestations of end-organ damage caused by the disease and its treatment, and transition to adulthood poses specific issues in disease management. To standardize and optimize care for this rare disease, in this review we provide updated guidance on the diagnosis and management of DBA, with a specific focus on older adolescents and adults. Recommendations are based upon published literature and our pooled clinical experience from three centres in the United Kingdom (U·K.). Uniquely we have also solicited and incorporated the views of affected families, represented by the independent patient organization, DBA U.K.
Collapse
Affiliation(s)
- Deena Iskander
- Centre for Haematology, Department of Immunology & Inflammation, Imperial College London, London W12 0NN, UK.
| | - Noémi B A Roy
- Oxford University Hospitals NHS Foundation Trust and University of Oxford, OX3 9DU, UK
| | - Elspeth Payne
- UCL Cancer Institute, Dept of Hematology, London WC1 E6BT, UK; Dept of Hematology, University College Hospital London, NW1 2BU, UK
| | - Emma Drasar
- Whittington Health NHS Trust and University College Hospital London, N19 5NF, UK
| | - Kelly Hennessy
- Department of Paediatrics, St. Mary's Hospital, Imperial College Healthcare NHS Trust, London W2 1NY, UK
| | - Yvonne Harrington
- Department of Paediatrics, St. Mary's Hospital, Imperial College Healthcare NHS Trust, London W2 1NY, UK
| | - Chrysi Christodoulidou
- Centre for Haematology, Department of Immunology & Inflammation, Imperial College London, London W12 0NN, UK
| | - Anastasios Karadimitris
- Centre for Haematology, Department of Immunology & Inflammation, Imperial College London, London W12 0NN, UK
| | - Leisa Batkin
- DBA, UK 71-73 Main Street, Palterton, Chesterfield, S44 6UR, UK
| | - Josu de la Fuente
- Department of Paediatrics, St. Mary's Hospital, Imperial College Healthcare NHS Trust, London W2 1NY, UK.
| |
Collapse
|
2
|
Deng J, McReynolds LJ. Inherited bone marrow failure syndromes: a review of current practices and potential future research directions. Curr Opin Pediatr 2023; 35:75-83. [PMID: 36354296 PMCID: PMC9812861 DOI: 10.1097/mop.0000000000001196] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE OF REVIEW Recent advances in diagnosis and treatment of inherited bone marrow failure syndromes (IBMFS) have significantly improved disease understanding and patient outcomes. Still, IBMFS present clinical challenges that require further progress. This review aims to provide an overview of the current state of diagnosis and treatment modalities of the major IBMFS seen in paediatrics and present areas of prioritization for future research. RECENT FINDINGS Haematopoietic cell transplantation (HCT) for IBMFS has greatly improved in recent years, shifting the research and clinical focus towards cancer predispositions and adverse effects of treatment. Each year, additional novel genes and pathogenic variants are described, and genotype-phenotype mapping becomes more sophisticated. Moreover, novel therapeutics exploring disease-specific mechanisms show promise to complement HCT and treat patients who cannot undergo current treatment options. SUMMARY Research on IBMFS should have short-term and long-term goals. Immediate challenges include solidifying diagnostic and treatment guidelines, cancer detection and treatment, and continued optimization of HCT. Long-term goals should emphasize genotype-phenotype mapping, genetic screening tools and gene-targeted therapy.
Collapse
Affiliation(s)
- Joseph Deng
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Lisa J. McReynolds
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
3
|
Hiregange DG, Rivalta A, Yonath A, Zimmerman E, Bashan A, Yonath H. Mutations in RPS19 may affect ribosome function and biogenesis in Diamond Blackfan Anemia. FEBS Open Bio 2022; 12:1419-1434. [PMID: 35583751 PMCID: PMC9249338 DOI: 10.1002/2211-5463.13444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/04/2022] [Accepted: 05/17/2022] [Indexed: 11/12/2022] Open
Abstract
Ribosomes, the cellular organelles translating the genetic code to proteins, are assemblies of RNA chains and many proteins (RPs) arranged in precise fine-tuned interwoven structures. Mutated ribosomal genes cause ribosomopathies, including Diamond Blackfan Anemia (DBA, a rare heterogeneous red-cell aplasia connected to ribosome malfunction) or failed biogenesis. Combined bioinformatical, structural, and predictive analyses of potential consequences of possibly expressed mutations in eS19, the protein product of the highly mutated RPS19, suggests that mutations in its exposed surface could alter its positioning during assembly and consequently prevent biogenesis, implying a natural selective strategy to avoid malfunctions in ribosome assembly. A search for RPS19 pseudogenes indicated >90% sequence identity with the wild type, hinting at its expression in cases of absent or truncated gene products.
Collapse
Affiliation(s)
| | - Andre Rivalta
- The Department of Chemical and Structural Biology, Weizmann Institute of Science, Israel
| | - Ada Yonath
- The Department of Chemical and Structural Biology, Weizmann Institute of Science, Israel
| | - Ella Zimmerman
- The Department of Chemical and Structural Biology, Weizmann Institute of Science, Israel
| | - Anat Bashan
- The Department of Chemical and Structural Biology, Weizmann Institute of Science, Israel
| | - Hagith Yonath
- Internal Medicine A and Genetics Institute Sheba Medical Center, and Sackler School of Medicine, Tel Aviv University, Israel
| |
Collapse
|
4
|
Wang B, Wang C, Wan Y, Gao J, Ma Y, Zhang Y, Tong J, Zhang Y, Liu J, Chang L, Xu C, Shen B, Chen Y, Jiang E, Kurita R, Nakamura Y, Lim KC, Engel JD, Zhou J, Cheng T, Zhu X, Zhu P, Shi L. Decoding the pathogenesis of Diamond-Blackfan anemia using single-cell RNA-seq. Cell Discov 2022; 8:41. [PMID: 35534476 PMCID: PMC9085895 DOI: 10.1038/s41421-022-00389-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/21/2022] [Indexed: 11/09/2022] Open
Abstract
Ribosomal protein dysfunction causes diverse human diseases, including Diamond-Blackfan anemia (DBA). Despite the universal need for ribosomes in all cell types, the mechanisms underlying ribosomopathies, which are characterized by tissue-specific defects, are still poorly understood. In the present study, we analyzed the transcriptomes of single purified erythroid progenitors isolated from the bone marrow of DBA patients. These patients were categorized into untreated, glucocorticoid (GC)-responsive and GC-non-responsive groups. We found that erythroid progenitors from untreated DBA patients entered S-phase of the cell cycle under considerable duress, resulting in replication stress and the activation of P53 signaling. In contrast, cell cycle progression was inhibited through induction of the type 1 interferon pathway in treated, GC-responsive patients, but not in GC-non-responsive patients. Notably, a low dose of interferon alpha treatment stimulated the production of erythrocytes derived from DBA patients. By linking the innately shorter cell cycle of erythroid progenitors to DBA pathogenesis, we demonstrated that interferon-mediated cell cycle control underlies the clinical efficacy of glucocorticoids. Our study suggests that interferon administration may constitute a new alternative therapeutic strategy for the treatment of DBA. The trial was registered at www.chictr.org.cn as ChiCTR2000038510.
Collapse
Affiliation(s)
- Bingrui Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Chenchen Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Yang Wan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jie Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yige Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yingnan Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jingyuan Tong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yingchi Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jinhua Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Lixian Chang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Changlu Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Biao Shen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Division of Transplantation Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yumei Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Division of Transplantation Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ryo Kurita
- Department of Research and Development, Central Blood Institute, Japanese Red Cross Society, Tokyo, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Ibaraki, Japan
| | - Kim-Chew Lim
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - James Douglas Engel
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jiaxi Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China. .,Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China. .,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China.
| | - Xiaofan Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China. .,Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
| | - Ping Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China. .,Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China. .,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China.
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China. .,Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China.
| |
Collapse
|
5
|
An K, Zhou JB, Xiong Y, Han W, Wang T, Ye ZQ, Wu YD. Computational Studies of the Structural Basis of Human RPS19 Mutations Associated With Diamond-Blackfan Anemia. Front Genet 2021; 12:650897. [PMID: 34108988 PMCID: PMC8181406 DOI: 10.3389/fgene.2021.650897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/28/2021] [Indexed: 11/13/2022] Open
Abstract
Diamond-Blackfan Anemia (DBA) is an inherited rare disease characterized with severe pure red cell aplasia, and it is caused by the defective ribosome biogenesis stemming from the impairment of ribosomal proteins. Among all DBA-associated ribosomal proteins, RPS19 affects most patients and carries most DBA mutations. Revealing how these mutations lead to the impairment of RPS19 is highly demanded for understanding the pathogenesis of DBA, but a systematic study is currently lacking. In this work, based on the complex structure of human ribosome, we comprehensively studied the structural basis of DBA mutations of RPS19 by using computational methods. Main structure elements and five conserved surface patches involved in RPS19-18S rRNA interaction were identified. We further revealed that DBA mutations would destabilize RPS19 through disrupting the hydrophobic core or breaking the helix, or perturb the RPS19-18S rRNA interaction through destroying hydrogen bonds, introducing steric hindrance effect, or altering surface electrostatic property at the interface. Moreover, we trained a machine-learning model to predict the pathogenicity of all possible RPS19 mutations. Our work has laid a foundation for revealing the pathogenesis of DBA from the structural perspective.
Collapse
Affiliation(s)
- Ke An
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Jing-Bo Zhou
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yao Xiong
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Wei Han
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Tao Wang
- Shenzhen Bay Laboratory, Shenzhen, China
| | - Zhi-Qiang Ye
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
- Shenzhen Bay Laboratory, Shenzhen, China
| | - Yun-Dong Wu
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
- Shenzhen Bay Laboratory, Shenzhen, China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| |
Collapse
|
6
|
Da Costa L, Leblanc T, Mohandas N. Diamond-Blackfan anemia. Blood 2020; 136:1262-1273. [PMID: 32702755 PMCID: PMC7483438 DOI: 10.1182/blood.2019000947] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/30/2019] [Indexed: 12/15/2022] Open
Abstract
Diamond-Blackfan anemia (DBA) was the first ribosomopathy described and is a constitutional inherited bone marrow failure syndrome. Erythroblastopenia is the major characteristic of the disease, which is a model for ribosomal diseases, related to a heterozygous allelic variation in 1 of the 20 ribosomal protein genes of either the small or large ribosomal subunit. The salient feature of classical DBA is a defect in ribosomal RNA maturation that generates nucleolar stress, leading to stabilization of p53 and activation of its targets, resulting in cell-cycle arrest and apoptosis. Although activation of p53 may not explain all aspects of DBA erythroid tropism, involvement of GATA1/HSP70 and globin/heme imbalance, with an excess of the toxic free heme leading to reactive oxygen species production, account for defective erythropoiesis in DBA. Despite significant progress in defining the molecular basis of DBA and increased understanding of the mechanistic basis for DBA pathophysiology, progress in developing new therapeutic options has been limited. However, recent advances in gene therapy, better outcomes with stem cell transplantation, and discoveries of putative new drugs through systematic drug screening using large chemical libraries provide hope for improvement.
Collapse
MESH Headings
- Abnormalities, Multiple/genetics
- Adenosine Deaminase/blood
- Adenosine Deaminase/genetics
- Anemia, Diamond-Blackfan/diagnosis
- Anemia, Diamond-Blackfan/genetics
- Anemia, Diamond-Blackfan/metabolism
- Anemia, Diamond-Blackfan/therapy
- Child, Preschool
- Congenital Abnormalities/genetics
- Diagnosis, Differential
- Disease Management
- Drug Resistance
- Erythrocytes/enzymology
- Fetal Growth Retardation/etiology
- GATA1 Transcription Factor/genetics
- GATA1 Transcription Factor/physiology
- Genetic Heterogeneity
- Genetic Therapy
- Glucocorticoids/therapeutic use
- HSP70 Heat-Shock Proteins/metabolism
- Hematopoietic Stem Cell Transplantation
- Humans
- Infant
- Infant, Newborn
- Intercellular Signaling Peptides and Proteins/blood
- Intercellular Signaling Peptides and Proteins/genetics
- Models, Biological
- Mutation
- Neoplastic Syndromes, Hereditary/genetics
- Ribosomal Proteins/genetics
- Ribosomal Proteins/physiology
- Tumor Suppressor Protein p53/physiology
Collapse
Affiliation(s)
- Lydie Da Costa
- Service d'Hématologie Biologique, Hôpital Robert-Debré, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- U1134, Université Paris, Paris, France
- Laboratoire d'Excellence GR-Ex, Paris, France
| | - Thierry Leblanc
- Service d'Immuno-Hématologie Pédiatrique, Hôpital Robert-Debré, AP-HP, Paris, France; and
| | - Narla Mohandas
- Laboratory of Red Cell Physiology, New York Blood Center, New York, NY
| |
Collapse
|
7
|
Abstract
Diamond–Blackfan anemia (DBA) is a rare congenital hypoplastic anemia characterized by a block in erythropoiesis at the progenitor stage, although the exact stage at which this occurs remains to be fully defined. DBA presents primarily during infancy with macrocytic anemia and reticulocytopenia with 50% of cases associated with a variety of congenital malformations. DBA is most frequently due to a sporadic mutation (55%) in genes encoding several different ribosomal proteins, although there are many cases where there is a family history of the disease with varying phenotypes. The erythroid tropism of the disease is still a matter of debate for a disease related to a defect in global ribosome biogenesis. Assessment of biological features in conjunction with genetic testing has increased the accuracy of the diagnosis of DBA. However, in certain cases, it continues to be difficult to firmly establish a diagnosis. This review will focus on the diagnosis of DBA along with a description of new advances in our understanding of the pathophysiology and treatment recommendations for DBA.
Collapse
Affiliation(s)
- Lydie Da Costa
- Université Paris 7 Denis Diderot-Sorbonne, Paris, France.,AP-HP, Hematology laboratory, Robert Debré Hospital, Paris, France.,INSERM UMR1134, Paris, France.,Laboratory of Excellence for Red Cell, LABEX GR-Ex, Paris, France
| | - Anupama Narla
- Stanford University School of Medicine, Stanford, USA
| | | |
Collapse
|
8
|
Vlachos A, Blanc L, Lipton JM. Diamond Blackfan anemia: a model for the translational approach to understanding human disease. Expert Rev Hematol 2014; 7:359-72. [PMID: 24665981 DOI: 10.1586/17474086.2014.897923] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Diamond Blackfan anemia (DBA) is an inherited bone marrow failure syndrome. As with the other rare inherited bone marrow failure syndromes, the study of these disorders provides important insights into basic biology and, in the case of DBA, ribosome biology; the disruption of which characterizes the disorder. Thus DBA serves as a paradigm for translational medicine in which the efforts of clinicians to manage DBA have informed laboratory scientists who, in turn, have stimulated clinical researchers to utilize scientific discovery to provide improved care. In this review we describe the clinical syndrome Diamond Blackfan anemia and, in particular, we demonstrate how the study of DBA has allowed scientific inquiry to create opportunities for progress in its understanding and treatment.
Collapse
|
9
|
Clinical utility gene card for: Diamond-Blackfan anemia--update 2013. Eur J Hum Genet 2013; 21:ejhg201334. [PMID: 23463023 DOI: 10.1038/ejhg.2013.34] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
10
|
Neuwirtova R, Fuchs O, Holicka M, Vostry M, Kostecka A, Hajkova H, Jonasova A, Cermak J, Cmejla R, Pospisilova D, Belickova M, Siskova M, Hochova I, Vondrakova J, Sponerova D, Kadlckova E, Novakova L, Brezinova J, Michalova K. Transcription factors Fli1 and EKLF in the differentiation of megakaryocytic and erythroid progenitor in 5q- syndrome and in Diamond-Blackfan anemia. Ann Hematol 2012; 92:11-8. [PMID: 22965552 DOI: 10.1007/s00277-012-1568-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 08/29/2012] [Indexed: 11/29/2022]
Abstract
Friend leukemia virus integration 1 (Fli1) and erythroid Krüppel-like factor (EKLF) participate under experimental conditions in the differentiation of megakaryocytic and erythroid progenitor in cooperation with other transcription factors, cytokines, cytokine receptors, and microRNAs. Defective erythropoiesis with refractory anemia and effective megakaryopoiesis with normal or increased platelet count is typical for 5q- syndrome. We decided to evaluate the roles of EKLF and Fli1 in the pathogenesis of this syndrome and of another ribosomopathy, Diamond-Blackfan anemia (DBA). Fli1 and EKLF mRNA levels were examined in mononuclear blood and bone marrow cells from patients with 5q- syndrome, low-risk MDS patients with normal chromosome 5, DBA patients, and healthy controls. In 5q- syndrome, high Fli1 mRNA levels in the blood and bone marrow mononuclear cells were found. In DBA, Fli1 expression did not differ from the controls. EKLF mRNA level was significantly decreased in the blood and bone marrow of 5q- syndrome and in all DBA patients. We propose that the elevated Fli1 in 5q- syndrome protects megakaryocytic cells from ribosomal stress contrary to erythroid cells and contributes to effective though dysplastic megakaryopoiesis.
Collapse
Affiliation(s)
- Radana Neuwirtova
- 1st Department of Medicine, Department of Hematology, General University Hospital, U Nemocnice 2, Prague 2, 128 00, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Pospisilova D, Cmejlova J, Ludikova B, Stary J, Cerna Z, Hak J, Timr P, Petrtylova K, Blatny J, Vokurka S, Cmejla R. The Czech National Diamond-Blackfan Anemia Registry: Clinical data and ribosomal protein mutations update. Blood Cells Mol Dis 2012; 48:209-18. [DOI: 10.1016/j.bcmd.2012.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 02/01/2012] [Indexed: 10/28/2022]
|
12
|
Abstract
Diamond Blackfan anemia (DBA) is a lineage-selective inherited bone marrow failure syndrome characterized primarily by anemia and physical malformations. Recent advances in identifying the genetic abnormalities underlying DBA have demonstrated involvement of genes encoding both large (RPL) and small (RPS) ribosomal subunit proteins, including mutations of RPL5, RPL11, RPL35A, RPS7, RPS10, RPS17, RPS19, RPS24, and RPS26 in 50% to 60% of affected patients. Despite significant progress, identification of gene abnormalities in the remaining patients remains an important question since present data suggest that mutations in other members of the ribosomal protein gene complement do not explain those cases without an identified genetic lesion in these genes. Genetic studies have also raised new questions with the recognition of substantial variability in the manifestations of DBA, ranging from ribosomal protein mutations in otherwise asymptomatic individuals to those with classic severe red blood cell aplasia with characteristic malformations, at times within the same kindred. In this review, we summarize the genetic basis of DBA and discuss mechanisms by which the phenotype of DBA might be modified.
Collapse
Affiliation(s)
- Jason E Farrar
- Kimmel Comprehensive Cancer Center, Department of Oncology, Division of Pediatric Oncology, Johns Hopkins University, Baltimore, MD 21231, USA.
| | | |
Collapse
|
13
|
Vlachos A, Dahl N, Dianzani I, Lipton JM. Clinical utility gene card for: Diamond Blackfan anemia. Eur J Hum Genet 2011; 19:ejhg2010247. [PMID: 21248735 DOI: 10.1038/ejhg.2010.247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Adrianna Vlachos
- Feinstein Institute for Medical Research, Hofstra North Shore-LIJ School of Medicine, Division of Hematology/Oncology and Stem Cell Transplantation, Steven and Alexandra Cohen Children's Medical Center of New York, New Hyde Park, NY 11040, USA
| | | | | | | |
Collapse
|
14
|
Da Costa L, Moniz H, Simansour M, Tchernia G, Mohandas N, Leblanc T. Diamond-Blackfan anemia, ribosome and erythropoiesis. Transfus Clin Biol 2010; 17:112-9. [PMID: 20655265 DOI: 10.1016/j.tracli.2010.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 06/04/2010] [Indexed: 01/19/2023]
Abstract
Diamond-Blackfan anemia is a rare inherited bone marrow failure syndrome (five to seven cases per million live births) characterized by an aregenerative, usually macrocytic anemia with an absence or less than 5% of erythroid precursors (erythroblastopenia) in an otherwise normal bone marrow. The platelet and the white cell counts are usually normal but neutropenia, thrombopenia or thrombocytosis have been noted at diagnosis. In 40 to 50% of DBA patients, congenital abnormalities mostly in the cephalic area and in thumbs and upper limbs have been described. Recent analysis did show a phenotype/genotype correlation. Congenital erythroblastopenia of DBA is the first human disease identified to result from defects in ribosomal biogenesis. The first ribosomal gene involved in DBA, ribosomal protein (RP) gene S19 (RPS19 gene), was identified in 1999. Subsequently, mutations in 12 other RP genes out of a total of 78 RP genes have been identified in DBA. All RP gene mutations described to date are heterozygous and dominant inheritance has been documented in 40 to 45% of affected individuals. As RP mutations are yet to be identified in approximately 50% of DBA cases, it is likely that other yet to be identified genes involved in ribosomal biogenesis or other pathways may be responsible for DBA phenotype.
Collapse
Affiliation(s)
- L Da Costa
- Service d'hématologie biologique, hôpital R.-Debré, 48, boulevard Sérurier, 75019 Paris, France.
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Diamond-Blackfan anemia (DBA) is characterized by red cell failure, the presence of congenital anomalies, and cancer predisposition. In addition to being an inherited bone marrow failure syndrome, DBA is also categorized as a ribosomopathy as, in more than 50% of cases, the syndrome appears to result from haploinsufficiency of either a small or large subunit-associated ribosomal protein. Nonetheless, the exact mechanism by which haploinsufficiency results in erythroid failure, as well as the other clinical manifestations, remains uncertain. New knowledge regarding genetic and molecular mechanisms combined with robust clinical data from several international patient registries has provided important insights into the diagnosis of DBA and may, in the future, provide new treatments as well. Diagnostic criteria have been expanded to include patients with little or no clinical findings. Patient management is therefore centered on accurate diagnosis, appropriate use of transfusions and iron chelation, corticosteroids, hematopoietic stem cell transplantation, and a coordinated multidisciplinary approach to these complex patients.
Collapse
|
16
|
Konno Y, Toki T, Tandai S, Xu G, Wang R, Terui K, Ohga S, Hara T, Hama A, Kojima S, Hasegawa D, Kosaka Y, Yanagisawa R, Koike K, Kanai R, Imai T, Hongo T, Park MJ, Sugita K, Ito E. Mutations in the ribosomal protein genes in Japanese patients with Diamond-Blackfan anemia. Haematologica 2010; 95:1293-9. [PMID: 20378560 DOI: 10.3324/haematol.2009.020826] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Diamond-Blackfan anemia is a rare, clinically heterogeneous, congenital red cell aplasia: 40% of patients have congenital abnormalities. Recent studies have shown that in western countries, the disease is associated with heterozygous mutations in the ribosomal protein (RP) genes in about 50% of patients. There have been no studies to determine the incidence of these mutations in Asian patients with Diamond-Blackfan anemia. DESIGN AND METHODS We screened 49 Japanese patients with Diamond-Blackfan anemia (45 probands) for mutations in the six known genes associated with Diamond-Blackfan anemia: RPS19, RPS24, RPS17, RPL5, RPL11, and RPL35A. RPS14 was also examined due to its implied involvement in 5q- syndrome. RESULTS Mutations in RPS19, RPL5, RPL11 and RPS17 were identified in five, four, two and one of the probands, respectively. In total, 12 (27%) of the Japanese Diamond-Blackfan anemia patients had mutations in ribosomal protein genes. No mutations were detected in RPS14, RPS24 or RPL35A. All patients with RPS19 and RPL5 mutations had physical abnormalities. Remarkably, cleft palate was seen in two patients with RPL5 mutations, and thumb anomalies were seen in six patients with an RPS19 or RPL5 mutation. In contrast, a small-for-date phenotype was seen in five patients without an RPL5 mutation. CONCLUSIONS We observed a slightly lower frequency of mutations in the ribosomal protein genes in patients with Diamond-Blackfan anemia compared to the frequency reported in western countries. Genotype-phenotype data suggest an association between anomalies and RPS19 mutations, and a negative association between small-for-date phenotype and RPL5 mutations.
Collapse
Affiliation(s)
- Yuki Konno
- Department of Pediatrics, Hirosaki University Graduate School of Medicine,5 Zaifucho, Hirosaki, Aomori 036-8562, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Mehta P, Locatelli F, Stary J, Smith FO. Bone marrow transplantation for inherited bone marrow failure syndromes. Pediatr Clin North Am 2010; 57:147-70. [PMID: 20307716 DOI: 10.1016/j.pcl.2010.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The inherited bone marrow failure (BMF) syndromes are characterized by impaired hematopoiesis and cancer predisposition. Most inherited BMF syndromes are also associated with a range of congenital anomalies. Progress in improving the outcomes for children with inherited BMF syndromes has been limited by the rarity of these disorders, as well as disease-specific genetic, molecular, cellular, and clinical characteristics that increase the risks of complications associated with hematopoietic stem cell transplantation (HSCT). As a result, the ability to develop innovative transplant approaches to circumvent these problems has been limited. Recent progress has been made, as best evidenced in studies adding fludarabine to the preparative regimen for children undergoing unrelated donor HSCT for Fanconi anemia. The rarity of these diseases coupled with the far more likely incremental improvements that will result from ongoing research will require prospective international clinical trials to improve the outcome for these children.
Collapse
Affiliation(s)
- Parinda Mehta
- Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | | | | | |
Collapse
|
18
|
Gazda HT, Sheen MR, Vlachos A, Choesmel V, O'Donohue MF, Schneider H, Darras N, Hasman C, Sieff CA, Newburger PE, Ball SE, Niewiadomska E, Matysiak M, Zaucha JM, Glader B, Niemeyer C, Meerpohl JJ, Atsidaftos E, Lipton JM, Gleizes PE, Beggs AH. Ribosomal protein L5 and L11 mutations are associated with cleft palate and abnormal thumbs in Diamond-Blackfan anemia patients. Am J Hum Genet 2008; 83:769-80. [PMID: 19061985 DOI: 10.1016/j.ajhg.2008.11.004] [Citation(s) in RCA: 321] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 10/31/2008] [Accepted: 11/06/2008] [Indexed: 11/28/2022] Open
Abstract
Diamond-Blackfan anemia (DBA), a congenital bone-marrow-failure syndrome, is characterized by red blood cell aplasia, macrocytic anemia, clinical heterogeneity, and increased risk of malignancy. Although anemia is the most prominent feature of DBA, the disease is also characterized by growth retardation and congenital anomalies that are present in approximately 30%-50% of patients. The disease has been associated with mutations in four ribosomal protein (RP) genes, RPS19, RPS24, RPS17, and RPL35A, in about 30% of patients. However, the genetic basis of the remaining 70% of cases is still unknown. Here, we report the second known mutation in RPS17 and probable pathogenic mutations in three more RP genes, RPL5, RPL11, and RPS7. In addition, we identified rare variants of unknown significance in three other genes, RPL36, RPS15, and RPS27A. Remarkably, careful review of the clinical data showed that mutations in RPL5 are associated with multiple physical abnormalities, including craniofacial, thumb, and heart anomalies, whereas isolated thumb malformations are predominantly present in patients carrying mutations in RPL11. We also demonstrate that mutations of RPL5, RPL11, or RPS7 in DBA cells is associated with diverse defects in the maturation of ribosomal RNAs in the large or the small ribosomal subunit production pathway, expanding the repertoire of ribosomal RNA processing defects associated with DBA.
Collapse
|
19
|
Vlachos A, Ball S, Dahl N, Alter BP, Sheth S, Ramenghi U, Meerpohl J, Karlsson S, Liu JM, Leblanc T, Paley C, Kang EM, Leder EJ, Atsidaftos E, Shimamura A, Bessler M, Glader B, Lipton JM. Diagnosing and treating Diamond Blackfan anaemia: results of an international clinical consensus conference. Br J Haematol 2008; 142:859-76. [PMID: 18671700 PMCID: PMC2654478 DOI: 10.1111/j.1365-2141.2008.07269.x] [Citation(s) in RCA: 314] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Diamond Blackfan anaemia (DBA) is a rare, genetically and clinically heterogeneous, inherited red cell aplasia. Classical DBA affects about seven per million live births and presents during the first year of life. However, as mutated genes have been discovered in DBA, non-classical cases with less distinct phenotypes are being described in adults as well as children. In caring for these patients it is often difficult to have a clear understanding of the treatment options and their outcomes because of the lack of complete information on the natural history of the disease. The purpose of this document is to review the criteria for diagnosis, evaluate the available treatment options, including corticosteroid and transfusion therapies and stem cell transplantation, and propose a plan for optimizing patient care. Congenital anomalies, mode of inheritance, cancer predisposition, and pregnancy in DBA are also reviewed. Evidence-based conclusions will be made when possible; however, as in many rare diseases, the data are often anecdotal and the recommendations are based upon the best judgment of experienced clinicians. The recommendations regarding the diagnosis and management described in this report are the result of deliberations and discussions at an international consensus conference.
Collapse
Affiliation(s)
- Adrianna Vlachos
- The Feinstein Institute for Medical Research, Manhasset, NY, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Campagnoli MF, Ramenghi U, Armiraglio M, Quarello P, Garelli E, Carando A, Avondo F, Pavesi E, Fribourg S, Gleizes PE, Loreni F, Dianzani I. RPS19 mutations in patients with Diamond-Blackfan anemia. Hum Mutat 2008; 29:911-20. [PMID: 18412286 DOI: 10.1002/humu.20752] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Diamond-Blackfan anemia (DBA) is an inherited disease characterized by pure erythroid aplasia. Thirty percent (30%) of patients display malformations, especially of the hands, face, heart, and urogenital tract. DBA has an autosomal dominant pattern of inheritance. De novo mutations are common and familial cases display wide clinical heterogeneity. Twenty-five percent (25%) of patients carry a mutation in the ribosomal protein (RP) S19 gene, whereas mutations in RPS24, RPS17, RPL35A, RPL11, and RPL5 are rare. These genes encode for structural proteins of the ribosome. A link between ribosomal functions and erythroid aplasia is apparent in DBA, but its etiology is not clear. Most authors agree that a defect in protein synthesis in a rapidly proliferating tissue, such as the erythroid bone marrow, may explain the defective erythropoiesis. A total of 77 RPS19 mutations have been described. Most are whole gene deletions, translocations, or truncating mutations (nonsense or frameshift), suggesting that haploinsufficiency is the basis of DBA pathology. A total of 22 missense mutations have also been described and several works have provided in vitro functional data for the mutant proteins. This review looks at the data on all these mutations, proposes a functional classification, and describes six new mutations. It is shown that patients with RPS19 mutations display a poorer response to steroids and a worse long-term prognosis compared to other DBA patients.
Collapse
|
21
|
Kuramitsu M, Hamaguchi I, Takuo M, Masumi A, Momose H, Takizawa K, Mochizuki M, Naito S, Yamaguchi K. Deficient RPS19 protein production induces cell cycle arrest in erythroid progenitor cells. Br J Haematol 2008; 140:348-59. [PMID: 18217898 DOI: 10.1111/j.1365-2141.2007.06930.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The gene encoding ribosomal protein S19 (RPS19) is one of the responsible genes for Diamond-Blackfan anaemia (DBA), a congenital erythroblastopenia. Although haplo-insufficiency of RPS19 has been suggested to be the onset mechanism underlying the pathogenesis of DBA, the sequential mechanism has not been elucidated. In order to analyse the consequences of the missense mutation of RPS19 specific for DBA patients, we made mutated RPS19 expression vectors. Twelve C-terminally Flag-tagged missense mutants were exogenously expressed from retroviral vectors and analysed by Western blot analysis and flow cytometry. When these 12 mutants were expressed in the erythro-leukaemic cell lines K562 and human bone marrow CD34(+) cells, almost all of the mutant proteins (except for G120R) were unstable, and the levels of mutated RPS19 protein were significantly low. To address the effect of deficient RPS19 expression on cell proliferation, RPS19 was downregulated by siRNA. Repressive expression of RPS19 in human CD34(+) cells produced an elevated number of cells at G0 and induced erythroid progenitor-specific defects in BM cells. These results suggest that abnormal ribosomal biogenesis causes inadequate cell cycle arrest in haematopoietic progenitors, and that, subsequently, erythroid progenitors are specifically hampered. These in vitro phenotypes of genetically manipulated CD34(+) cells mimic DBA pathogenesis.
Collapse
Affiliation(s)
- Madoka Kuramitsu
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Disease, Musashimurayama, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Cmejla R, Cmejlova J, Handrkova H, Petrak J, Pospisilova D. Ribosomal protein S17 gene (RPS17) is mutated in Diamond-Blackfan anemia. Hum Mutat 2008; 28:1178-82. [PMID: 17647292 DOI: 10.1002/humu.20608] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Diamond-Blackfan anemia (DBA) is a congenital erythroid aplasia characterized as a normochromic macrocytic anemia with a selective deficiency in red blood cell precursors in otherwise normocellular bone marrow. In 40% of DBA patients, various physical anomalies are also present. Currently two genes are associated with the DBA phenotype--the ribosomal protein (RP) S19 mutated in 25% of DBA patients and RPS24 mutated in approximately 1.4% of DBA patients. Here we report the identification of a mutation in yet another ribosomal protein, RPS17. The mutation affects the translation initiation start codon, changing T to G (c.2T>G), thus eliminating the natural start of RPS17 protein biosynthesis. RNA analysis revealed that the mutated allele was expressed, and the next downstream start codon located at position +158 should give rise to a short peptide of only four amino acids (Met-Ser-Arg-Ile). The mutation arose de novo, since all healthy family members carry the wild-type alleles. The identification of a mutation in the third RP of the small ribosomal subunit in DBA patients further supports the theory that impaired translation may be the main cause of DBA pathogenesis.
Collapse
Affiliation(s)
- Radek Cmejla
- Department of Cell Physiology, Institute of Hematology and Blood Transfusion, Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
23
|
Abstract
Diamond Blackfan anemia (DBA) is an inherited hypoplastic anemia that typically presents in the first year of life. The genes identified to date that are mutated in DBA encode ribosomal proteins, and in these cases ribosomal protein haploinsufficiency gives rise to the disease. The developmental timing of DBA presentation suggests that the changes in red blood cell production that occur around the time of birth trigger a pathophysiological mechanism, likely linked to defective ribosome synthesis, which precipitates the hematopoietic phenotype. Variable presentation of other clinical phenotypes in DBA patients indicates that other developmental pathways may also be affected by ribosomal protein haploinsufficiency and that the involvement of these pathways is influenced by modifier genes. Understanding the molecular basis for the developmental timing of DBA presentation promises to shed light on a number of baffling features of this disease. This chapter also attempts to demonstrate how the marriage of laboratory and clinical science may enhance each and permit insights into human disease that neither alone can accomplish.
Collapse
|
24
|
Abstract
Diamond-Blackfan anemia (DBA) is a congenital erythroid aplasia that usually presents as macrocytic anemia during infancy. Linkage analysis suggests that at least 4 genes are associated with DBA of which 2 have been identified so far. The known DBA genes encode the ribosomal proteins S19 and S24 accounting for 25% and 2% of the patients, respectively. Herein, we review possible links between ribosomal proteins and erythropoiesis that might explain DBA pathogenesis. Recent studies and emerging findings suggest that a malfunctioning translational machinery may be a cause of anemia in patients with DBA.
Collapse
Affiliation(s)
- Johan Flygare
- Department of Molecular Medicine and Gene Therapy, Institute of Molecular Medicine, and Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, Lund University, A12 221-84 Lund, Sweden.
| | | |
Collapse
|
25
|
Abstract
Diamond-Blackfan anaemia (DBA) is a congenital anaemia and broad developmental disease that develops soon after birth. The anaemia is due to failure of erythropoiesis, with normal platelet and myeloid lineages, and it can be managed with steroids, blood transfusions, or stem cell transplantation. Normal erythropoiesis after transplantation shows that the defect is intrinsic to an erythroid precursor. DBA is inherited in about 10-20% of cases, and genetic studies have identified mutations in a ribosomal protein gene, RPS19, in 25% of cases; there is evidence for involvement of at least two other genes. In yeast, RPS19 deletion leads to a block in ribosomal RNA biogenesis. The critical question is how mutations in RPS19 lead to the failure of proliferation and differentiation of erythroid progenitors. While this question has not yet been answered, understanding the biology of DBA may provide insight not only into the defect in erythropoisis, but also into the other developmental abnormalities that are present in about 40% of patients, and into the cancer predisposition that is inherent to DBA.
Collapse
Affiliation(s)
- Hanna T Gazda
- Children's Hospital Boston, Division of Genetics and Program in Genomics, Boston, MA 02115, USA
| | | |
Collapse
|
26
|
Abstract
Diamond Blackfan anemia (DBA) is a genetically and clinically heterogeneous disorder characterized by erythroid failure, congenital anomalies, and a predisposition to cancer. Faulty ribosome biogenesis is hypothesized to be the underlying defect, leading to erythroid failure due to accelerated apoptosis in affected erythroid progenitors/precursors. Since first observed in DBA, pro-apoptotic hematopoiesis has been recognized as a common mechanism for hematopoietic failure in virtually all of the inherited bone marrow failure syndromes. Inherited as an autosomal dominant trait, one of what appears to be multiple DBA genes, coding for ribosomal protein RPS19, has been cloned. The discovery of additional genes will no doubt clarify the molecular pathophysiology of this disorder. Even within families, individuals may vary dramatically as to the degree of anemia, treatment response, and the presence of congenital anomalies. The study of DBA has been facilitated by the creation of international patient registries that provide more reliable information regarding clinical presentation, genetics, and outcome, as well as descriptions of congenital malformations and cancer predisposition, than can be culled from the literature. Analysis of registry data has led to improvements in clinical care and provides patients and research specimens for clinical and laboratory investigations.
Collapse
Affiliation(s)
- Jeffrey M Lipton
- Division of Pediatric Hematology/Oncology and Stem Cell Transplantation, Schneider Children's Hospital, Albert Einstein College of Medicine, Long Island Jewish Medical Center, New Hyde Park, NY 11040, USA.
| |
Collapse
|
27
|
Koga Y, Ohga S, Nomura A, Takada H, Hara T. Reduced gene expression of clustered ribosomal proteins in Diamond-Blackfan anemia patients without RPS19 gene mutations. J Pediatr Hematol Oncol 2006; 28:355-61. [PMID: 16794503 DOI: 10.1097/00043426-200606000-00007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Diamond-Blackfan anemia (DBA) is a rare congenital pure red cell aplasia occasionally presenting physical anomalies. Ribosomal protein S19 gene (RPS19) is one of the causative genes for DBA; however, the pathologic mechanism of erythroblastopenia and abnormal morphology has not been clarified. To assess the pathophysiology of DBA, the gene expression profile of 2 representative patients carrying no RPS19 mutations was compared with that of aplastic anemia (AA) patients, assessed by the microarray analyses. The K-mean clustering analysis revealed the significant categorization of 28 ribosomal protein (RP) genes into a small set of group (994 genes) (P=2.39E-17), all of which were expressed at lower levels in DBA than in AA patients. RPS19 was categorized into the set of low expressing genes in DBA patients. No mutations were determined in the promoter and coding sequences of top 10 RP genes expressed at the levels over 1.2 of the AA/DBA ratio, in 3 DBA patients. These results indicated that the lower expression of RP gene group, even without the mutation, was a distinctive feature of DBA from AA, although the study number was small. The reduced RP gene expression, by itself, may suggest an underlying mechanism of the constitutional anemia.
Collapse
Affiliation(s)
- Yuhki Koga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|
28
|
Meier UT. The many facets of H/ACA ribonucleoproteins. Chromosoma 2005; 114:1-14. [PMID: 15770508 PMCID: PMC4313906 DOI: 10.1007/s00412-005-0333-9] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 01/31/2005] [Accepted: 02/01/2005] [Indexed: 10/25/2022]
Abstract
The H/ACA ribonucleoproteins (RNPs) are known as one of the two major classes of small nucleolar RNPs. They predominantly guide the site-directed pseudouridylation of target RNAs, such as ribosomal and spliceosomal small nuclear RNAs. In addition, they process ribosomal RNA and stabilize vertebrate telomerase RNA. Taken together, the function of H/ACA RNPs is essential for ribosome biogenesis, pre-mRNA splicing, and telomere maintenance. Every cell contains 100-200 different species of H/ACA RNPs, each consisting of the same four core proteins and one function-specifying H/ACA RNA. Most of these RNPs reside in nucleoli and Cajal bodies and mediate the isomerization of specific uridines to pseudouridines. Catalysis of the reaction is mediated by the putative pseudouridylase NAP57 (dyskerin, Cbf5p). Unexpectedly, mutations in this housekeeping enzyme are the major determinants of the inherited bone marrow failure syndrome dyskeratosis congenita. This review details the many diverse functions of H/ACA RNPs, some yet to be uncovered, with an emphasis on the role of the RNP proteins. The multiple functions of H/ACA RNPs appear to be reflected in the complex phenotype of dyskeratosis congenita.
Collapse
Affiliation(s)
- U Thomas Meier
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
29
|
Gazda HT, Zhong R, Long L, Niewiadomska E, Lipton JM, Ploszynska A, Zaucha JM, Vlachos A, Atsidaftos E, Viskochil DH, Niemeyer CM, Meerpohl JJ, Rokicka-Milewska R, Pospisilova D, Wiktor-Jedrzejczak W, Nathan DG, Beggs AH, Sieff CA. RNA and protein evidence for haplo-insufficiency in Diamond-Blackfan anaemia patients with RPS19 mutations. Br J Haematol 2004; 127:105-13. [PMID: 15384984 DOI: 10.1111/j.1365-2141.2004.05152.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The genetic basis of Diamond-Blackfan anaemia (DBA), a congenital erythroid hypoplasia that shows marked clinical heterogeneity, remains obscure. However, the fact that nearly one-quarter of patients harbour a variety of mutations in RPS19, a ribosomal protein gene, provides an opportunity to examine whether haplo-insufficiency of RPS19 protein can be demonstrated in certain cases. To that end, we identified 19 of 81 DBA index cases, both familial and sporadic, with RPS19 mutations. We found 14 distinct insertions, deletions, missense, nonsense and splice site mutations in the 19 probands, and studied mutations in 10 patients at the RNA level and in three patients at the protein level. Characterization of the mutations in 10 probands, including six with novel insertions, nonsense and splice site mutations, showed that the abnormal transcript was detectable in nine cases. The RPS19 mRNA and protein in CD34+ bone marrow cells identified haplo-insufficiency in three cases predicted to have one functional allele. Our data support the notion that, in addition to rare DBA patients with the deletion of one allele, the disease in certain other RPS19 mutant patients is because of RPS19 protein haplo-insufficiency.
Collapse
Affiliation(s)
- Hanna T Gazda
- Department of Pediatric Oncology, Dana Farber Cancer Institute, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Sylvester JE, Fischel-Ghodsian N, Mougey EB, O'Brien TW. Mitochondrial ribosomal proteins: candidate genes for mitochondrial disease. Genet Med 2004; 6:73-80. [PMID: 15017329 DOI: 10.1097/01.gim.0000117333.21213.17] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Most of the energy requirement for cell growth, differentiation, and development is met by the mitochondria in the form of ATP produced by the process of oxidative phosphorylation. Human mitochondrial DNA encodes a total of 13 proteins, all of which are essential for oxidative phosphorylation. The mRNAs for these proteins are translated on mitochondrial ribosomes. Recently, the genes for human mitochondrial ribosomal proteins (MRPs) have been identified. In this review, we summarize their refined chromosomal location. It is well known that mutations in the mitochondrial translation system, i.e., ribosomal RNA and transfer RNA cause various pathologies. In this review, we suggest possible associations between clinical conditions and MRPs based on coincidence of genetic map data and chromosomal location. These MRPs may be candidate genes for the clinical condition or may act as modifiers of existing known gene mutations (mt-tRNA, mt-rRNA, etc.).
Collapse
|
31
|
Orfali KA, Ohene-Abuakwa Y, Ball SE. Diamond Blackfan anaemia in the UK: clinical and genetic heterogeneity. Br J Haematol 2004; 125:243-52. [PMID: 15059149 DOI: 10.1111/j.1365-2141.2004.04890.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A detailed family study was undertaken of patients notified to the UK Diamond Blackfan Anaemia (DBA) Registry. RPS19 mutations were detected in 16 of 104 families, including two patients with deletions detected by intragenic loss of heterozygosity of tightly linked polymorphisms. In two further cases, polymorphisms were used to determine the parental allele of origin of RPS19 point mutations. A review of clinical details of patients with mutations and patients in the literature having identical or equivalent mutations revealed evidence for a genotype:phenotype correlation with respect to the prevalence of physical anomalies, and the occurrence of mild or variable haematological severity. Nine of 60 patients had a known family history of DBA. Haematological abnormalities, including raised red cell adenosine deaminase activity, were found in first-degree relatives of 16 of 51 (31%) of patients not previously considered to have familial DBA. Results of both parents and any siblings were normal in only 35 of 60 (58%) of cases, who were therefore assumed to have sporadic de novo DBA. The classical inheritance pattern for DBA is autosomal dominant; however, 12 of 60 families (20%) had more than one affected child despite normal results in both parents. These results have important implications for genetic counselling, and for the selection of potential sibling bone marrow donors.
Collapse
Affiliation(s)
- Karen A Orfali
- Department of Cellular and Molecular Medicine (Haematology), St George's Hospital Medical School, Cranmer Terrace, London SW17 0RE, UK
| | | | | |
Collapse
|
32
|
Zivny J, Jelinek J, Pospisilova D, Plasilova M, Necas E, Stopka T. Diamond blackfan anemia stem cells fail to repopulate erythropoiesis in NOD/SCID mice. Blood Cells Mol Dis 2003; 31:93-7. [PMID: 12850491 DOI: 10.1016/s1079-9796(03)00115-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Diamond Blackfan Anemia (DBA) is a congenital disorder characterized by decreased red blood cell production and developmental abnormalities. We herein show that DBA progenitors produced lower numbers of phenotypically normal erythroid colonies in vitro, whereas nonerythroid colonies were normally abundant and developed. To determine whether DBA stem cells are capable of producing early erythroid, monocyto-granulocytic, and lymphoid progenitors in vivo we used a mouse xenotransplantation model. We demonstrate that DBA stem cells poorly repopulated erythroid progeny in NOD/SCID mice, whereas the monocyto-granulocytic and lymphoid progenies were repopulated normally. Therefore, we conclude that disordered DBA erythropoiesis may be a result of defective erythroid-lineage commitment and maintenance of early erythroid progenitors.
Collapse
Affiliation(s)
- Jan Zivny
- Department of Pathophysiology, Charles University, First Medical Faculty, Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Diamond-Blackfan Anemia (DBA) is a rare, congenital hypoplastic anemia often diagnosed early in infancy. A moderate to severe aregenerative anemia is found in association with erythroblastopenia in an otherwise normocellular bone marrow. In 40% of these infants with DBA, diverse developmental abnormalities are also noted. A majority of patients with DBA respond to steroid therapy. Recent molecular studies have identified mutations in the gene encoding the ribosomal protein RPS19 on chromosome 19 in 25% of patients with DBA. In another subset of patients, linkage analysis has identified another locus on chromosome 8p in association with DBA. There are, however, other cases of DBA that are linked neither to the RPS19 gene nor to the locus on 8p, implying the involvement of yet-to-be-defined genetic defects in the cause of DBA. The pathogenesis of DBA is still to be fully defined and it is anticipated that further molecular studies will lead to a better understanding of this complex disease.
Collapse
Affiliation(s)
- L Da Costa
- Lawrence Berkeley National Laboratory, California 94720, USA.
| | | | | | | | | |
Collapse
|
34
|
Cmejla R, Blafkova J, Stopka T, Jelinek J, Petrtylova K, Pospisilova D. Ribosomal proteins S3a, S13, S16, and S24 are not mutated in patients with Diamond-Blackfan anemia. Blood 2001; 97:579-80. [PMID: 11202430 DOI: 10.1182/blood.v97.2.579] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|