1
|
Weatherly LM, Shane HL, Baur R, Lukomska E, McKinney W, Roberts JR, Fedan JS, Anderson SE. Effects of inhaled tier-2 diesel engine exhaust on immunotoxicity in a rat model: A hazard identification study. Part II. Immunotoxicology. Toxicol Rep 2024; 12:135-147. [PMID: 38304699 PMCID: PMC10831500 DOI: 10.1016/j.toxrep.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/03/2024] Open
Abstract
Diesel exhaust (DE) is an air pollutant containing gaseous compounds and particulate matter. Diesel engines are common on gas extraction and oil sites, leading to complex DE exposure to a broad range of compounds through occupational settings. The US EPA concluded that short-term exposure to DE leads to allergic inflammatory disorders of the airways. To further evaluate the immunotoxicity of DE, the effects of whole-body inhalation of 0.2 and 1 mg/m3 DE (total carbon; 6 h/d for 4 days) were investigated 1-, 7-, and 27-days post exposure in Sprague-Dawley rats using an occupationally relevant exposure system. DE exposure of 1 mg/m3 increased total cellularity, number of CD4+ and CD8+ T-cells, and B-cells at 1 d post-exposure in the lung lymph nodes. At 7 d post-exposure to 1 mg/m3, cellularity and the number of CD4+ and CD8+ T-cells decreased in the LLNs. In the bronchoalveolar lavage, B-cell number and frequency increased at 1 d post-exposure, Natural Killer cell number and frequency decreased at 7 d post-exposure, and at 27 d post-exposure CD8+ T-cell and CD11b+ cell number and frequency decreased with 0.2 mg/m3 exposure. In the spleen, 0.2 mg/m3 increased CD4+ T-cell frequency at 1 and 7 d post-exposure and at 27 d post-exposure increased CD4+ and CD8+ T-cell number and CD8+ T-cell frequency. B-cells were the only immune cell subset altered in the three tissues (spleen, LLNs, and BALF), suggesting the induction of the adaptive immune response. The increase in lymphocytes in several different organ types also suggests an induction of a systemic inflammatory response occurring following DE exposure. These results show that DE exposure induced modifications of cellularity of phenotypic subsets that may impair immune function and contribute to airway inflammation induced by DE exposure in rats.
Collapse
Affiliation(s)
- Lisa M. Weatherly
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Hillary L. Shane
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Rachel Baur
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Ewa Lukomska
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Walter McKinney
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Jenny R. Roberts
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Jeffrey S. Fedan
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Stacey E. Anderson
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| |
Collapse
|
2
|
Landwehr KR, Hillas J, Mead-Hunter R, Brooks P, King A, O'Leary RA, Kicic A, Mullins BJ, Larcombe AN. Fuel feedstock determines biodiesel exhaust toxicity in a human airway epithelial cell exposure model. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126637. [PMID: 34329109 DOI: 10.1016/j.jhazmat.2021.126637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/02/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Biodiesel is promoted as a sustainable replacement for commercial diesel. Biodiesel fuel and exhaust properties change depending on the base feedstock oil/fat used during creation. The aims of this study were, for the first time, to compare the exhaust exposure health impacts of a wide range of biodiesels made from different feedstocks and relate these effects with the corresponding exhaust characteristics. METHOD Primary airway epithelial cells were exposed to diluted exhaust from an engine running on conventional diesel and biodiesel made from Soy, Canola, Waste Cooking Oil, Tallow, Palm and Cottonseed. Exhaust properties and cellular viability and mediator release were analysed post exposure. RESULTS The exhaust physico-chemistry of Tallow biodiesel was the most different to diesel as well as the most toxic, with exposure resulting in significantly decreased cellular viability (95.8 ± 6.5%) and increased release of several immune mediators including IL-6 (+223.11 ± 368.83 pg/mL) and IL-8 (+1516.17 ± 2908.79 pg/mL) above Air controls. In contrast Canola biodiesel was the least toxic with exposure only increasing TNF-α (4.91 ± 8.61). CONCLUSION This study, which investigated the toxic effects for the largest range of biodiesels, shows that exposure to different exhausts results in a spectrum of toxic effects in vitro when combusted under identical conditions.
Collapse
Affiliation(s)
- Katherine R Landwehr
- Occupation, Environment and Safety, School of Population Health, Curtin University, PO Box U1987, Perth 6845, Western Australia, Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth 6009, Western Australia, Australia.
| | - Jessica Hillas
- Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth 6009, Western Australia, Australia
| | - Ryan Mead-Hunter
- Occupation, Environment and Safety, School of Population Health, Curtin University, PO Box U1987, Perth 6845, Western Australia, Australia
| | - Peter Brooks
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Andrew King
- Fluid Dynamics Research Group, School of Civil and Mechanical Engineering, Curtin University, Perth, Western Australia, Australia
| | - Rebecca A O'Leary
- Department of Primary Industries and Regional Development, Perth 6000, Western Australia, Australia
| | - Anthony Kicic
- Occupation, Environment and Safety, School of Population Health, Curtin University, PO Box U1987, Perth 6845, Western Australia, Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth 6009, Western Australia, Australia; Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, Perth 6009, Western Australia, Australia; Centre for Cell Therapy and Regenerative Medicine, The University of Western Australia, Perth 6009, Western Australia, Australia
| | - Benjamin J Mullins
- Occupation, Environment and Safety, School of Population Health, Curtin University, PO Box U1987, Perth 6845, Western Australia, Australia
| | - Alexander N Larcombe
- Occupation, Environment and Safety, School of Population Health, Curtin University, PO Box U1987, Perth 6845, Western Australia, Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth 6009, Western Australia, Australia
| |
Collapse
|
3
|
Mudway IS, Sandstrom T. Do Plasticizers within the Indoor Environment Increase Airway Allergen Responsiveness? Am J Respir Crit Care Med 2020; 202:639-640. [PMID: 32628859 PMCID: PMC7462401 DOI: 10.1164/rccm.202005-2048ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Ian S Mudway
- MRC Centre for Environment and Health Kings College London London, United Kingdom and
| | - Thomas Sandstrom
- Department of Public Health and Clinical Medicine Umeå University Umeå, Sweden
| |
Collapse
|
4
|
Lee HS, Park DE, Lee JW, Sohn KH, Cho SH, Park HW. Role of interleukin-23 in the development of nonallergic eosinophilic inflammation in a murine model of asthma. Exp Mol Med 2020; 52:92-104. [PMID: 31956268 PMCID: PMC7000690 DOI: 10.1038/s12276-019-0361-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/08/2019] [Accepted: 11/18/2019] [Indexed: 12/30/2022] Open
Abstract
Nonallergic eosinophilic asthma (NAEA) is a clinically distinct subtype of asthma. Thus far, the pathophysiologic mechanisms underlying NAEA have not been fully elucidated. This study aimed to determine the role of IL-23 in the pathogenesis of NAEA. We developed a murine model of NAEA using recombinant IL-23 (rIL-23) plus a nonspecific airway irritant [polyinosinic-polycytidylic acid (polyI:C) or diesel exhaust particles (DEPs)] and investigated whether IL-23 plays an important role in the development of NAEA. Intranasal administration of rIL-23 (0.1 μg/mouse) plus polyI:C (0.01 μg/mouse) or DEPs (10 μg/mouse) without allergen resulted in methacholine bronchial hyperresponsiveness and eosinophilic airway inflammation in mice, which are characteristic features of NAEA. rIL-23 plus a low dose nonspecific airway irritants induced the release of innate cytokines from airway epithelium, including IL-33, thymic stromal lymphopoietin and IL-1β; these factors activated types 2 and 3 innate lymphoid cells (ILC2s and ILC3s). ILC2s and ILC3s, but not CD4+ T cells (i.e., adaptive immune cells), were important in the development of NAEA. In addition, we observed that IL-23 receptor expressions increased in airway epithelial cells, which suggests the existence of a positive autocrine loop in our murine model of NAEA. To our knowledge, this is the first report in which administration of rIL-23 plus a nonspecific airway irritant (polyI:C or DEPs) without allergen resulted in features of NAEA in mice similar to those found in humans. IL-23 may constitute a therapeutic target for NAEA in humans. Targeting levels of a pro-inflammatory protein may help quell responses to airway irritants in patients with non-allergic asthma. Asthma often occurs when allergen exposure triggers an increase in white blood cells called eosinophils and the subsequent release of pro-inflammatory proteins such as interleukin-23 (IL-23) in the airways. However, research suggests up to one-third of sufferers have non-allergic eosinophilic asthma (NAEA), wherein airway inflammation is triggered by no specific allergen. Heung-Woo Park at the Seoul National University Medical Research Center, South Korea, and co-workers created a mouse model with excess IL-23 to examine the protein’s role in NAEA inflammation. They monitored airway responses to low doses of an acid irritant or diesel exhaust particles. The combination of high IL-23 plus an irritant triggered the release of other pro-inflammatory proteins in the airways, aggravating asthma symptoms.
Collapse
Affiliation(s)
- Hyun Seung Lee
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Da-Eun Park
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Ji-Won Lee
- Division of Allergy and Clinical Immunology, Department of Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kyung Hee Sohn
- Department of Internal Medicine, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Sang-Heon Cho
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Republic of Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Heung-Woo Park
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Republic of Korea. .,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Kim HS, Kim BG, Park S, Kim N, Jang AS, Seo YR, Park MK. Gene Expression Analysis to Investigate Biological Networks Underlying Nasal Inflammatory Dysfunctions Induced by Diesel Exhaust Particles Using an In Vivo System. Ann Otol Rhinol Laryngol 2019; 129:245-255. [PMID: 31646875 DOI: 10.1177/0003489419883289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Diesel exhaust particles (DEP)s are notorious ambient pollutants composed of a complex mixture of a carbon core and diverse chemical irritants. Several studies have demonstrated significant relationships between DEP exposure and serious nasal inflammatory response in vitro, but available information regarding underlying networks in terms of gene expression changes has not sufficiently explained potential mechanisms of DEP-induced nasal damage, especially in vivo. METHODS In the present study, we identified DEP-induced gene expression profiles under short-term and long-term exposure, and identified signaling pathways based on microarray data for understanding effects of DEP exposure in the mouse nasal cavity. RESULTS Alteration in gene expression due to DEP exposure provokes an imbalance of the immune system via dysregulated inflammatory markers, predicted to disrupt protective responses against harmful exogenous substances in the body. Several candidate markers were identified after validation using qRT-PCR, including S100A9, CAMP, IL20, and S100A8. CONCLUSIONS Although further mechanistic studies are required for verifying the utility of the potential biomarkers suggested by the present study, our in vivo results may provide meaningful suggestions for understanding the complex cellular signaling pathways involved in DEP-induced nasal damages.
Collapse
Affiliation(s)
- Hyun Soo Kim
- Institute of Environmental Medicine, Department of Life Science, Dongguk University Biomedi Campus, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Byeong-Gon Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sohyeon Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Nahyun Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - An-Soo Jang
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Young Rok Seo
- Institute of Environmental Medicine, Department of Life Science, Dongguk University Biomedi Campus, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Moo Kyun Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
6
|
Bosson JA, Mudway IS, Sandström T. Traffic-related Air Pollution, Health, and Allergy: The Role of Nitrogen Dioxide. Am J Respir Crit Care Med 2019; 200:523-524. [PMID: 31059649 PMCID: PMC6727158 DOI: 10.1164/rccm.201904-0834ed] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Jenny A Bosson
- Department of Public Health and Clinical MedicineUmeå UniversityUmeå, Swedenand
| | - Ian S Mudway
- School of Population Health and Environmental SciencesKing's College LondonLondon, United Kingdom
| | - Thomas Sandström
- Department of Public Health and Clinical MedicineUmeå UniversityUmeå, Swedenand
| |
Collapse
|
7
|
Magnusson P, Dziendzikowska K, Oczkowski M, Øvrevik J, Eide DM, Brunborg G, Gutzkow KB, Instanes C, Gajewska M, Wilczak J, Sapierzynski R, Kamola D, Królikowski T, Kruszewski M, Lankoff A, Mruk R, Duale N, Gromadzka-Ostrowska J, Myhre O. Lung effects of 7- and 28-day inhalation exposure of rats to emissions from 1st and 2nd generation biodiesel fuels with and without particle filter - The FuelHealth project. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 67:8-20. [PMID: 30685595 DOI: 10.1016/j.etap.2019.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/22/2018] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
Increased use of 1st and 2nd generation biofuels raises concerns about health effects of new emissions. We analyzed cellular and molecular lung effects in Fisher 344 rats exposed to diesel engine exhaust emissions (DEE) from a Euro 5-classified diesel engine running on B7: petrodiesel fuel containing 7% fatty acid methyl esters (FAME), or SHB20 (synthetic hydrocarbon biofuel): petrodiesel fuel containing 7% FAME and 13% hydrogenated vegetable oil. The Fisher 344 rats were exposed for 7 consecutive days (6 h/day) or 28 days (6 h/day, 5 days/week), both with and without diesel particle filter (DPF) treatment of the exhaust in whole body exposure chambers (n = 7/treatment). Histological analysis and analysis of cytokines and immune cell numbers in bronchoalveolar lavage fluid (BALF) did not reveal adverse pulmonary effects after exposure to DEE from B7 or SHB20 fuel. Significantly different gene expression levels for B7 compared to SHB20 indicate disturbed redox signaling (Cat, Hmox1), beta-adrenergic signaling (Adrb2) and xenobiotic metabolism (Cyp1a1). Exhaust filtration induced higher expression of redox genes (Cat, Gpx2) and the chemokine gene Cxcl7 compared to non-filtered exhaust. Exposure time (7 versus 28 days) also resulted in different patterns of lung gene expression. No genotoxic effects in the lungs were observed. Overall, exposure to B7 or SHB20 emissions suggests only minor effects in the lungs.
Collapse
Affiliation(s)
- Pål Magnusson
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Norway
| | | | - Michał Oczkowski
- Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences, Poland
| | - Johan Øvrevik
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Norway
| | - Dag M Eide
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Norway
| | - Gunnar Brunborg
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Norway
| | - Kristine B Gutzkow
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Norway
| | - Christine Instanes
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Norway
| | | | - Jacek Wilczak
- Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Poland
| | - Rafał Sapierzynski
- Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Poland
| | - Dariusz Kamola
- Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Poland
| | - Tomasz Królikowski
- Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences, Poland
| | - Marcin Kruszewski
- Institute of Nuclear Chemistry and Technology, Warsaw, Poland; Department of Molecular Biology and Translational Research, Institute of Rural Health, Lublin, Poland
| | - Anna Lankoff
- Institute of Nuclear Chemistry and Technology, Warsaw, Poland; Jan Kochanowski University, Kielce, Poland
| | - Remigiusz Mruk
- Faculty of Production Engineering, Warsaw University of Life Sciences, Poland
| | - Nur Duale
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Norway
| | | | - Oddvar Myhre
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Norway.
| |
Collapse
|
8
|
Muñoz X, Barreiro E, Bustamante V, Lopez-Campos JL, González-Barcala FJ, Cruz MJ. Diesel exhausts particles: Their role in increasing the incidence of asthma. Reviewing the evidence of a causal link. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 652:1129-1138. [PMID: 30586799 DOI: 10.1016/j.scitotenv.2018.10.188] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/13/2018] [Accepted: 10/13/2018] [Indexed: 05/12/2023]
Abstract
Exposure to air pollutants has been correlated with an increase in the severity of asthma and in the exacerbation of pre-existing asthma. However, whether or not environmental pollution can cause asthma remains a controversial issue. The present review analyzes the current scientific evidence of the possible causal link between diesel exhaust particles (DEP), the solid fraction of the complex mixture of diesel exhaust, and asthma. The mechanisms that influence the expression and development of asthma are complex. In children prolonged exposure to pollutants such as DEPs may increase asthma prevalence. In adults, this causal relation is less clear, probably because of the heterogeneity of the studies carried out. There is also evidence of physiological mechanisms by which DEPs can cause asthma. The most frequently described interactions between cellular responses and DEP are the induction of pulmonary oxidative stress and inflammation and the activation of receptors of the bronchial epithelium such as toll-like receptors or increases in Th2 and Th17 cytokines, which generally orchestrate the asthmatic response. Others support indirect mechanisms through epigenetic changes, pulmonary microbiome modifications, or the interaction of DEP with environmental antigens to enhance their activity. However, in spite of this evidence, more studies are needed to assess the harmful effects of pollution - not only in the short term in the form of increases in the rate of exacerbations, but in the medium and long term as well, as a possible trigger of the disease.
Collapse
Affiliation(s)
- X Muñoz
- Pulmonology Service, Medicine Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - E Barreiro
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Pulmonology Department-Muscle Research and Respiratory System Unit (URMAR), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM)-Hospital del Mar, Department of Experimental and Health Sciences (CEXS), Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| | - V Bustamante
- Pneumology Department, Hospital Universitario Basurto, Osakidetza/University of the Basque Country, Bilbao, Spain
| | - J L Lopez-Campos
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Unidad Médico-quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Seville, Spain
| | - F J González-Barcala
- Respiratory Department, Clinic University Hospital, Santiago de Compostela, Spain
| | - M J Cruz
- Pulmonology Service, Medicine Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
9
|
Sánchez J, Sánchez A, Sánchez J. Differences in the Nasal Inflammatory Response to Cynodon dactylon From Rural and Urban Areas in Patients With Allergic Rhinitis. ALLERGY & RHINOLOGY 2018; 9:2152656718815870. [PMID: 30627474 PMCID: PMC6299326 DOI: 10.1177/2152656718815870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Background Epidemiological and experimental studies suggest that air pollution has a negative impact on human health and modifies the environment. However, the clinical implications of changes in environmental allergens secondary to air pollution have been little studied. Objectives To explore if the growth conditions of the Cynodon dactylon (rural vs urban area) modify the inflammatory response among patients with allergic rhinitis. Methodology: Two extracts were prepared for diagnostic test with Cyn d proteins obtained from rural and urban environment. Skin prick test (SPT), nasal challenge test (NCT), and eosinophil count in nasal mucus were performed in 3 groups: healthy subjects without rhinitis, rhinitis with (+) Cyn d, and rhinitis with (−) Cyn d. Results There was a 97% concordance in the positive and negative results of the SPT with the 2 extracts. However, Cyn d-urban extract generated larger wheals (P = .03) and a higher number of patients with rhinitis presented a positive NCT to this extract (n = 7 vs 14, P = .04). Patients with positive NCT had a significant increase in eosinophils in mucus, but there was no difference between the extracts. The healthy controls did not react to the extracts tested in the skin or nasal test. Conclusion The findings suggest that the growth conditions in urban area of Cynodon dactylon can generate changes in the protein extract and have clinical implications in patients with allergic rhinitis.
Collapse
Affiliation(s)
- Jorge Sánchez
- Group of Clinical and Experimental Allergology, IPS University, University of Antioquia, Medellín, Colombia.,Foundation for the Development of Medical and Biological Sciences, Cartagena, Colombia
| | - Andres Sánchez
- Foundation for the Development of Medical and Biological Sciences, Cartagena, Colombia.,Department of Immunology, Rafael Núñez University Foundation, Medellín, Colombia
| | - Jorge Sánchez
- Foundation for the Development of Medical and Biological Sciences, Cartagena, Colombia
| |
Collapse
|
10
|
Zarcone MC, Duistermaat E, van Schadewijk A, Jedynska A, Hiemstra PS, Kooter IM. Cellular response of mucociliary differentiated primary bronchial epithelial cells to diesel exhaust. Am J Physiol Lung Cell Mol Physiol 2016; 311:L111-23. [PMID: 27190060 DOI: 10.1152/ajplung.00064.2016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/17/2016] [Indexed: 12/22/2022] Open
Abstract
Diesel emissions are the main source of air pollution in urban areas, and diesel exposure is linked with substantial adverse health effects. In vitro diesel exposure models are considered a suitable tool for understanding these effects. Here we aimed to use a controlled in vitro exposure system to whole diesel exhaust to study the effect of whole diesel exhaust concentration and exposure duration on mucociliary differentiated human primary bronchial epithelial cells (PBEC). PBEC cultured at the air-liquid interface were exposed for 60 to 375 min to three different dilutions of diesel exhaust (DE). The DE mixture was generated by an engine at 47% load, and characterized for particulate matter size and distribution and chemical and gas composition. Cytotoxicity and epithelial barrier function was assessed, as well as mRNA expression and protein release analysis. DE caused a significant dose-dependent increase in expression of oxidative stress markers (HMOX1 and NQO1; n = 4) at 6 h after 150 min exposure. Furthermore, DE significantly increased the expression of the markers of the integrated stress response CHOP and GADD34 and of the proinflammatory chemokine CXCL8, as well as release of CXCL8 protein. Cytotoxic effects or effects on epithelial barrier function were observed only after prolonged exposures to the highest DE dose. These results demonstrate the suitability of our model and that exposure dose and duration and time of analysis postexposure are main determinants for the effects of DE on differentiated primary human airway epithelial cells.
Collapse
Affiliation(s)
- Maria C Zarcone
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands;
| | - Evert Duistermaat
- Netherlands Organization for Applied Scientific Research, Zeist, The Netherlands; and
| | | | - Aleksandra Jedynska
- Netherlands Organization for Applied Scientific Research Utrecht, The Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ingeborg M Kooter
- Netherlands Organization for Applied Scientific Research Utrecht, The Netherlands
| |
Collapse
|
11
|
Akopian AN, Fanick ER, Brooks EG. TRP channels and traffic-related environmental pollution-induced pulmonary disease. Semin Immunopathol 2016; 38:331-8. [PMID: 26837756 PMCID: PMC4896490 DOI: 10.1007/s00281-016-0554-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/19/2016] [Indexed: 12/21/2022]
Abstract
Environmental pollutant exposures are major risk factors for adverse health outcomes, with increased morbidity and mortality in humans. Diesel exhaust (DE) is one of the major harmful components of traffic-related air pollution. Exposure to DE affects several physiological systems, including the airways, and pulmonary diseases are increased in highly populated urban areas. Hence, there are urgent needs to (1) create newer and lesser polluting fuels, (2) improve exhaust aftertreatments and reduce emissions, and (3) understand mechanisms of actions for toxic effects of both conventional and cleaner diesel fuels on the lungs. These steps could aid the development of diagnostics and interventions to prevent the negative impact of traffic-related air pollution on the pulmonary system. Exhaust from conventional, and to a lesser extent, clean fuels, contains particulate matter (PM) and more than 400 additional chemical constituents. The major toxic constituents are nitrogen oxides (NOx) and polycyclic aromatic hydrocarbons (PAHs). PM and PAHs could potentially act via transient receptor potential (TRP) channels. In this review, we will first discuss the associations between DE from conventional as well as clean fuel technologies and acute and chronic airway inflammation. We will then review possible activation and/or potentiation of TRP vanilloid type 1 (TRPV1) and ankyrin 1 (TRPA1) channels by PM and PAHs. Finally, we will discuss and summarize recent findings on the mechanisms whereby TRPs could control the link between DE and airway inflammation, which is a primary determinant leading to pulmonary disease.
Collapse
Affiliation(s)
- Armen N Akopian
- Department of Endodontics, School of Dentistry, UT Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - E Robert Fanick
- Office of Automotive Engineering, Southwest Research Institute, San Antonio, TX, 78228, USA
| | - Edward G Brooks
- Department of Pediatrics, Division of Immunology and Infectious Disease, School of Medicine, UT Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
- Center for Airway Inflammation Research, UT Health Science Center at San Antonio, 8403 Floyd Curl Drive, STRF Microbiology MC 8259, San Antonio, TX, 78229, USA.
| |
Collapse
|
12
|
Controlled diesel exhaust and allergen coexposure modulates microRNA and gene expression in humans: Effects on inflammatory lung markers. J Allergy Clin Immunol 2016; 138:1690-1700. [PMID: 27283384 DOI: 10.1016/j.jaci.2016.02.038] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/31/2016] [Accepted: 02/17/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND Air pollution's association with asthma may be due to its augmentation of allergenic effects, but the role of microRNA (miRNA) and gene expression in this synergy is unknown. OBJECTIVE We sought to determine whether exposure to allergen, exposure to diesel exhaust (DE), or coexposures modulate miRNA, gene expression, or inflammatory pathways and whether these measurements are correlated. METHODS Fifteen participants with atopy completed this controlled study of 2 hours of filtered air or DE (300 μg PM2.5/m3) exposure, followed by saline-controlled segmental bronchial allergen challenge. Gene and miRNA expression in bronchial brushings and lung inflammatory markers were measured 48 hours later, in study arms separated by approximately 4 weeks. Expression of miRNAs, messenger RNAs, and inflammatory markers and their interrelationships were determined using regression. RESULTS Robust linear models indicated that DE plus saline and DE plus allergen significantly modulated the highest number of miRNAs and messenger RNAs, respectively, relative to control (filtered air plus saline). In mixed models, allergen exposure modulated (q ≤ 0.2) miRNAs including miR-183-5p, miR-324-5p, and miR-132-3p and genes including NFKBIZ and CDKN1A, but DE did not significantly modify this allergenic effect. Repression of CDKN1A by allergen-induced miR-132-3p may contribute to shedding of bronchial epithelial cells. CONCLUSIONS Expression of specific miRNAs and genes associated with bronchial immune responses were significantly modulated by DE or allergen. However, DE did not augment the effect of allergen at 48 hours, suggesting that adjuvancy may be transient or require higher or prolonged exposure. In silico analysis suggested a possible mechanism contributing to epithelial wall damage following allergen exposure.
Collapse
|
13
|
Hosseini A, Hirota JA, Hackett TL, McNagny KM, Wilson SJ, Carlsten C. Morphometric analysis of inflammation in bronchial biopsies following exposure to inhaled diesel exhaust and allergen challenge in atopic subjects. Part Fibre Toxicol 2016; 13:2. [PMID: 26758251 PMCID: PMC4711081 DOI: 10.1186/s12989-016-0114-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 01/06/2016] [Indexed: 02/08/2023] Open
Abstract
Background Allergen exposure and air pollution are two risk factors for asthma development and airway inflammation that have been examined extensively in isolation. The impact of combined allergen and diesel exhaust exposure has received considerably less attention. Diesel exhaust (DE) is a major contributor to ambient particulate matter (PM) air pollution, which can act as an adjuvant to immune responses and augment allergic inflammation. We aimed to clarify whether DE increases allergen-induced inflammation and cellular immune response in the airways of atopic human subjects. Methods Twelve atopic subjects were exposed to DE 300 μg.m−3 or filtered air for 2 h in a blinded crossover study design with a four-week washout period between arms. One hour following either filtered air or DE exposure, subjects were exposed to allergen or saline (vehicle control) via segmental challenge. Forty-eight hours post-allergen or control exposure, bronchial biopsies were collected. The study design generated 4 different conditions: filtered air + saline (FAS), DE + saline (DES), filtered air + allergen (FAA) and DE + allergen (DEA). Biopsies sections were immunostained for tryptase, eosinophil cationic protein (ECP), neutrophil elastase (NE), CD138, CD4 and interleukin (IL)-4. The percent positivity of positive cells were quantified in the bronchial submucosa. Results The percent positivity for tryptase expression and ECP expression remained unchanged in the bronchial submucosa in all conditions. CD4 % positive staining in DEA (0.311 ± 0.060) was elevated relative to FAS (0.087 ± 0.018; p = 0.035). IL-4 % positive staining in DEA (0.548 ± 0.143) was elevated relative to FAS (0.127 ± 0.062; p = 0.034). CD138 % positive staining in DEA (0.120 ± 0.031) was elevated relative to FAS (0.017 ± 0.006; p = 0.015), DES (0.044 ± 0.024; p = 0.040), and FAA (0.044 ± 0.008; p = 0.037). CD138 % positive staining in FAA (0.044 ± 0.008) was elevated relative to FAS (0.017 ± 0.006; p = 0.049). NE percent positive staining in DEA (0.224 ± 0.047) was elevated relative to FAS (0.045 ± 0.014; p = 0.031). Conclusions In vivo allergen and DE co-exposure results in elevated CD4, IL-4, CD138 and NE in the respiratory submucosa of atopic subjects, while eosinophils and mast cells are not changed. Trial registration URL: http://www.clinicaltrials.gov. Unique identifier: NCT01792232. Electronic supplementary material The online version of this article (doi:10.1186/s12989-016-0114-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ali Hosseini
- Department of Medicine, Division of Respiratory Medicine, Chan-Yeung Centre for Occupational and Environmental Respiratory Disease, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada. .,Institute for Heart and Lung Health, University of British Columbia, Vancouver, BC, V6Z 1Y6, Canada. .,The Lung Center, Vancouver General Hospital (VGH) - Gordon and Leslie Diamond Health Care Centre, 2775 Laurel Street, 7th floor, Vancouver, BC, V5Z 1M9, Canada.
| | - Jeremy A Hirota
- Department of Medicine, Division of Respiratory Medicine, Chan-Yeung Centre for Occupational and Environmental Respiratory Disease, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada. .,Institute for Heart and Lung Health, University of British Columbia, Vancouver, BC, V6Z 1Y6, Canada. .,The Lung Center, Vancouver General Hospital (VGH) - Gordon and Leslie Diamond Health Care Centre, 2775 Laurel Street, 7th floor, Vancouver, BC, V5Z 1M9, Canada.
| | - Tillie L Hackett
- Institute for Heart and Lung Health, University of British Columbia, Vancouver, BC, V6Z 1Y6, Canada.
| | - Kelly M McNagny
- Biomedical Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | - Susan J Wilson
- Histochemistry Research Unit, Faculty of Medicine, University of Southampton, Southampton, S016 6YD, UK.
| | - Chris Carlsten
- Department of Medicine, Division of Respiratory Medicine, Chan-Yeung Centre for Occupational and Environmental Respiratory Disease, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada. .,Institute for Heart and Lung Health, University of British Columbia, Vancouver, BC, V6Z 1Y6, Canada. .,The Lung Center, Vancouver General Hospital (VGH) - Gordon and Leslie Diamond Health Care Centre, 2775 Laurel Street, 7th floor, Vancouver, BC, V5Z 1M9, Canada.
| |
Collapse
|
14
|
Mullins BJ, Kicic A, Ling KM, Mead-Hunter R, Larcombe AN. Biodiesel exhaust-induced cytotoxicity and proinflammatory mediator production in human airway epithelial cells. ENVIRONMENTAL TOXICOLOGY 2016; 31:44-57. [PMID: 25045158 DOI: 10.1002/tox.22020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/15/2014] [Accepted: 06/17/2014] [Indexed: 06/03/2023]
Abstract
Increasing use of biodiesel has prompted research into the potential health effects of biodiesel exhaust exposure. Few studies directly compare the health consequences of mineral diesel, biodiesel, or blend exhaust exposures. Here, we exposed human epithelial cell cultures to diluted exhaust generated by the combustion of Australian ultralow-sulfur-diesel (ULSD), unprocessed canola oil, 100% canola biodiesel (B100), and a blend of 20% canola biodiesel mixed with 80% ULSD. The physicochemical characteristics of the exhaust were assessed and we compared cellular viability, apoptosis, and levels of interleukin (IL)-6, IL-8, and Regulated on Activation, Normal T cell Expressed and Secreted (RANTES) in exposed cultured cells. Different fuel types produced significantly different amounts of exhaust gases and different particle characteristics. All exposures resulted in significant apoptosis and loss of viability when compared with control, with an increasing proportion of biodiesel being correlated with a decrease in viability. In most cases, exposure to exhaust resulted in an increase in mediator production, with the greatest increases most often in response to B100. Exposure to pure canola oil (PCO) exhaust did not increase mediator production, but resulted in a significant decrease in IL-8 and RANTES in some cases. Our results show that canola biodiesel exhaust exposure elicits inflammation and reduces viability of human epithelial cell cultures in vitro when compared with ULSD exhaust exposure. This may be related to an increase in particle surface area and number in B100 exhaust when compared with ULSD exhaust. Exposure to PCO exhaust elicited the greatest loss of cellular viability, but virtually no inflammatory response, likely due to an overall increase in average particle size.
Collapse
Affiliation(s)
- Benjamin J Mullins
- Fluid Dynamics Research Group, Curtin University, GPO Box U1987, Perth, Western Australia, 6845, Australia
- School of Public Health, Faculty of Health Sciences, Curtin University, GPO Box U1987, Perth, WA, Australia
| | - Anthony Kicic
- Telethon Kids Institute, University of Western Australia, Subiaco, Western Australia, 6008, Australia
- Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, 6001, Australia
- School of Paediatrics and Child Health, University of Western Australia, Nedlands, Western Australia, 6009, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Nedlands, 6009, Western Australia, Australia
| | - Kak-Ming Ling
- Telethon Kids Institute, University of Western Australia, Subiaco, Western Australia, 6008, Australia
| | - Ryan Mead-Hunter
- Fluid Dynamics Research Group, Curtin University, GPO Box U1987, Perth, Western Australia, 6845, Australia
- School of Public Health, Faculty of Health Sciences, Curtin University, GPO Box U1987, Perth, WA, Australia
| | - Alexander N Larcombe
- Telethon Kids Institute, University of Western Australia, Subiaco, Western Australia, 6008, Australia
| |
Collapse
|
15
|
Yoo Y, Perzanowski MS. Allergic sensitization and the environment: latest update. Curr Allergy Asthma Rep 2014; 14:465. [PMID: 25149167 DOI: 10.1007/s11882-014-0465-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The prevalence of asthma and other allergic diseases is still increasing both in developed and developing countries. Allergic sensitization against common inhalant allergens is common and, although not sufficient, a necessary step in the development of allergic diseases. Despite a small number of proteins from certain plants and animals being common allergens in humans, we still do not fully understand who will develop sensitization and to which allergens. Environmental exposure to these allergens is essential for the development of sensitization, but what has emerged clearly in the literature in the recent years is that the adjuvants to which an individual is exposed at the same time as the allergen are probably an equally important determinant of the immune response to the allergen. These adjuvants act on all steps in the development of sensitization from modifying epithelial barriers, to facilitating antigen presentation, to driving T-cell responses, to altering mast cell and basophil hyperreactivity. The adjuvants come from biogenic sources, including microbes and the plants and animals that produce the allergens, and from man-made sources (anthropogenic), including unintended by-products of combustion and chemicals now ubiquitous in modern life. As we better understand how individuals are exposed to these adjuvants and how the exposure influences the likelihood of an allergic response, we may be able to design individual and community-level interventions that will reverse the increase in allergic disease prevalence, but we are not there yet.
Collapse
Affiliation(s)
- Young Yoo
- Department of Pediatrics, College of Medicine, Korea University, Seoul, South Korea
| | | |
Collapse
|
16
|
Dysart MM, Galvis BR, Russell AG, Barker TH. Environmental particulate (PM2.5) augments stiffness-induced alveolar epithelial cell mechanoactivation of transforming growth factor beta. PLoS One 2014; 9:e106821. [PMID: 25226160 PMCID: PMC4167324 DOI: 10.1371/journal.pone.0106821] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 08/01/2014] [Indexed: 02/06/2023] Open
Abstract
Dysfunctional pulmonary homeostasis and repair, including diseases such as pulmonary fibrosis (PF), chronic obstructive pulmonary disease (COPD), and tumorigenesis have been increasing over the past decade, a fact that heavily implicates environmental influences. Several investigations have suggested that in response to increased transforming growth factor--beta (TGFβ) signaling, the alveolar type II (ATII) epithelial cell undergoes phenotypic changes that may contribute to the complex pathobiology of PF. We have previously demonstrated that increased tissue stiffness associated with PF is a potent extracellular matrix (ECM) signal for epithelial cell activation of TGFβ. The work reported here explores the relationship between tissue stiffness and exposure to environmental stimuli in the activation of TGFβ. We hypothesized that exposure of ATII cells to fine particulate matter (PM2.5) will result in enhanced cell contractility, TGFβ activation, and subsequent changes to ATII cell phenotype. ATII cells were cultured on increasingly stiff substrates with or without addition of PM2.5. Exposure to PM2.5 resulted in increased activation of TGFβ, increased cell contractility, and elongation of ATII cells. Most notably, on 8 kPa substrates, a stiffness greater than normal but less than established fibrotic lung, addition of PM2.5 resulted in increased cortical cell stiffness, enhanced actin staining and cell elongation; a result not seen in the absence of PM2.5. Our work suggests that PM2.5 exposure additionally enhances the existing interaction between ECM stiffness and TGFβ that has been previously reported. Furthermore, we show that this additional enhancement is likely a consequence of intracellular reactive oxygen species (ROS) leading to increased TGFβ signaling events. These results highlight the importance of both the micromechanical and biochemical environment in lung disease initiation and suggest that individuals in early stages of lung remodeling during fibrosis may be more susceptible than healthy individuals when exposed to environmental injury adjuvants.
Collapse
Affiliation(s)
- Marilyn M. Dysart
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - Boris R. Galvis
- The School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Armistead G. Russell
- The School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Thomas H. Barker
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
- The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
17
|
Heber D, Li Z, Garcia-Lloret M, Wong AM, Lee TYA, Thames G, Krak M, Zhang Y, Nel A. Sulforaphane-rich broccoli sprout extract attenuates nasal allergic response to diesel exhaust particles. Food Funct 2014; 5:35-41. [PMID: 24287881 DOI: 10.1039/c3fo60277j] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The generation of oxidative stress by ambient air pollution particles contributes to the development of allergic sensitization and asthma, as demonstrated by intranasal challenge with well-characterized diesel exhaust particle (DEP) suspensions in humans. This effect is due to the presence of redox active organic chemicals in DEP, and can be suppressed by antioxidants and inducers of phase II enzymes in animals. In this communication, we determined whether the administration of a standardized broccoli sprout extract (BSE), which contains a reproducible amount of the sulforaphane (SFN) precursor, glucoraphanin, could be used to suppress the nasal inflammatory response in human subjects challenged with 300 μg of an aqueous DEP suspension (equivalent to daily PM exposure levels on a Los Angeles freeway). SFN is capable of inducing an antioxidant and phase II response via activation of the nuclear transcription factor (erythroid-derived 2)-like 2 (Nrf2). Previous studies have shown that 70-90% SFN delivered by BSE is absorbed, metabolized, and excreted in humans. An initial intranasal challenge with DEP in 29 human subjects was used to characterize the magnitude of the inflammatory response. Following a 4 week washout, a BSE that delivers a reproducible and standardized dose of 100 μmol SFN in mango juice was administered daily for four days. The nasal DEP challenge was repeated and lavage fluid collected to perform white blood cell (WBC) counts. The average nasal WBC increased by 66% over the initial screening levels and by 85% over the control levels 24 hours after DEP exposure. However, total cell counts decreased by 54% when DEP challenge was preceded by daily BSE administration for 4 days (p < 0.001). Since the SFN dose in these studies is equivalent to the consumption of 100-200 g broccoli, our study demonstrates the potential preventive and therapeutic potential of broccoli or broccoli sprouts rich in glucoraphanin for reducing the impact of particulate pollution on allergic disease and asthma.
Collapse
Affiliation(s)
- David Heber
- UCLA Center for Human Nutrition and the Division of NanoMedicine, David Geffen School of Medicine at UCLA, 900 Veteran Avenue, Room 12-217, 12-217 Warren Hall, Box 951742, Los Angeles, California 90095, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Manners S, Alam R, Schwartz DA, Gorska MM. A mouse model links asthma susceptibility to prenatal exposure to diesel exhaust. J Allergy Clin Immunol 2014; 134:63-72. [PMID: 24365139 PMCID: PMC4065237 DOI: 10.1016/j.jaci.2013.10.047] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/30/2013] [Accepted: 10/14/2013] [Indexed: 01/07/2023]
Abstract
BACKGROUND Most asthma begins in the first years of life. This early onset cannot be attributed merely to genetic factors because the prevalence of asthma is increasing. Epidemiologic studies have indicated roles for prenatal and early childhood exposures, including exposure to diesel exhaust. However, little is known about the mechanisms. This is largely due to a paucity of animal models. OBJECTIVE We aimed to develop a mouse model of asthma susceptibility through prenatal exposure to diesel exhaust. METHODS Pregnant C57BL/6 female mice were given repeated intranasal applications of diesel exhaust particles (DEPs) or PBS. Offspring underwent suboptimal immunization and challenge with ovalbumin (OVA) or received PBS. Pups were examined for features of asthma; lung and liver tissues were analyzed for transcription of DEP-regulated genes. RESULTS Offspring of mice exposed to DEPs were hypersensitive to OVA, as indicated by airway inflammation and hyperresponsiveness, increased serum OVA-specific IgE levels, and increased pulmonary and systemic TH2 and TH17 cytokine levels. These cytokines were primarily produced by natural killer (NK) cells. Antibody-mediated depletion of NK cells prevented airway inflammation. Asthma susceptibility was associated with increased transcription of genes known to be specifically regulated by the aryl hydrocarbon receptor and oxidative stress. Features of asthma were either marginal or absent in OVA-treated pups of PBS-exposed mice. CONCLUSION We created a mouse model that linked maternal exposure to DEPs with asthma susceptibility in offspring. Development of asthma was dependent on NK cells and associated with increased transcription from aryl hydrocarbon receptor- and oxidative stress-regulated genes.
Collapse
Affiliation(s)
- Sarah Manners
- Department of Medicine, Division of Allergy and Clinical Immunology, National Jewish Health, Denver, Colo
| | - Rafeul Alam
- Department of Medicine, Division of Allergy and Clinical Immunology, National Jewish Health, Denver, Colo; Department of Medicine, Division of Allergy and Clinical Immunology, University of Colorado Denver, Aurora, Colo
| | - David A Schwartz
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, Colo
| | - Magdalena M Gorska
- Department of Medicine, Division of Allergy and Clinical Immunology, National Jewish Health, Denver, Colo; Department of Medicine, Division of Allergy and Clinical Immunology, University of Colorado Denver, Aurora, Colo.
| |
Collapse
|
19
|
Grahame TJ, Klemm R, Schlesinger RB. Public health and components of particulate matter: the changing assessment of black carbon. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2014; 64:620-60. [PMID: 25039199 DOI: 10.1080/10962247.2014.912692] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
UNLABELLED In 2012, the WHO classified diesel emissions as carcinogenic, and its European branch suggested creating a public health standard for airborne black carbon (BC). In 2011, EU researchers found that life expectancy could be extended four to nine times by reducing a unit of BC, vs reducing a unit of PM2.5. Only recently could such determinations be made. Steady improvements in research methodologies now enable such judgments. In this Critical Review, we survey epidemiological and toxicological literature regarding carbonaceous combustion emissions, as research methodologies improved over time. Initially, we focus on studies of BC, diesel, and traffic emissions in the Western countries (where daily urban BC emissions are mainly from diesels). We examine effects of other carbonaceous emissions, e.g., residential burning of biomass and coal without controls, mainly in developing countries. Throughout the 1990s, air pollution epidemiology studies rarely included species not routinely monitored. As additional PM2.5. chemical species, including carbonaceous species, became more widely available after 1999, they were gradually included in epidemiological studies. Pollutant species concentrations which more accurately reflected subject exposure also improved models. Natural "interventions"--reductions in emissions concurrent with fuel changes or increased combustion efficiency; introduction of ventilation in highway tunnels; implementation of electronic toll payment systems--demonstrated health benefits of reducing specific carbon emissions. Toxicology studies provided plausible biological mechanisms by which different PM species, e.g, carbonaceous species, may cause harm, aiding interpretation of epidemiological studies. Our review finds that BC from various sources appears to be causally involved in all-cause, lung cancer and cardiovascular mortality, morbidity, and perhaps adverse birth and nervous system effects. We recommend that the US. EPA rubric for judging possible causality of PM25. mass concentrations, be used to assess which PM2.5. species are most harmful to public health. IMPLICATIONS Black carbon (BC) and correlated co-emissions appear causally related with all-cause, cardiovascular, and lung cancer mortality, and perhaps with adverse birth outcomes and central nervous system effects. Such findings are recent, since widespread monitoring for BC is also recent. Helpful epidemiological advances (using many health relevant PM2.5 species in models; using better measurements of subject exposure) have also occurred. "Natural intervention" studies also demonstrate harm from partly combusted carbonaceous emissions. Toxicology studies consistently find biological mechanisms explaining how such emissions can cause these adverse outcomes. A consistent mechanism for judging causality for different PM2.5 species is suggested.
Collapse
|
20
|
Larsson N, Brown J, Stenfors N, Wilson S, Mudway IS, Pourazar J, Behndig AF. Airway inflammatory responses to diesel exhaust in allergic rhinitics. Inhal Toxicol 2013; 25:160-7. [PMID: 23421487 DOI: 10.3109/08958378.2013.765932] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
CONTEXT Proximity to traffic, particularly to diesel-powered vehicles, has been associated with inducing and enhancing allergies. To investigate the basis for this association, we performed controlled exposures of allergic rhinitics to diesel exhaust (DE) at a dose known to be pro-inflammatory in healthy individuals. OBJECTIVE We hypothesized that diesel-exhaust exposure would augment lower airway inflammation in allergic rhinitics. MATERIALS AND METHODS Fourteen allergic rhinitics were exposed in a double-blinded, randomized trial to DE (100 μg/m³ PM₁₀) and filtered air for 2 h on separate occasions. Bronchoscopy with endobronchial mucosal biopsies and airway lavage was performed 18 h post-exposure, and inflammatory markers were assessed. RESULTS No evidence of neutrophilic airway inflammation was observed post-diesel, however, a small increase in myeloperoxidase was found in bronchoalveolar lavage (p = 0.032). We found no increases in allergic inflammatory cells. Reduced mast cell immunoreactivity for tryptase was observed in the epithelium (p = 0.013) parallel to a small decrease in bronchial wash stem cell factor (p = 0.033). DISCUSSION AND CONCLUSION DE, at a dose previously shown to cause neutrophilic inflammation in healthy individuals, induced no neutrophilic inflammation in the lower airways of allergic rhinitics, consistent with previous reports in asthmatics. Although there was no increase in allergic inflammatory cell numbers, the reduction in tryptase in the epithelium may indicate mast cell degranulation. However, this occurred in the absence of allergic symptoms. These data do not provide a simplistic explanation of the sensitivity in rhinitics to traffic-related air pollution. The role of mast cells requires further investigation.
Collapse
Affiliation(s)
- Nirina Larsson
- Division of Medicine, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | | | | | | | | | | | | |
Collapse
|
21
|
Olvera HA, Lopez M, Guerrero V, Garcia H, Li WW. Ultrafine particle levels at an international port of entry between the US and Mexico: exposure implications for users, workers, and neighbors. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2013; 23:289-98. [PMID: 23321858 DOI: 10.1038/jes.2012.119] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 10/30/2012] [Indexed: 05/20/2023]
Abstract
Exposure to diesel-emitted particles has been linked to increased cancer risk and cardiopulmonary diseases. Because of their size (<100 nm), exposure to ultrafine particles (UFPs) emitted from heavy-duty diesel vehicles (HDDV) might result in greater health risks than those associated with larger particles. Seasonal UFP levels at the International Bridge of the Americas, which connects the US and Mexico and has high HDDV traffic demands, were characterized. Hourly average UFP concentrations ranged between 1.7 × 10(3)/cc and 2.9 × 10(5)/cc with a mean of 3.5 × 10(4)/cc. Wind speeds <2 m s(-1) and temperatures <15 °C were associated with particle number concentrations above normal conditions. The presence of HDDV had the strongest impact on local UFP levels. Varying particle size distributions were associated with south- and northbound HDDV traffic. Peak exposure occurred on weekday afternoons. Although in winter, high exposure episodes were also observed in the morning. Particle number concentrations were estimated to reach background levels at 400 m away from traffic. The populations exposed to UFP above background levels include law enforcement officers, street vendors, private commuters, and commercial vehicle drivers as well as neighbors on both sides of the border, including a church and several schools.
Collapse
Affiliation(s)
- Hector A Olvera
- Hispanic Health Disparities Research Center, Center for Environmental Resource Management, University of Texas at El Paso, El Paso, TX 79968, USA.
| | | | | | | | | |
Collapse
|
22
|
Fourtounis J, Wang IM, Mathieu MC, Claveau D, Loo T, Jackson AL, Peters MA, Therien AG, Boie Y, Crackower MA. Gene expression profiling following NRF2 and KEAP1 siRNA knockdown in human lung fibroblasts identifies CCL11/Eotaxin-1 as a novel NRF2 regulated gene. Respir Res 2012; 13:92. [PMID: 23061798 PMCID: PMC3546844 DOI: 10.1186/1465-9921-13-92] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 10/10/2012] [Indexed: 01/21/2023] Open
Abstract
Background Oxidative Stress contributes to the pathogenesis of many diseases. The NRF2/KEAP1 axis is a key transcriptional regulator of the anti-oxidant response in cells. Nrf2 knockout mice have implicated this pathway in regulating inflammatory airway diseases such as asthma and COPD. To better understand the role the NRF2 pathway has on respiratory disease we have taken a novel approach to define NRF2 dependent gene expression in a relevant lung system. Methods Normal human lung fibroblasts were transfected with siRNA specific for NRF2 or KEAP1. Gene expression changes were measured at 30 and 48 hours using a custom Affymetrix Gene array. Changes in Eotaxin-1 gene expression and protein secretion were further measured under various inflammatory conditions with siRNAs and pharmacological tools. Results An anti-correlated gene set (inversely regulated by NRF2 and KEAP1 RNAi) that reflects specific NRF2 regulated genes was identified. Gene annotations show that NRF2-mediated oxidative stress response is the most significantly regulated pathway, followed by heme metabolism, metabolism of xenobiotics by Cytochrome P450 and O-glycan biosynthesis. Unexpectedly the key eosinophil chemokine Eotaxin-1/CCL11 was found to be up-regulated when NRF2 was inhibited and down-regulated when KEAP1 was inhibited. This transcriptional regulation leads to modulation of Eotaxin-1 secretion from human lung fibroblasts under basal and inflammatory conditions, and is specific to Eotaxin-1 as NRF2 or KEAP1 knockdown had no effect on the secretion of a set of other chemokines and cytokines. Furthermore, the known NRF2 small molecule activators CDDO and Sulphoraphane can also dose dependently inhibit Eotaxin-1 release from human lung fibroblasts. Conclusions These data uncover a previously unknown role for NRF2 in regulating Eotaxin-1 expression and further the mechanistic understanding of this pathway in modulating inflammatory lung disease.
Collapse
Affiliation(s)
- Jimmy Fourtounis
- Department of Respiratory and Immunology, Merck Research Laboratories, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
The effect of ventilation, age, and asthmatic condition on ultrafine particle deposition in children. Pulm Med 2012; 2012:736290. [PMID: 22848818 PMCID: PMC3401531 DOI: 10.1155/2012/736290] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 04/10/2012] [Accepted: 04/24/2012] [Indexed: 11/17/2022] Open
Abstract
Ultrafine particles (UFPs) contribute to health risks associated with air pollution, especially respiratory disease in children. Nonetheless, experimental data on UFP deposition in asthmatic children has been minimal. In this study, the effect of ventilation, developing respiratory physiology, and asthmatic condition on the deposition efficiency of ultrafine particles in children was explored. Deposited fractions of UFP (10–200 nm) were determined in 9 asthmatic children, 8 nonasthmatic children, and 5 nonasthmatic adults. Deposition efficiencies in adults served as reference of fully developed respiratory physiologies. A validated deposition model was employed as an auxiliary tool to assess the independent effect of varying ventilation on deposition. Asthmatic conditions were confirmed via pre-and post-bronchodilator spirometry. Subjects were exposed to a hygroscopic aerosol with number geometric mean diameter of 27–31 nm, geometric standard deviation of 1.8–2.0, and concentration of 1.2 × 106 particles cm−3. Exposure was through a silicone mouthpiece. Total deposited fraction (TDF) and normalized deposition rate were 50% and 32% higher in children than in adults. Accounting for tidal volume and age variation, TDF was 21% higher in asthmatic than in non-asthmatic children. The higher health risks of air pollution exposure observed in children and asthmatics might be augmented by their susceptibility to higher dosages of UFP.
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Epidemiologic investigation has associated traffic-related air pollution with adverse human health outcomes. The capacity of diesel exhaust particles (DEPs), a major emission source air pollution particle, to initiate an airway inflammation has subsequently been investigated. We review the recent controlled human exposures to diesel exhaust and DEPs, and summarize the investigations into the associations between this emission source air pollution particle and airway inflammation. RECENT FINDINGS Using bronchoalveolar lavage, bronchial biopsies, and sputum collection, studies have demonstrated inflammation in the airways of healthy individuals after exposure to diesel exhaust and DEPs. This inflammation has included neutrophils, eosinophils, mast cells, and lymphocytes. Elevated expression and concentrations of inflammatory mediators have similarly been observed in the respiratory tract after diesel exhaust and DEP exposure. An increased sensitivity of asthmatic individuals to the proinflammatory effects of DEPs has not been confirmed. SUMMARY Inflammation after diesel exhaust and DEP exposure is evident at higher concentrations only; there appears to be a threshold dose for DEPs approximating 300 μg/m. The lack of a biological response to DEPs at lower concentrations may reflect a contribution of gaseous constituents or interactions between DEPs and gaseous air pollutants to the human inflammatory response and function loss.
Collapse
|
25
|
Pulmonary effects of diesel exhaust: neutrophilic inflammation, oxidative injury, and asthma. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2678-82. [PMID: 22005277 DOI: 10.1016/j.ajpath.2011.08.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 08/31/2011] [Indexed: 01/24/2023]
|
26
|
Kim J, Natarajan S, Vaickus LJ, Bouchard JC, Beal D, Cruikshank WW, Remick DG. Diesel exhaust particulates exacerbate asthma-like inflammation by increasing CXC chemokines. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2730-9. [PMID: 21967814 DOI: 10.1016/j.ajpath.2011.08.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Revised: 07/11/2011] [Accepted: 08/10/2011] [Indexed: 11/17/2022]
Abstract
Particulate matter heavily pollutes the urban atmosphere, and several studies show a link between increased ambient particulate air pollution and exacerbation of pre-existing pulmonary diseases, including asthma. We investigated how diesel exhaust particulates (DEPs) aggravate asthma-like pulmonary inflammation in a mouse model of asthma induced by a house dust extract (HDE) containing cockroach allergens and endotoxin. BALB/c mice were exposed to three pulmonary challenges via hypopharyngeal administration of an HDE collected from the home of an asthmatic child. One hour before each pulmonary challenge, mice were exposed to DEP or PBS. Pulmonary inflammation was assessed by histological features, oxidative stress, respiratory physiological features, inflammatory cell recruitment, and local CXC chemokine production. To prove the role of CXC chemokines in the augmented inflammation, CXC chemokine-specific antibodies were delivered to the lungs before DEP exposure. DEP exacerbated HDE-induced airway inflammation, with increased airway mucus production, oxidative stress, inflammatory cell infiltration, bronchoalveolar lavage concentrations of CXC chemokines, and airway hyperreactivity. Neutralization of airway keratinocyte-derived chemokine and macrophage inflammatory protein-2 significantly improves the respiratory function in addition to decreasing the infiltration of neutrophils and eosinophils. Blocking the chemokines also decreased airway mucus production. These results demonstrate that DEP exacerbates airway inflammation induced by allergen through increased pulmonary expression of the CXC chemokines (keratinocyte-derived chemokine and macrophage inflammatory protein-2).
Collapse
Affiliation(s)
- Jiyoun Kim
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Provoost S, Maes T, Joos GF, Tournoy KG. Monocyte-derived dendritic cell recruitment and allergic T(H)2 responses after exposure to diesel particles are CCR2 dependent. J Allergy Clin Immunol 2011; 129:483-91. [PMID: 21906792 DOI: 10.1016/j.jaci.2011.07.051] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 06/01/2011] [Accepted: 07/22/2011] [Indexed: 12/24/2022]
Abstract
BACKGROUND The inhalation of diesel exhaust particles (DEPs) is associated with increased sensitization toward inhaled allergens. Dendritic cells (DCs) are important mediators in immune regulation. We previously showed that the inhalation of DEPs increased the accumulation of DCs in the lung and enhanced the T(H)2 response in the mediastinal lymph node. OBJECTIVE We hypothesized that CC chemokine receptors CCR2, CCR5, and CCR6 critically mediate the DC recruitment upon exposure to DEPs and that these CC chemokine receptors are important in the DEP-induced T(H)2 response. METHODS We exposed CCR2 knockout, CCR5 knockout, CCR6 knockout, and wild-type mice to DEPs and examined the pulmonary monocyte and DC accumulation. By an adoptive transfer experiment, we assessed the direct involvement of CCR2 and CCR6 in the recruitment of blood monocytes toward the lung upon exposure to DEPs. We also examined the T(H)2 cytokine production in the mediastinal lymph nodes of DEP-exposed CCR2 knockout and CCR6 knockout mice. RESULTS We observed that the DEP-induced monocyte and monocyte-derived DC recruitment was completely abolished in CCR2 knockout mice. CCR6 knockout mice also showed impaired monocyte recruitment upon exposure to DEPs. In contrast, monocyte and DC recruitment was comparable between DEP-exposed wild-type and CCR5 knockout mice. The impaired monocyte-derived DC recruitment in DEP-exposed CCR2 knockout, not CCR6 knockout, mice resulted in an abolished T(H)2 response in the mediastinal lymph node. CONCLUSION These data suggest that monocyte-derived DCs, recruited in a CCR2-dependent manner, are critical in inducing T(H)2 responses upon inhalation of DEPs.
Collapse
Affiliation(s)
- Sharen Provoost
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium.
| | | | | | | |
Collapse
|
28
|
microRNAs: implications for air pollution research. Mutat Res 2011; 717:38-45. [PMID: 21515291 DOI: 10.1016/j.mrfmmm.2011.03.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 03/22/2011] [Accepted: 03/31/2011] [Indexed: 11/20/2022]
Abstract
The purpose of this review is to provide an update of the current understanding on the role of microRNAs in mediating genetic responses to air pollutants and to contemplate on how these responses ultimately control susceptibility to ambient air pollution. Morbidity and mortality attributable to air pollution continues to be a growing public health concern worldwide. Despite several studies on the health effects of ambient air pollution, underlying molecular mechanisms of susceptibility and disease remain elusive. In the last several years, special attention has been given to the role of epigenetics in mediating, not only genetic and physiological responses to certain environmental insults, but also in regulating underlying susceptibility to environmental stressors. Epigenetic mechanisms control the expression of gene products, both basally and as a response to a perturbation, without affecting the sequence of DNA itself. These mechanisms include structural regulation of the chromatin structure, such as DNA methylation and histone modifications, and post-transcriptional gene regulation, such as microRNA mediated repression of gene expression. microRNAs are small noncoding RNAs that have been quickly established as key regulators of gene expression. As such, miRNAs have been found to control several cellular processes including apoptosis, proliferation and differentiation. More recently, research has emerged suggesting that changes in the expression of some miRNAs may be critical for mediating biological, and ultimately physiological, responses to air pollutants. Although the study of microRNAs, and epigenetics as a whole, has come quite far in the field of cancer, the understanding of how these mechanisms regulate gene-environment interactions to environmental exposures in everyday life is unclear. This article does not necessarily reflect the views and policies of the US EPA.
Collapse
|
29
|
Nadeau K, McDonald-Hyman C, Noth EM, Pratt B, Hammond SK, Balmes J, Tager I. Ambient air pollution impairs regulatory T-cell function in asthma. J Allergy Clin Immunol 2010; 126:845-852.e10. [PMID: 20920773 DOI: 10.1016/j.jaci.2010.08.008] [Citation(s) in RCA: 228] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 08/05/2010] [Accepted: 08/06/2010] [Indexed: 02/02/2023]
Abstract
BACKGROUND Asthma is the most frequent chronic disease in children, and children are at high risk for adverse health consequences associated with ambient air pollution (AAP) exposure. Regulatory T (Treg) cells are suppressors of immune responses involved in asthma pathogenesis. Treg-cell impairment is associated with increased DNA methylation of Forkhead box transcription factor 3 (Foxp3), a key transcription factor in Treg-cell activity. Because AAP exposure can induce epigenetic changes, we hypothesized that Treg-cell function would be impaired by AAP, allowing amplification of an inflammatory response. OBJECTIVES To assess whether exposure to AAP led to hypermethylation of the Foxp3 gene, causing impaired Treg-cell suppression and worsened asthma symptom scores. METHODS Children with and without asthma from Fresno, Calif (high pollution, Fresno Asthma Group [FA], n = 71, and Fresno Non Asthmatic Group, n = 30, respectively), and from Stanford, Calif (low pollution, Stanford Asthma Group, n = 40, and Stanford Non Asthmatic Group, n = 40), were enrolled in a cross-sectional study. Peripheral blood Treg cells were used in functional and epigenetic studies. Asthma outcomes were assessed by Global Initiative in Asthma score. RESULTS Fresno Asthma Group Treg-cell suppression was impaired and FA Treg-cell chemotaxis were reduced compared with other groups (P ≤ .05). Treg-cell dysfunction was associated with more pronounced decreases in asthma Global Initiative in Asthma score in FA versus the Stanford Asthma Group. Foxp3 was decreased in FA compared with the Fresno Non Asthmatic Group (P ≤ .05). FA also contained significantly higher levels of methylation at the Foxp3 locus (P ≤ .05). CONCLUSION Increased exposure to AAP is associated with hypermethylation of the Foxp3 locus, impairing Treg-cell function and increasing asthma morbidity. AAP could play a role in mediating epigenetic changes in Treg cells, which may worsen asthma by an immune mechanism.
Collapse
Affiliation(s)
- Kari Nadeau
- School of Medicine, Stanford University, Stanford, CA, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Li YJ, Takizawa H, Azuma A, Kohyama T, Yamauchi Y, Takahashi S, Yamamoto M, Kawada T, Kudoh S, Sugawara I. Nrf2 is closely related to allergic airway inflammatory responses induced by low-dose diesel exhaust particles in mice. Clin Immunol 2010; 137:234-41. [DOI: 10.1016/j.clim.2010.07.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Revised: 07/30/2010] [Accepted: 07/31/2010] [Indexed: 12/19/2022]
|
31
|
Maes T, Provoost S, Lanckacker EA, Cataldo DD, Vanoirbeek JAJ, Nemery B, Tournoy KG, Joos GF. Mouse models to unravel the role of inhaled pollutants on allergic sensitization and airway inflammation. Respir Res 2010; 11:7. [PMID: 20092634 PMCID: PMC2831838 DOI: 10.1186/1465-9921-11-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 01/21/2010] [Indexed: 02/06/2023] Open
Abstract
Air pollutant exposure has been linked to a rise in wheezing illnesses. Clinical data highlight that exposure to mainstream tobacco smoke (MS) and environmental tobacco smoke (ETS) as well as exposure to diesel exhaust particles (DEP) could promote allergic sensitization or aggravate symptoms of asthma, suggesting a role for these inhaled pollutants in the pathogenesis of asthma. Mouse models are a valuable tool to study the potential effects of these pollutants in the pathogenesis of asthma, with the opportunity to investigate their impact during processes leading to sensitization, acute inflammation and chronic disease. Mice allow us to perform mechanistic studies and to evaluate the importance of specific cell types in asthma pathogenesis. In this review, the major clinical effects of tobacco smoke and diesel exhaust exposure regarding to asthma development and progression are described. Clinical data are compared with findings from murine models of asthma and inhalable pollutant exposure. Moreover, the potential mechanisms by which both pollutants could aggravate asthma are discussed.
Collapse
Affiliation(s)
- Tania Maes
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Umezawa M, Takeda K, Ihara T, Sugamata M. Novel insights into pathology of endometriosis from a disease model induced by autotransplantation of endometrium. Inflamm Regen 2010. [DOI: 10.2492/inflammregen.30.115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
33
|
Jardim MJ, Fry RC, Jaspers I, Dailey L, Diaz-Sanchez D. Disruption of microRNA expression in human airway cells by diesel exhaust particles is linked to tumorigenesis-associated pathways. ENVIRONMENTAL HEALTH PERSPECTIVES 2009; 117:1745-51. [PMID: 20049127 PMCID: PMC2801177 DOI: 10.1289/ehp.0900756] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 06/18/2009] [Indexed: 05/19/2023]
Abstract
BACKGROUND Particulate matter (PM) is associated with adverse airway health effects; however, the underlying mechanism in disease initiation is still largely unknown. Recently, microRNAs (miRNAs; small noncoding RNAs) have been suggested to be important in maintaining the lung in a disease-free state through regulation of gene expression. Although many studies have shown aberrant miRNA expression patterns in diseased versus healthy tissue, little is known regarding whether environmental agents can induce such changes. OBJECTIVES We used diesel exhaust particles (DEP), the largest source of emitted airborne PM, to investigate pollutant-induced changes in miRNA expression in airway epithelial cells. We hypothesized that DEP exposure can lead to disruption of normal miRNA expression patterns, representing a plausible novel mechanism through which DEP can mediate disease initiation. METHODS Human bronchial epithelial cells were grown at air-liquid interface until they reached mucociliary differentiation. After treating the cells with 10 microg/cm(2) DEP for 24 hr, we analyzed total RNA for miRNA expression using microarray profile analysis and quantitative real-time polymerase chain reaction. RESULTS DEP exposure changed the miRNA expression profile in human airway epithelial cells. Specifically, 197 of 313 detectable miRNAs (62.9%) were either up-regulated or down-regulated by 1.5-fold. Molecular network analysis of putative targets of the 12 most altered miRNAs indicated that DEP exposure is associated with inflammatory responses pathways and a strong tumorigenic disease signature. CONCLUSIONS Alteration of miRNA expression profiles by environmental pollutants such as DEP can modify cellular processes by regulation of gene expression, which may lead to disease pathogenesis.
Collapse
Affiliation(s)
- Melanie J Jardim
- Human Studies Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Chapel Hill, North Carolina 27514, USA.
| | | | | | | | | |
Collapse
|
34
|
Non-cancer health effects of diesel exhaust: A critical assessment of recent human and animal toxicological literature. Crit Rev Toxicol 2009; 39:195-227. [DOI: 10.1080/10408440802220603] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Day KC, Reed MD, McDonald JD, Seilkop SK, Barrett EG. Effects of Gasoline Engine Emissions on Preexisting Allergic Airway Responses in Mice. Inhal Toxicol 2008; 20:1145-55. [DOI: 10.1080/08958370802382723] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Steerenberg P, Verlaan A, De Klerk A, Boere A, Loveren H, Cassee F. Sensitivity to Ozone, Diesel Exhaust Particles, and Standardized Ambient Particulate Matter in Rats with aListeria Monocytogenes-Induced Respiratory Infection. Inhal Toxicol 2008; 16:311-7. [PMID: 15371182 DOI: 10.1080/08958370490428436] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Ambient particulate matter may increase respiratory allergic skewing of the T-cell-mediated immune response toward a T-helper-2 (Th2) response, with the consequence that the Th1 response develops less well. Successful clearing of a respiratory bacterial infection depends on an adequate Th1 immune response; therefore, the subject would not control the infection as well if exposed to particulate matter. To substantiate this hypothesis, we examined the effect of exposure to diesel exhaust particles (DEP) and urban particulate matter (EHC-93, Ottawa dust) on rats with a Listeria monocytogenes respiratory infection. Since this hypothesis has been confirmed for ozone, we used it as a positive control. Wistar rats were exposed to ozone (2 mg/m3 for 24 h/day for 7 days) and to DEP or to EHC-93 (50 microg/rat intranasally daily for 7 consecutive days). Twenty-four hours after the last exposure, the rats were infected intratracheally with 1 x 10(6) L. monocytogenes bacteria. The number of L. monocytogenes was determined after 3, 4 and 5 days. Statistically significant increases of the number of L. monocytogenes in rats exposed to ozone were observed in the lungs and spleen at all three times. However, we found no significant differences in the numbers of bacteria that were found in rats exposed to DEP or EHC-93 compared to the saline-treated group at any of the three times. In conclusion, the results of this study do not support the hypothesis that exposure to DEP or EHC-93 reduces subsequent resistance to a respiratory infection in rats.
Collapse
Affiliation(s)
- P Steerenberg
- Laboratory for Toxicology, Pathology, and Genetics, National Institute of Public Health and the Environment, Bilthoven, The Netherlands.
| | | | | | | | | | | |
Collapse
|
37
|
Li YJ, Takizawa H, Azuma A, Kohyama T, Yamauchi Y, Takahashi S, Yamamoto M, Kawada T, Kudoh S, Sugawara I. Disruption of Nrf2 enhances susceptibility to airway inflammatory responses induced by low-dose diesel exhaust particles in mice. Clin Immunol 2008; 128:366-73. [DOI: 10.1016/j.clim.2008.05.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 05/15/2008] [Accepted: 05/19/2008] [Indexed: 10/21/2022]
|
38
|
Umezawa M, Sakata C, Tabata M, Tanaka N, Kudo S, Takeda K, Ihara T, Sugamata M. Diesel Exhaust Exposure Enhances the Persistence of Endometriosis Model in Rats. ACTA ACUST UNITED AC 2008. [DOI: 10.1248/jhs.54.503] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Masakazu Umezawa
- Department of Pathology, Tochigi Institute of Clinical Pathology
- Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Chika Sakata
- Department of Pathology, Tochigi Institute of Clinical Pathology
- Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Masako Tabata
- Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Naomi Tanaka
- Department of Pathology, Tochigi Institute of Clinical Pathology
- Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Sayaka Kudo
- Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Ken Takeda
- Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Tomomi Ihara
- Department of Pathology, Tochigi Institute of Clinical Pathology
| | - Masao Sugamata
- Department of Pathology, Tochigi Institute of Clinical Pathology
| |
Collapse
|
39
|
Teske S, Bohn AA, Hogaboam JP, Lawrence BP. Aryl hydrocarbon receptor targets pathways extrinsic to bone marrow cells to enhance neutrophil recruitment during influenza virus infection. Toxicol Sci 2007; 102:89-99. [PMID: 18007012 DOI: 10.1093/toxsci/kfm282] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
There is growing evidence that neutrophils influence host resistance during influenza virus infection; however, factors that regulate neutrophil migration to the lung during viral infection are unclear. Activation of the aryl hydrocarbon receptor (AhR) by the pollutant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD or dioxin) results in an increased number of neutrophils in the lung after influenza virus infection. The mechanism of AhR-mediated neutrophilia does not involve elevated levels of soluble neutrophil chemoattractants, upregulated adhesion molecules on pulmonary neutrophils, delayed neutrophil apoptosis, or increased vascular damage. In this study, we determined whether AhR activation increases neutrophil numbers systemically or only in the infected lung, and whether AhR-regulated events within the hematopoietic system underlie the dioxin-induced increase in pulmonary neutrophils observed during influenza virus infection. We report here that AhR activation does not increase neutrophil numbers systemically or increase neutrophil production in hematopoietic tissue, suggesting that the elevated number of neutrophils is restricted to the site of antigen challenge. The generation of CD45.2AhR-/--->CD45.1AhR+/+ bone marrow chimeric mice demonstrates that even when hematopoietic cells lack the AhR, TCDD treatment still results in twice as many pulmonary neutrophils compared with control-treated, infected CD45.2AhR-/--->CD45.1AhR+/+ chimeric mice. This finding reveals that AhR-mediated events extrinsic to bone marrow-derived cells affect the directional migration of neutrophils to the infected lung. These results suggest that the lung contains important and heretofore overlooked targets of AhR regulation, unveiling a novel mechanism for controlling neutrophil recruitment to the infected lung.
Collapse
Affiliation(s)
- Sabine Teske
- Department of Pharmaceutical Sciences and Pharmacology/Toxicology Graduate Program, College of Pharmacy, Washington State University, Pullman 99164, USA
| | | | | | | |
Collapse
|
40
|
Abstract
Particles generated from numerous anthropogenic sources have the potential to cause or exacerbate lung diseases, including asthma, bronchitis, and COPD. Fibrotic reactions are a component of all of these pulmonary diseases, and involve the progressive deposition of collagen by pulmonary fibroblasts. The reactivity, toxicity, and fibrogenic potential of particles in the lung depends on a variety of factors including particle size, surface area, and composition. Smaller particles, particularly in the nanosized range, have more toxic and fibrogenic capacity due to a higher surface-to-mass ratio and greater oxidant-generating potential. Composition is also an important determinant in the fibrotic response to particles. Transition metals, bacterial lipopolysaccaride, and polycyclic aromatic hydrocarbons are some of the toxic components of particles that activate intracellular signaling pathways that culminate in the production of profibrotic cytokines and growth factors.
Collapse
Affiliation(s)
- James C Bonner
- Respiratory Biology Program, Division of Biological Sciences, CIIT Centers for Health Research, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
41
|
Cao D, Bromberg PA, Samet JM. COX-2 expression induced by diesel particles involves chromatin modification and degradation of HDAC1. Am J Respir Cell Mol Biol 2007; 37:232-9. [PMID: 17395887 DOI: 10.1165/rcmb.2006-0449oc] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cyclooxygenase-2 (COX-2) plays an important role in the inflammatory response induced by physiologic and stress stimuli. Exposure to diesel exhaust particulate matter (DEP) has been shown to induce pulmonary inflammation and exacerbate asthma and chronic obstructive pulmonary disease. DEP is a potent inducer of inflammatory reponses in human airway epithelial cells. The mechanism through which DEP inhalation induces inflammatory mediator expression is not understood. In this report, we demonstrate that DEP can induce the expression of COX-2 gene in a human bronchial epithelial cell line (BEAS-2B) at both transcriptional and protein levels. The induction of COX-2 gene expression involves chromatin modification, in particular acetylation and deacetylation of histones. We show that exposure to DEP increases the acetylation of histone H4 associated with the COX-2 promoter and causes degradation of histone deacetylase 1 (HDAC1). Further, we establish that HDAC1 plays a pivotal role in mediating the transcriptional activation of the COX-2 gene in BEAS-2B cells exposed to DEP, supported by evidence that the down-regulation of HDAC1 using siRNA leads to activation of COX-2 gene expression, whereas overexpression of HDAC1 results in its repression. Finally, DEP exposure induced recruitment of histone acetyltransferase (HAT) p300 to the promoter of the COX-2 gene, suggesting that acetylation is also important in regulating its expression in response to DEP exposure. These results show for the first time acetylation via selective degradation of HDAC1, and that recruitment of HAT plays an important role in DEP-induced expression of the COX-2 gene.
Collapse
Affiliation(s)
- Dongsun Cao
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, USA
| | | | | |
Collapse
|
42
|
Paolucci C, Ponti J, Fabbri MV, Breda D, Sabbioni E, Burastero SE. Platinum Group Elements Enhance the Allergic Immune Response by Acting on Dendritic Cells. Int Arch Allergy Immunol 2007; 143:225-36. [PMID: 17290149 DOI: 10.1159/000099466] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Accepted: 10/30/2006] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Atmospheric pollution may play a role in the immune response to allergens either directly or by entering the food chain. While particulate platinum group elements (PLGE) emitted by catalytic converters can be considered biologically inert, approximately 10% of these species accumulate in the environment as bioavailable soluble forms. METHODS We challenged in vitro human immature and mature monocyte-derived dendritic cells with subtoxic concentrations of soluble species of PLGE. Dendritic cells were studied both at baseline and following treatment with Na(2)PtCl(6), Na(2)PdCl(6) or Na(3)RhCl(6). (NH(4))(6)Mo(7)O(24) was included as control. The following end-points were considered: expression of differentiation markers, effectiveness of allergen presentation and Th2 cytokine production by cocultured T lymphocytes, expression of IgE-type I receptor and efficiency of IgE-dependent endocytosis. RESULTS We found that treatment with PLGE (but not with the control metal) increased costimulatory molecule expression and antigen presentation, amplified IL-5 production by cocultured T lymphocytes, upregulated IgE-type I receptor membrane expression, and augmented IgE-type I receptor-mediated endocytosis. CONCLUSIONS We conclude that PLGE have an adjuvant-like effect on dendritic cells that can favor and amplify the immune response to allergens.
Collapse
|
43
|
Lintelmann J, Fischer K, Matuschek G. Determination of oxygenated polycyclic aromatic hydrocarbons in particulate matter using high-performance liquid chromatography–tandem mass spectrometry. J Chromatogr A 2006; 1133:241-7. [PMID: 16999968 DOI: 10.1016/j.chroma.2006.08.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 08/10/2006] [Accepted: 08/15/2006] [Indexed: 10/24/2022]
Abstract
A high-performance liquid chromatography-tandem mass spectrometric (LC-MS/MS) method with a rapid and simple sample preparation was optimized and validated for the determination of phenanthrene-9,10-dione, chrysene-5,6-dione, benzo[a]pyrene-1,6-dione, benzo[a]pyrene-3,6-dione, benzo[a]pyrene-4,5-dione, benzo[a]pyrene-6,12-dione, benzo[a]pyrene-7,8-dione, benzo[a]pyrene-11,12-dione and 6-oxo-7-oxa-benzo[a]pyrene in particulate matter. The mass spectrometer was operated in the multiple reaction monitoring (MRM) mode leading to high sensitivity and selectivity. The limits of quantification (S/N=10) ranged from ca. 0.1 pg/microl to ca. 5.8 pg/microl and matrix dependent recoveries varied between 49 and 92%. The applicability of the LC-MS/MS method was shown by the analysis of particulate matter (PM(2.5)) collected during the course of 2005 in the Munich area, Germany. All oxy-PAHs determined exhibited higher mean and peak concentrations in the winter months compared to the concentration levels in the warmer season.
Collapse
Affiliation(s)
- Jutta Lintelmann
- Institut für Okologische Chemie, GSF-Forschungszentrum für Umwelt und Gesundheit, GmbH, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.
| | | | | |
Collapse
|
44
|
Cao D, Tal TL, Graves LM, Gilmour I, Linak W, Reed W, Bromberg PA, Samet JM. Diesel exhaust particulate-induced activation of Stat3 requires activities of EGFR and Src in airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2006; 292:L422-9. [PMID: 17028263 DOI: 10.1152/ajplung.00204.2006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In vivo exposure to diesel exhaust particles (DEP) elicits acute inflammatory responses in the lung characterized by inflammatory cell influx and elevated expression of mediators such as cytokines and chemokines. Signal transducers and activators of transcription (STAT) proteins are a family of cytoplasmic transcription factors that are key transducers of signaling in response to cytokine and growth factor stimulation. One member of the STAT family, Stat3, has been implicated as a regulator of inflammation but has not been studied in regard to DEP exposure. The results of this study show that DEP induces Stat3 phosphorylation as early as 1 h following stimulation and that phosphorylated Stat3 translocates into the nucleus. Inhibition of epidermal growth factor receptor (EGFR) and Src activities by the inhibitors PD-153035 and PP2, respectively, abolished the activation of Stat3 by DEP, suggesting that Stat3 activation by DEP requires EGFR and Src kinase activation. The present study suggests that oxidative stress induced by DEP may play a critical role in activating EGFR signaling, as evidenced by the fact that pretreatment with antioxidant prevented the activation of EGFR and Stat3. These findings demonstrate that DEP inhalation can activate proinflammatory Stat3 signaling in vitro.
Collapse
Affiliation(s)
- Dongsun Cao
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Matsumoto A, Hiramatsu K, Li Y, Azuma A, Kudoh S, Takizawa H, Sugawara I. Repeated exposure to low-dose diesel exhaust after allergen challenge exaggerates asthmatic responses in mice. Clin Immunol 2006; 121:227-35. [PMID: 16979384 DOI: 10.1016/j.clim.2006.08.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 07/18/2006] [Accepted: 08/04/2006] [Indexed: 10/24/2022]
Abstract
BACKGROUND In conjunction with allergens, diesel exhaust particles act as an adjuvant to enhance IgE responses, inducing expression of cytokines/chemokines and adhesion molecules, and increasing airway hyper-responsiveness (AHR). As most studies were designed to expose animals to diesel exhaust throughout the periods of both sensitization and allergen challenge, it remains unclear whether diesel exhaust (DE) exposure exaggerates airway responses in asthmatic animals. OBJECTIVE To study effects of exposure to low-dose DE on AHR and allergic airway inflammation in asthmatic mice. METHODS BALB/c mice were sensitized by intraperitoneal injection of ovalbumin and challenged by intranasal administration with ovalbumin. They were exposed to low-dose DE for 7 h/day, 5 days/week, for up to 12 weeks. AHR to methacholine was evaluated by whole-body plethysmography as well as bronchoalveolar lavage cell analysis and cytokine gene expression in lungs. RESULTS Repeated exposure of asthmatic mice to low-dose DE resulted in increased AHR and gene expression of several pro-asthmatic cytokines/chemokines, but these effects rapidly subsided with continued exposure to DE. CONCLUSION Repeated exposure to low-dose DE after ovalbumin challenge exaggerates allergic responses in mice, but effects are not prolonged with continuous DE exposure.
Collapse
Affiliation(s)
- Aki Matsumoto
- Fourth Department of Internal Medicine, Nippon Medical School, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
Kongerud J, Madden MC, Hazucha M, Peden D. Nasal responses in asthmatic and nonasthmatic subjects following exposure to diesel exhaust particles. Inhal Toxicol 2006; 18:589-94. [PMID: 16864550 DOI: 10.1080/08958370600743027] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Asthma rates have been increasing worldwide, and exposure to diesel exhaust particles (DEP) may be implicated in this increase. DEP may also play a role in the increased morbidity and mortality associated with ambient airborne particulate matter (PM) exposure. Two types of nasal responses have been reported for human subjects nasally instilled with one type of DEP: alterations in cytokines responses, and an increase in immunoglobulin E (IgE) production. Since DEP composition can vary depending on several factors, including fuel composition and engine load, the ability of another DEP particle and ozone-treated DEP to alter nasal IgE and cytokine production was examined. Nonasthmatic and asthmatic subjects were intranasally instilled with 300 microg NIST 1650 DEP per nostril, NIST 1650 DEP previously exposed to ozone (ozDEP; 300 microg/nostril), or vehicle. Subjects underwent nasal lavage before DEP exposure, and 4 and 96 h after exposure. Nasal cell populations and soluble mediators in the nasal lavage fluid were characterized. Total cell number, cell types, cell viability, concentrations of soluble mediators (including interleukin [IL]-8, IL-6, IgE, and granulocyte-macrophage colony-stimulating factor [GM-CSF]) were not altered by either DEP or ozDEP exposure. NO levels were not altered by either particle exposure. These findings suggest that DEP can be relatively noninflammatory and nontoxic, and that the physicochemical characteristics of DEP need to be considered when assessing the health effects of exposure to diesel exhaust.
Collapse
Affiliation(s)
- Johny Kongerud
- Lungeavdelingen, Rikshospitalet, University of Oslo, Oslo, Norway
| | | | | | | |
Collapse
|
47
|
Auger F, Gendron MC, Chamot C, Marano F, Dazy AC. Responses of well-differentiated nasal epithelial cells exposed to particles: role of the epithelium in airway inflammation. Toxicol Appl Pharmacol 2006; 215:285-94. [PMID: 16647095 DOI: 10.1016/j.taap.2006.03.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Revised: 02/15/2006] [Accepted: 03/03/2006] [Indexed: 11/29/2022]
Abstract
Numerous epidemiological studies support the contention that ambient air pollution particles can adversely affect human health. To explain the acute inflammatory process in airways exposed to particles, a number of in vitro studies have been performed on cells grown submerged on plastic and poorly differentiated, and on cell lines, the physiology of which is somewhat different from that of well-differentiated cells. In order to obtain results using a model system in which epithelial cells are similar to those of the human airway in vivo, apical membranes of well-differentiated human nasal epithelial (HNE) cells cultured in an air-liquid interface (ALI) were exposed for 24 h to diesel exhaust particles (DEP) and Paris urban air particles (PM(2.5)). DEP and PM(2.5) (10-80 microg/cm(2)) stimulated both IL-8 and amphiregulin (ligand of EGFR) secretion exclusively towards the basal compartment. In contrast, there was no IL-1beta secretion and only weak non-reproducible secretion of TNF-alpha. IL-6 and GM-CSF were consistently stimulated towards the apical compartment and only when cells were exposed to PM(2.5). ICAM-1 protein expression on cell surfaces remained low after particle exposure, although it increased after TNF-alpha treatment. Internalization of particles, which is believed to initiate oxidative stress and proinflammatory cytokine expression, was restricted to small nanoparticles (< or =40 nm). Production of reactive oxygen species (ROS) was detected, and DEP were more efficient than PM(2.5). Collectively, our results suggest that airway epithelial cells exposed to particles augment the local inflammatory response in the lung but cannot alone initiate a systemic inflammatory response.
Collapse
Affiliation(s)
- Floriane Auger
- Laboratoire de Cytophysiologie et Toxicologie Cellulaire, Université Paris 7, 75251 Paris cedex 05, France
| | | | | | | | | |
Collapse
|
48
|
Tomita S, Maekawa SI, Rahman M, Saito F, Kizu R, Tohi K, Ueno T, Nakase H, Gonzalez FJ, Hayakawa K, Korenaga T, Takahama Y. Thymic involution produced by diesel exhaust particles and their constituents in mice. TOXICOLOGICAL AND ENVIRONMENTAL CHEMISTRY 2006. [DOI: doi.org/10.1080/02772240500475128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
49
|
Li N, Nel AE. Role of the Nrf2-mediated signaling pathway as a negative regulator of inflammation: implications for the impact of particulate pollutants on asthma. Antioxid Redox Signal 2006; 8:88-98. [PMID: 16487041 DOI: 10.1089/ars.2006.8.88] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Particulate matter (PM) is an environmental factor that may contribute to the exacerbation and possibly the development of asthma. PM contain redox-active chemicals and transition metals which generate reactive oxygen species (ROS). Excessive ROS can induce oxidative stress, which proceeds in hierarchical fashion to generate cellular responses. The most sensitive cellular response to mild oxidative stress is the activation of antioxidant and phase II enzymes (tier 1). If this protection fails, further increase of oxidative stress can induce inflammation (tier 2) and cell death (tier 3). Tier 1 antioxidant defenses are critical for protecting against airway inflammation and asthma. The expression of these antioxidant enzymes is regulated by the transcription factor, Nrf2. In response to oxidative stress, Nrf2 escapes from Keap1-mediated proteasomal degradation resulting in prolonged protein half-life and its nuclear accumulation. Nrf2 interacts with the antioxidant response element (ARE) in the promoters of phase II enzyme genes, leading to their transcriptional activation. Several phase II expression polymorphisms are associated with an increased risk of asthma. The indispensable role of Nrf2 in tier-1 oxidative stress response suggests that polymorphisms of Nrf2-regulated genes may be useful susceptibility markers for asthma. Moreover, chemopreventive Nrf2 inducers may be used for treating PM-exacerbated asthma.
Collapse
Affiliation(s)
- Ning Li
- Division of Clinical Immunology and Allergy, Department of Medicine, University of California, Los Angeles, California 90095, USA
| | | |
Collapse
|
50
|
Wang M, Xiao GG, Li N, Xie Y, Loo JA, Nel AE. Use of a fluorescent phosphoprotein dye to characterize oxidative stress-induced signaling pathway components in macrophage and epithelial cultures exposed to diesel exhaust particle chemicals. Electrophoresis 2005; 26:2092-108. [PMID: 15880549 DOI: 10.1002/elps.200410428] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A large body of evidence has shown that exposure to ambient particulate matter (PM) leads to asthma exacerbation through an excitation of allergic inflammation. Utilizing diesel exhaust particles (DEPs) as a model air pollutant, we and others have demonstrated that PM contains redox-active chemicals that generate inflammation through an oxidative stress mechanism. Recently, the strengths of proteomics have enabled us to demonstrate that organic DEP extracts induce a hierarchical expression pattern of oxidative stress-induced proteins in macrophages and epithelial cells. As a further extension of this work, we now employ a new phosphosensor fluorescent dye, Pro-Q Diamond, to elucidate the induction of phosphoproteins and intracellular signaling cascades that may play a role in DEP-induced inflammation. We demonstrate that DEPs induced the phosphorylation of several phosphoproteins that belong to a number of signaling pathways as well as other oxidative stress pathways. In combination with cytokine array, phosphoproteome analysis using Pro-Q Diamond allowed us to characterize the aromatic and polar chemicals of DEPs that are involved in the activation of three different mitogen-activated protein (MAP) kinase signaling pathways.
Collapse
Affiliation(s)
- Meiying Wang
- Department of Medicine, Division of Clinical Immunology and Allergy, and David Geffen School of Medicine, University of California Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|