1
|
Foko LPK, Narang G, Tamang S, Hawadak J, Jakhan J, Sharma A, Singh V. The spectrum of clinical biomarkers in severe malaria and new avenues for exploration. Virulence 2022; 13:634-653. [PMID: 36036460 PMCID: PMC9427047 DOI: 10.1080/21505594.2022.2056966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 11/28/2022] Open
Abstract
Globally, malaria is a public health concern, with severe malaria (SM) contributing a major share of the disease burden in malaria endemic countries. In this context, identification and validation of SM biomarkers are essential in clinical practice. Some biomarkers (C-reactive protein, angiopoietin 2, angiopoietin-2/1 ratio, platelet count, histidine-rich protein 2) have yielded interesting results in the prognosis of Plasmodium falciparum severe malaria, but for severe P. vivax and P. knowlesi malaria, similar evidence is missing. The validation of these biomarkers is hindered by several factors such as low sample size, paucity of evidence-evaluating studies, suboptimal values of sensitivity/specificity, poor clinical practicality of measurement methods, mixed Plasmodium infections, and good clinical value of the biomarkers for concurrent infections (pneumonia and current COVID-19 pandemic). Most of these biomarkers are non-specific to pathogens as they are related to host response and hence should be regarded as prognostic/predictive biomarkers that complement but do not replace pathogen biomarkers for clinical evaluation of SM patients. This review highlights the importance of research on diagnostic/predictive/therapeutic biomarkers, neglected malaria species, and clinical practicality of measurement methods in future studies. Finally, the importance of omics technologies for faster identification/validation of SM biomarkers is also included.
Collapse
Affiliation(s)
- Loick Pradel Kojom Foko
- Parasite and Host Biology Group, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Geetika Narang
- Parasite and Host Biology Group, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Suman Tamang
- Parasite and Host Biology Group, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Joseph Hawadak
- Parasite and Host Biology Group, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Jahnvi Jakhan
- Parasite and Host Biology Group, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Amit Sharma
- Parasite and Host Biology Group, ICMR-National Institute of Malaria Research, New Delhi, India
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Vineeta Singh
- Parasite and Host Biology Group, ICMR-National Institute of Malaria Research, New Delhi, India
| |
Collapse
|
2
|
Raballah E, Wilding K, Anyona SB, Munde EO, Hurwitz I, Onyango CO, Ayieko C, Lambert CG, Schneider KA, Seidenberg PD, Ouma C, McMahon BH, Cheng Q, Perkins DJ. Nonsynonymous amino acid changes in the α-chain of complement component 5 influence longitudinal susceptibility to Plasmodium falciparum infections and severe malarial anemia in kenyan children. Front Genet 2022; 13:977810. [PMID: 36186473 PMCID: PMC9515573 DOI: 10.3389/fgene.2022.977810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Severe malarial anemia (SMA; Hb < 5.0 g/dl) is a leading cause of childhood morbidity and mortality in holoendemic Plasmodium falciparum transmission regions such as western Kenya. Methods: We investigated the relationship between two novel complement component 5 (C5) missense mutations [rs17216529:C>T, p(Val145Ile) and rs17610:C>T, p(Ser1310Asn)] and longitudinal outcomes of malaria in a cohort of Kenyan children (under 60 mos, n = 1,546). Molecular modeling was used to investigate the impact of the amino acid transitions on the C5 protein structure. Results: Prediction of the wild-type and mutant C5 protein structures did not reveal major changes to the overall structure. However, based on the position of the variants, subtle differences could impact on the stability of C5b. The influence of the C5 genotypes/haplotypes on the number of malaria and SMA episodes over 36 months was determined by Poisson regression modeling. Genotypic analyses revealed that inheritance of the homozygous mutant (TT) for rs17216529:C>T enhanced the risk for both malaria (incidence rate ratio, IRR = 1.144, 95%CI: 1.059-1.236, p = 0.001) and SMA (IRR = 1.627, 95%CI: 1.201-2.204, p = 0.002). In the haplotypic model, carriers of TC had increased risk of malaria (IRR = 1.068, 95%CI: 1.017-1.122, p = 0.009), while carriers of both wild-type alleles (CC) were protected against SMA (IRR = 0.679, 95%CI: 0.542-0.850, p = 0.001). Conclusion: Collectively, these findings show that the selected C5 missense mutations influence the longitudinal risk of malaria and SMA in immune-naïve children exposed to holoendemic P. falciparum transmission through a mechanism that remains to be defined.
Collapse
Affiliation(s)
- Evans Raballah
- University of New Mexico-Kenya Global Health Programs, Kisumu, Kenya
- Department of Medical Laboratory Sciences, School of Public Health Biomedical Sciences and Technology, Masinde Muliro University of Science and Technology, Kakamega, Kenya
| | - Kristen Wilding
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Samuel B. Anyona
- University of New Mexico-Kenya Global Health Programs, Kisumu, Kenya
- Department of Medical Biochemistry, School of Medicine, Maseno University, Maseno, Kenya
| | - Elly O. Munde
- University of New Mexico-Kenya Global Health Programs, Kisumu, Kenya
- Department of Clinical Medicine, School of Health Sciences, Kirinyaga University, Kerugoya, Kenya
| | - Ivy Hurwitz
- University of New Mexico, Center for Global Health, Department of Internal Medicine, Albuquerque, NM, United States
| | - Clinton O. Onyango
- University of New Mexico-Kenya Global Health Programs, Kisumu, Kenya
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno, Kenya
| | - Cyrus Ayieko
- Department of Zoology, Maseno University, Maseno, Kenya
| | - Christophe G. Lambert
- University of New Mexico, Center for Global Health, Department of Internal Medicine, Albuquerque, NM, United States
| | - Kristan A. Schneider
- Department of Applied Computer and Biosciences, University of Applied Sciences Mittweida, Mittweida, Germany
| | - Philip D. Seidenberg
- University of New Mexico, Department of Emergency Medicine, Albuquerque, NM, United States
| | - Collins Ouma
- University of New Mexico-Kenya Global Health Programs, Kisumu, Kenya
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno, Kenya
| | - Benjamin H. McMahon
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Qiuying Cheng
- University of New Mexico, Center for Global Health, Department of Internal Medicine, Albuquerque, NM, United States
| | - Douglas J. Perkins
- University of New Mexico-Kenya Global Health Programs, Kisumu, Kenya
- University of New Mexico, Center for Global Health, Department of Internal Medicine, Albuquerque, NM, United States
| |
Collapse
|
3
|
The impact of human complement on the clinical outcome of malaria infection. Mol Immunol 2022; 151:19-28. [PMID: 36063583 DOI: 10.1016/j.molimm.2022.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 11/21/2022]
Abstract
The tropical disease malaria remains a major cause of global morbidity. Once transmitted to the human by a blood-feeding mosquito, the unicellular malaria parasite comes into contact with the complement system and continues to interact with human complement during its intraerythrocytic replication cycles. In the course of infection, both the classical and the alternative pathway of complement are activated, leading to parasite opsonization and lysis as well as the induction of complement-binding antibodies. While complement activity can be linked to the severity of malaria, it remains to date unclear, whether human complement is beneficial for protective immunity or if extensive complement reactions may rather enhance pathogenesis. In addition, the parasite has evolved molecular strategies to circumvent attack by human complement and has even developed means to utilize complement factors as mediators of host cell infection. In this review, we highlight current knowledge on the role of human complement for the progression of malaria infection. We discuss the various types of interactions between malaria parasites and complement factors with regard to immunity and infection outcome and set a special emphasis on the dual role of complement in the context of parasite fitness.
Collapse
|
4
|
Rathnayake D, Aitken EH, Rogerson SJ. Beyond Binding: The Outcomes of Antibody-Dependent Complement Activation in Human Malaria. Front Immunol 2021; 12:683404. [PMID: 34168652 PMCID: PMC8217965 DOI: 10.3389/fimmu.2021.683404] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/24/2021] [Indexed: 11/13/2022] Open
Abstract
Antibody immunity against malaria is effective but non-sterile. In addition to antibody-mediated inhibition, neutralisation or opsonisation of malaria parasites, antibody-mediated complement activation is also important in defense against infection. Antibodies form immune complexes with parasite-derived antigens that can activate the classical complement pathway. The complement system provides efficient surveillance for infection, and its activation leads to parasite lysis or parasite opsonisation for phagocytosis. The induction of complement-fixing antibodies contributes significantly to the development of protective immunity against clinical malaria. These complement-fixing antibodies can form immune complexes that are recognised by complement receptors on innate cells of the immune system. The efficient clearance of immune complexes is accompanied by complement receptor internalisation, abrogating the detrimental consequences of excess complement activation. Here, we review the mechanisms of activation of complement by alternative, classical, and lectin pathways in human malaria at different stages of the Plasmodium life cycle with special emphasis on how complement-fixing antibodies contribute to protective immunity. We briefly touch upon the action of anaphylatoxins, the assembly of membrane attack complex, and the possible reasons underlying the resistance of infected erythrocytes towards antibody-mediated complement lysis, relevant to their prolonged survival in the blood of the human host. We make suggestions for further research on effector functions of antibody-mediated complement activation that would guide future researchers in deploying complement-fixing antibodies in preventive or therapeutic strategies against malaria.
Collapse
Affiliation(s)
| | | | - Stephen J. Rogerson
- Department of Infectious Diseases, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Bavli Y, Chen BM, Roffler SR, Dobrovolskaia MA, Elnekave E, Ash S, Barenholz Y, Turjeman K. PEGylated Liposomal Methyl Prednisolone Succinate does not Induce Infusion Reactions in Patients: A Correlation Between in Vitro Immunological and in Vivo Clinical Studies. Molecules 2020; 25:molecules25030558. [PMID: 32012928 PMCID: PMC7037198 DOI: 10.3390/molecules25030558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 12/13/2022] Open
Abstract
PEGylated nanomedicines are known to induce infusion reactions (IRs) that in some cases can be life-threatening. Herein, we report a case study in which a patient with rare mediastinal and intracardiac IgG4-related sclerosing disease received 8 treatments of intravenously administered PEGylated liposomal methylprednisolone-succinate (NSSL-MPS). Due to the ethical requirements to reduce IRs, the patient received a cocktail of premedication including low dose of steroids, acetaminophen and H2 blockers before each infusion. The treatment was well-tolerated in that IRs, complement activation, anti-PEG antibodies and accelerated blood clearance of the PEGylated drug were not detected. Prior to the clinical study, an in vitro panel of assays utilizing blood of healthy donors was used to determine the potential of a PEGylated drug to activate complement system, elicit pro-inflammatory cytokines, damage erythrocytes and affect various components of the blood coagulation system. The overall findings of the in vitro panel were negative and correlated with the results observed in the clinical phase.
Collapse
Affiliation(s)
- Yaelle Bavli
- Laboratory of Membrane and Liposome Research, Department of Biochemistry, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem 9112102, Israel; (Y.B.); (K.T.)
| | - Bing-Mae Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan; (B.-M.C.); (S.R.R.)
| | - Steve R. Roffler
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan; (B.-M.C.); (S.R.R.)
| | - Marina A. Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21702, USA;
| | - Eldad Elnekave
- Davidoff Cancer Institute, Rabin Medical Center, Petach Tikva 4941492, Israel
- Correspondence: (E.E.); (Y.B.)
| | - Shifra Ash
- Rina Zaizov Pediatric Hematology Oncology Division, Schneider Children’s Medical Center of Israel, Petach Tiqva, Tel Aviv University, Tel Aviv, Israel 4920235, Israel;
| | - Yechezkel Barenholz
- Laboratory of Membrane and Liposome Research, Department of Biochemistry, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem 9112102, Israel; (Y.B.); (K.T.)
- Correspondence: (E.E.); (Y.B.)
| | - Keren Turjeman
- Laboratory of Membrane and Liposome Research, Department of Biochemistry, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem 9112102, Israel; (Y.B.); (K.T.)
| |
Collapse
|
6
|
Erice C, Kain KC. New insights into microvascular injury to inform enhanced diagnostics and therapeutics for severe malaria. Virulence 2019; 10:1034-1046. [PMID: 31775570 PMCID: PMC6930010 DOI: 10.1080/21505594.2019.1696621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/05/2019] [Accepted: 11/13/2019] [Indexed: 12/25/2022] Open
Abstract
Severe malaria (SM) has high mortality and morbidity rates despite treatment with potent antimalarials. Disease onset and outcome is dependent upon both parasite and host factors. Infected erythrocytes bind to host endothelium contributing to microvascular occlusion and dysregulated inflammatory and immune host responses, resulting in endothelial activation and microvascular damage. This review focuses on the mechanisms of host endothelial and microvascular injury. Only a small percentage of malaria infections (≤1%) progress to SM. Early recognition and treatment of SM can improve outcome, but we lack triage tools to identify SM early in the course of infection. Current point-of-care pathogen-based rapid diagnostic tests do not address this critical barrier. Immune and endothelial activation have been implicated in the pathobiology of SM. We hypothesize that measuring circulating mediators of these pathways at first clinical presentation will enable early triage and treatment of SM. Moreover, that host-based interventions that modulate these pathways will stabilize the microvasculature and improve clinical outcome over that of antimalarial therapy alone.
Collapse
Affiliation(s)
- Clara Erice
- Sandra-Rotman Centre for Global Health, Toronto General Research Institute, University Health Network-Toronto General Hospital, Toronto, Ontario, Canada
| | - Kevin C Kain
- Sandra-Rotman Centre for Global Health, Toronto General Research Institute, University Health Network-Toronto General Hospital, Toronto, Ontario, Canada
- Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
7
|
KSHV oral shedding and plasma viremia result in significant changes in the extracellular tumorigenic miRNA expression profile in individuals infected with the malaria parasite. PLoS One 2018; 13:e0192659. [PMID: 29425228 PMCID: PMC5806893 DOI: 10.1371/journal.pone.0192659] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/26/2018] [Indexed: 01/06/2023] Open
Abstract
Kaposi's sarcoma herpesvirus (KSHV) is the etiological agent of Kaposi’s sarcoma (KS). Both KSHV and HIV infections are endemic in Uganda, where KS is among the most common cancers in HIV-infected individuals. Recent studies examined the use of small RNAs as biomarkers of disease, including microRNAs (miRNAs), with viral and tumor-derived miRNAs being detected in exosomes from individuals with KSHV-associated malignancies. In the current study, the host and viral extracellular mature miRNA expression profiles were analyzed in blood of KS-negative individuals in Uganda, comparing those with or without KSHV detectable from the oropharynx. We observed increased levels of cellular oncogenic miRNAs and decreased levels of tumor-suppressor miRNAs in plasma of infected individuals exhibiting oral KSHV shedding. These changes in host oncomiRs were exacerbated in people co-infected with HIV, and partially reversed after 2 years of anti-retroviral therapy. We also detected KSHV miRNAs in plasma of KSHV infected individuals and determined that their expression levels correlated with KSHV plasma viremia. Deep sequencing revealed an expected profile of small cellular RNAs in plasma, with miRNAs constituting the major RNA biotype. In contrast, the composition of small RNAs in exosomes was highly atypical with high levels of YRNA and low levels of miRNAs. Mass spectrometry analysis of the exosomes revealed eleven different peptides derived from the malaria parasite, Plasmodium falciparum, and small RNA sequencing confirmed widespread plasmodium co-infections in the Ugandan cohorts. Proteome analysis indicated an exosomal protein profile consistent with erythrocyte and keratinocyte origins for the plasma exosomes. A strong correlation was observed between the abundance of Plasmodium proteins and cellular markers of malaria. As Plasmodium falciparum is an endemic pathogen in Uganda, our study shows that co-infection with other pathogens, such as KSHV, can severely impact the small RNA repertoire, complicating the use of exosome miRNAs as biomarkers of disease.
Collapse
|
8
|
Priya SP, Sakinah S, Sharmilah K, Hamat RA, Sekawi Z, Higuchi A, Ling MP, Nordin SA, Benelli G, Kumar SS. Leptospirosis: Molecular trial path and immunopathogenesis correlated with dengue, malaria and mimetic hemorrhagic infections. Acta Trop 2017; 176:206-223. [PMID: 28823908 DOI: 10.1016/j.actatropica.2017.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/03/2017] [Accepted: 08/04/2017] [Indexed: 12/12/2022]
Abstract
Immuno-pathogenesis of leptospirosis can be recounted well by following its trail path from entry to exit, while inducing disastrous damages in various tissues of the host. Dysregulated, inappropriate and excessive immune responses are unanimously blamed in fatal leptospirosis. The inherent abilities of the pathogen and inabilities of the host were debated targeting the severity of the disease. Hemorrhagic manifestation through various mechanisms leading to a fatal end is observed when this disease is unattended. The similar vascular destructions and hemorrhage manifestations are noted in infections with different microbes in endemic areas. The simultaneous infection in a host with more than one pathogen or parasite is referred as the coinfection. Notably, common endemic infections such as leptospirosis, dengue, chikungunya, and malaria, harbor favorable environments to flourish in similar climates, which is aggregated with stagnated water and aggravated with the poor personal and environmental hygiene of the inhabitants. These factors aid the spread of pathogens and parasites to humans and potential vectors, eventually leading to outbreaks of public health relevance. Malaria, dengue and chikungunya need mosquitoes as vectors, in contrast with leptospirosis, which directly invades human, although the environmental bacterial load is maintained through other mammals, such as rodents. The more complicating issue is that infections by different pathogens exhibiting similar symptoms but require different treatment management. The current review explores different pathogens expressing specific surface proteins and their ability to bind with array of host proteins with or without immune response to enter into the host tissues and their ability to evade the host immune responses to invade and their affinity to certain tissues leading to the common squeal of hemorrhage. Furthermore, at the host level, the increased susceptibility and inability of the host to arrest the pathogens' and parasites' spread in different tissues, various cytokines accumulated to eradicate the microorganisms and their cellular interactions, the antibody dependent defense and the susceptibility of individual organs bringing the manifestation of the diseases were explored. Lastly, we provided a discussion on the immune trail path of pathogenesis from entry to exit to narrate the similarities and dissimilarities among various hemorrhagic fevers mentioned above, in order to outline future possibilities of prevention, diagnosis, and treatment of coinfections, with special reference to endemic areas.
Collapse
|
9
|
Smith RC, Vega-Rodríguez J, Jacobs-Lorena M. The Plasmodium bottleneck: malaria parasite losses in the mosquito vector. Mem Inst Oswaldo Cruz 2015. [PMID: 25185005 PMCID: PMC4156458 DOI: 10.1590/0074-0276130597] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nearly one million people are killed every year by the malaria parasite Plasmodium. Although the disease-causing forms of the parasite exist only in the human blood, mosquitoes of the genus Anopheles are the obligate vector for transmission. Here, we review the parasite life cycle in the vector and highlight the human and mosquito contributions that limit malaria parasite development in the mosquito host. We address parasite killing in its mosquito host and bottlenecks in parasite numbers that might guide intervention strategies to prevent transmission.
Collapse
Affiliation(s)
- Ryan C Smith
- Department of Molecular Microbiology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health and Immunology, Baltimore, MD, USA
| | - Joel Vega-Rodríguez
- Department of Molecular Microbiology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health and Immunology, Baltimore, MD, USA
| | - Marcelo Jacobs-Lorena
- Department of Molecular Microbiology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health and Immunology, Baltimore, MD, USA
| |
Collapse
|
10
|
Mejia P, Diez-Silva M, Kamena F, Lu F, Fernandes SM, Seeberger PH, Davis AE, Mitchell JR. Human C1-Inhibitor Suppresses Malaria Parasite Invasion and Cytoadhesion via Binding to Parasite Glycosylphosphatidylinositol and Host Cell Receptors. J Infect Dis 2015; 213:80-9. [PMID: 26347576 DOI: 10.1093/infdis/jiv439] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/28/2015] [Indexed: 02/01/2023] Open
Abstract
Plasmodium falciparum-induced severe malaria remains a continuing problem in areas of endemicity, with elevated morbidity and mortality. Drugs targeting mechanisms involved in severe malaria pathology, including cytoadhesion of infected red blood cells (RBCs) to host receptors and production of proinflammatory cytokines, are still necessary. Human C1-inhibitor (C1INH) is a multifunctional protease inhibitor that regulates coagulation, vascular permeability, and inflammation, with beneficial effects in inflammatory disease models, including septic shock. We found that human C1INH, at therapeutically relevant doses, blocks severe malaria pathogenic processes by 2 distinct mechanisms. First, C1INH bound to glycan moieties within P. falciparum glycosylphosphatidylinositol (PfGPI) molecules on the parasite surface, inhibiting parasite RBC invasion and proinflammatory cytokine production by parasite-stimulated monocytes in vitro and reducing parasitemia in a rodent model of experimental cerebral malaria (ECM) in vivo. Second, C1INH bound to host CD36 and chondroitin sulfate A molecules, interfering with cytoadhesion of infected RBCs by competitive binding to these receptors in vitro and reducing sequestration in specific tissues and protecting against ECM in vivo. This study reveals that C1INH is a potential therapeutic antimalarial molecule able to interfere with severe-disease etiology at multiple levels through specific interactions with both parasite PfGPIs and host cell receptors.
Collapse
Affiliation(s)
- Pedro Mejia
- Immune Disease Institute, Harvard Medical School Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston
| | - Monica Diez-Silva
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Faustin Kamena
- Parasitology Unit, Max Planck Institute for Infection Biology Institute of Chemistry and Biochemistry, Free University of Berlin, Germany
| | - Fengxin Lu
- Immune Disease Institute, Harvard Medical School
| | | | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces Institute of Chemistry and Biochemistry, Free University of Berlin, Germany
| | | | - James R Mitchell
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston
| |
Collapse
|
11
|
Complement activation by merozoite antigens of Plasmodium falciparum. PLoS One 2014; 9:e105093. [PMID: 25144772 PMCID: PMC4140736 DOI: 10.1371/journal.pone.0105093] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 07/18/2014] [Indexed: 11/26/2022] Open
Abstract
Background Complement (C) is a crucial part of the innate immune system and becomes over activated during malaria, resulting in depletion of C components, especially those for lectin pathway (LP), thereby compromising the host's innate defense. In this study, involvement of P. falciparum antigens in C activation was investigated. Methods A highly synchronous culture of the Dd2 clone of P. falciparum was established in a serum free medium. Supernatants harvested from rings, trophozoites and schizonts at various parasite densities were tested for ability to activate C by quantifying amount of C3b deposited on erythrocytes (E). Uninfected sham culture was used as control. Remnants of each C pathway were determined using Wieslab complement System Screenkit (Euro-diagnostica, Sweden). To identify MBL binding antigens of LP, culture supernatants were added to MBL sepharose columns and trapped antigens eluted with increasing concentrations of EDTA (10 mM, 50 mM and 100 mM) and then desalted before being tested for ability to activate C. The EDTA eluate with highest activity was run on a polyacrylamide gel and silver stained proteins analyzed by mass spectroscopy. Results Antigens released by P. falciparum growing in culture activated C leading to C3b deposition on E. Maximal activation at 7% parasitemia was associated with schizont stage (36.7%) compared to 22% for rings, 21% for trophozoites and 3% for sham culture. All the three pathways of C were activated, with highest activation being for the alternative pathway (only 6% of C activation potential remained), 65% for classiical and 43% for the LP. Seven MBL binding merozoite proteins were identified by mass spectrometry in the 50 mM EDTA eluate. Conclusions MBL binding merozoite adhesins with ability to activate C pathway were identified. The survival advantage for such pronounced C activation is unclear, but opsonisation could facilitate recognition and invasion of E.
Collapse
|
12
|
Jain P, Chakma B, Patra S, Goswami P. Potential biomarkers and their applications for rapid and reliable detection of malaria. BIOMED RESEARCH INTERNATIONAL 2014; 2014:852645. [PMID: 24804253 PMCID: PMC3996934 DOI: 10.1155/2014/852645] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 02/11/2014] [Indexed: 12/21/2022]
Abstract
Malaria has been responsible for the highest mortality in most malaria endemic countries. Even after decades of malaria control campaigns, it still persists as a disease of high mortality due to improper diagnosis and rapidly evolving drug resistant malarial parasites. For efficient and economical malaria management, WHO recommends that all malaria suspected patients should receive proper diagnosis before administering drugs. It is thus imperative to develop fast, economical, and accurate techniques for diagnosis of malaria. In this regard an in-depth knowledge on malaria biomarkers is important to identify an appropriate biorecognition element and utilize it prudently to develop a reliable detection technique for diagnosis of the disease. Among the various biomarkers, plasmodial lactate dehydrogenase and histidine-rich protein II (HRP II) have received increasing attention for developing rapid and reliable detection techniques for malaria. The widely used rapid detection tests (RDTs) for malaria succumb to many drawbacks which promotes exploration of more efficient economical detection techniques. This paper provides an overview on the current status of malaria biomarkers, along with their potential utilization for developing different malaria diagnostic techniques and advanced biosensors.
Collapse
Affiliation(s)
- Priyamvada Jain
- Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Babina Chakma
- Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sanjukta Patra
- Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Pranab Goswami
- Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
13
|
Liu T, Xu G, Guo B, Fu Y, Qiu Y, Ding Y, Zheng H, Fu X, Wu Y, Xu W. An essential role for C5aR signaling in the optimal induction of a malaria-specific CD4+ T cell response by a whole-killed blood-stage vaccine. THE JOURNAL OF IMMUNOLOGY 2013; 191:178-86. [PMID: 23709683 DOI: 10.4049/jimmunol.1201190] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The protective immunity induced by the whole-killed parasite vaccine against malarial blood-stage infection is dependent on the CD4(+) T cell response. However, the mechanism underlying this robust CD4(+) T cell response elicited by the whole-killed parasite vaccine is still largely unknown. In this study, we observe that immunization with Plasmodium yoelii-parasitized RBC lysate activates complement C5 and generates C5a. However, the protective efficacy against P. yoelii 17XL challenge is considerably reduced, and the malaria-specific CD4(+) T cell activation and memory T cell differentiation are largely suppressed in the C5aR-deficient (C5aR(-/-)) mice. An adoptive transfer assay demonstrates that the reduced protection of C5aR(-/-) mice is closely associated with the severely impaired CD4(+) T cell response. This is further confirmed by the fact that administration of C5aR antagonist significantly reduces the protective efficacy of the immunized B cell-deficient mice. Further study indicates that the defective CD4(+) T cell response in C5aR(-/-) mice is unlikely involved in the expansion of CD4(+)CD25(+)Foxp3(+) T cells, but strongly linked to a defect in dendritic cell (DC) maturation and the ability to allostimulate CD4(+) T cells. These results demonstrate that C5aR signaling is essential for the optimal induction of the malaria-specific CD4(+) T cell response by the whole-killed parasite vaccine through modulation of DCs function, which provides us with new clues to design an effective blood-stage subunit vaccine and helps us to understand the mechanism by which the T cell response is regulated by the complement system.
Collapse
Affiliation(s)
- Taiping Liu
- Department of Pathogenic Biology, Third Military Medical University, Chongqing 400038, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Proteomic investigation of falciparum and vivax malaria for identification of surrogate protein markers. PLoS One 2012; 7:e41751. [PMID: 22912677 PMCID: PMC3415403 DOI: 10.1371/journal.pone.0041751] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 06/25/2012] [Indexed: 01/30/2023] Open
Abstract
This study was conducted to analyze alterations in the human serum proteome as a consequence of infection by malaria parasites Plasmodium falciparum and P. vivax to obtain mechanistic insights about disease pathogenesis, host immune response, and identification of potential protein markers. Serum samples from patients diagnosed with falciparum malaria (FM) (n = 20), vivax malaria (VM) (n = 17) and healthy controls (HC) (n = 20) were investigated using multiple proteomic techniques and results were validated by employing immunoassay-based approaches. Specificity of the identified malaria related serum markers was evaluated by means of analysis of leptospirosis as a febrile control (FC). Compared to HC, 30 and 31 differentially expressed and statistically significant (p<0.05) serum proteins were identified in FM and VM respectively, and almost half (46.2%) of these proteins were commonly modulated due to both of the plasmodial infections. 13 proteins were found to be differentially expressed in FM compared to VM. Functional pathway analysis involving the identified proteins revealed the modulation of different vital physiological pathways, including acute phase response signaling, chemokine and cytokine signaling, complement cascades and blood coagulation in malaria. A panel of identified proteins consists of six candidates; serum amyloid A, hemopexin, apolipoprotein E, haptoglobin, retinol-binding protein and apolipoprotein A-I was used to build statistical sample class prediction models. By employing PLS-DA and other classification methods the clinical phenotypic classes (FM, VM, FC and HC) were predicted with over 95% prediction accuracy. Individual performance of three classifier proteins; haptoglobin, apolipoprotein A-I and retinol-binding protein in diagnosis of malaria was analyzed using receiver operating characteristic (ROC) curves. The discrimination of FM, VM, FC and HC groups on the basis of differentially expressed serum proteins demonstrates the potential of this analytical approach for the detection of malaria as well as other human diseases.
Collapse
|
15
|
Serum proteome analysis of vivax malaria: An insight into the disease pathogenesis and host immune response. J Proteomics 2011; 75:3063-80. [PMID: 22086083 DOI: 10.1016/j.jprot.2011.10.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 09/24/2011] [Accepted: 10/20/2011] [Indexed: 10/15/2022]
Abstract
Vivax malaria is the most widely distributed human malaria resulting in 80-300 million clinical cases every year. It causes severe infection and mortality but is generally regarded as a benign disease and has not been investigated in detail. The present study aimed to perform human serum proteome analysis in a malaria endemic area in India to identify potential serum biomarkers for vivax malaria and understand host response. The proteomic analysis was performed on 16 age and gender matched subjects (vivax patients and control) in duplicate. Protein extraction protocols were optimized for large coverage of the serum proteome and to obtain high-resolution data. Identification of 67 differentially expressed and statistically significant (Student's t-test; p<0.05) protein spots was established by MALDI-TOF/TOF mass spectrometry. Many of the identified proteins such as apolipoprotein A and E, serum amyloid A and P, haptoglobin, ceruloplasmin, and hemopexin are interesting from a diagnostic point of view and could further be studied as potential serum biomarkers. The differentially expressed serum proteins in vivax malaria identified in this study were subjected to functional pathway analysis using multiple software, including Ingenuity Pathway Analysis (IPA), Protein ANalysis THrough Evolutionary Relationships (PANTHER) and Database for Annotation, Visualization and Integrated Discovery (DAVID) functional annotation tool for better understanding of the biological context of the identified proteins, their involvement in various physiological pathways and association with disease pathogenesis. Functional pathway analysis of the differentially expressed proteins suggested the modulation of multiple vital physiological pathways, including acute phase response signaling, complement and coagulation cascades, hemostasis and vitamin D metabolism pathway due to this parasitic infection. This article is part of a Special Issue entitled: Proteomics: The clinical link.
Collapse
|
16
|
Kassa FA, Shio MT, Bellemare MJ, Faye B, Ndao M, Olivier M. New inflammation-related biomarkers during malaria infection. PLoS One 2011; 6:e26495. [PMID: 22028888 PMCID: PMC3197653 DOI: 10.1371/journal.pone.0026495] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 09/28/2011] [Indexed: 01/27/2023] Open
Abstract
Malaria is one of the most prevalent infectious diseases worldwide with more than 250 million cases and one million deaths each year. One of the well-characterized malarial-related molecules is hemozoin (HZ), which is a dark-brown crystal formed by the parasite and released into the host during the burst of infected red blood cells. HZ has a stimulatory effect on the host immune system such as its ability to induce pro-inflammatory mediators responsible for some of the malaria related clinical symptoms such as fever. However, the host serum proteins interacting with malarial HZ as well as how this interaction modifies its recognition by phagocytes remained elusive. In the actual study, using proteomic liquid chromatographic mass spectrometry (LC-MS/MS) and immunochemical approaches, we compared the serum protein profiles of malaria patients and healthy individuals. Particularly, we utilized the malarial HZ itself to capture serum proteins capable to bind to HZ, enabling us to identify several proteins such as apolipoprotein E (ApoE), serum amyloid A (SAA), gelsolin, complement factor H and fibrinogen that were found to differ among healthy and malaria individual. Of particular interest is LPS binding protein (LBP), which is reported herein for the first time in the context of malaria. LBP is usually produced during innate inflammatory response to gram-negative bacterial infections. The exact role of these biomarkers and acute phase responses in malaria in general and HZ in particular remains to be investigated. The identification of these inflammation-related biomarkers in malaria paves the way to potentially utilize them as diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Fikregabrail Aberra Kassa
- Department of Microbiology and Immunology, McGill University, Montréal, Canada
- Centre for the Study of Host Resistance, the Research Institute of McGill University Health Centre, Montréal, Canada
| | - Marina Tiemi Shio
- Department of Microbiology and Immunology, McGill University, Montréal, Canada
- Centre for the Study of Host Resistance, the Research Institute of McGill University Health Centre, Montréal, Canada
| | - Marie-Josée Bellemare
- Department of Microbiology and Immunology, McGill University, Montréal, Canada
- Centre for the Study of Host Resistance, the Research Institute of McGill University Health Centre, Montréal, Canada
| | - Babacar Faye
- Department of Parasitology and Mycology, Faculty of Medicine, Cheikh Anta Diop University, Dakar, Sénégal
| | - Momar Ndao
- Centre for the Study of Host Resistance, the Research Institute of McGill University Health Centre, Montréal, Canada
- National Reference Centre for Parasitology, Montreal General Hospital, Montréal, Canada
| | - Martin Olivier
- Department of Microbiology and Immunology, McGill University, Montréal, Canada
- Centre for the Study of Host Resistance, the Research Institute of McGill University Health Centre, Montréal, Canada
- * E-mail:
| |
Collapse
|
17
|
Silver KL, Higgins SJ, McDonald CR, Kain KC. Complement driven innate immune response to malaria: fuelling severe malarial diseases. Cell Microbiol 2010; 12:1036-45. [PMID: 20545944 DOI: 10.1111/j.1462-5822.2010.01492.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Severe malaria remains a major cause of global mortality. The innate immune response to infection is a key determinant of malaria severity and outcome. The complement system plays a key role in initiating and augmenting innate immune responses, including inflammation, endothelial activation, opsonization and coagulation, processes which have been implicated in malaria pathogenesis. In this review, we discuss the evidence supporting a role for excessive complement activation in the pathogenesis of severe malaria.
Collapse
Affiliation(s)
- Karlee L Silver
- McLaughlin-Rotman Centre for Global Health, University Health Network-Toronto General Hospital, University of Toronto, Toronto, ON, Canada
| | | | | | | |
Collapse
|
18
|
Conroy A, Serghides L, Finney C, Owino SO, Kumar S, Gowda DC, Liles WC, Moore JM, Kain KC. C5a enhances dysregulated inflammatory and angiogenic responses to malaria in vitro: potential implications for placental malaria. PLoS One 2009; 4:e4953. [PMID: 19308263 PMCID: PMC2655724 DOI: 10.1371/journal.pone.0004953] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Accepted: 02/14/2009] [Indexed: 12/21/2022] Open
Abstract
Background Placental malaria (PM) is a leading cause of maternal and infant mortality. Although the accumulation of parasitized erythrocytes (PEs) and monocytes within the placenta is thought to contribute to the pathophysiology of PM, the molecular mechanisms underlying PM remain unclear. Based on the hypothesis that excessive complement activation may contribute to PM, in particular generation of the potent inflammatory peptide C5a, we investigated the role of C5a in the pathogenesis of PM in vitro and in vivo. Methodology and Principal Findings Using primary human monocytes, the interaction between C5a and malaria in vitro was assessed. CSA- and CD36-binding PEs induced activation of C5 in the presence of human serum. Plasmodium falciparum GPI (pfGPI) enhanced C5a receptor expression (CD88) on monocytes, and the co-incubation of monocytes with C5a and pfGPI resulted in the synergistic induction of cytokines (IL-6, TNF, IL-1β, and IL-10), chemokines (IL-8, MCP-1, MIP1α, MIP1β) and the anti-angiogenic factor sFlt-1 in a time and dose-dependent manner. This dysregulated response was abrogated by C5a receptor blockade. To assess the potential role of C5a in PM, C5a plasma levels were measured in malaria-exposed primigravid women in western Kenya. Compared to pregnant women without malaria, C5a levels were significantly elevated in women with PM. Conclusions and Significance These results suggest that C5a may contribute to the pathogenesis of PM by inducing dysregulated inflammatory and angiogenic responses that impair placental function.
Collapse
Affiliation(s)
- Andrea Conroy
- McLaughlin-Rotman Centre for Global Health, Toronto General Hospital, McLaughlin Centre for Molecular Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Lena Serghides
- McLaughlin-Rotman Centre for Global Health, Toronto General Hospital, McLaughlin Centre for Molecular Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Constance Finney
- McLaughlin-Rotman Centre for Global Health, Toronto General Hospital, McLaughlin Centre for Molecular Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Simon O. Owino
- Center for Tropical and Emerging Global Diseases and Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Sanjeev Kumar
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - D. Channe Gowda
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - W. Conrad Liles
- McLaughlin-Rotman Centre for Global Health, Toronto General Hospital, McLaughlin Centre for Molecular Medicine, University of Toronto, Toronto, Ontario, Canada
- Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University Health Network-Toronto General Hospital, Toronto, Ontario, Canada
| | - Julie M. Moore
- Center for Tropical and Emerging Global Diseases and Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Kevin C. Kain
- McLaughlin-Rotman Centre for Global Health, Toronto General Hospital, McLaughlin Centre for Molecular Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University Health Network-Toronto General Hospital, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
19
|
Nyakoe NK, Taylor RP, Makumi JN, Waitumbi JN. Complement consumption in children with Plasmodium falciparum malaria. Malar J 2009; 8:7. [PMID: 19134190 PMCID: PMC2645421 DOI: 10.1186/1475-2875-8-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 01/09/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Complement (C) can be activated during malaria, C components consumed and inflammatory mediators produced. This has potential to impair host innate defence. METHODS In a case-control study, C activation was assessed by measuring serum haemolytic activity (CH50), functional activity of each pathway and levels of C3a, C4a and C5a in children presenting at Kisumu District Hospital, western Kenya, with severe malarial anaemia (SMA) or uncomplicated malaria (UM). RESULTS CH50 median titers for lysis of sensitized sheep erythrocytes in SMA (8.6 U/mL) were below normal (34-70 U/mL) and were one-fourth the level in UM (34.6 U/mL (P < 0.001). Plasma C3a median levels were 10 times higher than in normals forSMA (3,200 ng/ml) and for UM (3,500 ng/ml), indicating substantial C activation in both groups. Similar trends were obtained for C4a and C5a. The activities of all three C pathways were greatly reduced in SMA compared to UM (9.9% vs 83.4% for CP, 0.09% vs 30.7% for MBL and 36.8% vs 87.7% for AP respectively, P < 0.001). CONCLUSION These results indicate that, while C activation occurs in both SMA and UM, C consumption is excessive in SMA. It is speculated that in SMA, consumption of C exceeds its regeneration.
Collapse
Affiliation(s)
- Nancy K Nyakoe
- Walter Reed Project, Kenya Medical Research Institute, Kisumu, Kenya.
| | | | | | | |
Collapse
|
20
|
Patel SN, Berghout J, Lovegrove FE, Ayi K, Conroy A, Serghides L, Min-oo G, Gowda DC, Sarma JV, Rittirsch D, Ward PA, Liles WC, Gros P, Kain KC. C5 deficiency and C5a or C5aR blockade protects against cerebral malaria. J Exp Med 2008; 205:1133-43. [PMID: 18426986 PMCID: PMC2373845 DOI: 10.1084/jem.20072248] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Accepted: 04/02/2008] [Indexed: 12/13/2022] Open
Abstract
Experimental infection of mice with Plasmodium berghei ANKA (PbA) provides a powerful model to define genetic determinants that regulate the development of cerebral malaria (CM). Based on the hypothesis that excessive activation of the complement system may confer susceptibility to CM, we investigated the role of C5/C5a in the development of CM. We show a spectrum of susceptibility to PbA in a panel of inbred mice; all CM-susceptible mice examined were found to be C5 sufficient, whereas all C5-deficient strains were resistant to CM. Transfer of the C5-defective allele from an A/J (CM resistant) onto a C57BL/6 (CM-susceptible) genetic background in a congenic strain conferred increased resistance to CM; conversely, transfer of the C5-sufficient allele from the C57BL/6 onto the A/J background recapitulated the CM-susceptible phenotype. The role of C5 was further explored in B10.D2 mice, which are identical for all loci other than C5. C5-deficient B10.D2 mice were protected from CM, whereas C5-sufficient B10.D2 mice were susceptible. Antibody blockade of C5a or C5a receptor (C5aR) rescued susceptible mice from CM. In vitro studies showed that C5a-potentiated cytokine secretion induced by the malaria product P. falciparum glycosylphosphatidylinositol and C5aR blockade abrogated these amplified responses. These data provide evidence implicating C5/C5a in the pathogenesis of CM.
Collapse
Affiliation(s)
- Samir N Patel
- Tropical Disease Unit, Department of Medicine, McLaughlin-Rotman Centre for Global Health, Toronto General Hospital, Toronto, Ontario M5G 2C4, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Francischetti IMB, Seydel KB, Monteiro RQ. Blood coagulation, inflammation, and malaria. Microcirculation 2008; 15:81-107. [PMID: 18260002 DOI: 10.1080/10739680701451516] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Malaria remains a highly prevalent disease in more than 90 countries and accounts for at least 1 million deaths every year. Plasmodium falciparum infection is often associated with a procoagulant tonus characterized by thrombocytopenia and activation of the coagulation cascade and fibrinolytic system; however, bleeding and hemorrhage are uncommon events, suggesting that a compensated state of blood coagulation activation occurs in malaria. This article (i) reviews the literature related to blood coagulation and malaria in a historic perspective, (ii) describes basic mechanisms of coagulation, anticoagulation, and fibrinolysis, (iii) explains the laboratory changes in acute and compensated disseminated intravascular coagulation (DIC), (iv) discusses the implications of tissue factor (TF) expression in the endothelium of P. falciparum infected patients, and (v) emphasizes the procoagulant role of parasitized red blood cells (RBCs) and activated platelets in the pathogenesis of malaria. This article also presents the Tissue Factor Model (TFM) for malaria pathogenesis, which places TF as the interface between sequestration, endothelial cell (EC) activation, blood coagulation disorder, and inflammation often associated with the disease. The relevance of the coagulation-inflammation cycle for the multiorgan dysfunction and coma is discussed in the context of malaria pathogenesis.
Collapse
Affiliation(s)
- Ivo M B Francischetti
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-8132, USA.
| | | | | |
Collapse
|
22
|
Helegbe GK, Goka BQ, Kurtzhals JAL, Addae MM, Ollaga E, Tetteh JKA, Dodoo D, Ofori MF, Obeng-Adjei G, Hirayama K, Awandare GA, Akanmori BD. Complement activation in Ghanaian children with severe Plasmodium falciparum malaria. Malar J 2007; 6:165. [PMID: 18086298 PMCID: PMC2231372 DOI: 10.1186/1475-2875-6-165] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Accepted: 12/17/2007] [Indexed: 11/25/2022] Open
Abstract
Background Severe anaemia (SA), intravascular haemolysis (IVH) and respiratory distress (RD) are severe forms of Plasmodium falciparum malaria, with RD reported to be of prognostic importance in African children with malarial anaemia. Complement factors have been implicated in the mechanism leading to excess anaemia in acute P. falciparum infection. Methods The direct Coombs test (DCT) and flow cytometry were used to investigate the mean levels of RBC-bound complement fragments (C3d and C3bαβ) and the regulatory proteins [complement receptor 1 (CD35) and decay accelerating factor (CD55)] in children with discrete clinical forms of P. falciparum malaria. The relationship between the findings and clinical parameters including coma, haemoglobin (Hb) levels and RD were investigated. Results Of the 484 samples tested, 131(27%) were positive in DCT, out of which 115/131 (87.8%) were positive for C3d alone while 16/131 (12.2%) were positive for either IgG alone or both. 67.4% of the study population were below 5 years of age and DCT positivity was more common in this age group relative to children who were 5 years or older (Odds ratio, OR = 3.8; 95%CI, 2.2–6.7, p < 0.001). DCT correlated significantly with RD (β = -304, p = 0.006), but multiple regression analysis revealed that, Hb (β = -0.341, p = 0.012) and coma (β = -0.256, p = 0.034) were stronger predictors of RD than DCT (β = 0.228, p = 0.061). DCT was also not associated with IVH, p = 0.19, while spleen size was inversely correlated with Hb (r = -402, p = 0.001). Flow cytometry showed similar mean fluorescent intensity (MFI) values of CD35, CD55 and C3bαβ levels on the surfaces of RBC in patients and asymptomatic controls (AC). However, binding of C3bαβ correlated significantly with CD35 or CD55 (p < 0.001). Conclusion These results suggest that complement activation contributed to anaemia in acute childhood P. falciparum malaria, possibly through induction of erythrophagocytosis and haemolysis. In contrast to other studies, this study did not find association between levels of the complement regulatory proteins, CD35 and CD55 and malarial anaemia. These findings suggest that complement activation could also be involved in the pathogenesis of RD but larger studies are needed to confirm this finding.
Collapse
Affiliation(s)
- Gideon K Helegbe
- Department of Biochemistry and Molecular Medicine, SMHS, UDS, Tamale, Ghana.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Roestenberg M, McCall M, Mollnes TE, van Deuren M, Sprong T, Klasen I, Hermsen CC, Sauerwein RW, van der Ven A. Complement activation in experimental human malaria infection. Trans R Soc Trop Med Hyg 2007; 101:643-9. [PMID: 17481680 DOI: 10.1016/j.trstmh.2007.02.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2006] [Revised: 02/27/2007] [Accepted: 02/27/2007] [Indexed: 11/29/2022] Open
Abstract
The objective of this study was to investigate complement activation in uncomplicated, early phases of human malaria. Fifteen healthy volunteers were experimentally infected with Plasmodium falciparum malaria. Parasitemia and complement activation products were assessed. During blood stage parasitemia, volunteers showed a significant increase in soluble terminal complement complex (TCC) formation. After start of a curative regimen of artemether/lumefantrine, TCC further increased due to activation of both the classical and the alternative pathway. In-vitro studies confirmed activation of complement by parasite cultures. We thus detected an increase in complement activation in volunteers with experimentally induced malaria, even before parasitemia could be detected microscopically. This significant increase in complement activation occurred despite the possible control of TCC formation by complement regulatory proteins on erythrocytes and the extremely low levels of parasitemia. Treatment with artemether/lumefantrine was followed by classical and alternative pathway complement activation, without evidence for mannan-binding-lectin-mediated complement activation.
Collapse
Affiliation(s)
- Meta Roestenberg
- Radboud University Nijmegen Medical Center, Postbus 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Schwartz-Albiez R, Adams Y, von der Lieth CW, Mischnick P, Andrews KT, Kirschfink M. Regioselectively modified sulfated cellulose as prospective drug for treatment of malaria tropica. Glycoconj J 2006; 24:57-65. [PMID: 17115275 DOI: 10.1007/s10719-006-9012-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Adhesion of Plasmodium falciparum infected erythrocytes (IE) to placental chondroitin-4-sulfate (CSA) has been linked to the severe disease outcome of pregnancy-associated malaria. Consequently, sulfated polysaccharides with inhibitory capacity may be considered for therapeutic strategies as anti-adhesive drugs. During in vitro screening a regioselectively modified cellulose sulfate (CS10) was selected as prime candidate for further investigations because it was able to inhibit adhesion to CSA expressed on CHO cells and placental tissue, to de-adhere already bound infected erythrocytes, and to bind to infected erythrocytes. Similar to the undersulfated placental CSA preferred by placental-binding infected erythrocytes, CS10 is characterized by a clustered sulfate pattern along the polymer chain. In further evaluation of its effects on P. falciparum interactions with host erythrocytes, we now show that CS10 inhibits the in vitro asexual growth of parasites in erythrocytes. Furthermore, we show that CS10 interferes with C1 of the classical complement pathway but not with MBL of the lectin pathway. In order to gain insights into the possible interactions of CS10 with known parasite receptors at the molecular level, we designed 3D-structures of characteristic stretches of CS10. CS10 fragments with clustered sulfate groups showed complex patterns of hydrophobic and hydrophilic patches most likely suitable for interactions with protein binding partners. The significance of CS10 interactions with the complement system as well as its anti-malarial effect for prospective drug application are discussed.
Collapse
Affiliation(s)
- Reinhard Schwartz-Albiez
- German Cancer Research Center, Tumor Immunology, D010, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
25
|
Furuta T, Kikuchi T, Iwakura Y, Watanabe N. Protective roles of mast cells and mast cell-derived TNF in murine malaria. THE JOURNAL OF IMMUNOLOGY 2006; 177:3294-302. [PMID: 16920970 DOI: 10.4049/jimmunol.177.5.3294] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
TNF plays important roles in the protection and onset of malaria. Although mast cells are known as a source of TNF, little is known about the relationship between mast cells and pathogenesis of malaria. In this study, mast cell-deficient WBB6F1-W/W(v) (W/W(v)) and the control littermate WBB6F1+/+ (+/+) mice were infected with 1 x 10(5) of Plasmodium berghei ANKA. +/+ mice had lower parasitemia with higher TNF levels, as compared with W/W(v) mice. Diminished resistance in W/W(v) mice was considered to be due to mast cells and TNF. This fact was confirmed by experiments in W/W(v) mice reconstituted with bone marrow-derived mast cells (BMMCs) of +/+ mice or of TNF-/- mice. W/W(v) mice with BMMCs of +/+ mice exhibit lower parasitemia and mortality accompanying significantly higher TNF levels than those of W/W(v) mice. Parasitemia in W/W(v) mice with BMMCs of TNF-/- mice was higher than that in +/+ mice. Activation of mast cells by anti-IgE or compound 48/80 resulted in release of TNF and decrease of parasitemia. In addition, splenic hypertrophy and increased number of mast cells in the spleen were observed after infection in +/+ mice and W/W(v) mice reconstituted with BMMCs of +/+ mice as compared with W/W(v) mice. These findings propose a novel mechanism that mast cells and mast cell-derived TNF play protective roles in malaria.
Collapse
Affiliation(s)
- Takahisa Furuta
- Department of Microbiology and Immunology, Division of Infectious Genetics, University of Tokyo, Japan.
| | | | | | | |
Collapse
|
26
|
Yazdanbakhsh K. Development of complement therapeutics for inhibition of immune-mediated red cell destruction. Transfusion 2005; 45:122S-9S. [PMID: 16086799 PMCID: PMC4797633 DOI: 10.1111/j.1537-2995.2005.00526.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A major objective of my National Blood Foundation (NBF)-funded proposal was to produce recombinant soluble forms of a complement regulatory protein called complement receptor 1 (CR1) that carries the Knops blood group system antigens to perform antibody neutralization studies. By generating these recombinant proteins, we were able to inhibit several Knops antibodies in patient serum samples, thereby demonstrating their usefulness for clinical use. Interestingly, the recombinant CR1 proteins generated through NBF funding were also found to strongly reduce complement-mediated red cell destruction in a mouse hemolytic transfusion model. In this review, I will outline our NBF-funded studies, give an overview of recent advances from our group and others in the development of complement therapeutics, and highlight their potential use in the transfusion medicine setting.
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Complement sensitization of red blood cells (RBCs) can lead to both intravascular and extravascular red cell destruction. Altered levels of naturally occurring complement regulatory proteins on red cells can result in hemolysis, while defective expression of these proteins on immune cells can cause breakdown of tolerance to self antigens and is associated with autoimmune disease. RECENT FINDINGS To date several complement inhibitors, including recombinant forms of complement regulatory proteins, humanized antibodies, and synthetic molecules have been described that limit complement activation by interfering with different steps in the complement cascade. However, few have been evaluated for prevention of complement-mediated RBC destruction. In this review, possible applications of these complement inhibitors for treatment of complement-mediated hemolysis in specific disease states are described. Furthermore, the implication of the regulatory role of complement in the development of autoimmune hemolytic anemia is discussed. SUMMARY Complement therapeutics has potential for effective and safe prophylactic use and treatment of hemolytic transfusion reactions and complement-mediated hemolytic diseases. Furthermore, the regulatory function of complement may be exploited to prevent and treat autoimmune hemolytic anemia.
Collapse
|
28
|
Taylor PR, Seixas E, Walport MJ, Langhorne J, Botto M. Complement contributes to protective immunity against reinfection by Plasmodium chabaudi chabaudi parasites. Infect Immun 2001; 69:3853-9. [PMID: 11349051 PMCID: PMC98407 DOI: 10.1128/iai.69.6.3853-3859.2001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have studied the impact of deficiency of the complement system on the progression and control of the erythrocyte stages of the malarial parasite Plasmodium chabaudi chabaudi. C1q-deficient mice and factor B- and C2-deficient mice, deficient in the classical complement pathway and in both the alternative and classical complement activation pathways, respectively, exhibited only a slight delay in the resolution of the acute phase of parasitemia. Complement-deficient mice showed a transiently elevated level of gamma interferon (IFN-gamma) in the plasma at the time of the acute parasitemia compared with that of wild-type mice. Although there was a trend for increased precursor frequencies in CD4(+) T cells from C1q-deficient mice producing IFN-gamma in response to malarial antigens in vitro, intracellular cytokine staining of spleen cells ex vivo showed no difference in the numbers of IFN-gamma(+) splenic CD4(+) and CD8(+) cells. In contrast, C1q-deficient animals were significantly more susceptible to a second challenge with the same parasite. C1q-deficient animals showed a reduced level of anti-malarial immunoglobulin G2a (IgG2a) antibody 100 days after primary infection. However, following a significantly higher parasitemia, C1q-deficient mice had increased levels of IgM and IgG2a anti-malarial antibodies. In summary, this study indicates that while complement plays only a minor role in the control of the acute phase of parasitemia of a primary infection, it does contribute to parasite control in reinfection.
Collapse
Affiliation(s)
- P R Taylor
- Rheumatology Section, Division of Medicine, Imperial College School of Medicine, Hammersmith Campus, London W12 0NN, United Kingdom
| | | | | | | | | |
Collapse
|