1
|
Matos MS, Ávila-Gálvez MÁ, González-Sarrías A, Silva NV, Crespo CL, Jacinto A, Serra AT, Matias AA, Nunes Dos Santos C. Unveiling the anti-inflammatory potential of 11β,13-dihydrolactucin for application in inflammatory bowel disease management. Food Funct 2024; 15:9254-9271. [PMID: 39162124 DOI: 10.1039/d4fo01446d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Management of inflammatory bowel disease (IBD) poses significant challenges, and there is a need for innovative therapeutic approaches. This study investigates the anti-inflammatory properties of the dietary sesquiterpene lactone (SL) 11β,13-dihydrolactucin, which can be found in chicory, in three distinct complementary models of intestinal inflammation (two cell models and a zebrafish model), offering comprehensive insights into its potential application for IBD treatment alternatives. In a triple cell co-culture composed of Caco-2, HT29-MTX-E12, and Raji B, 11β,13-dihydrolactucin demonstrated remarkable anti-inflammatory activity at several levels of the cellular inflammatory response. Notably, 11β,13-dihydrolactucin prevented the activation of critical signalling pathways associated with inflammation, namely NF-κB and MAPK p38. This SL also decreased the release of the neutrophil-recruiting chemokine IL-8. Additionally, the compound reduced the gene expression of IL-6 and TNF-α, as well as the gene and protein expression of the inflammatory inducible enzymes iNOS and COX-2. In a myofibroblast-like human cell model, 11β,13-dihydrolactucin decreased the release of the cytokine TNF-α and the COX-2-derived inflammation mediator PGE2. Finally, in a zebrafish model of gut inflammation, 11β,13-dihydrolactucin effectively reduced neutrophil infiltration, further supporting its anti-inflammatory efficacy in a physiological context. Collectively, our findings highlight the promising anti-inflammatory potential of 11β,13-dihydrolactucin across various facets of intestinal inflammation, providing a foundation for the consideration of chicory as a promising candidate for incorporation in food or nutraceutical products for the potential prevention of IBD.
Collapse
Affiliation(s)
- Melanie S Matos
- Instituto de Biologia Experimental e Tecnológica (iBET), 2780-157 Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), 2780-157 Oeiras, Portugal
| | - María Ángeles Ávila-Gálvez
- Instituto de Biologia Experimental e Tecnológica (iBET), 2780-157 Oeiras, Portugal.
- NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Antonio González-Sarrías
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, 30100 Campus de Espinardo, Murcia, Spain
| | - Nuno-Valério Silva
- NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Carolina Lage Crespo
- NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - António Jacinto
- NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
- NOVA Institute for Medical Systems Biology, NIMSB, Universidade Nova de Lisboa, 1099-085 Lisboa, Portugal
| | - Ana Teresa Serra
- Instituto de Biologia Experimental e Tecnológica (iBET), 2780-157 Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), 2780-157 Oeiras, Portugal
| | - Ana A Matias
- Instituto de Biologia Experimental e Tecnológica (iBET), 2780-157 Oeiras, Portugal.
| | - Cláudia Nunes Dos Santos
- Instituto de Biologia Experimental e Tecnológica (iBET), 2780-157 Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), 2780-157 Oeiras, Portugal
- NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
- NOVA Institute for Medical Systems Biology, NIMSB, Universidade Nova de Lisboa, 1099-085 Lisboa, Portugal
| |
Collapse
|
2
|
Basova LV, Vien W, Bortell N, Najera JA, Marcondes MCG. Methamphetamine signals transcription of IL1β and TNFα in a reactive oxygen species-dependent manner and interacts with HIV-1 Tat to decrease antioxidant defense mechanisms. Front Cell Neurosci 2022; 16:911060. [PMID: 36060276 PMCID: PMC9434488 DOI: 10.3389/fncel.2022.911060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Methamphetamine (Meth) abuse is a common HIV co-morbidity that is linked to aggravated Central Nervous System (CNS) inflammation, which accentuates HIV- associated neurological disorders, triggered both directly or indirectly by the drug. We used the well-established human innate immune macrophage cell line system (THP1) to demonstrate that Reactive Oxygen Species (ROS) immediately induced by Meth play a role in the increased transcription of inflammatory genes, in interaction with HIV-1 Tat peptide. Meth and Tat, alone and together, affect early events of transcriptional activity, as indicated by changes in RNA polymerase (RNAPol) recruitment patterns throughout the genome, via ROS-dependent and -independent mechanisms. IL1β (IL1β) and TNF α (TNFα), two genes with defining roles in the inflammatory response, were both activated in a ROS-dependent manner. We found that this effect occurred via the activation of the activator protein 1 (AP-1) comprising cFOS and cJUN transcription factors and regulated by the SRC kinase. HIV-1 Tat, which was also able to induce the production of ROS, did not further impact the effects of ROS in the context of Meth, but promoted gene activity independently from ROS, via additional transcription factors. For instance, HIV-1 Tat increased NFkB activation and activated gene clusters regulated by Tata box binding peptide, ING4 and IRF2. Importantly, HIV-1 Tat decreased the expression of anti-oxidant genes, where its suppression of the detoxifying machinery may contribute to the aggravation of oxidative stress induced by ROS in the context of Meth. Our results provide evidence of effects of Meth via ROS and interactions with HIV Tat that promote the transcription of inflammatory genes such as IL1β and TNFα.
Collapse
Affiliation(s)
- Liana V. Basova
- San Diego Biomedical Research Institute, San Diego, CA, United States
- The Scripps Research Institute, La Jolla, CA, United States
| | - Whitney Vien
- The Scripps Research Institute, La Jolla, CA, United States
- University of California San Diego, La Jolla, CA, United States
| | - Nikki Bortell
- The Scripps Research Institute, La Jolla, CA, United States
| | | | - Maria Cecilia Garibaldi Marcondes
- San Diego Biomedical Research Institute, San Diego, CA, United States
- The Scripps Research Institute, La Jolla, CA, United States
- *Correspondence: Maria Cecilia Garibaldi Marcondes,
| |
Collapse
|
3
|
Bae EJ, Choi M, Kim JT, Kim DK, Jung MK, Kim C, Kim TK, Lee JS, Jung BC, Shin SJ, Rhee KH, Lee SJ. TNF-α promotes α-synuclein propagation through stimulation of senescence-associated lysosomal exocytosis. Exp Mol Med 2022; 54:788-800. [PMID: 35790884 PMCID: PMC9352737 DOI: 10.1038/s12276-022-00789-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/12/2022] [Indexed: 12/03/2022] Open
Abstract
Cell-to-cell propagation of α-synuclein is thought to be the underlying mechanism of Parkinson's disease progression. Recent evidence suggests that inflammation plays an important role in the propagation of protein aggregates. However, the mechanism by which inflammation regulates the propagation of aggregates remains unknown. Here, using in vitro cultures, we found that soluble factors secreted from activated microglia promote cell-to-cell propagation of α-synuclein and further showed that among these soluble factors, TNF-α had the most robust stimulatory activity. Treatment of neurons with TNF-α triggered cellular senescence, as shown by transcriptomic analyses demonstrating induction of senescence-associated genes and immunoanalysis of senescence phenotype marker proteins. Interestingly, secretion of α-synuclein was increased in senescent neurons, reflecting acquisition of a senescence-associated secretory phenotype (SASP). Using vacuolin-1, an inhibitor of lysosomal exocytosis, and RNAi against rab27a, we demonstrated that the SASP was mediated by lysosomal exocytosis. Correlative light and electron microscopy and immunoelectron microscopy confirmed that propagating α-synuclein aggregates were present in electron-dense lysosome-like compartments. TNF-α promoted the SASP through stimulation of lysosomal exocytosis, thereby increasing the secretion of α-synuclein. Collectively, these results suggest that TNF-α is the major inflammatory factor that drives cell-to-cell propagation of α-synuclein by promoting the SASP and subsequent secretion of α-synuclein.
Collapse
Affiliation(s)
- Eun-Jin Bae
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Minsun Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jeong Tae Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Dong-Kyu Kim
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, 16499, Korea
| | - Min Kyo Jung
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu, 41068, Korea
| | - Changyoun Kim
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tae-Kyung Kim
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Exercise Physiology and Sport Science Institute, Korea National Sport University, Seoul, 05541, Republic of Korea
| | - Jun Sung Lee
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Neuramedy Co., Ltd., Seoul, Korea
| | - Byung Chul Jung
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Soo Jean Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Ka Hyun Rhee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Seung-Jae Lee
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
4
|
de Gaetano M, Tighe C, Gahan K, Zanetti A, Chen J, Newson J, Cacace A, Marai M, Gaffney A, Brennan E, Kantharidis P, Cooper ME, Leroy X, Perretti M, Gilroy D, Godson C, Guiry PJ. Asymmetric Synthesis and Biological Screening of Quinoxaline-Containing Synthetic Lipoxin A 4 Mimetics (QNX-sLXms). J Med Chem 2021; 64:9193-9216. [PMID: 34138563 PMCID: PMC8279484 DOI: 10.1021/acs.jmedchem.1c00403] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Failure to resolve
inflammation underlies many prevalent pathologies.
Recent insights have identified lipid mediators, typified by lipoxins
(LXs), as drivers of inflammation resolution, suggesting potential
therapeutic benefit. We report the asymmetric preparation of novel
quinoxaline-containing synthetic-LXA4-mimetics (QNX-sLXms).
Eight novel compounds were screened for their impact on inflammatory
responses. Structure–activity relationship (SAR) studies showed
that (R)-6 (also referred to as AT-02-CT)
was the most efficacious and potent anti-inflammatory compound of
those tested. (R)-6 significantly attenuated
lipopolysaccharide (LPS)- and tumor-necrosis-factor-α (TNF-α)-induced
NF-κB activity in monocytes and vascular smooth muscle cells.
The molecular target of (R)-6 was investigated.
(R)-6 activated the endogenous LX receptor
formyl peptide receptor 2 (ALX/FPR2). The anti-inflammatory properties
of (R)-6 were further investigated in vivo in murine models of acute inflammation. Consistent
with in vitro observations, (R)-6 attenuated inflammatory responses. These results support
the therapeutic potential of the lead QNX-sLXm (R)-6 in the context of novel inflammatory regulators.
Collapse
Affiliation(s)
- Monica de Gaetano
- School of Medicine, Diabetes Complications Research Centre, UCD Conway Institute, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Catherine Tighe
- Centre for Synthesis and Chemical Biology, School of Chemistry, UCD Conway Institute, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Kevin Gahan
- Centre for Synthesis and Chemical Biology, School of Chemistry, UCD Conway Institute, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Andrea Zanetti
- Centre for Synthesis and Chemical Biology, School of Chemistry, UCD Conway Institute, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Jianmin Chen
- William Harvey Research Institute, Queen Mary University London, London EC1M 6BQ, U.K
| | - Justine Newson
- Centre for Clinical Pharmacology, University College London, London WC1E 6JF, U.K
| | - Antonino Cacace
- School of Medicine, Diabetes Complications Research Centre, UCD Conway Institute, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Mariam Marai
- School of Medicine, Diabetes Complications Research Centre, UCD Conway Institute, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Andrew Gaffney
- School of Medicine, Diabetes Complications Research Centre, UCD Conway Institute, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Eoin Brennan
- School of Medicine, Diabetes Complications Research Centre, UCD Conway Institute, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Phillip Kantharidis
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Mark E Cooper
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Xavier Leroy
- Domain Therapeutics SA, 67400 Strasbourg, Illkirch, France
| | - Mauro Perretti
- William Harvey Research Institute, Queen Mary University London, London EC1M 6BQ, U.K
| | - Derek Gilroy
- Centre for Clinical Pharmacology, University College London, London WC1E 6JF, U.K
| | - Catherine Godson
- School of Medicine, Diabetes Complications Research Centre, UCD Conway Institute, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Patrick J Guiry
- Centre for Synthesis and Chemical Biology, School of Chemistry, UCD Conway Institute, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| |
Collapse
|
5
|
Jang AR, Kang MJ, Shin JI, Kwon SW, Park JY, Ahn JH, Lee TS, Kim DY, Choi BG, Seo MW, Yang SJ, Shin MK, Park JH. Unveiling the Crucial Role of Type IV Secretion System and Motility of Helicobacter pylori in IL-1β Production via NLRP3 Inflammasome Activation in Neutrophils. Front Immunol 2020; 11:1121. [PMID: 32582201 PMCID: PMC7295951 DOI: 10.3389/fimmu.2020.01121] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 05/07/2020] [Indexed: 12/23/2022] Open
Abstract
Helicobacter pylori is a gram-negative, microaerophilic, and spiral-shaped bacterium and causes gastrointestinal diseases in human. IL-1β is a representative cytokine produced in innate immune cells and is considered to be a key factor in the development of gastrointestinal malignancies. However, the mechanism of IL-1β production by neutrophils during H. pylori infection is still unknown. We designed this study to identify host and bacterial factors involved in regulation of H. pylori-induced IL-1β production in neutrophils. We found that H. pylori-induced IL-1β production is abolished in NLRP3-, ASC-, and caspase-1/11-deficient neutrophils, suggesting essential role for NLRP3 inflammasome in IL-1β response against H. pylori. Host TLR2, but not TLR4 and Nod2, was also required for transcription of NLRP3 and IL-1β as well as secretion of IL-1β. H. pylori lacking cagL, a key component of the type IV secretion system (T4SS), induced less IL-1β production in neutrophils than did its isogenic WT strain, whereas vacA and ureA were dispensable. Moreover, T4SS was involved in caspase-1 activation and IL-1β maturation in H. pylori-infected neutrophils. We also found that FlaA is essential for H. pylori-mediated IL-1β production in neutrophils, but not dendritic cells. TLR5 and NLRC4 were not required for H. pylori-induced IL-1β production in neutrophils. Instead, bacterial motility is essential for the production of IL-1β in response to H. pylori. In conclusion, our study shows that host TLR2 and NLRP3 inflammasome and bacterial T4SS and motility are essential factors for IL-1β production by neutrophils in response to H. pylori.
Collapse
Affiliation(s)
- Ah-Ra Jang
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju, South Korea
| | - Min-Jung Kang
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju, South Korea
| | - Jeong-Ih Shin
- Department of Microbiology, School of Medicine, Gyeongsang National University, Jinju-si, South Korea
| | - Soon-Wook Kwon
- Department of Microbiology, School of Medicine, Gyeongsang National University, Jinju-si, South Korea
| | - Ji-Yeon Park
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju, South Korea
| | - Jae-Hun Ahn
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju, South Korea
| | - Tae-Sung Lee
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju, South Korea
| | - Dong-Yeon Kim
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju, South Korea
| | - Bo-Gwon Choi
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju, South Korea
| | - Myoung-Won Seo
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju, South Korea
| | - Soo-Jin Yang
- School of Bioresources and Bioscience, Chung-Ang University, Anseong, South Korea
| | - Min-Kyoung Shin
- Department of Microbiology, School of Medicine, Gyeongsang National University, Jinju-si, South Korea
| | - Jong-Hwan Park
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
6
|
Abstract
Recently, respiratory systems are increasingly threatened by high levels of environmental pollution. Organ-on-a-chip technology has the advantage of enabling more accurate preclinical experiments by reproducing in vivo organ physiology. To investigate disease mechanisms and treatment options, respiratory-physiology-on-a-chip systems have been studied for the last decade. Here, we delineate the strategic approaches to develop respiratory-physiology-on-a-chip that can recapitulate respiratory system in vitro. The state-of-the-art biofabrication methods and biomaterials are considered as key contributions to constructing the chips. We also explore the vascularization strategies to investigate complicated pathophysiological phenomena including inflammation and immune responses, which are the critical aggravating factors causing the complications in the respiratory diseases. In addition, challenges and future research directions are delineated to improve the mimicry of respiratory systems in terms of both structural and biological behaviors.
Collapse
|
7
|
Thome JG, Reeder EL, Collins SM, Gopalan P, Robson MJ. Contributions of Interleukin-1 Receptor Signaling in Traumatic Brain Injury. Front Behav Neurosci 2020; 13:287. [PMID: 32038189 PMCID: PMC6985078 DOI: 10.3389/fnbeh.2019.00287] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022] Open
Abstract
Traumatic brain injury (TBI) in various forms affects millions in the United States annually. There are currently no FDA-approved therapies for acute injury or the chronic comorbidities associated with TBI. Acute phases of TBI are characterized by profound neuroinflammation, a process that stimulates the generation and release of proinflammatory cytokines including interleukin-1α (IL-1α) and IL-1β. Both forms of IL-1 initiate signaling by binding with IL-1 receptor type 1 (IL-1R1), a receptor with a natural, endogenous antagonist dubbed IL-1 receptor antagonist (IL-1Ra). The recombinant form of IL-1Ra has gained FDA approval for inflammatory conditions such as rheumatoid arthritis, prompting interest in repurposing these pharmacotherapies for other inflammatory diseases/injury states including TBI. This review summarizes the currently available preclinical and clinical literature regarding the therapeutic potential of inhibiting IL-1-mediated signaling in the context of TBI. Additionally, we propose specific research areas that would provide a greater understanding of the role of IL-1 signaling in TBI and how these data may be beneficial for the development of IL-1-targeted therapies, ushering in the first FDA-approved pharmacotherapy for acute TBI.
Collapse
Affiliation(s)
- Jason G Thome
- Department of Anesthesia and Critical Care, Division of Biological Sciences, College of Medicine, University of Chicago, Chicago, IL, United States
| | - Evan L Reeder
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, United States
| | - Sean M Collins
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, United States
| | - Poornima Gopalan
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, United States
| | - Matthew J Robson
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
8
|
Kim M, Kim JH, Jeong GJ, Park KY, Lee MK, Seo SJ. Particulate matter induces pro-inflammatory cytokines via phosphorylation of p38 MAPK possibly leading to dermal inflammaging. Exp Dermatol 2019; 28:809-815. [PMID: 31001893 DOI: 10.1111/exd.13943] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/28/2019] [Accepted: 04/03/2019] [Indexed: 12/21/2022]
Abstract
Particulate matter (PM) is known to have harmful effects on human health. Epidemiological studies have suggested that PM exposure is related to skin diseases and extrinsic skin ageing. However, the mechanisms by which PM affects skin are unclear. The aim of this study was to investigate the mechanism of action of PMs on epidermal inflammation and skin ageing using a co-culture of human keratinocytes (HaCaT) and fibroblasts (HDF). SRM 1648a (pmA) and 1649b (pmB), which mainly comprise heavy metals and polycyclic aromatic hydrocarbons, respectively, were used as reference PMs. Cytotoxic effects, activation of AhR, phosphorylation of p38 kinase and ROS generation were examined in PM-treated HaCaT cells. The phosphorylation of p38 MAPK induced by PMs was shown to be critically important for the increases in IL-1α and IL-1β expression. Moreover, the mRNA and protein expression levels of MMP1 and COX2 were markedly increased in HDF cells co-cultured with PM-treated HaCaT cells. In conclusion, PMs induce the expression of pro-inflammatory cytokines in keratinocytes via the p38 MAPK pathway, and these interleukins increase the expression of MMP1 and COX2 in HDF cells. These results suggest that PMs trigger skin ageing via p38 MAPK activation and interleukin secretion in epidermal keratinocytes.
Collapse
Affiliation(s)
- MinJeong Kim
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Ju Hee Kim
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Guk Jin Jeong
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Kui Young Park
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Mi-Kyung Lee
- Department of Laboratory Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Seong Jun Seo
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| |
Collapse
|
9
|
Tremmel L, Rho O, Slaga TJ, DiGiovanni J. Inhibition of skin tumor promotion by TPA using a combination of topically applied ursolic acid and curcumin. Mol Carcinog 2019; 58:185-195. [PMID: 30346064 DOI: 10.1002/mc.22918] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/19/2018] [Accepted: 09/23/2018] [Indexed: 12/23/2022]
Abstract
Prevention remains an important strategy to reduce the burden of cancer. One approach to prevent cancer is the use of phytochemicals in various combinations as safe and effective cancer preventative agents. The purpose of this study was to examine the effects of the combination of ursolic acid (UA) and curcumin (Curc) for potential combinatorial inhibition of skin tumor promotion using the mouse two-stage skin carcinogenesis model. In short-term experiments, the combination of UA + Curc given topically prior to 12-O-tetradecanoylphorbol-13-acetate (TPA) significantly inhibited activation of epidermal EGFR, p70S6K, NF-κB p50, Src, c-Jun, Rb, and IκBα. Levels of c-Fos, c-Jun, and Cox-2 were also significantly reduced by the combination compared to the TPA treated group. The alterations in these signaling pathways by the combination of UA + Curc were associated with decreased epidermal proliferation as assessed by measuring BrdU incorporation. Significant effects were also seen with the combination on epidermal inflammatory gene expression and dermal inflammation, with the greatest effects on expression of IL-1β, IL-6, IL-22, and CXCL2. Furthermore, results from skin tumor experiments demonstrated that the combination of UA + Curc given topically significantly inhibited mouse skin tumor promotion by TPA to a greater extent than the individual compounds given alone. The greatest effects were seen on tumor free survival, tumor size, and tumor weight, although tumor incidence and multiplicity were also further reduced by the combination. These results demonstrate the potential cancer chemopreventive activity and mechanism(s) for the combination of UA + Curc.
Collapse
Affiliation(s)
- Lisa Tremmel
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
| | - Okkyung Rho
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
| | - Thomas J Slaga
- Department of Pharmacology, UT Health Science Center San Antonio, San Antonio, Texas
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, Texas
- Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
10
|
de Gaetano M, Butler E, Gahan K, Zanetti A, Marai M, Chen J, Cacace A, Hams E, Maingot C, McLoughlin A, Brennan E, Leroy X, Loscher CE, Fallon P, Perretti M, Godson C, Guiry PJ. Asymmetric synthesis and biological evaluation of imidazole- and oxazole-containing synthetic lipoxin A4 mimetics (sLXms). Eur J Med Chem 2019; 162:80-108. [DOI: 10.1016/j.ejmech.2018.10.049] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/02/2018] [Accepted: 10/19/2018] [Indexed: 12/31/2022]
|
11
|
Interleukin-1 Beta-A Friend or Foe in Malignancies? Int J Mol Sci 2018; 19:ijms19082155. [PMID: 30042333 PMCID: PMC6121377 DOI: 10.3390/ijms19082155] [Citation(s) in RCA: 266] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/14/2018] [Accepted: 07/19/2018] [Indexed: 12/19/2022] Open
Abstract
Interleukin-1 beta (IL-1β) is induced by inflammatory signals in a broad number of immune cell types. IL-1β (and IL-18) are the only cytokines which are processed by caspase-1 after inflammasome-mediated activation. This review aims to summarize current knowledge about parameters of regulation of IL-1β expression and its multi-facetted role in pathophysiological conditions. IL-1 signaling activates innate immune cells including antigen presenting cells, and drives polarization of CD4+ T cells towards T helper type (Th) 1 and Th17 cells. Therefore, IL-1β has been attributed a largely beneficial role in resolving acute inflammations, and by initiating adaptive anti-tumor responses. However, IL-1β generated in the course of chronic inflammation supports tumor development. Furthermore, IL-1β generated within the tumor microenvironment predominantly by tumor-infiltrating macrophages promotes tumor growth and metastasis via different mechanisms. These include the expression of IL-1 targets which promote neoangiogenesis and of soluble mediators in cancer-associated fibroblasts that evoke antiapoptotic signaling in tumor cells. Moreover, IL-1 promotes the propagation of myeloid-derived suppressor cells. Using genetic mouse models as well as agents for pharmacological inhibition of IL-1 signaling therapeutically applied for treatment of IL-1 associated autoimmune diseases indicate that IL-1β is a driver of tumor induction and development.
Collapse
|
12
|
Budatha M, Zhang J, Zhuang ZW, Yun S, Dahlman JE, Anderson DG, Schwartz MA. Inhibiting Integrin α5 Cytoplasmic Domain Signaling Reduces Atherosclerosis and Promotes Arteriogenesis. J Am Heart Assoc 2018; 7:JAHA.117.007501. [PMID: 29382667 PMCID: PMC5850249 DOI: 10.1161/jaha.117.007501] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Fibronectin in endothelial basement membranes promotes endothelial inflammatory activation and atherosclerosis but also promotes plaque stability and vascular remodeling. The fibronectin receptor α5 subunit is proinflammatory through binding to and activating phosphodiesterase 4D5, which inhibits anti‐inflammatory cyclic adenosine monophosphate and protein kinase A. Replacing the α5 cytoplasmic domain with that of α2 resulted in smaller atherosclerotic plaques. Here, we further assessed plaque phenotype and compensatory vascular remodeling in this model. Methods and Results α5/2 mice in the hyperlipidemic apolipoprotein E null background had smaller plaques in the aortic root, with reduced endothelial NF‐κB activation and inflammatory gene expression, reduced leukocyte content, and much lower metalloproteinase expression. However, smooth muscle cell content, fibrous cap thickness, and fibrillar collagen were unchanged, indicating no shift toward vulnerability. In vivo knockdown of phosphodiesterase 4D5 also decreased endothelial inflammatory activation and atherosclerotic plaque size. α5/2 mice showed improved recovery from hindlimb ischemia after femoral artery ligation. Conclusions Blocking the fibronectin‐Integrin α5 pathway reduces atherosclerotic plaque size, maintains plaque stability, and improves compensatory remodeling. This pathway is therefore a potential therapeutic target for treatment of atherosclerosis.
Collapse
Affiliation(s)
- Madhusudhan Budatha
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University, New Haven, CT
| | - Jiasheng Zhang
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University, New Haven, CT
| | - Zhen W Zhuang
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University, New Haven, CT
| | - Sanguk Yun
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University, New Haven, CT
| | - James E Dahlman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA
| | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA.,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA
| | - Martin A Schwartz
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University, New Haven, CT
| |
Collapse
|
13
|
A selective inhibition of c-Fos/activator protein-1 as a potential therapeutic target for intervertebral disc degeneration and associated pain. Sci Rep 2017; 7:16983. [PMID: 29208967 PMCID: PMC5717052 DOI: 10.1038/s41598-017-17289-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 11/23/2017] [Indexed: 12/31/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is a major cause of low back pain. The transcription factor c-Fos/Activator Protein-1 (AP-1) controls the expression of inflammatory cytokines and matrix metalloproteinases (MMPs) that contribute to the pathogenesis IVD degeneration. We investigated the effects of inhibition of c-Fos/AP-1 on IVD degeneration and associated pain. A selective inhibitor, T-5224, significantly suppressed the interleukin-1β-induced up-regulation of Mmp-3, Mmp-13 and Adamts-5 transcription in human nucleus pulposus cells and in a mouse explant culture model of IVD degeneration. We used a tail disc percutaneous needle puncture method to further assess the effects of oral administration of T-5224 on IVD degeneration. Analysis of disc height, T2-magnetic resonance imaging (MRI) findings, and histology revealed that IVD degeneration was significantly mitigated by T-5224. Further, oral administration of T-5224 ameliorated pain as indicated by the extended tail-flick latency in response to heat stimulation of rats with needle-puncture-induced IVD degeneration. These findings suggest that the inhibition of c-Fos/AP-1 prevents disc degeneration and its associated pain and that T-5224 may serve as a drug for the prevention of IVD degeneration.
Collapse
|
14
|
Ali MF, Dasari H, Van Keulen VP, Carmona EM. Canonical Stimulation of the NLRP3 Inflammasome by Fungal Antigens Links Innate and Adaptive B-Lymphocyte Responses by Modulating IL-1β and IgM Production. Front Immunol 2017; 8:1504. [PMID: 29170665 PMCID: PMC5684107 DOI: 10.3389/fimmu.2017.01504] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/25/2017] [Indexed: 01/02/2023] Open
Abstract
The NLRP3 inflammasome is activated in response to different bacterial, viral, and fungal pathogens and serves as modulator of different pattern recognition receptors signaling pathways. One of the main functions of NLRP3 is to participate in IL-1β maturation which is important in the host defense against Pneumocystis and other fungal infections. However, dysregulation of NLRP3 and IL-1β secretion are also implicated in the pathophysiology of many auto-inflammatory disorders. Often time’s inflammatory flares are preceded by infectious illnesses questioning the role of infection in autoimmune exacerbations. However, we still do not fully understand the exact role that infection or even colonization plays as a trigger of inflammation. Herein, we investigated the role of NLRP3 in circulating B-lymphocytes following activation with two major microbial antigens (β-glucan and CpG). NLRP3 was determined essential in two independent B-lymphocytes processes: pro-inflammatory cytokine secretion and antibody regulation. Our results show that the β-glucan fungal cell wall carbohydrate stimulated B-lymphocytes to secrete IL-1β in a process partially mediated by Dectin-1 activation via SYK and the transcription factors NF-κB and AP-1. This IL-1β secretion was regulated by the NLRP3 inflammasome and was dependent on potassium efflux and Caspase-1. Interestingly, B-lymphocytes activated by unmethylated CpG motifs, found in bacterial and fungal DNA, failed to induce IL-1β. However, B-lymphocyte stimulation by CpG resulted in NLRP3 and Caspase-1 activation and the production and secretion of IgM antibodies. Furthermore, CpG-stimulated IgM secretion, unlike β-glucan-mediated IL-1β production, was mediated by the mammalian target of rapamycin (mTOR). Inhibition of NLRP3 and the mTOR pathway in CpG activated B-lymphocytes resulted in impaired IgM secretion suggesting their participation in antibody regulation. In conclusion, this study describes a differential response of NLRP3 to β-glucan and CpG antigens and identifies the NLRP3 inflammasome of human circulating B-lymphocytes as a modulator of the innate and adaptive immune systems.
Collapse
Affiliation(s)
- Mohamed F Ali
- The Thoracic Diseases Research Unit and the Division of Pulmonary and Critical Care, Department of Medicine Mayo Clinic and Foundation, Rochester, MN, United States
| | - Harika Dasari
- The Thoracic Diseases Research Unit and the Division of Pulmonary and Critical Care, Department of Medicine Mayo Clinic and Foundation, Rochester, MN, United States
| | - Virginia P Van Keulen
- The Thoracic Diseases Research Unit and the Division of Pulmonary and Critical Care, Department of Medicine Mayo Clinic and Foundation, Rochester, MN, United States
| | - Eva M Carmona
- The Thoracic Diseases Research Unit and the Division of Pulmonary and Critical Care, Department of Medicine Mayo Clinic and Foundation, Rochester, MN, United States
| |
Collapse
|
15
|
Pereira M, Tourlomousis P, Wright J, P. Monie T, Bryant CE. CARD9 negatively regulates NLRP3-induced IL-1β production on Salmonella infection of macrophages. Nat Commun 2016; 7:12874. [PMID: 27670879 PMCID: PMC5052644 DOI: 10.1038/ncomms12874] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 08/11/2016] [Indexed: 12/30/2022] Open
Abstract
Interleukin-1β (IL-1β) is a proinflammatory cytokine required for host control of bacterial infections, and its production must be tightly regulated to prevent excessive inflammation. Here we show that caspase recruitment domain-containing protein 9 (CARD9), a protein associated with induction of proinflammatory cytokines by fungi, has a negative role on IL-1β production during bacterial infection. Specifically, in response to activation of the nucleotide oligomerization domain receptor pyrin-domain containing protein 3 (NLRP3) by Salmonella infection, CARD9 negatively regulates IL-1β by fine-tuning pro-IL-1β expression, spleen tyrosine kinase (SYK)-mediated NLRP3 activation and repressing inflammasome-associated caspase-8 activity. CARD9 is suppressed during Salmonella enterica serovar Typhimurium infection, facilitating increased IL-1β production. CARD9 is, therefore, a central signalling hub that coordinates a pathogen-specific host inflammatory response.
Collapse
Affiliation(s)
- Milton Pereira
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Panagiotis Tourlomousis
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - John Wright
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Tom P. Monie
- Medical Research Council Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge CB1 9NL, UK
| | - Clare E. Bryant
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| |
Collapse
|
16
|
Elevated IL-1β expression induces invasiveness of triple negative breast cancer cells and is suppressed by zerumbone. Chem Biol Interact 2016; 258:126-33. [PMID: 27567548 DOI: 10.1016/j.cbi.2016.08.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 07/29/2016] [Accepted: 08/24/2016] [Indexed: 12/23/2022]
Abstract
Aberrant interleukin-1 beta (IL-1β) expression is associated with cancer development, metastasis, and poor prognosis. Here, we have investigated the regulatory mechanism of IL-1β expression, and the inhibitory effect of zerumbone (ZER) on IL-1β expression and IL-1β-induced signatures, including cell invasion and signaling activation in triple negative breast cancer (TNBC) cells. The basal IL-1β and cell invasiveness levels were significantly higher in TNBC cells, compared with non-TNBC cells. The invasiveness of TNBC cells was also increased following IL-1β treatment. In contrast, the invasiveness of TNBC cells was decreased following IL-1 receptor antagonist (IL-1RA) treatment. Additionally, the basal IL-1β level and the invasiveness of TNBC cells were decreased by Bay11-7085. In contrast, overexpression of NF-κB (p65) caused an increase in IL-1β expression in TNBC cells. Our results showed that treatment with ZER decreased the basal IL-1β expression level, and the phosphorylation level of NF-κB, in TNBC cells. Furthermore, we found that ZER completely suppressed IL-1β-induced NF-κB phosphorylation, but did not suppress IL-1β-induced Akt phosphorylation, in TNBC cells. Our results also demonstrate that IL-1β-induced cell invasion is suppressed by ZER in TNBC cells. Taken together, we demonstrated that IL-1β expression is regulated by the NF-κB-dependent pathway, and that elevated IL-1β is directly influencing the invasiveness of TNBC cells. ZER down-regulates IL-1β expression through the inhibition of NF-κB activity, and then suppresses cell invasiveness of TNBC.
Collapse
|
17
|
Lung extracellular matrix and redox regulation. Redox Biol 2016; 8:305-15. [PMID: 26938939 PMCID: PMC4777985 DOI: 10.1016/j.redox.2016.02.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/15/2016] [Accepted: 02/17/2016] [Indexed: 12/28/2022] Open
Abstract
Pulmonary fibrosis affects millions worldwide and, even though there has been a significant investment in understanding the processes involved in wound healing and maladaptive repair, a complete understanding of the mechanisms responsible for lung fibrogenesis eludes us, and interventions capable of reversing or halting disease progression are not available. Pulmonary fibrosis is characterized by the excessive expression and uncontrolled deposition of extracellular matrix (ECM) proteins resulting in erosion of the tissue structure. Initially considered an 'end-stage' process elicited after injury, these events are now considered pathogenic and are believed to contribute to the course of the disease. By interacting with integrins capable of signal transduction and by influencing tissue mechanics, ECM proteins modulate processes ranging from cell adhesion and migration to differentiation and growth factor expression. In doing so, ECM proteins help orchestrate complex developmental processes and maintain tissue homeostasis. However, poorly controlled deposition of ECM proteins promotes inflammation, fibroproliferation, and aberrant differentiation of cells, and has been implicated in the pathogenesis of pulmonary fibrosis, atherosclerosis and cancer. Considering their vital functions, ECM proteins are the target of investigation, and oxidation-reduction (redox) reactions have emerged as important regulators of the ECM. Oxidative stress invariably accompanies lung disease and promotes ECM expression directly or through the overproduction of pro-fibrotic growth factors, while affecting integrin binding and activation. In vitro and in vivo investigations point to redox reactions as targets for intervention in pulmonary fibrosis and related disorders, but studies in humans have been disappointing probably due to the narrow impact of the interventions tested, and our poor understanding of the factors that regulate these complex reactions. This review is not meant to provide a comprehensive review of this field, but rather to highlight what has been learned and to raise interest in this area in need of much attention.
Collapse
|
18
|
Currò M, Risitano R, Ferlazzo N, Cirmi S, Gangemi C, Caccamo D, Ientile R, Navarra M. Citrus bergamia Juice Extract Attenuates β-Amyloid-Induced Pro-Inflammatory Activation of THP-1 Cells Through MAPK and AP-1 Pathways. Sci Rep 2016; 6:20809. [PMID: 26853104 PMCID: PMC4745106 DOI: 10.1038/srep20809] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 01/08/2016] [Indexed: 12/19/2022] Open
Abstract
Flavonoids have been shown to be effective in protecting against age-related cognitive and motor decline in both in vitro and in vivo models. Recently, a flavonoid-rich extract of Citrus bergamia juice (BJe) has been shown to display anti-oxidant and anti-inflammatory properties against LPS-induced activation of human THP-1 monocytes. In the light of these observations, we wondered whether BJe may be beneficial against neuroinflammatory processes, such as those observed in Alzheimer’s disease. To this aim we used THP-1 monocytes to investigate the mechanisms underlying the beneficial potential of BJe against amyloid-beta1–42 (Aβ1−42) -mediated inflammation. Exposure of THP-1 cells to Aβ1−42 significantly induced the expression and secretion of IL-6 and IL-1β in THP-1 cells and increased the phosphorylation of ERK 1/2 as well as p46 and p54 members of JNK family. Moreover, Aβ1−42 raises AP-1 DNA binding activity in THP-1-treated cells. Interestingly, all these effects were reduced in the presence of BJe. Our data indicate that BJe may effectively counteract the pro-inflammatory activation of monocytes/microglial cells exposed to amyloid fibrils, suggesting a promising role as a natural drug against neuroinflammatory processes.
Collapse
Affiliation(s)
- Monica Currò
- Department of Biomedical Sciences and Morphological and Functional Images, University of Messina, Messina, I-98100, Italy
| | - Roberto Risitano
- Department of Biomedical Sciences and Morphological and Functional Images, University of Messina, Messina, I-98100, Italy
| | - Nadia Ferlazzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, I-98168, Italy
| | - Santa Cirmi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, I-98168, Italy
| | - Chiara Gangemi
- Department of Biomedical Sciences and Morphological and Functional Images, University of Messina, Messina, I-98100, Italy
| | - Daniela Caccamo
- Department of Biomedical Sciences and Morphological and Functional Images, University of Messina, Messina, I-98100, Italy
| | - Riccardo Ientile
- Department of Biomedical Sciences and Morphological and Functional Images, University of Messina, Messina, I-98100, Italy
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, I-98168, Italy
| |
Collapse
|
19
|
Wang X, Zhang Y, Peng Y, Hutchinson MR, Rice KC, Yin H, Watkins LR. Pharmacological characterization of the opioid inactive isomers (+)-naltrexone and (+)-naloxone as antagonists of toll-like receptor 4. Br J Pharmacol 2016; 173:856-69. [PMID: 26603732 DOI: 10.1111/bph.13394] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 11/11/2015] [Accepted: 11/11/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE The toll-like receptor TLR4 is involved in neuropathic pain and in drug reward and reinforcement. The opioid inactive isomers (+)-naltrexone and (+)-naloxone act as TLR4 antagonists, reversing neuropathic pain and reducing opioid and cocaine reward and reinforcement. However, how these agents modulate TLR4 signalling is not clear. Here, we have elucidated the molecular mechanism of (+)-naltrexone and (+)-naloxone on TLR4 signalling. EXPERIMENTAL APPROACH BV-2 mouse microglial cell line, primary rat microglia and primary rat peritoneal macrophages were treated with LPS and TLR4 signalling inhibitors. Effects were measured using Western blotting, luciferase reporter assays, fluorescence microscopy and ELISA KEY RESULTS: (+)-Naltrexone and (+)-naloxone were equi-potent inhibitors of the LPS-induced TLR4 downstream signalling and induction of the pro-inflammatory factors NO and TNF-α. Similarly, (+)-naltrexone or (+)-naloxone inhibited production of reactive oxygen species and increased microglial phagocytosis, induced by LPS. However, (+)-naltrexone and (+)-naloxone did not directly inhibit the increased production of IL-1β, induced by LPS. The drug interaction of (+)-naloxone and (+)-naltrexone was additive. (+)-Naltrexone or (+)-naloxone inhibited LPS-induced activation of IFN regulatory factor 3 and production of IFN-β. However, they did not inhibit TLR4 signalling via the activation of either NF-κB, p38 or JNK in these cellular models. CONCLUSIONS AND IMPLICATIONS (+)-Naltrexone and (+)-naloxone were TRIF-IFN regulatory factor 3 axis-biased TLR4 antagonists. They blocked TLR4 downstream signalling leading to NO, TNF-α and reactive oxygen species. This pattern may explain, at least in part, the in vivo therapeutic effects of (+)-naltrexone and (+)-naloxone.
Collapse
Affiliation(s)
- X Wang
- Chemical Biology Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Y Zhang
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - Y Peng
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - M R Hutchinson
- Discipline of Physiology, School of Medical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - K C Rice
- Chemical Biology Research Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, 20892, USA
| | - H Yin
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - L R Watkins
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado at Boulder, Boulder, CO, 80309, USA
| |
Collapse
|
20
|
GILZ regulates Th17 responses and restrains IL-17-mediated skin inflammation. J Autoimmun 2015; 61:73-80. [PMID: 26077873 DOI: 10.1016/j.jaut.2015.05.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 05/25/2015] [Accepted: 05/27/2015] [Indexed: 02/08/2023]
Abstract
Patients with inflammatory autoimmune diseases are routinely treated with synthetic glucocorticoids to suppress immunopathology. A crucial outcome of glucocorticoid exposure is induction of glucocorticoid-induced leucine zipper (GILZ), a protein with multiple functions that include inhibition of key immune cell signalling pathways. Here we report that GILZ maintains a threshold for activation of Th17 responses and IL-17-dependent pathology. GILZ expression was deficient in lesional skin of psoriasis patients and was negatively correlated with the pro-inflammatory cytokines IL-23, IL-17A and IL-22, and with STAT3 expression. Deficiency of GILZ in mice resulted in excessive inflammation and pro-inflammatory cytokine expression in the imiquimod model of psoriasis, and dendritic cells lacking GILZ produced greater IL-1, IL-23 and IL-6 in response to imiquimod stimulation in vitro. These cytokines stimulate Th17 cell differentiation, and we found unchallenged GILZ-deficient mice to have spontaneous production of IL-17A and IL-22 in vivo. We also identified a T cell-intrinsic role for GILZ in limiting Th17 cell formation in vitro in response to Th17-promoting cytokines IL-1β and IL-23. Addition of IL-6 under these conditions suppressed GILZ, allowing T cell proliferation and expression of Th17 genes, whereas exogenous delivery of GILZ using a cell-permeable fusion protein restored regulation of Th17 cell proliferation. Thus, GILZ has a non-redundant function to constrain pathogenic Th17 responses, with clinical implications for psoriasis.
Collapse
|
21
|
Adenosine is required for sustained inflammasome activation via the A₂A receptor and the HIF-1α pathway. Nat Commun 2014; 4:2909. [PMID: 24352507 PMCID: PMC3895487 DOI: 10.1038/ncomms3909] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 11/11/2013] [Indexed: 12/17/2022] Open
Abstract
Inflammasome pathways are important in chronic diseases, but it is not known how the signalling is sustained after initiation. Inflammasome activation is dependent on stimuli such as LPS and ATP that provide two distinct signals resulting in rapid production of IL-1β, with lack of response to repeat stimulation. Here we report that adenosine is a key regulator of inflammasome activity, increasing the duration of the inflammatory response via the A2A receptor. Adenosine does not replace signals provided by stimuli such as LPS or ATP, but sustains inflammasome activity via a cAMP/PKA/CREB/HIF-1α pathway. In the setting of lack of IL-1β responses after previous exposure to LPS, adenosine can supersede this tolerogenic state and drive IL-1β production. These data reveal that inflammasome activity is sustained, after initial activation, by A2A receptor-mediated signalling.
Collapse
|
22
|
Phospholipase C-δ1 regulates interleukin-1β and tumor necrosis factor-α mRNA expression. Exp Cell Res 2012; 318:1987-93. [DOI: 10.1016/j.yexcr.2012.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 06/05/2012] [Accepted: 06/07/2012] [Indexed: 11/23/2022]
|
23
|
Saunders RD, Nakajima ST, Rai SN, Pan J, Gercel-Taylor C, Taylor DD. Alterations in antibody subclass immune reactivity to trophoblast-derived fetal fibronectin and α2-macroglobulin in women with recurrent pregnancy loss. Am J Reprod Immunol 2012; 68:438-49. [PMID: 22935024 DOI: 10.1111/j.1600-0897.2012.01182.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 07/02/2012] [Indexed: 11/26/2022] Open
Abstract
PROBLEM Increasing evidence supports the involvement of complex antibody-mediated immunologic events at the decidua-trophoblast interface. Our objective is to define the humoral immune responses of pregnant women with a history of recurrent pregnancy loss (RPL) compared with gestation-age-matched and non-pregnant controls in terms of trophoblast-derived antigenic targets and IgG subclasses. METHOD OF STUDY Immunoprecipitation and Western immunoblotting were performed to characterize IgG subclass reactivity to Sw.71 trophoblast-derived fetal fibronectin and alpha-2-macroglobulin, using serum obtained from first-trimester pregnant RPL subjects, gestation-age-matched controls, and non-pregnant controls. RESULTS Using a generalized linear model, sera from women with a history of RPL exhibited increased IgG(3) immunoreactivity to trophoblast-derived fetal fibronectin and alpha-2-macroglobulin compared with controls (P < 0.001 and P < 0.001, respectively). CONCLUSION IgG(3) reactivity in women with RPL may play a significant role in aberrant immune-regulatory mechanisms in early pregnancy. Further investigations into the role of autoantibodies against trophoblast-derived proteins in implantation and pregnancy are warranted.
Collapse
Affiliation(s)
- Rhiana D Saunders
- Department of Obstetrics, Gynecology, and Women's Health, University of Louisville, KY, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Jun HK, Lee SH, Lee HR, Choi BK. Integrin α5β1 activates the NLRP3 inflammasome by direct interaction with a bacterial surface protein. Immunity 2012; 36:755-68. [PMID: 22608495 DOI: 10.1016/j.immuni.2012.05.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 03/02/2012] [Accepted: 05/03/2012] [Indexed: 11/29/2022]
Abstract
Integrins are cell-surface heterodimeric glycoproteins composed of alpha and beta subunits that mediate cell-cell, cell-extracellular matrix, and cell-pathogen interactions. In this study, we report a specific role of integrin α5β1 in NLRP3 inflammasome activation in macrophages stimulated by Td92, a surface protein of the periodontopathogen, Treponema denticola. The direct interaction of Td92 with the cell membrane integrin α5β1 resulted in ATP release and K(+) efflux, which are the main events in NLRP3 activation. This interaction was arginine-glycine-aspartate (RGD)-independent, and Td92 internalization was not required for the activity. An integrin α5β1 antibody and oxATP, an ATP receptor antagonist, inhibited NLRP3 expression, caspase-1 activation, interleukin-1β (IL-1β) secretion, and proIL-1β synthesis, all of which were regulated by NF-κB activation. Therefore, our data has identified the integrin α5β1 as a principal cell membrane receptor for both NLRP3 inflammasome activation and IL-1β transcription by a bacterial protein, which could exaggerate inflammation, a characteristic of periodontitis.
Collapse
Affiliation(s)
- Hye-Kyoung Jun
- Department of Oral Microbiology and Immunology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
25
|
The Protective Effect of Apamin on LPS/Fat-Induced Atherosclerotic Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:305454. [PMID: 22645626 PMCID: PMC3357006 DOI: 10.1155/2012/305454] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 01/30/2012] [Accepted: 02/05/2012] [Indexed: 11/18/2022]
Abstract
Apamin, a peptide component of bee venom (BV), has anti-inflammatory properties. However, the molecular mechanisms by which apamin prevents atherosclerosis are not fully understood. We examined the effect of apamin on atherosclerotic mice. Atherosclerotic mice received intraperitoneal (ip) injections of lipopolysaccharide (LPS, 2 mg/kg) to induce atherosclerotic change and were fed an atherogenic diet for 12 weeks. Apamin (0.05 mg/kg) was administered by ip injection. LPS-induced THP-1-derived macrophage inflammation treated with apamin reduced expression of tumor necrosis factor (TNF)-α, vascular cell adhesion molecule (VCAM)-1, and intracellular cell adhesion molecule (ICAM)-1, as well as the nuclear factor kappa B (NF-κB) signaling pathway. Apamin decreased the formation of atherosclerotic lesions as assessed by hematoxylin and elastic staining. Treatment with apamin reduced lipids, Ca(2+) levels, and TNF-α in the serum from atherosclerotic mice. Further, apamin significantly attenuated expression of VCAM-1, ICAM-1, TGF-β1, and fibronectin in the descending aorta from atherosclerotic mice. These results indicate that apamin plays an important role in monocyte/macrophage inflammatory processing and may be of potential value for preventing atherosclerosis.
Collapse
|
26
|
Exosomes/microvesicles: mediators of cancer-associated immunosuppressive microenvironments. Semin Immunopathol 2011; 33:441-54. [PMID: 21688197 DOI: 10.1007/s00281-010-0234-8] [Citation(s) in RCA: 299] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 11/28/2010] [Indexed: 12/14/2022]
Abstract
Cancer cells, both in vivo and in vitro, have been demonstrated to release membranous structures, defined as microvesicles or exosomes, consisting of an array of macromolecules derived from the originating cells, including proteins, lipids, and nucleic acids. While only recently have the roles of these vesicular components in intercellular communication become elucidated, significant evidence has demonstrated that tumor exosomes can exert a broad array of detrimental effects on the immune system-ranging from apoptosis of activated cytotoxic T cells to impairment of monocyte differentiation into dendritic cells, to induction of myeloid-suppressive cells and T regulatory cells. Immunosuppressive exosomes of tumor origin can be found within neoplastic lesions and in biologic fluids from cancer patients, implying a potential role of these pathways in in vivo tumor progression and systemic paraneoplastic syndromes. Through the expression of molecules involved in angiogenesis promotion, stromal remodeling, signaling pathway activation through growth factor/receptor transfer, chemoresistance, and genetic intercellular exchange, tumor exosomes could represent a central mediator of the tumor microenvironment. By understanding the nature of these tumor-derived exosomes/microvesicles and their roles in mediating cancer progression and modulating the host immune response will significantly impact therapeutic approaches targeting exosomes.
Collapse
|
27
|
Atay S, Gercel-Taylor C, Taylor DD. Human trophoblast-derived exosomal fibronectin induces pro-inflammatory IL-1β production by macrophages. Am J Reprod Immunol 2011; 66:259-69. [PMID: 21410811 DOI: 10.1111/j.1600-0897.2011.00995.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
PROBLEM Our previous studies demonstrated that trophoblast-derived exosomes induced synthesis and release of pro-inflammatory cytokines, including interleukin-1β (IL-1β) by macrophages. The objective of this study was to characterize the mechanism and receptors associated with this induction. METHOD OF STUDY Exosomes were isolated from Sw71 trophoblast-conditioned media by ultrafiltration and ultracentrifugation. Using macrophages isolated from normal donors, cytochalasin D was used to block exosome uptake. Induction of IL-1β mRNA was investigated by qRT-PCR, pro-IL-1β protein by western immunoblotting, and mature IL-1β release by ELISA. RGD peptides were used to block fibronectin binding by macrophage α5β1 integrin. RESULTS Uptake of exosomes by macrophages was completely blocked by pre-treatment with cytochalasin D. Although induction of some cytokines (such as C4A and CCL11) requires uptake, induction of IL-1β occurred without exosome internalization. Cytochalasin D treatment did not inhibit exosome-mediated induction of IL-1β mRNA, production of the pro-protein, or release of mature IL-1β. Blocking of fibronectin binding using RGD peptides demonstrated the abrogation of exosome-mediated IL-1β production. CONCLUSION Although trophoblast-derived exosomes have been demonstrated to induce IL-1β, this is the first demonstration of IL-1β induction by exosome-associated fibronectin. Based on this pro-inflammatory role of exosome-associated fibronectin, it may represent an important general immunoregulatory mechanism.
Collapse
Affiliation(s)
- Safinur Atay
- Department of Microbiology & Immunology, University of Louisville School of Medicine, KY, USA
| | | | | |
Collapse
|
28
|
Feaver RE, Gelfand BD, Wang C, Schwartz MA, Blackman BR. Atheroprone hemodynamics regulate fibronectin deposition to create positive feedback that sustains endothelial inflammation. Circ Res 2010; 106:1703-11. [PMID: 20378855 DOI: 10.1161/circresaha.109.216283] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
RATIONALE The extracellular matrix protein fibronectin (FN) is focally deposited in regions of atherosclerosis, where it contributes to inflammatory signaling. OBJECTIVE To elucidate the mechanism by which FN deposition is regulated by local shear stress patterns, its dependence on platelet-endothelial cell adhesion molecule (PECAM)-1 mechanotransduction and the role this pathway plays in sustaining an atheroprone/proinflammatory phenotype. METHODS AND RESULTS Human endothelial cells were exposed in vitro to atheroprone or atheroprotective shear stress patterns derived from human carotid arteries. Onset of atheroprotective flow induced a transient increase in FN deposition, whereas atheroprone flow caused a steady increase in FN expression and integrin activation over time, leading to a significant and sustained increase in FN deposition relative to atheroprotective conditions. Comparing FN staining in ApoE(-/-) and ApoE(-/-)PECAM(-/-) mice showed that PECAM-1 was essential for FN accumulation in atheroprone regions of the aortic arch. In vitro, small interfering RNA against PECAM-1 blocked the induction of FN and the activation of nuclear factor (NF)-kappaB by atheroprone flow, which was rescued by the addition of exogenous FN. Additionally, blocking NF-kappaB activation attenuated the flow-induced FN expression. Small interfering RNA against FN significantly reduced NF-kappaB activity, which was rescued by the addition of exogenous FN. CONCLUSIONS These results indicate that FN gene expression and assembly into matrix fibrils is induced by atheroprone fluid shear stress. This effect is mediated at least in part by the transcription factor NF-kappaB. Additionally, because FN promotes activation of NF-kappaB, atheroprone shear stress creates a positive feedback to maintain inflammation.
Collapse
Affiliation(s)
- Ryan E Feaver
- Associate Professor, Department of Biomedical Engineering, University of Virginia, Box 800759, Health System, Charlottesville, VA 22908, USA
| | | | | | | | | |
Collapse
|
29
|
Summers L, Kielty C, Pinteaux E. Adhesion to fibronectin regulates interleukin-1 beta expression in microglial cells. Mol Cell Neurosci 2009; 41:148-55. [DOI: 10.1016/j.mcn.2009.02.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 01/23/2009] [Accepted: 02/10/2009] [Indexed: 01/18/2023] Open
|
30
|
Ritzenthaler JD, Han S, Roman J. Stimulation of lung carcinoma cell growth by fibronectin-integrin signalling. MOLECULAR BIOSYSTEMS 2008; 4:1160-9. [PMID: 19396378 DOI: 10.1039/b800533h] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Throughout many countries, lung cancer will kill more people this year than malignancies related to breast, prostate, colon, liver, kidney and melanoma combined. Despite recent advances in understanding the molecular biology of lung carcinoma and the introduction of multiple new chemotherapeutic agents for its treatment, its dismal five-year survival rate (<15%) has not changed substantially. The lack of advancement in this area reflects the limited knowledge available concerning the factors that promote oncogenic transformation and proliferation of carcinoma cells in the lung. Malignant transformation plays a key role in tumor growth and invasion; however, other factors such as the surrounding stroma, local growth factors, vascularity, and systemic hormones are important contributors as well. We believe that the composition of the lung extracellular matrix is also important due to its ability to affect malignant cell behavior in vitro. The matrix glycoprotein fibronectin, for example, is highly expressed in chronic lung disorders where most lung carcinomas are identified. This document reviews information that implicates fibronectin in the stimulation of lung carcinoma cell growth. Data available to date indicate that by binding to specific integrin receptors expressed on the surface of tumor cells, fibronectin stimulates intracellular signals implicated in the pathobiology of lung carcinogenesis and lung tumor chemoresistance including mitogen-activated protein kinases, GTPases, and the PI3-kinase/Akt/mTOR pathway. Thus, integrin-mediated signals triggered by fibronectin in tumor cells represent promising targets for the development of novel anti-cancer strategies.
Collapse
Affiliation(s)
- Jeffrey D Ritzenthaler
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Whitehead Biomedical Research Building, 615 Michael Street, Rm 205-M, Atlanta, Georgia 3032, USA
| | | | | |
Collapse
|
31
|
Zhang Y, Saccani S, Shin H, Nikolajczyk BS. Dynamic protein associations define two phases of IL-1beta transcriptional activation. THE JOURNAL OF IMMUNOLOGY 2008; 181:503-12. [PMID: 18566416 DOI: 10.4049/jimmunol.181.1.503] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
IL-1beta is a key proinflammatory cytokine with roles in multiple diseases. Monocytes package the IL-1beta promoter into a "poised architecture" characterized by a histone-free transcription start site and constitutive transcription factor associations. Upon LPS stimulation, multiple proteins inducibly associate with the IL-1beta gene. To understand how the complex combination of constitutive and inducible transcription factors activate the IL-1beta gene from a poised structure, we measured temporal changes in NF-kappaB and IFN regulatory factor (IRF) association with IL-1beta regulatory elements. Association of the p65 subunit of NF-kappaB peaks 30-60 min post-monocyte stimulation, and it shortly precedes IRF-4 recruitment to the IL-1beta enhancer and maximal mRNA production. In contrast, IRF-8/enhancer association decreases poststimulation. To test the importance of delayed IRF-4/enhancer association, we introduced a mutated PU.1 protein shown to prevent PU.1-mediated IRF-4 recruitment to the enhancer sequence. Mutated PU.1 initially increased IL-1beta mRNA followed by decreased mRNA levels 2-3 h poststimulation. Taken together, these data support a dynamic model of IL-1beta transcriptional activation in which a combination of IRF-8 and p65 drives the initial phase of IL-1beta transcription, while PU.1-mediated IRF-4 recruitment to the enhancer is important for the second phase. We further demonstrate that activation of both NF-kappaB and IRF-4 depends on CK2 kinase activity. Because IRF-4/enhancer association requires CK2 but not p65 activation, we conclude that CK2 triggers the IRF-4 and p65 pathways independently to serve as a master regulator of IL-1beta transcription.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | |
Collapse
|
32
|
Ramirez AM, Nunley DR, Rojas M, Roman J. Activation of Tissue Remodeling Precedes Obliterative Bronchiolitis in Lung Transplant Recipients. Biomark Insights 2008; 3:351-359. [PMID: 19578518 PMCID: PMC2688351 DOI: 10.4137/bmi.s686] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Obliterative bronchiolitis (OB) and Bronchiolitis Obliterans Syndrome (BOS) are frequent complications in the lung transplant recipient, and are the leading cause of mortality after transplantation. The mechanisms responsible for OB remain elusive, but inflammatory and tissue remodeling responses are implicated. We hypothesized that alterations in markers of tissue remodeling in BALF of lung transplant recipients could predict development of OB. To test this, we identified 13 lung transplant recipients who developed both BOS and histologic OB (OB group) at median post-operative day (POD) 485 (range 73–2070). Bronchoalveolar lavage fluid (BALF) was obtained at median POD 387 (range 45–2205), which preceded the onset of OB and BOS by a median of 140 days (range 60–365). As a control, BALF was also obtained from a group of 21 stable recipients without OB (non-OB group) at median POD 335 (range 270–395). BALF was examined for gelatinolytic activity, fibronectin gene transcription, and transforming growth factor-β1 (TGF-β1) expression. Gelatin zymography of BALF from the OB group showed increased matrix metalloproteinase-9 (MMP-9) activity over that of the non-OB group (p < 0.005). Similarly, BALF from the OB group induced greater fibronectin expression in fibroblasts compared to the non-OB group (p < 0.03). The induction of fibronectin also correlated with the amount of TGF-β1 protein in BALF (r = 0.71) from the OB group. We conclude that activation of tissue remodeling precedes the onset of OB, and analysis of gelatinolytic and/or fibronectin-inducing activity in BALF can serve as an early, pre-clinical marker for OB.
Collapse
Affiliation(s)
- Allan M Ramirez
- McKelvey Center for Lung Transplantation and Pulmonary Vascular Diseases
| | | | | | | |
Collapse
|
33
|
Brown LAS, Ritzenthaler JD, Guidot DM, Roman J. Alveolar type II cells from ethanol-fed rats produce a fibronectin-enriched extracellular matrix that promotes monocyte activation. Alcohol 2007; 41:317-24. [PMID: 17889308 PMCID: PMC2034513 DOI: 10.1016/j.alcohol.2007.04.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 04/03/2007] [Accepted: 04/03/2007] [Indexed: 12/26/2022]
Abstract
Acute lung injury affects close to 200,000 people in the United States annually and leads to death in 40-50% of the affected patients. Chronic ethanol abuse is thought to contribute to up to 40-50% of subjects who develop acute lung injury. We previously demonstrated in a rat model that chronic ethanol ingestion promoted acute lung injury and associated with chronic oxidant stress, activated matrix metalloproteinases, increased release of transforming growth factor-beta, and increased expression and deposition of fibronectin, a matrix glycoprotein implicated in lung injury and repair. Because fibronectin can activate monocytes to increase pro-inflammatory cytokine expression, we hypothesized that generation of fibronectin-enriched matrices during chronic ethanol ingestion might contribute to the development of acute lung injury by stimulating unopposed inflammation. To test this hypothesis, we harvested alveolar type II cells from rats fed the Lieber-DeCarli diet (6 weeks; 36% of calories from ethanol). After 96h of culture, the matrices deposited ex vivo by the type II cells derived from ethanol-fed rats showed increased amounts of fibronectin protein as demonstrated by ELISA. When monocytic U937 cells were plated atop these matrices, there was increased expression of interleukin-1beta (IL-1beta). This stimulation was inhibited by antibodies against alpha5beta1, a receptor that mediates many of the biological effects of fibronectin. We then tested whether antioxidants ameliorated these effects. Dietary supplements of the antioxidants N-acetylcysteine and procysteine normalized matrix production by type II cells. Furthermore, the newly derived matrices did not stimulate IL-1beta expression over control cells. These studies suggest that chronic ethanol exposure induces oxidant stress and activates lung tissue remodeling characterized by increased expression of fibronectin by alveolar type II cells. The newly deposited fibronectin-enriched matrices may stimulate the expression of pro-inflammatory cytokines in monocytic cells recruited to the lung after injury thereby explaining the priming effects of ethanol.
Collapse
Affiliation(s)
- Lou Ann S Brown
- Department of Pediatrics, Division of Neonatology, Emory University School of Medicine, 2015 Uppergate Drive, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
34
|
Ramirez A, Ramadan B, Ritzenthaler JD, Rivera HN, Jones DP, Roman J. Extracellular cysteine/cystine redox potential controls lung fibroblast proliferation and matrix expression through upregulation of transforming growth factor-beta. Am J Physiol Lung Cell Mol Physiol 2007; 293:L972-81. [PMID: 17644756 DOI: 10.1152/ajplung.00010.2007] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Oxidant stress has been implicated in the pathogenesis of chronic lung disorders like idiopathic pulmonary fibrosis. However, mechanisms that link oxidant stress to fibrogenesis remain partially elucidated. Emerging data suggest an important role for the extracellular thiol/disulfide redox environment. The cysteine (Cys)/cystine (CySS) redox couple represents the predominant low-molecular-weight thiol/disulfide pool found in plasma and is sensitive to aging, smoking, and other host factors. We hypothesized that an oxidized extracellular Cys/CySS redox potential (E(h) Cys/CySS) affects lung fibroblasts by inducing intracellular signals that stimulate proliferation and matrix expression. We tested this hypothesis in primary murine lung fibroblasts and found that an oxidized E(h) Cys/CySS (-46 mV) stimulated lung fibroblast proliferation. Furthermore, it stimulated their expression of fibronectin, a matrix glycoprotein highly expressed in fibrotic lung diseases and implicated in lung injury. This stimulatory effect was dependent on protein kinase C activation. Oxidant stress also increased the phosphorylation of cAMP response element binding protein, a transcription factor known for its ability to stimulate fibronectin expression, and increased the expression of mRNAs and proteins coding for the transcription factors nuclear factor (NF)-kappaB and mothers against decapentaplegic homolog 3. Fibroblasts cultured in normal (-80 mV) or reduced (-131 mV) E(h) Cys/CySS showed less induction. Furthermore, fibronectin expression in response to an oxidized E(h) Cys/CySS was associated with expression of transforming growth factor-beta1 (TGF-beta1) and was inhibited by an anti-TGF-beta1 antibody and SB-431542, a TGF-beta1 receptor inhibitor. These studies suggest that extracellular oxidant stress activates redox-sensitive pathways that stimulate lung fibroblast proliferation and matrix expression through upregulation of TGF-beta1.
Collapse
Affiliation(s)
- Allan Ramirez
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
35
|
Han S, Ritzenthaler JD, Wingerd B, Rivera HN, Roman J. Extracellular Matrix Fibronectin Increases Prostaglandin E2 Receptor Subtype EP4 in Lung Carcinoma Cells through Multiple Signaling Pathways. J Biol Chem 2007; 282:7961-72. [PMID: 17237224 DOI: 10.1074/jbc.m610308200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously demonstrated that fibronectin (Fn) stimulates the proliferation of non-small cell lung carcinoma (NSCLC) cell growth through the induction of cyclooxygenase-2 (COX-2) and prostaglandin E2 secretion. Here, we demonstrate that NSCLC cells express mRNA and protein for the prostaglandin E2 receptor EP4 and that Fn enhances its stimulatory effect by inducing the expression of EP4, but not of EP1, EP2, and EP3 receptor subtypes. The effect of Fn on EP4 was inhibited by an antibody against alpha5beta1 integrin and by inhibitors of phosphoinositide 3-kinase (wortmannin) and extracellular signal-regulated kinase (PD98095), but not by inhibitors of protein kinase C (calphostin C), of protein kinase A (H-89), or of mammalian target of rapamycin (rapamycin). A COX-2 small interfering RNA was also inhibitory. Fn significantly increased AP-2 binding activity in the promoter of the EP4 gene, and AP-2 antisense oligonucleotides blocked Fn-induced EP4 expression. Using full-length and mutated EP4 promoter constructs, we found that Fn stimulation of EP4 gene expression was inhibited when one AP-2 site (-1000 bp) was mutated. Fn induced nuclear AP-2alpha protein expression through multiple signaling pathways. Our results indicate that Fn-induced NSCLC cell proliferation is mediated through EP4. Furthermore, they show that Fn induces EP4 expression through the activation of alpha5beta1-dependent signals that include induction of extracellular signal-regulated kinase and phosphoinositide 3-kinase pathways as well as expression of COX-2. These events lead to activation of the transcription factor AP-2alpha, which interacts with specific regions in the EP4 gene promoter, leading to transcription of the EP4 gene.
Collapse
Affiliation(s)
- ShouWei Han
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | | | | | |
Collapse
|
36
|
Léveillé C, Bouillon M, Guo W, Bolduc J, Sharif-Askari E, El-Fakhry Y, Reyes-Moreno C, Lapointe R, Merhi Y, Wilkins JA, Mourad W. CD40 ligand binds to alpha5beta1 integrin and triggers cell signaling. J Biol Chem 2006; 282:5143-51. [PMID: 17182621 DOI: 10.1074/jbc.m608342200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
It was originally thought that the critical role of the CD40 ligand (CD40L) in normal and inflammatory immune responses was mainly mediated through its interaction with the classic receptor, CD40. However, data from CD40L(-/-) and CD40(-/-) mice suggest that the CD40L-induced inflammatory immune response involves at least one other receptor. This hypothesis is supported by the fact that CD40L stabilizes arterial thrombi through an alphaIIbbeta3-dependent mechanism. Here we provide evidence that soluble CD40L (sCD40L) binds to cells of the undifferentiated human monocytic U937 cell line in a CD40- and alphaIIbbeta3-independent manner. Binding of sCD40L to U937 cells was inhibited by anti-CD40L monoclonal antibody 5C8, anti-alpha5beta1 monoclonal antibody P1D6, and soluble alpha5beta1. The direct binding of sCD40L to purified alpha5beta1 was confirmed in a solid phase binding assay. Binding of sCD40L to alpha5beta1 was modulated by the form of alpha5beta1 expressed on the cell surface as the activation of alpha5beta1 by Mn(2+) or dithiothreitol resulted in the loss of sCD40L binding. Moreover, sCD40L induced the translocation of alpha5beta1 to the Triton X-100-insoluble fraction of U937 cells, the rapid activation of the MAPK pathways ERK1/2, and interleukin-8 gene expression. The binding of sCD40L to CD40 on BJAB cells, an alpha5beta1-negative B cell line, and the resulting activation of ERK1/2 was not inhibited by soluble alpha5beta1, suggesting that sCD40L can bind concomitantly to both receptors. These results document the existence of novel CD40L-dependent pathways of physiological relevance for cells expressing multiple receptors (CD40, alpha5beta1, and alphaIIbbeta3) for CD40L.
Collapse
Affiliation(s)
- Claire Léveillé
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier de l'Université Laval, Québec City, Quebec G1V 4G2, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Patrone JB, Bish SE, Stein DC. TNF-α-Independent IL-8 Expression: Alterations in Bacterial Challenge Dose Cause Differential Human Monocytic Cytokine Response. THE JOURNAL OF IMMUNOLOGY 2006; 177:1314-22. [DOI: 10.4049/jimmunol.177.2.1314] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
38
|
Stollenwerk MM, Lindholm MW, Pörn-Ares MI, Larsson A, Nilsson J, Ares MPS. Very low-density lipoprotein induces interleukin-1β expression in macrophages. Biochem Biophys Res Commun 2005; 335:603-8. [PMID: 16087165 DOI: 10.1016/j.bbrc.2005.07.123] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Accepted: 07/23/2005] [Indexed: 11/21/2022]
Abstract
Elevated plasma level of very low-density lipoprotein (VLDL) is a risk factor for coronary heart disease. We investigated the effect of VLDL on expression of the pro-inflammatory cytokine interleukin-1beta (IL-1beta) in human peripheral blood monocyte-derived macrophages. IL-1beta mRNA and protein expression was analysed by PCR and ELISA, respectively. Caspase activation was assessed by immunoblotting. Apart from potentiating lipopolysaccharide-induced secretion of IL-1beta, VLDL alone induced secretion of IL-1beta from human monocyte-derived macrophages. This effect was suppressed by an inhibitor of caspase-1, the protease which cleaves pro-IL-1beta. VLDL treatment activated caspase-1, as indicated by increased levels of the caspase-1 p20 subunit. Furthermore, VLDL increased IL-1beta mRNA expression, which was associated with activation of transcription factor AP-1. Inhibition of caspase-1 did not influence IL-1beta mRNA expression. In conclusion, VLDL induces IL-1beta mRNA expression, caspase-1 activation, and IL-1beta release from macrophages, suggesting that VLDL can promote inflammation in atherosclerotic lesions.
Collapse
|
39
|
Xing L, Remick DG. Mechanisms of Dimethyl Sulfoxide Augmentation of IL-1β Production. THE JOURNAL OF IMMUNOLOGY 2005; 174:6195-202. [PMID: 15879116 DOI: 10.4049/jimmunol.174.10.6195] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Expression of the inflammatory cytokine IL-1beta occurs in various inflammatory diseases, and IL-1beta production is regulated at multiple levels. There are conflicting reports about the effects of antioxidants on IL-1beta production. In this study, we investigated the regulatory role of the antioxidant DMSO on LPS-stimulated IL-1beta gene expression in human PBMC and in vivo. This study demonstrated that 1% DMSO increased LPS-stimulated (50 ng/ml) IL-1beta secretion in a dose- and time-dependent manner without altering TNF or IL-6. DMSO also elevated IL-1beta secretion by PBMC in response to exogenous superoxide anions. Despite the increase in IL-1beta, there was no augmentation of NF-kappaB with the addition of DMSO. The steady state mRNA coding for IL-1beta following LPS stimulation was also increased. Cycloheximide studies demonstrated that the DMSO augmentation of IL-1beta mRNA did not require de novo protein synthesis, and studies with actinomycin D showed that DMSO did not alter the half-life of IL-1beta mRNA, suggesting that DMSO did not change the stability of IL-1beta mRNA. Experiments using a reporter vector containing the 5'-flanking region of the human IL-1beta gene revealed that DMSO augmented LPS-induced IL-1beta reporter activity. In vivo, treatment of mice with DMSO significantly increased plasma levels of IL-1beta after endotoxin challenge. These data indicate that DMSO directly increases LPS-stimulated IL-1beta protein production through the mechanisms of augmenting promoter activity and increasing mRNA levels.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/pharmacology
- Animals
- Cell Line
- Cells, Cultured
- Cycloheximide/pharmacology
- Dactinomycin/pharmacology
- Dimethyl Sulfoxide/administration & dosage
- Dimethyl Sulfoxide/pharmacology
- Dose-Response Relationship, Immunologic
- Female
- Humans
- Inflammation Mediators/metabolism
- Interleukin-1/biosynthesis
- Interleukin-1/blood
- Interleukin-1/genetics
- Interleukin-1/metabolism
- Kinetics
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Lipopolysaccharides/pharmacology
- Mice
- Mice, Inbred ICR
- NF-kappa B/biosynthesis
- Promoter Regions, Genetic/drug effects
- Promoter Regions, Genetic/immunology
- Protein Precursors/biosynthesis
- RNA, Messenger/biosynthesis
- Superoxides/pharmacology
Collapse
Affiliation(s)
- Liyu Xing
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109-0602, USA
| | | |
Collapse
|
40
|
Han S, Sidell N, Roser-Page S, Roman J. Fibronectin stimulates human lung carcinoma cell growth by inducing cyclooxygenase-2 (COX-2) expression. Int J Cancer 2004; 111:322-31. [PMID: 15221958 DOI: 10.1002/ijc.20281] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Tobacco use is the most important risk factor for the development of lung carcinoma. One characteristic shared by tobacco-related lung diseases is altered lung connective tissue content and composition. In particular, tobacco results in increased expression of fibronectin (FN), a matrix glycoprotein implicated in lung development, injury and repair and in tumor cell invasion. We hypothesized that excessive deposition of FN in lung might promote lung carcinoma cell proliferation. Consistent with this hypothesis, we found that FN stimulated human lung carcinoma cell proliferation and diminished apoptosis in vitro, and that this effect was mediated through the integrin alpha5beta1 and associated with upregulation of cyclooxygenase-2 (COX-2) mRNA and protein expression, and increased prostaglandin E2 (PGE2) biosynthesis. The stimulatory effect of FN on COX-2 was blocked by the specific COX-2 inhibitor NS-398 and by inhibitors of protein kinase C (PKC), Calphostin C, and extracellular signal-regulated kinases (Erks), PD98095. Electrophoretic mobility shift assays revealed that FN increased the nuclear binding activity of cyclic AMP response element binding protein (CREB) and CCAAT/enhancer-binding protein (C/EBP), 2 proteins known to play important roles in the regulation of COX-2 promoter activity. Transient transfection assays with wild-type and mutated constructs of the human COX-2 gene promoter revealed that the stimulatory effect of FN was prevented when either the CRE or the NF-IL6 (C/EBP) sites were mutated. Taken together, the results indicate that FN stimulates human lung carcinoma cell proliferation and diminishes apoptosis by inducing COX-2 gene expression and PGE2 biosynthesis. Activation of PKC and Erk and DNA-protein interactions at CRE and NF-IL6 (C/EBP) sites in the COX-2 gene promoter appear to play key roles in this process. This work demonstrates that signaling through specific matrix-binding beta1 integrins (i.e., alpha5beta1) resulting from exaggerated deposition in lung of the matrix glycoprotein fibronectin might promote lung carcinoma cell growth.
Collapse
Affiliation(s)
- Shouwei Han
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
41
|
Roman J, Ritzenthaler JD, Gil-Acosta A, Rivera HN, Roser-Page S. Nicotine and fibronectin expression in lung fibroblasts: implications for tobacco‐related lung tissue remodeling. FASEB J 2004; 18:1436-8. [PMID: 15247149 DOI: 10.1096/fj.03-0826fje] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tobacco-related lung diseases are associated with alterations in tissue remodeling and are characterized by increased matrix deposition. Among the matrix molecules found to be highly expressed in tobacco-related lung diseases is fibronectin, a cell adhesive glycoprotein implicated in tissue injury and repair. We hypothesize that nicotine, a component of tobacco, stimulates the expression of fibronectin in lung fibroblasts via the activation of intracellular signals that lead to increased fibronectin gene transcription. In support of this, we found that nicotine stimulated the expression of fibronectin in lung fibroblasts and that its stimulatory effect was associated with activation of protein kinase C and mitogen-activated protein kinases, increased levels of intracellular cAMP, and phosphorylation and DNA binding of the transcription factor CREB. Increased transcription of the gene was dependent on cAMP-response elements (CREs) present on the 5' end of its gene promoter. The stimulatory effect of nicotine on fibronectin expression was abolished by alpha-bungarotoxin, an inhibitor of alpha7 nicotinic acetylcholine receptors (alpha7 AChRs). Of note, nicotine increased the expression of alpha7 nAChRs on fibroblasts. Our data suggest that nicotine induces lung fibroblasts to produce fibronectin by stimulating alpha7 nAChR-dependent signals that regulate the transcription of the fibronectin gene.
Collapse
Affiliation(s)
- Jesse Roman
- Department of Medicine,Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Whitehead Biomedical Research Building, 615 Michael St., Suite 205-M, Atlanta, GA 30322, USA.
| | | | | | | | | |
Collapse
|
42
|
Roman J, Ritzenthaler JD, Boles B, Lois M, Roser-Page S. Lipopolysaccharide induces expression of fibronectin α5β1-integrin receptors in human monocytic cells in a protein kinase C-dependent fashion. Am J Physiol Lung Cell Mol Physiol 2004; 287:L239-49. [PMID: 15064224 DOI: 10.1152/ajplung.00244.2003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
LPS is an outer-membrane glycolipid component of gram-negative bacteria known for its fervent ability to activate monocytic cells and for its potent proinflammatory capabilities. In addition, LPS triggers the release of cytokines and chemokines as well as cell-cell adhesion molecules. We postulate that LPS may also affect the expression of matrix-binding integrin receptors, thereby modulating cell-adhesive functions in monocytic cells. To test this hypothesis, we investigated the effects of LPS on the expression of the integrin α5β1, a fibronectin receptor, in a human monocytic cell line (U937) as well as in isolated human peripheral blood mononuclear cells (PBMCs). We found that LPS increased the expression of α5β1receptors and enhanced the adherence of U937 cells and PBMCs to fibronectin-coated surfaces; this was blocked by anti-α5β1antibodies. LPS increased α5-subunit mRNA accumulation in a dose- and time-dependent manner. The induction by LPS occurred, at least in part, at the level of gene transcription as indicated by experiments using α5intact and deletion promoter constructs. LPS-induced α5gene transcription was associated with rapid induction of conventional PKC-α protein and activity, was blocked by PKC inhibitors, and was mimicked by lipid A. Finally, we found that an anti-CD14 antibody was able to inhibit the LPS response. Overall, the data suggest that LPS stimulates α5gene transcription via CD14 and PKC-dependent signals to enhance the expression of functional α5β1receptors in monocytic cells. This process may help stimulate monocytic cell activation and facilitate their migration into fibronectin-containing tissues during infection.
Collapse
Affiliation(s)
- Jesse Roman
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Emory University School of Medicine, and The Atlanta Veterans Affairs Medical Center, Georgia 30322, USA.
| | | | | | | | | |
Collapse
|
43
|
Iourgenko V, Zhang W, Mickanin C, Daly I, Jiang C, Hexham JM, Orth AP, Miraglia L, Meltzer J, Garza D, Chirn GW, McWhinnie E, Cohen D, Skelton J, Terry R, Yu Y, Bodian D, Buxton FP, Zhu J, Song C, Labow MA. Identification of a family of cAMP response element-binding protein coactivators by genome-scale functional analysis in mammalian cells. Proc Natl Acad Sci U S A 2003; 100:12147-52. [PMID: 14506290 PMCID: PMC218727 DOI: 10.1073/pnas.1932773100] [Citation(s) in RCA: 292] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2003] [Indexed: 11/18/2022] Open
Abstract
This report describes an unbiased method for systematically determining gene function in mammalian cells. A total of 20,704 predicted human full-length cDNAs were tested for induction of the IL-8 promoter. A number of genes, including those for cytokines, receptors, adapters, kinases, and transcription factors, were identified that induced the IL-8 promoter through known regulatory sites. Proteins that acted through a cooperative interaction between an AP-1 and an unrecognized cAMP response element (CRE)-like site were also identified. A protein, termed transducer of regulated cAMP response element-binding protein (CREB) (TORC1), was identified that activated expression through the variant CRE and consensus CRE sites. TORC1 potently induced known CREB1 target genes, bound CREB1, and activated expression through a potent transcription activation domain. A functional Drosophila TORC gene was also identified. Thus, TORCs represent a family of highly conserved CREB coactivators that may control the potency and specificity of CRE-mediated responses.
Collapse
Affiliation(s)
- Vadim Iourgenko
- Department of Functional Genomics, Novartis Institute for Biomedical Research, 100 Technology Square, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Bird S, Zou J, Wang T, Munday B, Cunningham C, Secombes CJ. Evolution of interleukin-1beta. Cytokine Growth Factor Rev 2002; 13:483-502. [PMID: 12401481 DOI: 10.1016/s1359-6101(02)00028-x] [Citation(s) in RCA: 203] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
All jawed vertebrates possess a complex immune system, which is capable of anticipatory and innate immune responses. Jawless vertebrates possess an equally complex immune system but with no evidence of an anticipatory immune response. From these findings it has been speculated that the initiation and regulation of the immune system within vertebrates will be equally complex, although very little has been done to look at the evolution of cytokine genes, despite well-known biological activities within vertebrates. In recent years, cytokines, which have been well characterised within mammals, have begun to be cloned and sequenced within non-mammalian vertebrates, with the number of cytokine sequences available from primitive vertebrates growing rapidly. The identification of cytokines, which are mammalian homologues, will give a better insight into where immune system communicators arose and may also reveal molecules, which are unique to certain organisms. Work has focussed on interleukin-1 (IL-1), a major mediator of inflammation which initiates and/or increases a wide variety of non-structural, function associated genes that are characteristically expressed during inflammation. Other than mammalian IL-1beta sequences there are now full cDNA sequences and genomic organisations available from bird, amphibian, bony fish and cartilaginous fish, with many of these genes having been obtained using an homology cloning approach. This review considers how the IL-1beta gene has changed through vertebrate evolution and whether its role and regulation are conserved within selected non-mammalian vertebrates.
Collapse
Affiliation(s)
- Steve Bird
- Department of Zoology, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | | | | | | | | | | |
Collapse
|
45
|
Guidot DM, Roman J. Chronic ethanol ingestion increases susceptibility to acute lung injury: role of oxidative stress and tissue remodeling. Chest 2002; 122:309S-314S. [PMID: 12475807 DOI: 10.1378/chest.122.6_suppl.309s] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Clinical studies have demonstrated that chronic alcohol abuse is an independent outcome variable in acute lung injury. The Emory Center for the Study of Acute Lung Injury is determining the mechanisms by which ethanol increases susceptibility to acute lung injury. We developed a rat model of chronic ethanol ingestion and demonstrated that ethanol predisposes rats to edematous lung injury elicited by endotoxemia or sepsis. Chronic ethanol ingestion in rats led to decreased levels of glutathione, an important antioxidant in the lung, and this defect was associated with alterations in epithelial cell permeability, decreased alveolar liquid clearance, decreased cell viability, and decreased surfactant production. Chronic ethanol ingestion also led to the activation of lung tissue remodeling as demonstrated by the increased expression of profibrotic growth factors, matrix components, and metalloproteases. In cultured fibroblasts, the induction of the matrix glycoprotein fibronectin by ethanol was mediated via nicotinic acetylcholine receptor-dependent signal transduction. We speculate that these alterations render the host susceptible to acute lung injury by diminishing the protective mechanisms of the lung and promoting exaggerated inflammatory and tissue repair responses elicited against injurious agents.
Collapse
Affiliation(s)
- David M Guidot
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Atlanta Veterans Affairs Medical Center, Emory University School of Medicine, Atlanta, GA, USA
| | | |
Collapse
|
46
|
Alton G, Schwamborn K, Satoh Y, Westwick JK. Therapeutic modulation of inflammatory gene transcription by kinase inhibitors. Expert Opin Biol Ther 2002; 2:621-32. [PMID: 12171506 DOI: 10.1517/14712598.2.6.621] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Altered gene expression contributes to the aetiology of inflammatory disease by modulation of the concentration of disease-related proteins. The expression of inflammatory genes is controlled through the concerted actions of specific transcription factors. Signal transduction networks positively or negatively regulate the activity of these transcription factors. Key components of these networks are protein kinases, which phosphorylate substrates on tyrosine, threonine or serine residues. During the disease process, pro-inflammatory signalling at the cell surface leads to a cascade of kinase activation, which ultimately culminates in modulation of the activity of transcription factors. Thus, pharmacological inhibition of protein kinases is a potential therapeutic strategy to treat inflammation. There are approximately 500 protein kinases in the human genome. Targeted small molecule inhibitors of these kinases should allow for tissue- and disease-specific therapies of unprecedented selectivity. Heralding this new era in molecular medicine is imatinib (Gleevec, Norvartis) a recently marketed tyrosine kinase inhibitor. This review focuses on kinase inhibitors that are currently in development for inflammatory diseases and the transcription factors that are involved.
Collapse
Affiliation(s)
- Gordon Alton
- Biochemistry Department, Pfizer Global Research and Development, La Jolla Laboratories, 4215 Sorrento Valley Boulevard, San Diego, CA 92121, USA.
| | | | | | | |
Collapse
|
47
|
Miller DL, Welty-Wolf K, Carraway MS, Ezban M, Ghio A, Suliman H, Piantadosi CA. Extrinsic coagulation blockade attenuates lung injury and proinflammatory cytokine release after intratracheal lipopolysaccharide. Am J Respir Cell Mol Biol 2002; 26:650-8. [PMID: 12034563 DOI: 10.1165/ajrcmb.26.6.4688] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Initiation of coagulation by tissue factor (TF) is a potentially powerful regulator of local inflammatory responses. We hypothesized that blockade of TF-factor VIIa (FVIIa) complex would decrease lung inflammation and proinflammatory cytokine release after tracheal instillation of Escherichia coli lipopolysaccharide (LPS 0111:B4). At the time of injury, rats received one dose of site-inactivated FVIIa (FFR-FVIIa) or saline intravenously. At 0, 6,12, 24, and 48 h after injury, lungs were examined for histologic changes and bronchoalveolar lavage (BAL) was performed to assess protein, lactate dehydrogenase (LDH) activity, cell counts, and cytokine levels. LPS-injured rats treated with FFR-FVIIa showed decreased intra-alveolar inflammation and fibrin deposition by light microscopy compared with untreated rats. This was accompanied by decreased protein leakage (P < 0.0001), LDH activity (P < 0.0001), and local elaboration of interleukin (IL)-1beta, IL-6, and IL-10 (all P < 0.0001), but not tumor necrosis factor (TNF)-alpha. Protection was associated with reduction of TF mRNA expression in whole lung, but not with changes in nuclear translocation of nuclear factor (NF)-kappaB. FFR-FVIIa given 6 h after LPS afforded equivalent lung protection. Therefore, blockade of TF-FVIIa complex protects the lung from injury by LPS in part by reducing local expression of proinflammatory cytokines and may offer promise for therapy of acute lung injury.
Collapse
Affiliation(s)
- Debra L Miller
- Department of Medicine, Division of Infectious Diseases, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Wang T, Zou J, Cunningham C, Secombes CJ. Cloning and functional characterisation of the interleukin-1 beta 1 promoter of rainbow trout (Oncorhynchus mykiss). BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1575:108-16. [PMID: 12020825 DOI: 10.1016/s0167-4781(02)00235-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The upstream flanking region of the rainbow trout (Oncorhynchus mykiss) IL-1 beta 1 gene has been cloned and characterised functionally using luciferase-based reporter gene constructs, and the transcription start site (TSS) confirmed by RLM-RACE. A TATA box was present 27 bp upstream of the TSS, with an NF-kB site 19 bp upstream of the TATA box. Within 1217 bp of upstream sequence, 3 sites for NF-kB, 10 sites for NF-IL6, 15 sites for AP1, 6 sites for AP4, 2 sites for CHOP/CEBP alpha and 1 site for SP1 and PU.1 were identified. Seven potential sites for the transcription repressor Gfi-1 were also identified. Analysis of eight IL-1 beta 1s promoter luciferase constructs transfected into a trout fibroblast (RTG-2) cell line known to constitutively express IL-1 beta revealed that in the absence of intron 1, very low luciferase activity was detectable. All of the constructs containing intron 1 gave clear luciferase activity, with the highest luciferase activity detected with construct P2-4 containing 617 bp of upstream sequence. As little as 82 bp of upstream sequence gave relatively strong luciferase activity, a region containing both a PU.1 and NF-kB site. That NF-kB is a transcription factor required for expression of the trout IL-1 beta 1 gene was confirmed using inhibitor studies with lipopolysaccharide (LPS)-stimulated macrophages. Both trout recombinant IL-1 beta and LPS were able to increase luciferase activity in the reporter constructs, especially in those containing the most upstream sequence with the lowest constitutive expression. The possibility that an upstream repressor is functioning to inhibit constitutive expression of IL-1 beta in this species is discussed.
Collapse
Affiliation(s)
- Tiehui Wang
- Department of Zoology, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | | | | | | |
Collapse
|
49
|
Rivera-Marrero CA, Schuyler W, Roser S, Ritzenthaler JD, Newburn SA, Roman J. M. tuberculosis induction of matrix metalloproteinase-9: the role of mannose and receptor-mediated mechanisms. Am J Physiol Lung Cell Mol Physiol 2002; 282:L546-55. [PMID: 11839551 DOI: 10.1152/ajplung.00175.2001] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) infection induces the expression of matrix metalloproteinase-9 (MMP-9) in mouse lungs. In cultured human monocytic cells, Mtb bacilli and the cell wall glycolipid lipoarabinomannan (LAM) stimulate high levels of MMP-9 activity. Here, we explore the cellular mechanisms involved in the induction of MMP-9 by Mtb. We show that infection of THP-1 cells with Mtb caused a fivefold increase in MMP-9 mRNA that was associated with increased MMP-9 activity. MMP-9 induction was dependent on microtubule polymerization and protein kinase activation and was associated with increased DNA binding by the transcription factor activator protein-1 (AP-1), which appeared to be important for MMP-9 expression. We then explored the surface molecules potentially involved in Mtb induction of MMP-9, focusing on ligands of the mannose and beta-glucan receptors. MMP-9 activity was induced by the mannose receptor ligands mannan, zymosan, and LAM, whereas the beta-glucan receptor ligand laminarin was not effective. The most active inducers of MMP-9 activity were the particulate ligand zymosan and LAM. Pretreatment of cells with an anti-mannose receptor monoclonal antibody, but not anti-complement receptor 3, decreased the induction of MMP-9 activity by Mtb bacilli. Together, these results suggest that MMP-9 induction by Mtb occurs by receptor-mediated signaling mechanisms involving the binding of mannosylated ligands to mannose receptors, the modulation by cytoskeletal elements such as microtubules, the activation of protein kinases, and transcriptional activation by AP-1.
Collapse
Affiliation(s)
- Carlos A Rivera-Marrero
- Pulmonary and Critical Care Division, Department of Medicine, Atlanta Veterans Affairs Medical Center and Emory University School of Medicine, Atlanta, Georgia 30033, USA
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Cytokines have been implicated as mediators and inhibitors of diverse forms of neurodegeneration. They are induced in response to brain injury and have diverse actions that can cause, exacerbate, mediate and/or inhibit cellular injury and repair. Here we review evidence for the contribution of cytokines to acute neurodegeneration, focusing primarily on interleukin 1 (IL-1), tumour necrosis factor-alpha (TNFalpha) and transforming growth factor-beta (TGFbeta). TGFbeta seems to exert primarily neuroprotective actions, whereas TNFalpha might contribute to neuronal injury and exert protective effects. IL-1 mediates ischaemic, excitotoxic and traumatic brain injury, probably through multiple actions on glia, neurons and the vasculature. Understanding cytokine action in acute neurodegeneration could lead to novel and effective therapeutic strategies, some of which are already in clinical trials.
Collapse
|