1
|
Abou Chakra M, Isserlin R, Tran TN, Bader GD. Control of tissue development and cell diversity by cell cycle-dependent transcriptional filtering. eLife 2021; 10:64951. [PMID: 34212855 PMCID: PMC8279763 DOI: 10.7554/elife.64951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 07/01/2021] [Indexed: 12/12/2022] Open
Abstract
Cell cycle duration changes dramatically during development, starting out fast to generate cells quickly and slowing down over time as the organism matures. The cell cycle can also act as a transcriptional filter to control the expression of long gene transcripts, which are partially transcribed in short cycles. Using mathematical simulations of cell proliferation, we identify an emergent property that this filter can act as a tuning knob to control gene transcript expression, cell diversity, and the number and proportion of different cell types in a tissue. Our predictions are supported by comparison to single-cell RNA-seq data captured over embryonic development. Additionally, evolutionary genome analysis shows that fast-developing organisms have a narrow genomic distribution of gene lengths while slower developers have an expanded number of long genes. Our results support the idea that cell cycle dynamics may be important across multicellular animals for controlling gene transcript expression and cell fate.
Collapse
Affiliation(s)
| | - Ruth Isserlin
- The Donnelly Centre, University of Toronto, Toronto, Canada
| | - Thinh N Tran
- The Donnelly Centre, University of Toronto, Toronto, Canada
| | - Gary D Bader
- The Donnelly Centre, University of Toronto, Toronto, Canada
| |
Collapse
|
2
|
Tickle C, Towers M. Sonic Hedgehog Signaling in Limb Development. Front Cell Dev Biol 2017; 5:14. [PMID: 28293554 PMCID: PMC5328949 DOI: 10.3389/fcell.2017.00014] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/08/2017] [Indexed: 02/04/2023] Open
Abstract
The gene encoding the secreted protein Sonic hedgehog (Shh) is expressed in the polarizing region (or zone of polarizing activity), a small group of mesenchyme cells at the posterior margin of the vertebrate limb bud. Detailed analyses have revealed that Shh has the properties of the long sought after polarizing region morphogen that specifies positional values across the antero-posterior axis (e.g., thumb to little finger axis) of the limb. Shh has also been shown to control the width of the limb bud by stimulating mesenchyme cell proliferation and by regulating the antero-posterior length of the apical ectodermal ridge, the signaling region required for limb bud outgrowth and the laying down of structures along the proximo-distal axis (e.g., shoulder to digits axis) of the limb. It has been shown that Shh signaling can specify antero-posterior positional values in limb buds in both a concentration- (paracrine) and time-dependent (autocrine) fashion. Currently there are several models for how Shh specifies positional values over time in the limb buds of chick and mouse embryos and how this is integrated with growth. Extensive work has elucidated downstream transcriptional targets of Shh signaling. Nevertheless, it remains unclear how antero-posterior positional values are encoded and then interpreted to give the particular structure appropriate to that position, for example, the type of digit. A distant cis-regulatory enhancer controls limb-bud-specific expression of Shh and the discovery of increasing numbers of interacting transcription factors indicate complex spatiotemporal regulation. Altered Shh signaling is implicated in clinical conditions with congenital limb defects and in the evolution of the morphological diversity of vertebrate limbs.
Collapse
Affiliation(s)
- Cheryll Tickle
- Department of Biology and Biochemistry, University of BathBath, UK
| | - Matthew Towers
- Department of Biomedical Science, The Bateson Centre, University of SheffieldWestern Bank, Sheffield, UK
| |
Collapse
|
3
|
Bryant SV, Gardiner DM. The relationship between growth and pattern formation. REGENERATION (OXFORD, ENGLAND) 2016; 3:103-22. [PMID: 27499882 PMCID: PMC4895327 DOI: 10.1002/reg2.55] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 04/02/2016] [Accepted: 04/04/2016] [Indexed: 12/11/2022]
Abstract
Successful development depends on the creation of spatial gradients of transcription factors within developing fields, and images of graded distributions of gene products populate the pages of developmental biology journals. Therefore the challenge is to understand how the graded levels of intracellular transcription factors are generated across fields of cells. We propose that transcription factor gradients are generated as a result of an underlying gradient of cell cycle lengths. Very long cell cycles will permit accumulation of a high level of a gene product encoded by a large transcription unit, whereas shorter cell cycles will permit progressively fewer transcripts to be completed due to gating of transcription by the cell cycle. We also propose that the gradients of cell cycle lengths are generated by gradients of extracellular morphogens/growth factors. The model of cell cycle gated transcriptional regulation brings focus back to the functional role of morphogens as cell cycle regulators, and proposes a specific and testable mechanism by which morphogens, in their roles as growth factors (how they were originally discovered), also determine cell fate.
Collapse
|
4
|
Monaghan JR, Stier AC, Michonneau F, Smith MD, Pasch B, Maden M, Seifert AW. Experimentally induced metamorphosis in axolotls reduces regenerative rate and fidelity. ACTA ACUST UNITED AC 2014; 1:2-14. [PMID: 27499857 PMCID: PMC4895291 DOI: 10.1002/reg2.8] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 12/23/2013] [Accepted: 12/24/2013] [Indexed: 02/06/2023]
Abstract
While most tetrapods are unable to regenerate severed body parts, amphibians display a remarkable ability to regenerate an array of structures. Frogs can regenerate appendages as larva, but they lose this ability around metamorphosis. In contrast, salamanders regenerate appendages as larva, juveniles, and adults. However, the extent to which fundamental traits (e.g., metamorphosis, body size, aging, etc.) restrict regenerative ability remains contentious. Here we utilize the ability of normally paedomorphic adult axolotls (Ambystoma mexicanum) to undergo induced metamorphosis by thyroxine exposure to test how metamorphosis and body size affects regeneration in age‐matched paedomorphic and metamorphic individuals. We show that body size does not affect regeneration in adult axolotls, but metamorphosis causes a twofold reduction in regeneration rate, and lead to carpal and digit malformations. Furthermore, we find evidence that metamorphic blastemal cells may take longer to traverse the cell cycle and display a lower proliferative rate. This study identifies the axolotl as a powerful system to study how metamorphosis restricts regeneration independently of developmental stage, body size, and age; and more broadly how metamorphosis affects tissue‐specific changes.
Collapse
Affiliation(s)
- James R Monaghan
- Department of Biology University of Florida 223 Bartram Hall, P.O. Box 118525 Gainesville Florida 32610 USA; Nexus Biology Group University of Florida 223 Bartram Hall, P.O. Box 118525 Gainesville Florida 32610 USA
| | - Adrian C Stier
- Department of Biology University of Florida 223 Bartram Hall, P.O. Box 118525 Gainesville Florida 32610 USA; Nexus Biology Group University of Florida 223 Bartram Hall, P.O. Box 118525 Gainesville Florida 32610 USA
| | - François Michonneau
- Department of Biology University of Florida 223 Bartram Hall, P.O. Box 118525 Gainesville Florida 32610 USA; Nexus Biology Group University of Florida 223 Bartram Hall, P.O. Box 118525 Gainesville Florida 32610 USA; Florida Museum of Natural History University of Florida Gainesville Florida 32611 USA
| | - Matthew D Smith
- Department of Biology University of Florida 223 Bartram Hall, P.O. Box 118525 Gainesville Florida 32610 USA; Nexus Biology Group University of Florida 223 Bartram Hall, P.O. Box 118525 Gainesville Florida 32610 USA
| | - Bret Pasch
- Department of Biology University of Florida 223 Bartram Hall, P.O. Box 118525 Gainesville Florida 32610 USA; Nexus Biology Group University of Florida 223 Bartram Hall, P.O. Box 118525 Gainesville Florida 32610 USA
| | - Malcolm Maden
- Department of Biology University of Florida 223 Bartram Hall, P.O. Box 118525 Gainesville Florida 32610 USA
| | - Ashley W Seifert
- Department of Biology University of Florida 223 Bartram Hall, P.O. Box 118525 Gainesville Florida 32610 USA; Nexus Biology Group University of Florida 223 Bartram Hall, P.O. Box 118525 Gainesville Florida 32610 USA
| |
Collapse
|
5
|
Satoh A, Bryant SV, Gardiner DM. Nerve signaling regulates basal keratinocyte proliferation in the blastema apical epithelial cap in the axolotl (Ambystoma mexicanum). Dev Biol 2012; 366:374-81. [DOI: 10.1016/j.ydbio.2012.03.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 03/15/2012] [Accepted: 03/16/2012] [Indexed: 11/16/2022]
|
6
|
Beck S, Faradji F, Brock H, Peronnet F. Maintenance of Hox Gene Expression Patterns. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 689:41-62. [DOI: 10.1007/978-1-4419-6673-5_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Smith JJ, Putta S, Zhu W, Pao GM, Verma IM, Hunter T, Bryant SV, Gardiner DM, Harkins TT, Voss SR. Genic regions of a large salamander genome contain long introns and novel genes. BMC Genomics 2009; 10:19. [PMID: 19144141 PMCID: PMC2633012 DOI: 10.1186/1471-2164-10-19] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 01/13/2009] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND The basis of genome size variation remains an outstanding question because DNA sequence data are lacking for organisms with large genomes. Sixteen BAC clones from the Mexican axolotl (Ambystoma mexicanum: c-value = 32 x 10(9) bp) were isolated and sequenced to characterize the structure of genic regions. RESULTS Annotation of genes within BACs showed that axolotl introns are on average 10x longer than orthologous vertebrate introns and they are predicted to contain more functional elements, including miRNAs and snoRNAs. Loci were discovered within BACs for two novel EST transcripts that are differentially expressed during spinal cord regeneration and skin metamorphosis. Unexpectedly, a third novel gene was also discovered while manually annotating BACs. Analysis of human-axolotl protein-coding sequences suggests there are 2% more lineage specific genes in the axolotl genome than the human genome, but the great majority (86%) of genes between axolotl and human are predicted to be 1:1 orthologs. Considering that axolotl genes are on average 5x larger than human genes, the genic component of the salamander genome is estimated to be incredibly large, approximately 2.8 gigabases! CONCLUSION This study shows that a large salamander genome has a correspondingly large genic component, primarily because genes have incredibly long introns. These intronic sequences may harbor novel coding and non-coding sequences that regulate biological processes that are unique to salamanders.
Collapse
Affiliation(s)
- Jeramiah J Smith
- Department of Biology and Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40506, USA
- University of Washington, Department of Genome Sciences, Seattle, WA 98195, USA
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA
| | - Srikrishna Putta
- Department of Biology and Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40506, USA
| | - Wei Zhu
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Gerald M Pao
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Inder M Verma
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Tony Hunter
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Susan V Bryant
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
- The Developmental Biology Center, University of California Irvine, Irvine, CA 92697, USA
| | - David M Gardiner
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
- The Developmental Biology Center, University of California Irvine, Irvine, CA 92697, USA
| | | | - S Randal Voss
- Department of Biology and Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
8
|
Towers M, Mahood R, Yin Y, Tickle C. Integration of growth and specification in chick wing digit-patterning. Nature 2008; 452:882-6. [PMID: 18354396 DOI: 10.1038/nature06718] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Accepted: 01/15/2008] [Indexed: 11/09/2022]
Abstract
In the classical model of chick wing digit-patterning, the polarizing region--a group of cells at the posterior margin of the early bud--produces a morphogen gradient, now known to be based on Sonic hedgehog (Shh), that progressively specifies anteroposterior positional identities in the posterior digit-forming region. Here we add an integral growth component to this model by showing that Shh-dependent proliferation of prospective digit progenitor cells is essential for specifying the complete pattern of digits across the anteroposterior axis. Inhibiting Shh signalling in early wing buds reduced anteroposterior expansion, and posterior digits were lost because all prospective digit precursors formed anterior structures. Inhibiting proliferation also irreversibly reduced anteroposterior expansion, but instead anterior digits were lost because all prospective digit precursors formed posterior structures. When proliferation recovered in such wings, Shh transcription was maintained for longer than normal, suggesting that duration of Shh expression is controlled by a mechanism that measures proliferation. Rescue experiments confirmed that Shh-dependent proliferation controls digit number during a discrete time-window in which Shh-dependent specification normally occurs. Our findings that Shh signalling has dual functions that can be temporally uncoupled have implications for understanding congenital and evolutionary digit reductions.
Collapse
Affiliation(s)
- Matthew Towers
- Division of Cell and Developmental Biology, WTB/MSI Complex, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | | | | | | |
Collapse
|
9
|
Fernández-Terán MA, Hinchliffe JR, Ros MA. Birth and death of cells in limb development: A mapping study. Dev Dyn 2006; 235:2521-37. [PMID: 16881063 DOI: 10.1002/dvdy.20916] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cell death and cell proliferation are basic cellular processes that need to be precisely controlled during embryonic development. The developing vertebrate limb illustrates particularly well how correct morphogenesis depends on the appropriate spatial and temporal balance between cell death and cell proliferation. Precise knowledge of the patterns of cell proliferation and cell death during limb development is required to understand how their modifications may contribute to the generation of the great diversity of limb phenotypes that result from spontaneous mutations or induced genetic manipulations. We have performed a comprehensive analysis of the patterns of cell death, assayed by terminal deoxynucleotidyl transferase-mediated deoxyuridinetriphosphate nick end-labeling (TUNEL), and cell proliferation, assayed by anti-phosphorylated histone H3 immunohistochemistry, in consecutive sections of forelimbs and hindlimbs covering an extensive period of chick and mouse limb development. Our results confirm and expand previous reports and show common and specific areas of cell death for each species. Mitotic cells were found scattered in a uniform distribution across the early limb bud, with the exception of the areas of cell death in which mitotic cells were scarce. At later stages, mitotic cells were seen more abundantly in the digital tips. The aim of the present study was to satisfy the need for organized data sets describing these processes, which will allow the side-by-side comparison between the two major model organisms of limb development, i.e., the mouse and the chick.
Collapse
Affiliation(s)
- M A Fernández-Terán
- Departamento de Anatomía y Biología Celular, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | | | | |
Collapse
|
10
|
Wong BJF, Pandhoh N, Truong MT, Diaz S, Chao K, Hou S, Gardiner D. Identification of chondrocyte proliferation following laser irradiation, thermal injury, and mechanical trauma. Lasers Surg Med 2005; 37:89-96. [PMID: 15900561 DOI: 10.1002/lsm.20180] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND AND OBJECTIVE Cartilage has a limited regenerative capacity, and there are a lack of reliable techniques and methods to stimulate growth of new tissue to treat degenerative diseases and trauma. This study focused on identifying chondrocyte cell proliferation in ex vivo cartilage tissue following heating Nd:YAG laser using whole-mount analysis and flow cytometry, and compared findings with results produced by contact, and water bath heating methods, mechanical injury, and the addition of transforming growth factor-beta (TGF-beta). STUDY DESIGN/MATERIALS AND METHODS Ex vivo rabbit nasal septal cartilages were either irradiated with an Nd:YAG laser (lambda = 1.32 microm, 2-16 seconds, 6 W/cm(2)), heated by immersion in a warm saline bath, heated by direct contact with a metal rod, or mechanically damaged by scoring with a scalpel or crushing. After treatment, specimens were incubated for 7 or 14 days in growth media containing 10 microM bromodeoxyuridine (BrdU). Additional specimens were cultured with both BrdU and TGF-beta. Both whole-mount BrdU-double-antibody detection techniques and flow cytometry were used to determine the presence of DNA replication as a marker of proliferation. RESULT An annular region of regenerating chondrocytes was identified surrounding the laser irradiation zone in whole-mount tissue specimens, and the diameter of this region increased with irradiation time. Using whole-mount analysis, no evidence of chondrocyte DNA replication was observed in tissues heated using non-laser methods, grown in TGF-beta, or mechanically traumatized. In contrast, flow cytometry identified the presence of BrdU-positive cells in the S-phase of the cell cycle (synthesis of DNA) for all protocols, indicating chondrocyte proliferation. The percentage of cells that are in S-phase increased with irradiation time. CONCLUSION These data provide evidence that laser irradiation, along with other thermal and mechanical treatments, causes a proliferative response in chondrocytes, and this is observed ex vivo in the absence of cellular and humoral repair mechanisms. The advantage of using optical methods to generate heat in cartilage is that microspot injuries could be created in tissue and scanned across surfaces in clinical applications.
Collapse
Affiliation(s)
- Brian J F Wong
- Beckman Laser Institute and Medical Clinic, University of California-Irvine, 1002 Health Sciences Road East, Irvine, CA 92612, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Endo T, Bryant SV, Gardiner DM. A stepwise model system for limb regeneration. Dev Biol 2004; 270:135-45. [PMID: 15136146 DOI: 10.1016/j.ydbio.2004.02.016] [Citation(s) in RCA: 228] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2003] [Revised: 02/23/2004] [Accepted: 02/23/2004] [Indexed: 11/18/2022]
Abstract
The amphibian limb is a model that has provided numerous insights into the principles and mechanisms of tissue and organ regeneration. While later stages of limb regeneration share mechanisms of growth control and patterning with limb development, the formation of a regeneration blastema is controlled by early events that are unique to regeneration. In this study, we present a stepwise experimental system based on induction of limb regeneration from skin wounds that will allow the identification and functional analysis of the molecules controlling this early, critical stage of regeneration. If a nerve is deviated to a skin wound on the side of a limb, an ectopic blastema is induced. If a piece of skin is grafted from the contralateral side of the limb to the wound site concomitantly with nerve deviation, the ectopic blastema continues to grow and forms an ectopic limb. Our analysis of dermal cell migration, contribution, and proliferation indicates that ectopic blastemas are equivalent to blastemas that form in response to limb amputation. Signals from nerves are required to induce formation of both ectopic and normal blastemas, and the diversity of positional information provided by blastema cells derived from opposite sides of the limb induces outgrowth and pattern formation. Hence, this novel and convenient stepwise model allows for the discovery of necessary and sufficient signals and conditions that control blastema formation, growth, and pattern formation during limb regeneration.
Collapse
Affiliation(s)
- Tetsuya Endo
- Department of Developmental and Cell Biology and the Developmental Biology Center, University of California-Irvine, Irvine, CA 92697, USA
| | | | | |
Collapse
|
12
|
Takahashi Y, Hamada JI, Murakawa K, Takada M, Tada M, Nogami I, Hayashi N, Nakamori S, Monden M, Miyamoto M, Katoh H, Moriuchi T. Expression profiles of 39 HOX genes in normal human adult organs and anaplastic thyroid cancer cell lines by quantitative real-time RT-PCR system. Exp Cell Res 2004; 293:144-53. [PMID: 14729064 DOI: 10.1016/j.yexcr.2003.09.024] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
HOX genes are well known as master control genes in embryonic morphogenesis. We hypothesized that HOX genes give cells spatial information to maintain tissue- or organ-specificity in adult body and that the deregulated expression of HOX genes results in tumor development. We established a comprehensive analysis system to quantify expression of 39 human HOX genes based on the real-time reverse transcription PCR (RT-PCR) method. Analysis of 39 HOX genes of 20 normal adult organs by this system revealed that 5' HOX genes were expressed in organs in the caudal parts of the body, and that the more caudal regions the more numbers of HOX genes were expressed. It was also found that the expression patterns of HOX genes were more similar in the adjacent genes on the same cluster rather than in those belonging to the same paralogs. Compared with normal thyroid tissues, thyroid cancer cell lines showed the altered expression of some HOX genes, especially Abd-B homeobox family genes. Our results showed that HOX genes were organ-specifically expressed in adult body and that the deregulated expressions of Abd-B family genes were implicated in thyroid tumor development.
Collapse
Affiliation(s)
- Yoko Takahashi
- Division of Cancer-Related Genes, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Fisher D, Méchali M. Vertebrate HoxB gene expression requires DNA replication. EMBO J 2003; 22:3737-48. [PMID: 12853488 PMCID: PMC165622 DOI: 10.1093/emboj/cdg352] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2003] [Revised: 05/20/2003] [Accepted: 05/21/2003] [Indexed: 11/12/2022] Open
Abstract
To study the relationship between DNA replication and transcription in vivo, we investigated Hox gene activation in two vertebrate systems: the embryogenesis of Xenopus and the retinoic acid-induced differentiation of pluripotent mouse P19 cells. We show that the first cell cycles following the mid- blastula transition in Xenopus are necessary and sufficient for HoxB activation, whereas later cell cycles are necessary for the correct expression pattern. In P19 cells, HoxB expression requires proliferation, and the entire locus is activated within one cell cycle. Using synchronous cultures, we found that activation of HoxB genes is colinear within a single cell cycle, occurs during S phase and requires S phase. The HoxB locus replicates early, whereas replication is still required for maximal expression later in S phase. Thus, induction of HoxB genes occurs in a DNA replication-dependent manner and requires only one cell cycle. We propose that S-phase remodelling licenses the locus for transcriptional regulation.
Collapse
Affiliation(s)
- Daniel Fisher
- Institute of Human Genetics, CNRS, 141 rue de la Cardonille, 34396 Cedex 05 Montpellier, France
| | | |
Collapse
|
14
|
Bushdid PB, Osinska H, Waclaw RR, Molkentin JD, Yutzey KE. NFATc3 and NFATc4 are required for cardiac development and mitochondrial function. Circ Res 2003; 92:1305-13. [PMID: 12750314 DOI: 10.1161/01.res.0000077045.84609.9f] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activation of the nuclear factor of activated T-cell (NFAT) family of transcription factors is associated with changes in gene expression and myocyte function in adult cardiac and skeletal muscle. However, the role of NFATs in normal embryonic heart development is not well characterized. In this report, the function of NFATc3 and NFATc4 in embryonic heart development was examined in mice with targeted disruption of both nfatc3 and nfatc4 genes. The nfatc3-/-nfatc4-/- mice demonstrate embryonic lethality after embryonic day 10.5 and have thin ventricles, pericardial effusion, and a reduction in ventricular myocyte proliferation. Cardiac mitochondria are swollen with abnormal cristae, indicative of metabolic failure, but hallmarks of apoptosis are not evident. Furthermore, enzymatic activity of complex II and IV of the respiratory chain and mitochondrial oxidative activity are reduced in nfatc3-/-nfatc4-/- cardiomyocytes. Cardiac-specific expression of constitutively active NFATc4 in nfatc3-/-nfatc4-/- embryos prolongs embryonic viability to embryonic day 12 and preserves ventricular myocyte proliferation, compact zone density, and trabecular formation. The rescued embryos also maintain cardiac mitochondrial ultrastructure and complex II enzyme activity. Together, these data support the hypothesis that loss of NFAT activity in the heart results in a deficiency in mitochondrial energy metabolism required for cardiac morphogenesis and function.
Collapse
Affiliation(s)
- Paul B Bushdid
- Division of Molecular Cardiovascular Biology, Children's Hospital Medical Center Cincinnati, ML 7020, 3333 Burnet Ave, Cincinnati, Ohio 45229, USA
| | | | | | | | | |
Collapse
|
15
|
Abstract
Cell proliferation has been shown to have multiple functions in development and pattern formation, including roles in growth, morphogenesis, and gene expression. Previously, we determined that the earliest known morphological event downstream of the male sex determining gene, Sry, is the induction of proliferation. In this study, we used proliferation inhibitors to block cell division during early gonad development, at stages before the XY gonad has committed to the testis pathway. Using the expression of sex-specific genes and the formation of testis morphology as markers of testis determination, we found that proliferation within a specific 8-h window was critical for the establishment of the male pathway and the formation of the testis. Inhibition of proliferation before or after this critical period led to smaller gonads, but did not block testis formation. The critical period of proliferation coincides with the initiation of Sry expression and is essential for the differentiation of Sertoli cells, suggesting that proliferation is a vital component of the initiation of the male pathway by Sry. We believe these studies suggest that proliferation is involved not only in the elaboration of organ pattern, but also in the choice between patterns (male and female) in the bipotential gonad.
Collapse
Affiliation(s)
- Jennifer Schmahl
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | | |
Collapse
|
16
|
Abstract
Embryos at low risk evolve slower development rates. In seven independent evolutionary contrasts for marine invertebrates (two in asteroids, three in gastropods, one each in phoronids and brachiopods) the more protected embryos had longer cell cycles from first to second cleavage than less protected planktonic embryos. Protected embryos had longer cell cycles even when protected eggs were smaller than planktonic eggs. In an eighth contrast, among tunicates, the embryonic cell cycle was unrelated to brooding and nearly proportional to egg size, but the literature provides examples of especially slow development in some brooding tunicates. The faster development of planktonic embryos is consistent with published estimates of greater mortality rates for planktonic larvae than for embryos in broods or egg masses. Examples from the literature for annelids, arthropods, holothuroids, and chordates also demonstrated longer embryonic cell cycles for more protected embryos with no consistent effect of egg size on cell-cycle duration. Longer cell cycles presumably reduce the benefits of protecting offspring because of longer exposure to whatever hazards remain, but slow development may permit compensating benefits. Hypothesized benefits of longer cell cycles include less maternal investment in rate-limiting materials, more or different transcription, and correction of errors. Such trade-offs are independent of feeding and growth and are influenced by parental protection.
Collapse
|
17
|
Capdevila J, Izpisúa Belmonte JC. Patterning mechanisms controlling vertebrate limb development. Annu Rev Cell Dev Biol 2002; 17:87-132. [PMID: 11687485 DOI: 10.1146/annurev.cellbio.17.1.87] [Citation(s) in RCA: 324] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vertebrate limb buds are embryonic structures for which much molecular and cellular data are known regarding the mechanisms that control pattern formation during development. Specialized regions of the developing limb bud, such as the zone of polarizing activity (ZPA), the apical ectodermal ridge (AER), and the non-ridge ectoderm, direct and coordinate the development of the limb bud along the anterior-posterior (AP), dorsal-ventral (DV), and proximal-distal (PD) axes, giving rise to a stereotyped pattern of elements well conserved among tetrapods. In recent years, specific gene functions have been shown to mediate the organizing and patterning activities of the ZPA, the AER, and the non-ridge ectoderm. The analysis of these gene functions has revealed the existence of complex interactions between signaling pathways operated by secreted factors of the HH, TGF-beta/BMP, WNT, and FGF superfamilies, which interact with many other genetic networks to control limb positioning, outgrowth, and patterning. The study of limb development has helped to establish paradigms for the analysis of pattern formation in many other embryonic structures and organs.
Collapse
Affiliation(s)
- J Capdevila
- Gene Expression Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | |
Collapse
|
18
|
|
19
|
Nakato H, Fox B, Selleck SB. dally, a Drosophila member of the glypican family of integral membrane proteoglycans, affects cell cycle progression and morphogenesis via a Cyclin A-mediated process. J Cell Sci 2002; 115:123-30. [PMID: 11801730 DOI: 10.1242/jcs.115.1.123] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
division abnormally delayed (dally) encodes an integral membrane proteoglycan of the glypican family that affects a number of patterning events during both embryonic and larval development. Earlier studies demonstrated that Dally regulates cellular responses to Wingless (Wg) and Decapentaplegic (Dpp) in a tissue-specific manner, consistent with its proposed role as a growth factor co-receptor. dally mutants also display cell cycle progression defects in specific sets of dividing cells in the developing optic lobe and retina. The affected cells in the retina and lamina show delays in completion of the G2-M segment of the cell cycle. We have investigated the molecular basis of dally-mediated cell division defects by examining the genetic interactions between dally and known cell cycle regulators.
Reductions in cyclin A but not cyclin B or string expression, suppress dally cell division defects in the optic lobe. cycA mutations also dominantly rescue many dally adult morphological defects including lethality, phenotypes that are unaffected by reducing cycB function. dally mutants show abnormal Cyclin A expression in the dividing cells affected, with appreciable levels of Cyclin A remaining in late prophase and metaphase, stages where Cyclin A is normally absent. Given that Dally is known to regulate the activity of secreted growth factors our findings suggest that extracellular cues influence the degradation of Cyclin A in a manner that controls cell cycle progression and ultimately, cell division patterning.
Collapse
Affiliation(s)
- Hiroshi Nakato
- Department of Molecular and Cellular Biology, and The Arizona Cancer Center, Salmon Building, Rm 0975, 1515 N. Campbell Avenue, University of Arizona, Tucson, AZ 85724, USA
| | | | | |
Collapse
|
20
|
Schaller SA, Muneoka K. Inhibition of polarizing activity in the anterior limb bud is regulated by extracellular factors. Dev Biol 2001; 240:443-56. [PMID: 11784075 DOI: 10.1006/dbio.2001.0500] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Anterior-posterior patterning of the developing limb is largely viewed as a function of polarizing activity. Recent evidence in polydactylous mutants, however, indicates that development of proper pattern also requires the involvement of inhibitory pathways in the anterior limb that prevent secondary polarizing zone formation, thus limiting the number of digits produced. We report the novel finding that grafts of extracellular matrix from the Mouse Posterior Limb Bud-4 cell line can induce supernumerary digits, including digits with posterior phenotype, from anterior chick limb mesenchyme. Unlike previously described mechanisms of pattern specification during limb development, it is shown that the extracellular matrix effect is not associated with release of an active signal. Rather, evidence is presented suggesting that heparan sulfate moieties in extracellular matrix grafts bind an endogenous, extracellular factor involved in inhibition of anterior polarizing activity, leading to derepression of the anterior limb and induction of polarizing zone marker genes including Sonic hedgehog and Bone morphogenetic protein-2.
Collapse
Affiliation(s)
- S A Schaller
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana 70118, USA.
| | | |
Collapse
|
21
|
Madlambayan GJ, Rogers I, Casper RF, Zandstra PW. Controlling culture dynamics for the expansion of hematopoietic stem cells. JOURNAL OF HEMATOTHERAPY & STEM CELL RESEARCH 2001; 10:481-92. [PMID: 11522231 DOI: 10.1089/15258160152509091] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The ex vivo expansion of hematopoietic stem cells (HSCs) is the subject of intense commercial and academic interest due to the potential of HSCs to be a renewable source of material for cellular therapeutics. Unfortunately, because methodologies have not yet been developed to grow clinically relevant numbers of HSCs (or their derivatives) consistently, the potential of this technology is limited. Manipulation of the in vitro culture microenvironment, primarily through cytokine supplementation, has been the predominant approach in studies attempting to expand primary human HSC numbers in vitro. While promising results have been obtained, it is becoming clear that novel methods must be developed before cellular therapies using these stem cells can become routine. Ideally, bioprocesses must be designed to target specifically the growth of stem cell populations while incorporating positive and negative feedback from potentially dynamic mature and maturing cell populations. The product of these culture systems should consist of not only HSCs, but also of cells that allow the engraftment of HSCs and, ideally, cells responsible for the immediate or accelerated functional support of patients. Development of such "designer transplants" will require combining optimal culture conditions capable of amplifying HSC numbers with novel approaches for finely controlling the number, functional capabilities, and characteristics of potentially therapeutic cells in these very complex cell culture systems.
Collapse
Affiliation(s)
- G J Madlambayan
- Institute of Biomaterials and Biomedical Engineering, Department of Chemical Engineering, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
22
|
Schaller SA, Li S, Ngo-Muller V, Han MJ, Omi M, Anderson R, Muneoka K. Cell biology of limb patterning. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 203:483-517. [PMID: 11131524 DOI: 10.1016/s0074-7696(01)03014-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Of vertebrate organ systems, the developing limb has been especially well characterized. Morphological studies have yielded a wealth of information describing limb outgrowth and have allowed for the identification of a multitude of important factors. In terms of the latter, key signaling pathways are known to control numerous aspects of limb development, including establishment of the early limb field, determination of limb identity, elongation of the limb bud, specification of digit pattern, and sculpting of the digits. Modification of underlying signaling pathways can thus result in dramatic alterations of the limb phenotype, accounting for many of the diverse limb patterns observed in nature. Given this, it is clear that signaling pathways regulate the highly orchestrated and tightly controlled sequence of cellular events necessary for limb outgrowth; however, exactly how molecular signals interface with the cell biology of limb development remains largely a mystery. In this review we first provide an overview of a number of the morphogenetic signaling pathways that have been identified in the developing limb and then review how a subset of these signals are known to modify cell behaviors important for limb outgrowth.
Collapse
Affiliation(s)
- S A Schaller
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Lousiana 70118, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Tavares AT, Tsukui T, Izpisúa Belmonte JC. Evidence that members of the Cut/Cux/CDP family may be involved in AER positioning and polarizing activity during chick limb development. Development 2000; 127:5133-44. [PMID: 11060239 DOI: 10.1242/dev.127.23.5133] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In vertebrates, the apical ectodermal ridge (AER) is a specialized epithelium localized at the dorsoventral boundary of the limb bud that regulates limb outgrowth. In Drosophila, the wing margin is also a specialized region located at the dorsoventral frontier of the wing imaginal disc. The wingless and Notch pathways have been implicated in positioning both the wing margin and the AER. One of the nuclear effectors of the Notch signal in the wing margin is the transcription factor cut. Here we report the identification of two chick homologues of the Cut/Cux/CDP family that are expressed in the developing limb bud. Chick cux1 is expressed in the ectoderm outside the AER, as well as around ridge-like structures induced by (β)-catenin, a downstream target of the Wnt pathway. cux1 overexpression in the chick limb results in scalloping of the AER and limb truncations, suggesting that Cux1 may have a role in limiting the position of the AER by preventing the ectodermal cells around it from differentiating into AER cells. The second molecule of the Cut family identified in this study, cux2, is expressed in the pre-limb lateral plate mesoderm, posterior limb bud and flank mesenchyme, a pattern reminiscent of the distribution of polarizing activity. The polarizing activity is determined by the ability of a certain region to induce digit duplications when grafted into the anterior margin of a host limb bud. Several manipulations of the chick limb bud show that cux2 expression is regulated by retinoic acid, Sonic hedgehog and the posterior AER. These results suggest that Cux2 may have a role in generating or mediating polarizing activity. Taking into account the probable involvement of Cut/Cux/CDP molecules in cell cycle regulation and differentiation, our results raise the hypothesis that chick Cux1 and Cux2 may act by modulating proliferation versus differentiation in the limb ectoderm and polarizing activity regions, respectively.
Collapse
Affiliation(s)
- A T Tavares
- The Salk Institute for Biological Studies, Gene Expression Laboratory, La Jolla, California 92037, USA
| | | | | |
Collapse
|
24
|
Caviness VS, Takahashi T, Nowakowski RS. Neuronogenesis and the early events of neocortical histogenesis. Results Probl Cell Differ 2000; 30:107-43. [PMID: 10857187 DOI: 10.1007/978-3-540-48002-0_5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- V S Caviness
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA
| | | | | |
Collapse
|
25
|
Abstract
Sry is the only gene on the Y chromosome that is required for testis formation in mammals. One of the earliest morphological changes that occurs as a result of Sry expression is a size increase of the rudimentary XY gonad relative to the XX gonad. Using 5′-bromo-2′-deoxyuridine (BrdU) incorporation to label dividing cells, we found that the size increase corresponds with a dramatic increase in somatic cell proliferation in XY gonads, which is not detected in XX gonads. This male-specific proliferation was observed initially in the cells of the coelomic epithelium and occurred in two distinct stages. During the first stage, proliferation in the XY gonad was observed largely in SF1-positive cells and contributed to the Sertoli cell population. During the second stage, proliferation was observed in SF1-negative cells at and below the coelomic epithelium and did not give rise to Sertoli cells. Both stages of proliferation were dependent on Sry and independent of any other genetic differences between male and female gonads, such as X chromosome dosage or other genes on the Y chromosome. The increase in cell proliferation began less than 24 hours after the onset of Sry expression, before the establishment of male-specific gene expression patterns, and before the appearance of any other known male-specific morphological changes in the XY gonad. Therefore, an increase in cell proliferation in the male coelomic epithelium is the earliest identified effect of Sry expression.
Collapse
Affiliation(s)
- J Schmahl
- The Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
26
|
Torok MA, Gardiner DM, Izpis�a-Belmonte JC, Bryant SV. Sonic Hedgehog (shh) expression in developing and regenerating axolotl limbs. ACTA ACUST UNITED AC 1999. [DOI: 10.1002/(sici)1097-010x(19990701)284:2<197::aid-jez9>3.0.co;2-f] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
27
|
Caviness VS, Takahashi T, Nowakowski RS. The G1 restriction point as critical regulator of neocortical neuronogenesis. Neurochem Res 1999; 24:497-506. [PMID: 10227682 DOI: 10.1023/a:1022579712262] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Neuronogenesis in the pseudostratified ventricular epithelium is the initial process in a succession of histogenetic events which give rise to the laminate neocortex. Here we review experimental findings in mouse which support the thesis that the restriction point of the G1 phase of the cell cycle is the critical point of regulation of the overall neuronogenetic process. The neuronogenetic interval in mouse spans 6 days. In the course of these 6 days the founder population and its progeny execute 11 cell cycles. With each successive cycle there is an increase in the fraction of postmitotic cells which leaves the cycle (the Q fraction) and also an increase in the length of the cell cycle due to an increase in the length of the G1 phase of the cycle. Q corresponds to the probability that postmitotic cells will exit the cycle at the restriction point of the G1 phase of the cell cycle. Q increases non-linearly, but the rate of change of Q with cycle (i.e., the first derivative) over the course of the neuronogenetic interval is a constant, k, which appears to be set principally by cell internal mechanisms which are species specific. Q also seems to be modulated, but at low amplitude, by a balance of mitogenic and antimitogenic influences acting from without the cell. We suggest that intracellular signal transduction systems control a general advance of Q during development and thereby determine the general developmental plan (i.e., cell number and laminar composition) of the neocortex and that external mitogens and anti-mitogens modulate this advance regionally and temporally and thereby produce regional modifications of the general plan.
Collapse
Affiliation(s)
- V S Caviness
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA.
| | | | | |
Collapse
|
28
|
Hu M, Easter SS. Retinal neurogenesis: the formation of the initial central patch of postmitotic cells. Dev Biol 1999; 207:309-21. [PMID: 10068465 DOI: 10.1006/dbio.1998.9031] [Citation(s) in RCA: 289] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have investigated the relationship between the birthdate and the onset of differentiation of neurons in the embryonic zebrafish neural retina. Birthdates were established by a single injection of bromodeoxyuridine into embryos of closely spaced ages. Differentiation was revealed in the same embryos with a neuron-specific antibody, zn12. The first bromodeoxyuridine-negative (postmitotic) cells occupied the ganglion cell layer of ventronasal retina, where they formed a small cluster of 10 cells or less that included the first zn12-positive cells (neurons). New cells were recruited to both populations (bromodeoxyuridine-negative and zn12-positive) along the same front, similar to the unfolding of a fan, to produce a circular central patch of hundreds of cells in the ganglion cell layer about 9 h later. Thus the formation of this central patch, previously considered as the start of retinal neurogenesis, was actually a secondary event, with a developmental history of its own. The first neurons outside the ganglion cell layer also appeared in ventronasal retina, indicating that the ventronasal region was the site of initiation of all retinal neurogenesis. Within a column (a small cluster of neuroepithelial cells), postmitotic cells appeared first in the ganglion cell layer, then the inner nuclear layer, and then the outer nuclear layer, so cell birthday and cell fate were correlated within a column. The terminal mitoses occurred in three bursts separated by two 10-h intervals during which proliferation continued without terminal mitoses.
Collapse
Affiliation(s)
- M Hu
- Biology Department, University of Michigan, Ann Arbor, Michigan, 48109-1048, USA
| | | |
Collapse
|
29
|
Affiliation(s)
- G R Martin
- Department of Anatomy and Program in Developmental Biology, School of Medicine, University of California at San Francisco, San Francisco, California 94143-0452 USA.
| |
Collapse
|