1
|
Ermakova GV, Meyntser IV, Zaraisky AG, Bayramov AV. Loss of noggin1, a classic embryonic inducer gene, in elasmobranchs. Sci Rep 2024; 14:3805. [PMID: 38360907 PMCID: PMC10869764 DOI: 10.1038/s41598-024-54435-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/13/2024] [Indexed: 02/17/2024] Open
Abstract
Secreted proteins of the Noggin family serve as pivotal regulators of early development and cell differentiation in all multicellular animals, including vertebrates. Noggin1 was identified first among all Noggins. Moreover, it was described as the first known embryonic inducer specifically secreted by the Spemann organizer and capable of inducing a secondary body axis when expressed ectopically. In the classical default model of neural induction, Noggin1 is presented as an antagonist of BMP signalling, playing a role as a neural inducer. Additionally, Noggin1 is involved in the dorsalization of embryonic mesoderm and later controls the differentiation of various tissues, including muscles, bones, and neural crest derivatives. Hitherto, noggin1 was found in all studied vertebrates. Here, we report the loss of noggin1 in elasmobranchs (sharks, rays and skates), which is a unique case among vertebrates. noggin2 and noggin4 retained in this group and studied in the embryos of the grey bamboo shark Chiloscyllium griseum revealed similarities in expression patterns and functional properties with their orthologues described in other vertebrates. The loss of noggin1 in elasmobranchs may be associated with histological features of the formation of their unique internal cartilaginous skeleton, although additional research is required to establish functional connections between these events.
Collapse
Affiliation(s)
- Galina V Ermakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Irina V Meyntser
- Moskvarium Center for Oceanography and Marine Biology, Moscow, 129223, Russia
| | - Andrey G Zaraisky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia.
| | - Andrey V Bayramov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| |
Collapse
|
2
|
Mateus R, Holtzer L, Seum C, Hadjivasiliou Z, Dubois M, Jülicher F, Gonzalez-Gaitan M. BMP Signaling Gradient Scaling in the Zebrafish Pectoral Fin. Cell Rep 2020; 30:4292-4302.e7. [PMID: 32209485 PMCID: PMC7109522 DOI: 10.1016/j.celrep.2020.03.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 02/07/2020] [Accepted: 03/09/2020] [Indexed: 01/25/2023] Open
Abstract
Secreted growth factors can act as morphogens that form spatial concentration gradients in developing organs, thereby controlling growth and patterning. For some morphogens, adaptation of the gradients to tissue size allows morphological patterns to remain proportioned as the organs grow. In the zebrafish pectoral fin, we found that BMP signaling forms a two-dimensional gradient. The length of the gradient scales with tissue length and its amplitude increases with fin size according to a power-law. Gradient scaling and amplitude power-laws are signatures of growth control by time derivatives of morphogenetic signaling: cell division correlates with the fold change over time of the cellular signaling levels. We show that Smoc1 regulates BMP gradient scaling and growth in the fin. Smoc1 scales the gradient by means of a feedback loop: Smoc1 is a BMP agonist and BMP signaling represses Smoc1 expression. Our work uncovers a layer of morphogen regulation during vertebrate appendage development.
Collapse
Affiliation(s)
- Rita Mateus
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Switzerland
| | - Laurent Holtzer
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Switzerland
| | - Carole Seum
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Switzerland
| | - Zena Hadjivasiliou
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Switzerland
| | - Marine Dubois
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Switzerland
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | | |
Collapse
|
3
|
Shono T, Thiery AP, Cooper RL, Kurokawa D, Britz R, Okabe M, Fraser GJ. Evolution and Developmental Diversity of Skin Spines in Pufferfishes. iScience 2019; 19:1248-1259. [PMID: 31353167 PMCID: PMC6831732 DOI: 10.1016/j.isci.2019.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/14/2019] [Accepted: 06/01/2019] [Indexed: 11/17/2022] Open
Abstract
Teleost fishes develop remarkable varieties of skin ornaments. The developmental basis of these structures is poorly understood. The order Tetraodontiformes includes diverse fishes such as the ocean sunfishes, triggerfishes, and pufferfishes, which exhibit a vast assortment of scale derivatives. Pufferfishes possess some of the most extreme scale derivatives, dermal spines, erected during their characteristic puffing behavior. We demonstrate that pufferfish scale-less spines develop through conserved gene interactions that underlie general vertebrate skin appendage formation, including feathers and hair. Spine development retains conservation of the EDA (ectodysplasin) signaling pathway, important for the development of diverse vertebrate skin appendages, including these modified scale-less spines of pufferfish. Further modification of genetic signaling from both CRISPR-Cas9 and small molecule inhibition leads to loss or reduction of spine coverage, providing a mechanism for skin appendage diversification observed throughout the pufferfishes. Pufferfish spines have evolved broad variations in body coverage, enabling adaptation to diverse ecological niches.
Collapse
Affiliation(s)
- Takanori Shono
- Department of Animal and Plant Sciences, Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK; Department of Anatomy, The Jikei University School of Medicine, Minato, Tokyo 105-8461, Japan
| | - Alexandre P Thiery
- Department of Animal and Plant Sciences, Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK
| | - Rory L Cooper
- Department of Animal and Plant Sciences, Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK
| | - Daisuke Kurokawa
- Misaki Marine Biological Station, School of Science, University of Tokyo, Miura, Kanagawa 238-0225, Japan
| | - Ralf Britz
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
| | - Masataka Okabe
- Department of Anatomy, The Jikei University School of Medicine, Minato, Tokyo 105-8461, Japan
| | - Gareth J Fraser
- Department of Animal and Plant Sciences, Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK; Department of Biology, University of Florida, Gainesville 32611, USA.
| |
Collapse
|
4
|
Wang H, Holland PWH, Takahashi T. Gene profiling of head mesoderm in early zebrafish development: insights into the evolution of cranial mesoderm. EvoDevo 2019; 10:14. [PMID: 31312422 PMCID: PMC6612195 DOI: 10.1186/s13227-019-0128-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 06/26/2019] [Indexed: 11/10/2022] Open
Abstract
Background The evolution of the head was one of the key events that marked the transition from invertebrates to vertebrates. With the emergence of structures such as eyes and jaws, vertebrates evolved an active and predatory life style and radiated into diversity of large-bodied animals. These organs are moved by cranial muscles that derive embryologically from head mesoderm. Compared with other embryonic components of the head, such as placodes and cranial neural crest cells, our understanding of cranial mesoderm is limited and is restricted to few species. Results Here, we report the expression patterns of key genes in zebrafish head mesoderm at very early developmental stages. Apart from a basic anterior–posterior axis marked by a combination of pitx2 and tbx1 expression, we find that most gene expression patterns are poorly conserved between zebrafish and chick, suggesting fewer developmental constraints imposed than in trunk mesoderm. Interestingly, the gene expression patterns clearly show the early establishment of medial–lateral compartmentalisation in zebrafish head mesoderm, comprising a wide medial zone flanked by two narrower strips. Conclusions In zebrafish head mesoderm, there is no clear molecular regionalisation along the anteroposterior axis as previously reported in chick embryos. In contrast, the medial–lateral regionalisation is formed at early developmental stages. These patterns correspond to the distinction between paraxial mesoderm and lateral plate mesoderm in the trunk, suggesting a common groundplan for patterning head and trunk mesoderm. By comparison of these expression patterns to that of amphioxus homologues, we argue for an evolutionary link between zebrafish head mesoderm and amphioxus anteriormost somites. Electronic supplementary material The online version of this article (10.1186/s13227-019-0128-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huijia Wang
- 1Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | - Peter W H Holland
- 2Department of Zoology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Road, Oxford, OX1 3SZ UK
| | - Tokiharu Takahashi
- 1Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT UK
| |
Collapse
|
5
|
Félix LM, Luzio A, Themudo M, Antunes L, Matos M, Coimbra AM, Valentim AM. MS-222 short exposure induces developmental and behavioural alterations in zebrafish embryos. Reprod Toxicol 2018; 81:122-131. [DOI: 10.1016/j.reprotox.2018.07.086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 07/19/2018] [Accepted: 07/23/2018] [Indexed: 01/19/2023]
|
6
|
Pang M, Tong J, Yu X, Fu B, Zhou Y. Molecular cloning, expression pattern of follistatin gene and association analysis with growth traits in bighead carp (Hypophthalmichthys nobilis). Comp Biochem Physiol B Biochem Mol Biol 2018; 218:44-53. [DOI: 10.1016/j.cbpb.2018.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/12/2018] [Accepted: 02/16/2018] [Indexed: 12/25/2022]
|
7
|
Miccoli A, Dalla Valle L, Carnevali O. The maternal control in the embryonic development of zebrafish. Gen Comp Endocrinol 2017; 245:55-68. [PMID: 27013380 DOI: 10.1016/j.ygcen.2016.03.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/16/2016] [Accepted: 03/19/2016] [Indexed: 12/13/2022]
Abstract
The maternal control directing the very first hours of life is of pivotal importance for ensuring proper development to the growing embryo. Thanks to the finely regulated inheritance of maternal factors including mRNAs and proteins produced during oogenesis and stored into the mature oocyte, the embryo is sustained throughout the so-called maternal-to-zygotic transition, a period in development characterized by a species-specific length in time, during which critical biological changes regarding cell cycle and zygotic transcriptional activation occur. In order not to provoke any kind of persistent damage, the process must be delicately balanced. Surprisingly, our knowledge as to the possible effects of beneficial bacteria regarding the modulation of the quality and/or quantity of both maternally-supplied and zygotically-transcribed mRNAs, is very limited. To date, only one group has investigated the consequences of the parentally-supplied Lactobacillus rhamnosus on the storage of mRNAs into mature oocytes, leading to an altered maternal control process in the F1 generation. Particular attention was called on the monitoring of several biomarkers involved in autophagy, apoptosis and axis patterning, while data on miRNA generation and pluripotency maintenance are herein presented for the first time, and can assist in laying the ground for further investigations in this field. In this review, the reader is supplied with the current knowledge on the above-mentioned biological process, first by drawing the general background and then by emphasizing the most important findings that have highlighted their focal role in normal animal development.
Collapse
Affiliation(s)
- Andrea Miccoli
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | | | - Oliana Carnevali
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy.
| |
Collapse
|
8
|
Félix LM, Serafim C, Valentim AM, Antunes LM, Campos S, Matos M, Coimbra AM. Embryonic Stage-Dependent Teratogenicity of Ketamine in Zebrafish (Danio rerio). Chem Res Toxicol 2016; 29:1298-309. [DOI: 10.1021/acs.chemrestox.6b00122] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Luís M. Félix
- Centre
for the Research and Technology of Agro-Environmental and Biological
Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Laboratory
Animal Science (LAS), Institute for Molecular and Cell Biology (IBMC), University of Porto (UP), Porto, Portugal
- Institute
for Research and Innovation in Health (i3S), University of Porto (UP), Porto, Portugal
| | - Cindy Serafim
- Life
Sciences and Environment School (ECVA), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Ana M. Valentim
- Centre
for the Research and Technology of Agro-Environmental and Biological
Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Laboratory
Animal Science (LAS), Institute for Molecular and Cell Biology (IBMC), University of Porto (UP), Porto, Portugal
- Institute
for Research and Innovation in Health (i3S), University of Porto (UP), Porto, Portugal
| | - Luís M. Antunes
- Centre
for the Research and Technology of Agro-Environmental and Biological
Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Laboratory
Animal Science (LAS), Institute for Molecular and Cell Biology (IBMC), University of Porto (UP), Porto, Portugal
- Institute
for Research and Innovation in Health (i3S), University of Porto (UP), Porto, Portugal
- School
of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Sónia Campos
- Centre
for the Research and Technology of Agro-Environmental and Biological
Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Laboratory
Animal Science (LAS), Institute for Molecular and Cell Biology (IBMC), University of Porto (UP), Porto, Portugal
- Institute
for Research and Innovation in Health (i3S), University of Porto (UP), Porto, Portugal
| | - Manuela Matos
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
- Department
of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Ana M. Coimbra
- Centre
for the Research and Technology of Agro-Environmental and Biological
Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| |
Collapse
|
9
|
Lie S, Morrison JL, Williams-Wyss O, Suter CM, Humphreys DT, Ozanne SE, Zhang S, MacLaughlin SM, Kleemann DO, Walker SK, Roberts CT, McMillen IC. Impact of periconceptional and preimplantation undernutrition on factors regulating myogenesis and protein synthesis in muscle of singleton and twin fetal sheep. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS 2015; 3:3/8/e12495. [PMID: 26265755 PMCID: PMC4562581 DOI: 10.14814/phy2.12495] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this study, we determined the effect of maternal undernutrition in the periconceptional (PCUN: ~80 days before to 6 days after conception) and preimplantation (PIUN: 0-6 days after conception) periods on the mRNA and protein abundance of key factors regulating myogenesis and protein synthesis, and on the relationship between the abundance of these factors and specific microRNA expression in the quadriceps muscle of singleton and twin fetal sheep at 135-138 days of gestation. PCUN and PIUN resulted in a decrease in the protein abundance of MYF5, a factor which determines the myogenic lineage, in singletons and twins. Interestingly, there was a concomitant increase in insulin-like growth factor-1 mRNA expression, a decrease in the protein abundance of the myogenic inhibitor, myostatin (MSTN), and an increase in the mRNA and protein abundance of the MSTN inhibitor, follistatin (FST), in the PCUN and PIUN groups in both singletons and twins. These promyogenic changes may compensate for the decrease in MYF5 protein abundance evoked by early embryonic undernutrition. PCUN and PIUN also increased the protein abundance of phosphorylated eukaryotic translation initiation factor binding protein 1 (EIF4EBP1; T70 and S65) in fetal muscle in singletons and twins. There was a significant inverse relationship between the expression of miR-30a-5p, miR-30d-5p, miR-27b-3p, miR106b-5p, and miR-376b and the protein abundance of mechanistic target of rapamycin (MTOR), FST, or MYF5 in singletons or twins. In particular, the expression of miR-30a-5p was increased and MYF5 protein abundance was decreased, in PCUN and PIUN twins supporting the conclusion that the impact of PCUN and PIUN is predominantly on the embryo.
Collapse
Affiliation(s)
- Shervi Lie
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South AustraliaAdelaide, South Australia, Australia
| | - Janna L Morrison
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South AustraliaAdelaide, South Australia, Australia
| | - Olivia Williams-Wyss
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South AustraliaAdelaide, South Australia, Australia,Discipline of Physiology, School of Medical Sciences, University of AdelaideAdelaide, South Australia, Australia
| | - Catherine M Suter
- Victor Chang Cardiac Research InstituteDarlinghurst, New South Wales, Australia,Faculty of Medicine, University of New South WalesKensington, New South Wales, Australia
| | - David T Humphreys
- Victor Chang Cardiac Research InstituteDarlinghurst, New South Wales, Australia
| | - Susan E Ozanne
- Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke’s Hospital, University of CambridgeCambridge, UK
| | - Song Zhang
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South AustraliaAdelaide, South Australia, Australia
| | - Severence M MacLaughlin
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South AustraliaAdelaide, South Australia, Australia
| | - David O Kleemann
- South Australian Research and Development Institute, Turretfield Research CentreRosedale, South Australia, Australia
| | - Simon K Walker
- South Australian Research and Development Institute, Turretfield Research CentreRosedale, South Australia, Australia
| | - Claire T Roberts
- Discipline of Obstetrics and Gynaecology, University of AdelaideAdelaide, South Australia, Australia
| | - I Caroline McMillen
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South AustraliaAdelaide, South Australia, Australia,The Chancellery, University of NewcastleNewcastle, New South Wales, Australia,Correspondence I. C. McMillen, The Chancellery, University of Newcastle, Callaghan, NSW 2308, Australia., Tel: 02-4921-5101, Fax: 02-4921-5115, E-mail:
| |
Collapse
|
10
|
Roszko I, S Sepich D, Jessen JR, Chandrasekhar A, Solnica-Krezel L. A dynamic intracellular distribution of Vangl2 accompanies cell polarization during zebrafish gastrulation. Development 2015; 142:2508-20. [PMID: 26062934 DOI: 10.1242/dev.119032] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 06/03/2015] [Indexed: 02/06/2023]
Abstract
During vertebrate gastrulation, convergence and extension movements elongate embryonic tissues anteroposteriorly and narrow them mediolaterally. Planar cell polarity (PCP) signaling is essential for mediolateral cell elongation underlying these movements, but how this polarity arises is poorly understood. We analyzed the elongation, orientation and migration behaviors of lateral mesodermal cells undergoing convergence and extension movements in wild-type zebrafish embryos and mutants for the Wnt/PCP core component Vangl2 (Trilobite). We demonstrate that Vangl2 function is required at the time when cells transition to a highly elongated and mediolaterally aligned body. vangl2 mutant cells fail to undergo this transition and to migrate along a straight path with high net speed towards the dorsal midline. Instead, vangl2 mutant cells exhibit an anterior/animal pole bias in cell body alignment and movement direction, suggesting that PCP signaling promotes effective dorsal migration in part by suppressing anterior/animalward cell polarity and movement. Endogenous Vangl2 protein accumulates at the plasma membrane of mesenchymal converging cells at the time its function is required for mediolaterally polarized cell behavior. Heterochronic cell transplantations demonstrated that Vangl2 cell membrane accumulation is stage dependent and regulated by both intrinsic factors and an extracellular signal, which is distinct from PCP signaling or other gastrulation regulators, including BMP and Nodals. Moreover, mosaic expression of fusion proteins revealed enrichment of Vangl2 at the anterior cell edges of highly mediolaterally elongated cells. These results demonstrate that the dynamic Vangl2 intracellular distribution is coordinated with and necessary for the changes in convergence and extension cell behaviors during gastrulation.
Collapse
Affiliation(s)
- Isabelle Roszko
- Department of Developmental Biology, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
| | - Diane S Sepich
- Department of Developmental Biology, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
| | - Jason R Jessen
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37130, USA
| | - Anand Chandrasekhar
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine in St Louis, St Louis, MO 63110, USA
| |
Collapse
|
11
|
Wagner JT, Podrabsky JE. Gene expression patterns that support novel developmental stress buffering in embryos of the annual killifish Austrofundulus limnaeus. EvoDevo 2015; 6:2. [PMID: 25810897 PMCID: PMC4372997 DOI: 10.1186/2041-9139-6-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/19/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The cellular signaling mechanisms and morphogenic movements involved in axis formation and gastrulation are well conserved between vertebrates. In nearly all described fish, gastrulation and the initial patterning of the embryonic axis occur concurrently with epiboly. However, annual killifish may be an exception to this norm. Annual killifish inhabit ephemeral ponds in South America and Africa and permanent populations persist by the production of stress-tolerant eggs. Early development of annual killifish is unique among vertebrates because their embryonic blastomeres disperse randomly across the yolk during epiboly and reaggregate several days later to form the embryo proper. In addition, annual killifish are able to arrest embryonic development in one to three stages, known as diapause I, II, and III. Little is known about how the highly conserved developmental signaling mechanisms associated with early vertebrate development may have shifted in order to promote the annual killifish phenotype. One of the most well-characterized and conserved transcription factors, oct4 (Pou5f1), may have a role in maintaining pluripotency. In contrast, BMP-antagonists such as chordin, noggin, and follistatin, have been previously shown to establish dorsal-ventral asymmetry during axis formation. Transcription factors from the SOXB1 group, such as sox2 and sox3, likely work to induce neural specification. Here, we determine the temporal expression of these developmental factors during embryonic development in the annual killifish Austrofundulus limnaeus using quantitative PCR and compare these patterns to other vertebrates. RESULTS Partial transcript sequences to oct4, sox2, sox3, chordin, noggin-1, noggin-2, and follistatin were cloned, sequenced, and identified in A. limnaeus. We found oct4, sox3, chordin, and noggin-1 transcripts to likely be maternally inherited. Expression of sox2, follistatin, and noggin-2 transcripts were highest in stages following a visible embryonic axis. CONCLUSIONS Our data suggest that embryonic cells acquire their germ layer identity following embryonic blastomere reaggregation in A. limnaeus. This process of cellular differentiation and axis formation may involve similar conserved signaling mechanisms to other vertebrates. We propose that the undifferentiated state is prolonged during blastomere dispersal, thus functioning as a developmental stress buffer prior to the establishment of embryonic asymmetry and positional identity among the embryonic cells.
Collapse
Affiliation(s)
- Josiah T Wagner
- Department of Biology, Portland State University, P.O. Box 751, Portland, OR 97207 USA
| | - Jason E Podrabsky
- Department of Biology, Portland State University, P.O. Box 751, Portland, OR 97207 USA
| |
Collapse
|
12
|
Stafford DA, Monica SD, Harland RM. Follistatin interacts with Noggin in the development of the axial skeleton. Mech Dev 2014; 131:78-85. [PMID: 24514266 DOI: 10.1016/j.mod.2013.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/25/2013] [Accepted: 10/07/2013] [Indexed: 10/26/2022]
Abstract
When compared to single mutants for Follistatin or Noggin, we find that double mutants display a dramatic further reduction in trunk cartilage formation, particularly in the vertebral bodies and proximal ribs. Consistent with these observations, expression of the early sclerotome markers Pax1 and Uncx is diminished in Noggin;Follistatin compound mutants. In contrast, Sim1 expression expands medially in double mutants. As the onset of Follistatin expression coincides with sclerotome specification, we argue that the effect of Follistatin occurs after sclerotome induction. We hypothesize that Follistatin aids in maintaining proper somite size, and consequently sclerotome progenitor numbers, by preventing paraxial mesoderm from adopting an intermediate/lateral plate mesodermal fate in the Noggin-deficient state.
Collapse
|
13
|
Organizer-derived Bmp2 is required for the formation of a correct Bmp activity gradient during embryonic development. Nat Commun 2014; 5:3766. [PMID: 24777107 PMCID: PMC4071459 DOI: 10.1038/ncomms4766] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 03/31/2014] [Indexed: 01/21/2023] Open
Abstract
Bone morphogenetic proteins (Bmps) control dorsoventral patterning of vertebrate embryos through the establishment of a ventrodorsal gradient of the activated downstream cytoplasmic effectors Smad1/5/8. Some Bmp ligands are expressed in the ventral and lateral regions and in the organizer during gastrulation of the embryo, but it remains unclear how organizer-derived Bmps contribute to total Bmp ligand levels and to the establishment of the correct phospho-Smad1/5/8 gradient along the ventrodorsal axis. Here we demonstrate that interference with organizer-specific Bmp2b signalling in zebrafish embryos alters the phospho-Smad1/5/8 gradient throughout the ventrodorsal axis, elevates the levels of the Bmp antagonist Chordin and dorsalizes the embryos. Moreover, we show that organizer-derived Bmp2b represses chordin transcription in the organizer and contributes to the control of the Chordin gradient. Combining these experimental results with simulations of Bmp’s reaction-diffusion dynamics, our data indicate that organizer-produced Bmp2b is required for the establishment and maintenance of a Bmp activity gradient and for appropriate embryonic dorsoventral patterning during gastrulation. The morphogen, Bmp, regulates differentiation of cell fates along the ventral to dorsal axis during vertebrate embryonic development. Here, Xue et al. show that Bmp2b produced by the organizer during early gastrulation in zebrafish embryos has a role in the establishment of an appropriate Bmp morphogen activity gradient and the correct dorsoventral patterning of the embryos.
Collapse
|
14
|
Zhong SS, Jiang XY, Sun CF, Zou SM. Identification of a second follistatin gene in grass carp (Ctenopharyngodon idellus) and its regulatory function in myogenesis during embryogenesis. Gen Comp Endocrinol 2013; 185:19-27. [PMID: 23396016 DOI: 10.1016/j.ygcen.2013.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 01/15/2013] [Accepted: 01/20/2013] [Indexed: 11/27/2022]
Abstract
Follistatin can antagonize the function of myostatin as a competitive binding protein and promote muscle growth in vivo. Here, we report the isolation and characterization of a second follistatin gene fst2 in grass carp (Ctenopharyngodon idellus). The grass carp fst2 cDNA was 1,376 bp in length, with an open reading frame (ORF) encoding 350 amino acid residues. A relatively low sequence identity of 78% was found between grass carp Fst2 and its paralog Fst1. Sequence and phylogenetic analyses suggest that the grass carp fst2 originated from fish-specific gene duplication. In adult fish, fst2 mRNA expression was observed in most tissues but was strongly expressed in the eyes, muscles, skin and ovary. Grass carp fst2 mRNA could be detected as early as 16 h post-fertilization (hpf), while fst1 mRNA was detected throughout embryogenesis. Using in situ hybridization, fst2 transcripts were detected in the anterior somites at 24 hpf and in the brain and posterior somites at 36 hpf. Meanwhile, fst1 mRNA was transcribed mainly in the optic vesicle and at the cephalic mesoderm at 12 hpf, in the eyes, cephalic mesoderm and at the lateral edge of most somites at 24 hpf, and mainly in the brain at 36 hpf. Furthermore, overexpression of fst2 mRNA markedly affected the formation of the embryonic midline and somite structures. Based on comparisons with fst1, our findings suggest that fst2 retained the ancestral functions of regulating muscle development and growth during embryogenesis in grass carp.
Collapse
Affiliation(s)
- Sha-Sha Zhong
- Key Laboratory of Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Huchenghuan Road 999, Shanghai 201306, China
| | | | | | | |
Collapse
|
15
|
Dalcq J, Pasque V, Ghaye A, Larbuisson A, Motte P, Martial JA, Muller M. RUNX3, EGR1 and SOX9B form a regulatory cascade required to modulate BMP-signaling during cranial cartilage development in zebrafish. PLoS One 2012; 7:e50140. [PMID: 23209659 PMCID: PMC3507947 DOI: 10.1371/journal.pone.0050140] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 10/17/2012] [Indexed: 12/14/2022] Open
Abstract
The cartilaginous elements forming the pharyngeal arches of the zebrafish derive from cranial neural crest cells. Their proper differentiation and patterning are regulated by reciprocal interactions between neural crest cells and surrounding endodermal, ectodermal and mesodermal tissues. In this study, we show that the endodermal factors Runx3 and Sox9b form a regulatory cascade with Egr1 resulting in transcriptional repression of the fsta gene, encoding a BMP antagonist, in pharyngeal endoderm. Using a transgenic line expressing a dominant negative BMP receptor or a specific BMP inhibitor (dorsomorphin), we show that BMP signaling is indeed required around 30 hpf in the neural crest cells to allow cell differentiation and proper pharyngeal cartilage formation. Runx3, Egr1, Sox9b and BMP signaling are required for expression of runx2b, one of the key regulator of cranial cartilage maturation and bone formation. Finally, we show that egr1 depletion leads to increased expression of fsta and inhibition of BMP signaling in the pharyngeal region. In conclusion, we show that the successive induction of the transcription factors Runx3, Egr1 and Sox9b constitutes a regulatory cascade that controls expression of Follistatin A in pharyngeal endoderm, the latter modulating BMP signaling in developing cranial cartilage in zebrafish.
Collapse
Affiliation(s)
- Julia Dalcq
- Laboratory for Molecular Biology and Genetic Engineering, GIGA-R, Université de Liège, Liège, Belgium
| | - Vincent Pasque
- Laboratory for Molecular Biology and Genetic Engineering, GIGA-R, Université de Liège, Liège, Belgium
| | - Aurélie Ghaye
- Laboratory for Molecular Biology and Genetic Engineering, GIGA-R, Université de Liège, Liège, Belgium
| | - Arnaud Larbuisson
- Laboratory for Molecular Biology and Genetic Engineering, GIGA-R, Université de Liège, Liège, Belgium
| | - Patrick Motte
- Plant Functional Genomics and Molecular Imaging and Center for Assistance in Technology of Microscopy, University of Liège, Liège, Belgium
| | - Joseph A. Martial
- Laboratory for Molecular Biology and Genetic Engineering, GIGA-R, Université de Liège, Liège, Belgium
| | - Marc Muller
- Laboratory for Molecular Biology and Genetic Engineering, GIGA-R, Université de Liège, Liège, Belgium
- * E-mail:
| |
Collapse
|
16
|
Aroua S, Maugars G, Jeng SR, Chang CF, Weltzien FA, Rousseau K, Dufour S. Pituitary gonadotropins FSH and LH are oppositely regulated by the activin/follistatin system in a basal teleost, the eel. Gen Comp Endocrinol 2012; 175:82-91. [PMID: 22019479 DOI: 10.1016/j.ygcen.2011.10.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 10/01/2011] [Accepted: 10/03/2011] [Indexed: 01/28/2023]
Abstract
European eels are blocked at a prepubertal silver stage due to a deficient production of pituitary gonadotropins. We investigated the potential role of activin/follistatin system in the control of eel gonadotropins. Through the development of qPCR assays for European eel activin β(B) and follistatin, we first analyzed the tissue distribution of the expression of these two genes. Both activin β(B) and follistatin are expressed in the brain, pituitary and gonads. In addition, a striking expression of both transcripts was also found in the retina and in adipose tissue. The effects of recombinant human activins and follistatin on eel gonadotropin gene expression were studied using primary cultures of eel pituitary cells. Activins A and B strongly stimulated FSHβ subunit expression in a time- and dose-dependent manner. In contrast, activin reduced LHβ expression, an inhibitory effect which was highlighted in the presence of testosterone, a known activator of eel LHβ expression. No effect of activin was observed on other pituitary hormones. Follistatin antagonized both the stimulatory and inhibitory effects of activin on FSHβ and LHβ expression, respectively. Activin is the first major stimulator of FSH expression evidenced in the eel. These results in a basal teleost further support the ancient origin and strong conservation of the activin/follistatin system in the control of FSH in vertebrates. In contrast, the opposite regulation of FSH and LH may have emerged in the teleost lineage.
Collapse
Affiliation(s)
- Salima Aroua
- Laboratory of Biology of Aquatic Organisms and Ecosystems, UMR CNRS 7208-IRD 207-UPMC, Muséum National d'Histoire Naturelle, 7 rue Cuvier, CP 32, 75231 Paris Cedex 05, France
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Noggin, along with other secreted bone morphogenetic protein (BMP) inhibitors, plays a crucial role in neural induction and neural tube patterning as well as in somitogenesis, cardiac morphogenesis and formation of the skeleton in vertebrates. The BMP signalling pathway is one of the seven fundamental pathways that drive embryonic development and pattern formation in animals. Understanding its evolutionary origin and role in pattern formation is, therefore, important to evolutionary developmental biology (evo-devo). We have studied the evolutionary origin of BMP-Noggin antagonism in hydra, which is a powerful diploblastic model to study evolution of pattern-forming mechanisms because of the unusual cellular dynamics during its pattern formation and its remarkable ability to regenerate. We cloned and characterized the noggin gene from hydra and found it to exhibit considerable similarity with its orthologues at the amino acid level. Microinjection of hydra Noggin mRNA led to duplication of the dorsoventral axis in Xenopus embryos, demonstrating its functional conservation across the taxa. Our data, along with those of others, indicate that the evolutionarily conserved antagonism between BMP and its inhibitors predates bilateral divergence. This article reviews the various roles of Noggin in different organisms and some of our recent work on hydra Noggin in the context of evolution of developmental signalling pathways.
Collapse
Affiliation(s)
- Kalpana Chandramore
- Division of Animal Sciences, Agharkar Research Institute, Pune 411 004, India
| | | |
Collapse
|
18
|
Enhanced hyperplasia in muscles of transgenic zebrafish expressing Follistatin1. SCIENCE CHINA-LIFE SCIENCES 2011; 54:159-65. [DOI: 10.1007/s11427-010-4121-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 10/22/2010] [Indexed: 01/18/2023]
|
19
|
Chandramore K, Ito Y, Takahashi S, Asashima M, Ghaskadbi S. Cloning of noggin gene from hydra and analysis of its functional conservation using Xenopus laevis embryos. Evol Dev 2010; 12:267-74. [PMID: 20565537 DOI: 10.1111/j.1525-142x.2010.00412.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hydra, a member of phylum Cnidaria that arose early in evolution, is endowed with a defined axis, organized nervous system, and active behavior. It is a powerful model system for the elucidation of evolution of developmental mechanisms in animals. Here, we describe the identification and cloning of noggin-like gene from hydra. Noggin is a secreted protein involved at multiple stages of vertebrate embryonic development including neural induction and is known to exert its effects by inhibiting the bone morphogenetic protein (BMP)-signaling pathway. Sequence analysis revealed that hydra Noggin shows considerable similarity with its orthologs at the amino acid level. When microinjected in the early Xenopus embryos, hydra noggin mRNA induced a secondary axis in 100% of the injected embryos, demonstrating functional conservation of hydra noggin in vertebrates. This was further confirmed by the partial rescue of Xenopus embryos by hydra noggin mRNA from UV-induced ventralization. By using animal cap assay in Xenopus embryos, we demonstrate that these effects of hydra noggin in Xenopus embryos are because of inhibition of BMP signaling by Noggin. Our data indicate that BMP/Noggin antagonism predates the bilaterian divergence and is conserved during the evolution.
Collapse
Affiliation(s)
- Kalpana Chandramore
- Zoology Group, Division of Animal Sciences, Agharkar Research Institute, Pune-411 004, India
| | | | | | | | | |
Collapse
|
20
|
Stephens WZ, Senecal M, Nguyen M, Piotrowski T. Loss of adenomatous polyposis coli (apc) results in an expanded ciliary marginal zone in the zebrafish eye. Dev Dyn 2010; 239:2066-77. [PMID: 20549742 DOI: 10.1002/dvdy.22325] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The distal region of neural retina (ciliary marginal zone [CMZ]) contains stem cells that produce non-neural and neuronal progenitors. We provide a detailed gene expression analysis of the eyes of apc mutant zebrafish where the Wnt/beta-catenin pathway is constitutively active. Wnt/beta-catenin signaling leads to an expansion of the CMZ accompanied by a central shift of the retinal identity gene sox2 and the proneural gene atoh7. This suggests an important role for peripheral Wnt/beta-catenin signaling in regulating the expression and localization of neurogenic genes in the central retina. Retinal identity genes rx1 and vsx2, as well as meis1 and pax6a act upstream of Wnt/beta-catenin pathway activation. Peripheral cells that likely contain stem cells can be identified by the expression of follistatin, otx1, and axin2 and the lack of expression of myca and cyclinD1. Our results introduce the zebrafish apc mutation as a new model to study signaling pathways regulating the CMZ.
Collapse
Affiliation(s)
- W Zac Stephens
- Department of Neurobiology and Anatomy, University of Utah Medical School, 20N Medical Drive, Salt Lake City, UT 84132, USA
| | | | | | | |
Collapse
|
21
|
|
22
|
BMPs and chordin regulate patterning of the directive axis in a sea anemone. Proc Natl Acad Sci U S A 2009; 106:18592-7. [PMID: 19833871 DOI: 10.1073/pnas.0900151106] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The TGF-beta molecules Dpp/BMP2/4/7 and their antagonist Sog/Chd play a conserved role in establishing the dorso-ventral (DV) axis in bilaterians. Homologues of BMPs and the antagonist, Chordin, have been isolated from Cnidaria and show a striking asymmetric expression pattern with respect to the primary oral-aboral (OA) axis. We used Morpholino knockdowns of Nematostella dpp (bmp2/4), bmp5-8, chordin, and tolloid to investigate their function during early development of the sea anemone Nematostella vectensis. Molecular analysis of the BMP Morpholino phenotypes revealed an upregulated and radialized expression of bmps and chordin in ectoderm and endoderm indicating a negative feedback loop. Our data further suggest that BMP signaling is required for symmetry breaking of bmp and chordin expression during gastrulation. While bmps and chordin marker genes of the ectodermal OA axis extended aborally, other ectodermal markers of the OA axis were not significantly affected. By contrast, expression of other endodermal marker genes marking both the OA and the directive axis were abolished. Our data suggest that the logic of BMP2/4 signaling and the BMP antagonist, Chordin, differs significantly between Cnidaria and Bilateria, yet the double negative feedback loop detected in Nematostella bears systemic similarities with part of the regulatory network of the DV axis patterning system in amphibians.
Collapse
|
23
|
Kwon HJ, Riley BB. Mesendodermal signals required for otic induction: Bmp-antagonists cooperate with Fgf and can facilitate formation of ectopic otic tissue. Dev Dyn 2009; 238:1582-94. [PMID: 19418450 PMCID: PMC2835543 DOI: 10.1002/dvdy.21955] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Induction of otic placodes requires Fgf from surrounding tissues. We tested the hypothesis that mesendodermally derived Bmp-antagonists Chordin, Follistatin-a, and Crossveinless-2 cooperate in this process. Injecting morpholinos for all three genes, or treatment with the Nodal inhibitor SB431542 to block mesoderm-formation, reduces otic induction and strongly enhances the effects of disrupting fgf3 or fgf8. In contrast, using a lower dose of SB431542, combined with partial loss of Fgf, causes a dramatic medial expansion of otic tissue and formation of a single, large otic vesicle spanning the width of the hindbrain. Under these conditions, paraxial cephalic mesoderm forms ectopically at the midline, migrates into the head, and later transfates to form otic tissue beneath the hindbrain. Blocking expression of Bmp-antagonists blocks formation of medial otic tissue. These data show the importance of mesendodermal Bmp-antagonists for otic induction and that paraxial cephalic mesendoderm can facilitate its own otic differentiation under certain circumstances. Developmental Dynamics 238:1582-1594, 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Hye-Joo Kwon
- Biology Department, Texas A&M University, College Station, Texas, USA
| | | |
Collapse
|
24
|
Expression pattern of the expanded noggin gene family in the planarian Schmidtea mediterranea. Gene Expr Patterns 2009; 9:246-53. [PMID: 19174194 DOI: 10.1016/j.gep.2008.12.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Revised: 12/22/2008] [Accepted: 12/24/2008] [Indexed: 01/04/2023]
Abstract
Noggin genes are mainly known as inhibitors of the Bone Morphogenetic Protein (BMP) signalling pathway. Noggin genes play an important role in various developmental processes such as axis formation and neural differentiation. In vertebrates, inhibition of the BMP pathway is usually carried out together with other inhibitory molecules: chordin and follistatin. Recently, it has been shown in planarians that the BMP pathway has a conserved function in the maintenance and re-establishment of the dorsoventral axis during homeostasis and regeneration. In an attempt to further characterize the BMP pathway in this model we have undertaken an in silico search of noggin genes in the genome of Schmidtea mediterranea. In contrast to other systems in which between one and four noggin genes have been reported, ten genes containing a noggin domain are present in S. mediterranea. These genes have been classified into two groups: noggin genes (two genes) and noggin-like genes (eight genes). Noggin-like genes are characterized by the presence of an insertion of 50-60 amino acids in the middle of the noggin domain. Here, we report the characterization of this expanded family of noggin genes in planarians as well as their expression patterns in both intact and regenerating animals. In situ hybridizations show that planarian noggin genes are expressed in a variety of cell types located in different regions of the planarian body.
Collapse
|
25
|
Hammond KL, Baxendale S, McCauley DW, Ingham PW, Whitfield TT. Expression ofpatched, prdm1andengrailedin the lamprey somite reveals conserved responses to Hedgehog signaling. Evol Dev 2009; 11:27-40. [DOI: 10.1111/j.1525-142x.2008.00300.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
26
|
Dutton K, Abbas L, Spencer J, Brannon C, Mowbray C, Nikaido M, Kelsh RN, Whitfield TT. A zebrafish model for Waardenburg syndrome type IV reveals diverse roles for Sox10 in the otic vesicle. Dis Model Mech 2008; 2:68-83. [PMID: 19132125 PMCID: PMC2615172 DOI: 10.1242/dmm.001164] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 11/12/2008] [Indexed: 12/13/2022] Open
Abstract
In humans, mutations in the SOX10 gene are a cause of the auditory-pigmentary disorder Waardenburg syndrome type IV (WS4) and related variants. SOX10 encodes an Sry-related HMG box protein essential for the development of the neural crest; deafness in WS4 and other Waardenburg syndromes is usually attributed to loss of neural-crest-derived melanocytes in the stria vascularis of the cochlea. However, SOX10 is strongly expressed in the developing otic vesicle and so direct roles for SOX10 in the otic epithelium might also be important. Here, we examine the otic phenotype of zebrafish sox10 mutants, a model for WS4. As a cochlea is not present in the fish ear, the severe otic phenotype in these mutants cannot be attributed to effects on this tissue. In zebrafish sox10 mutants, we see abnormalities in all otic placodal derivatives. Gene expression studies indicate deregulated expression of several otic genes, including fgf8, in sox10 mutants. Using a combination of mutant and morphant data, we show that the three sox genes belonging to group E (sox9a, sox9b and sox10) provide a link between otic induction pathways and subsequent otic patterning: they act redundantly to maintain sox10 expression throughout otic tissue and to restrict fgf8 expression to anterior macula regions. Single-cell labelling experiments indicate a small and transient neural crest contribution to the zebrafish ear during normal development, but this is unlikely to account for the strong defects seen in the sox10 mutant. We discuss the implication that the deafness in WS4 patients with SOX10 mutations might reflect a haploinsufficiency for SOX10 in the otic epithelium, resulting in patterning and functional abnormalities in the inner ear.
Collapse
Affiliation(s)
- Kirsten Dutton
- Department of Biology and Biochemistry, Centre for Regenerative Medicine, Developmental Biology Programme, University of Bath, Bath, UK
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Esterberg R, Delalande JM, Fritz A. Tailbud-derived Bmp4 drives proliferation and inhibits maturation of zebrafish chordamesoderm. Development 2008; 135:3891-901. [PMID: 18948415 DOI: 10.1242/dev.029264] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In zebrafish, BMP signaling establishes cell identity along the dorsoventral (DV) axis during gastrulation. Owing to the early requirements of BMP activity in DV patterning, it has been difficult to assign later roles in cell fate specification to specific BMP ligands. In this study, we have taken advantage of two follistatin-like genes (fstl1 and fstl2), as well as a transgenic zebrafish line carrying an inducible truncated form of the BMP-type 1 receptor to study the role of Bmp4 outside of the context of DV specification. Characterization of fstl1/2 suggests that they exert a redundant role as BMP antagonists during late gastrulation, regulating BMP activity in axial mesoderm. Maintenance of appropriate levels of BMP signaling is crucial for the proper development of chordamesoderm, a subset of axial mesoderm that gives rise to the notochord, but not prechordal mesoderm, which gives rise to the prechordal plate. Bmp4 activity in particular is required during a crucial window beginning at late gastrulation and lasting through early somitogenesis to promote chordamesoderm proliferation. In the absence of Bmp4, the notochord precursor pool is depleted, and the notochord differentiates prematurely. Our results illustrate a role for Bmp4 in the proliferation and timely differentiation of axial tissue after DV axis specification.
Collapse
|
28
|
Chan TM, Longabaugh W, Bolouri H, Chen HL, Tseng WF, Chao CH, Jang TH, Lin YI, Hung SC, Wang HD, Yuh CH. Developmental gene regulatory networks in the zebrafish embryo. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1789:279-98. [PMID: 18992377 DOI: 10.1016/j.bbagrm.2008.09.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2008] [Revised: 08/21/2008] [Accepted: 09/22/2008] [Indexed: 01/12/2023]
Abstract
The genomic developmental program operates mainly through the regulated expression of genes encoding transcription factors and signaling pathways. Complex networks of regulatory genetic interactions control developmental cell specification and fates. Development in the zebrafish, Danio rerio, has been studied extensively and large amounts of experimental data, including information on spatial and temporal gene expression patterns, are available. A wide variety of maternal and zygotic regulatory factors and signaling pathways have been discovered in zebrafish, and these provide a useful starting point for reconstructing the gene regulatory networks (GRNs) underlying development. In this review, we describe in detail the genetic regulatory subcircuits responsible for dorsoanterior-ventroposterior patterning and endoderm formation. We describe a number of regulatory motifs, which appear to act as the functional building blocks of the GRNs. Different positive feedback loops drive the ventral and dorsal specification processes. Mutual exclusivity in dorsal-ventral polarity in zebrafish is governed by intra-cellular cross-inhibiting GRN motifs, including vent/dharma and tll1/chordin. The dorsal-ventral axis seems to be determined by competition between two maternally driven positive-feedback loops (one operating on Dharma, the other on Bmp). This is the first systematic approach aimed at developing an integrated model of the GRNs underlying zebrafish development. Comparison of GRNs' organizational motifs between different species will provide insights into developmental specification and its evolution. The online version of the zebrafish GRNs can be found at http://www.zebrafishGRNs.org.
Collapse
Affiliation(s)
- Tzu-Min Chan
- Division of Molecular and Genomic Medicine, National Health Research Institute, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Dodou E, Barald KF, Postlethwait JH. Ventralized zebrafish embryo rescue by overexpression of Zic2a. Zebrafish 2008; 1:239-56. [PMID: 18248235 DOI: 10.1089/zeb.2004.1.239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The neuroectoderm arises during gastrulation as a population of undifferentiated proliferating neuroepithelial cells. As development continues, neuroepithelial cells leave the cell cycle and differentiate into neurons and glia of the functioning central nervous system. What processes establish the spatial distribution of proliferating neuroepithelial cells? To investigate this question, zic2a was isolated from zebrafish, a homolog of the Drosophila pair-rule gene odd-paired, which is involved in nervous system patterning. At shield stage, zic2a was expressed in the zebrafish organizer and the blastoderm margin, and became restricted to the axial mesoderm in mid-gastrula. Expression of zic2a appeared in the prospective neuroectoderm during gastrulation, and later demarcated the presumptive forebrain. This expression pattern suggests that zic2a may function early in the organizer and later in the neural plate to demarcate the population of proliferating neuroectoderm. Consistent with a function for zic2a in transducing signals from the organizer, overexpression of zic2a resulted in an expansion of proliferating neuroectoderm. Furthermore, zic2a overexpression rescued the ventralized phenotype of chordino mutant embryos, which lack a functional chordin gene. Early expression of zic2 in the zebrafish organizer, and the phenotype resulting from overexpression, show a role for zic2a downstream of chordin or other secreted organizer proteins in establishing the initial size of the population of neuroectoderm cells.
Collapse
Affiliation(s)
- Evdokia Dodou
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403, USA
| | | | | |
Collapse
|
30
|
Funkenstein B, Rebhan Y, Skopal T. Molecular cloning and characterization of follistatin in the gilthead sea bream, Sparus aurata. Mol Biol Rep 2008; 36:501-11. [PMID: 18167029 DOI: 10.1007/s11033-007-9207-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Accepted: 12/20/2007] [Indexed: 11/25/2022]
Abstract
Follistatin (FST) is an activin-binding protein that neutralizes the activity of activin. FST also binds other members of the transforming growth factor-beta (TGF-beta) superfamily, including myostatin (MSTN). We report herein on the isolation and characterization of a full-length cDNA sequence predicted to encode FST in a marine fish, the gilthead sea bream Sparus aurata. The deduced amino acid sequence of sea bream FST (saFST) is highly conserved to the counterpart sequences in other vertebrates and contains the N-terminal domain and three FST domains. The deduced mature saFST shows 81-86% identity with FSTs from other vertebrates. It is 290 amino acids long, similar to other fish FSTs and the short isoform of Xenopus FST but longer by two residues than mammalian FST288. Ontogeny of MSTN (a TGF-beta superfamily member and a negative growth regulator of skeletal muscle in mammals), and FST (known to bind MSTN) gene expression revealed the presence of both transcripts throughout larval development. However, a different expression pattern was found in earlier developmental stages; while MSTN could not be detected prior to the day of hatching, FST transcript was detected in embryos 12 h post-fertilization, confirming its role during vertebrate embryonic development. Both FST and MSTN were expressed in many adult tissues, with variable levels of expression, including muscle. Recombinant saFST inhibited saMSTN activity in a reporter gene assay, indicating a similar effect to that reported in mammals.
Collapse
Affiliation(s)
- Bruria Funkenstein
- Department of Marine Biology and Biotechnology, Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel.
| | | | | |
Collapse
|
31
|
Evolution of follistatin in teleosts revealed through phylogenetic, genomic and expression analyses. Dev Genes Evol 2007; 218:1-14. [PMID: 18074148 DOI: 10.1007/s00427-007-0194-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 11/02/2007] [Indexed: 12/11/2022]
Abstract
Follistatin (Fst) inhibits transforming growth factor-beta (TGF-B) proteins and is a known regulator of amniote myogenesis. Here, we used phylogenetic, genomic and experimental approaches to study its evolution in teleosts. Phylogenetic analyses suggested that one fst gene (fst1) is common to euteleosts, but a second gene (fst2) is conserved specifically within the Ostariophysi. Zebrafish fst1/2 respectively appear on chromosomes 5 and 10 in two genomic regions, each with conserved synteny to a single region in tetrapods. Interestingly, other teleosts have two corresponding chromosomal regions with a similar repertoire of paralogues. Phylogenetic reconstruction clustered these gene duplicates into two sister clades branching from tetrapod sequences. We suggest that an ancestral fst-containing chromosome was duplicated during the teleost whole genome duplication, but that fst2 was lost in lineages external to the Ostariophysi. We show that Fst1 of teleosts/mammals has evolved under strong purifying selection, but the N-terminal of Fst2 may have evolved under positive selection. Furthermore, the tissue-specific expression of zebrafish fst2 was restricted to fewer tissues compared to its paralogue and the single fst1 orthologue of Atlantic salmon (Salmo salar). Zebrafish fst1/2 may have subfunctionalized relative to non-duplicated vertebrate lineages, as several regions in the fst promoter of tetrapods were conserved with one paralogue, but not both. Finally, we examined the embryonic expression of fst1 in a teleost outside the Ostariophysi (Atlantic salmon). During segmentation, fst1 was expressed in the anterior somite compartment but was excluded from muscle progenitors that strongly expressed myogenic regulatory factors (MRFs). Later, fst1 was expressed in myogenic progenitors of the pectoral fin buds and also within the pax7(+) cell layer external to the myotome.
Collapse
|
32
|
Bergeron SA, Milla LA, Villegas R, Shen MC, Burgess SM, Allende ML, Karlstrom RO, Palma V. Expression profiling identifies novel Hh/Gli-regulated genes in developing zebrafish embryos. Genomics 2007; 91:165-77. [PMID: 18055165 DOI: 10.1016/j.ygeno.2007.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 09/03/2007] [Accepted: 09/11/2007] [Indexed: 01/27/2023]
Abstract
The Hedgehog (Hh) signaling pathway plays critical instructional roles during embryonic development. Misregulation of Hh/Gli signaling is a major causative factor in human congenital disorders and in a variety of cancers. The zebrafish is a powerful genetic model for the study of Hh signaling during embryogenesis, as a large number of mutants that affect different components of the Hh/Gli signaling system have been identified. By performing global profiling of gene expression in different Hh/Gli gain- and loss-of-function scenarios we identified known (e.g., ptc1 and nkx2.2a) and novel Hh-regulated genes that are differentially expressed in embryos with altered Hh/Gli signaling function. By uncovering changes in tissue-specific gene expression, we revealed new embryological processes that are influenced by Hh signaling. We thus provide a comprehensive survey of Hh/Gli-regulated genes during embryogenesis and we identify new Hh-regulated genes that may be targets of misregulation during tumorigenesis.
Collapse
Affiliation(s)
- Sadie A Bergeron
- Department of Biology, University of Massachusetts, Amherst, MA 01003-9297, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Bone morphogenetic proteins (BMPs) are known to be widely involved in various biological processes. Many of the members of the BMP family, as well as related factors, receptors and molecules in the BMP signaling pathway, have been isolated, but their precise functions are still unclear. In addition to the 'classical' model organism Xenopus, zebrafish, Danio rerio, is now considered to be a suitable model organism to study the roles of the BMP signaling pathway during embryogenesis. Mutagenesis screens have identified a number of mutants in the pathway. Although they do not cover the entire members of the BMP signaling cascade that are currently known, they serve as a powerful tool to broaden our understanding of BMP functions, in combination with other experimental techniques.
Collapse
Affiliation(s)
- Mariko Kondo
- Department of Biological Sciences, The University of Tokyo, Japan.
| |
Collapse
|
34
|
Dal-Pra S, Fürthauer M, Van-Celst J, Thisse B, Thisse C. Noggin1 and Follistatin-like2 function redundantly to Chordin to antagonize BMP activity. Dev Biol 2006; 298:514-26. [PMID: 16890217 DOI: 10.1016/j.ydbio.2006.07.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2006] [Revised: 07/06/2006] [Accepted: 07/07/2006] [Indexed: 11/28/2022]
Abstract
In Xenopus, the dorso-ventral (D/V) axis is thought to be specified by the bone morphogenetic proteins (Bmp) activity arising through interaction with antagonists such as Noggin, Chordin and Follistatin. We report here, through inactivation of noggin1 (nog1) that this gene is not essential by itself to establish the D/V patterning. However, at blastula stage, inactivation of nog1 strongly amplifies chordin (chd) phenotype, revealing redundant functions of these two genes on D/V axis formation. Substantial dorsal tissues remaining in the double nog1-chd morphant suggested that other anti-Bmp factors may pattern the D/V axis. We isolated two potential candidates, the follistatin-like (fstl) genes. We found that fstl2 is an early gastrula expressed gene. Its inactivation, similar to nog1, strongly enhances the chd phenotype. Moreover, the penetrance of the ventralization phenotype is much higher when we inactivated simultaneously chd, nog1 and fstl2. Altogether, our data reveal that, while Chordin is the main player of the D/V axis, sufficient to maintain proper activity of Bmp gradient, the structures remaining in the chd mutant (namely dorsal and dorso-lateral territories, in both mesodermal and ectodermal layers) result from the anti-Bmp activity carried by Nog1 and Fstl2 at blastula and gastrula stages.
Collapse
Affiliation(s)
- Sophie Dal-Pra
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104, CNRS/INSERM/ULP, 1 rue Laurent Fries, BP 10142, CU de Strasbourg, 67404 ILLKIRCH Cedex, France
| | | | | | | | | |
Collapse
|
35
|
Little SC, Mullins MC. Extracellular modulation of BMP activity in patterning the dorsoventral axis. ACTA ACUST UNITED AC 2006; 78:224-42. [PMID: 17061292 DOI: 10.1002/bdrc.20079] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Signaling via bone morphogenetic proteins (BMPs) regulates a vast array of diverse biological processes in the developing embryo and in postembryonic life. Many insights into BMP signaling derive from studies of the BMP signaling gradients that pattern cell fates along the embryonic dorsal-ventral (DV) axis of both vertebrates and invertebrates. This review examines recent developments in the field of DV patterning by BMP signaling, focusing on extracellular modulation as a key mechanism in the formation of BMP signaling gradients in Drosophila, Xenopus, and zebrafish.
Collapse
Affiliation(s)
- Shawn C Little
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6058, USA
| | | |
Collapse
|
36
|
Khokha MK, Yeh J, Grammer TC, Harland RM. Depletion of Three BMP Antagonists from Spemann's Organizer Leads to a Catastrophic Loss of Dorsal Structures. Dev Cell 2005; 8:401-11. [PMID: 15737935 DOI: 10.1016/j.devcel.2005.01.013] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Revised: 01/12/2005] [Accepted: 01/19/2005] [Indexed: 11/24/2022]
Abstract
Transplanted Spemann's organizer induces dorsal embryonic cell fates such as the nervous system and somites, but in normal development, elimination of individual organizer signals (such as the bone morphogenetic protein [BMP] antagonists) has surprisingly modest effects on these tissues. Thus, the role of BMP antagonists may be limited to fine tuning the size of the dorsal domain. However, at least five BMP antagonists are specifically expressed in the organizer, and all can mimic aspects of organizer function, suggesting overlapping functions. Here, we deplete the function of three BMP antagonists, chordin, noggin, and follistatin, in Xenopus tropicalis. We demonstrate that this results in catastrophic failure of dorsal development and expansion of ventral and posterior fates. We conclude that BMP antagonists are required for formation of the neural plate and dorsal mesoderm. In addition, our results show that neural specification requires the continuous activity of BMP antagonists from blastula through gastrula stages.
Collapse
Affiliation(s)
- Mustafa K Khokha
- Department of Molecular and Cell Biology, University of California, Berkeley, 142 LSA, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
37
|
Leung AYH, Mendenhall EM, Kwan TTF, Liang R, Eckfeldt C, Chen E, Hammerschmidt M, Grindley S, Ekker SC, Verfaillie CM. Characterization of expanded intermediate cell mass in zebrafish chordin morphant embryos. Dev Biol 2005; 277:235-54. [PMID: 15572152 DOI: 10.1016/j.ydbio.2004.09.032] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Revised: 08/30/2004] [Accepted: 09/24/2004] [Indexed: 11/30/2022]
Abstract
We investigated the mechanisms of intermediate cell mass (ICM) expansion in zebrafish chordin (Chd) morphant embryos and examined the role of BMPs in relation to this phenotype. At 24 h post-fertilization (hpf), the expanded ICM of embryos injected with chd morpholino (MO) (ChdMO embryos) contained a monotonous population of hematopoietic progenitors. In situ hybridization showed that hematopoietic transcription factors were ubiquitously expressed in the ICM whereas vascular gene expression was confined to the periphery. BMP4 (but not BMP2b or 7) and smad5 mRNA were ectopically expressed in the ChdMO ICM. At 48 hpf, monocytic cells were evident in both the ICM and circulation of ChdMO but not WT embryos. While injection of BMP4 MO had no effect on WT hematopoiesis, co-injecting BMP4 with chd MOs significantly reduced ICM expansion. Microarray studies revealed a number of genes that were differentially expressed in ChdMO and WT embryos and their roles in hematopoiesis has yet to be determined. In conclusion, the expanded ICM in ChdMO embryos represented an expansion of embryonic hematopoiesis that was skewed towards a monocytic lineage. BMP4, but not BMP2b or 7, was involved in this process. The results provide ground for further research into the mechanisms of embryonic hematopoietic cell expansion.
Collapse
Affiliation(s)
- Anskar Y H Leung
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ragland JW, Raible DW. Signals derived from the underlying mesoderm are dispensable for zebrafish neural crest induction. Dev Biol 2004; 276:16-30. [PMID: 15531361 DOI: 10.1016/j.ydbio.2004.08.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2004] [Revised: 08/12/2004] [Accepted: 08/13/2004] [Indexed: 01/25/2023]
Abstract
Signals from the non-neural ectoderm, the neural ectoderm, and the underlying mesoderm have all been implicated in the induction of neural crest. Bone morphogenetic protein (BMP) signaling in particular has an important role in this process; however, it is unclear whether this activity of BMP is due to its effects on patterning the underlying mesoderm, to its ability to establish a competent neural plate boundary zone, or to the direct specification of neural crest at intermediate levels of activity within a BMP gradient. We show neural crest induction occurs in zebrafish in the absence of involuted mesoderm, indicating that this tissue and signals derived from it are dispensable for the formation of neural crest. Dorsal-involuted mesoderm is a major source of secreted BMP antagonists, and the activity of BMP signaling is thought to depend on the presence of the opposing activity of these antagonists. We find that the three BMP antagonists known to be expressed during gastrulation in zebrafish, noggin1, follistatin, and chordin, are dispensable for neural crest induction. These results suggest that mechanisms for restricting the spatio-temporal pattern of BMP expression may compensate for the loss of secreted BMP antagonist activity in establishing dorso-ventral patterning, neural induction, and the neural crest.
Collapse
Affiliation(s)
- Jared W Ragland
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195-7420, USA
| | | |
Collapse
|
39
|
Rentzsch F, Bakkers J, Kramer C, Hammerschmidt M. Fgf signaling induces posterior neuroectoderm independently of Bmp signaling inhibition. Dev Dyn 2004; 231:750-7. [PMID: 15532058 DOI: 10.1002/dvdy.20244] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Whereas according to the neural default model, neural specification is induced by extracellular inhibitors of bone morphogenetic proteins (Bmps), the role of fibroblast growth factors (Fgfs) during neural induction is heavily debated. Here, we show that, in zebrafish embryos, Bmps and Fgfs play differential roles during the induction and patterning of the anterior vs. the posterior neuroectoderm. Induction of anterior neuroectoderm, giving rise to fore- and midbrain, is accomplished by Bmp inhibition, with Fgfs playing a moderate posteriorizing/patterning role, possibly by blocking Bmp signaling at the level of Smad proteins. In contrast, in the posterior-most neuroectoderm, which is located in marginal regions of the early gastrula embryo to give rise to spinal cord and hindbrain, Fgfs play a neural-inducing rather than a neural-patterning role. This Fgf-dependent posterior neural induction takes place during late blastula and early gastrula stages, after mesoderm has been induced and cannot be blocked by Bmps or the Bmp target gene and downstream effector Delta Np63 alpha, indicating that here, Fgfs act independently of Bmp signaling inhibition.
Collapse
|
40
|
Fletcher RB, Watson AL, Harland RM. Expression of Xenopus tropicalis noggin1 and noggin2 in early development: two noggin genes in a tetrapod. Gene Expr Patterns 2004; 5:225-30. [PMID: 15567718 DOI: 10.1016/j.modgep.2004.08.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Revised: 08/05/2004] [Accepted: 08/05/2004] [Indexed: 11/29/2022]
Abstract
We report the identification of two distinct noggin genes in the tetrapod Xenopus tropicalis. Noggin functions to antagonize BMP signaling in many developmental contexts, and much work has explored its role in early vertebrate development. We have identified two noggin genes in the tropical clawed frog, X. tropicalis, a diploid anuran which is being explored for its potential as a genetic model system for early vertebrate development. Here we report the cloning and characterization of the Xenopus tropicalis noggin1 and noggin2 genes, which have distinct expression domains in the early embryo with one overlapping domain in the anterior neural tissue. X. tropicalis noggin1 expression is very similar to that of noggin in Xenopus laevis, with expression beginning in the blastula organizer region and continuing through gastrulation and neurulation in the organizer and notochord. Later, it is also expressed in the anterior neural ridge and subsequent forebrain; noggin1 is also expressed in the pharyngeal arches after neural tube closure. At the tadpole stage expression is maintained in the dorsal neural tube and is present in the otic vesicle. However, the expression of noggin2 is much more similar to the expression of noggin2 in D. rerio with expression in the forebrain, hindbrain, and somites, but unlike D. rerio, X. tropicalis noggin2 is expressed in the heart by stage 28. This work presents the first example of a tetrapod with at least two noggin genes.
Collapse
Affiliation(s)
- Russell B Fletcher
- Division of Genetics and Development, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
41
|
Cao Y, Zhao J, Sun Z, Zhao Z, Postlethwait J, Meng A. fgf17b, a novel member of Fgf family, helps patterning zebrafish embryos. Dev Biol 2004; 271:130-43. [PMID: 15196956 DOI: 10.1016/j.ydbio.2004.03.032] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Revised: 03/01/2004] [Accepted: 03/25/2004] [Indexed: 11/20/2022]
Abstract
Fibroblast growth factors (Fgfs) play important roles in the pattern formation of early vertebrate embryos. We have identified a zebrafish ortholog of human FGF17, named fgf17b. The first phase of fgf17b expression occurs in the blastodermal margin of late blastulae and in the embryonic shield of early gastrulae. The second phase starts after the onset of segmentation, mainly in the presomitic mesoderm and newly formed somites. Injection of fgf17b mRNA into one-cell embryos induces expression of the mesodermal marker no tail (ntl) and rescues ntl expression suppressed by overexpression of lefty1 (lft1). Overexpression of fgf17b dorsalizes zebrafish gastrulae by enhancing expression of chordin (chd), which is an antagonist of the ventralizing signals BMPs. In addition, overexpression of fgf17b posteriorizes the neuroectoderm. Simultaneous knockdown of fgf17b and fgf8 with antisense morpholinos results in reduction of chd and ntl. Knockdown of fgf17b can alleviate inhibitory effect of ectopic expression of fgf3 on otx1. These data together suggest that Fgf17b plays a role in early embryonic patterning. We also demonstrate that fgf17b and fgf8 have stronger mesoderm inducting activity than fgf3, whereas fgf17b and fgf3 have stronger activity in posteriorizing the neuroectoderm than fgf8. Like fgf8, activation of fgf17b expression depends on Nodal signaling.
Collapse
Affiliation(s)
- Ying Cao
- Department of Biological Sciences and Biotechnology, State Key Laboratory of Biomembrane & Membrane Biotechnology, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | |
Collapse
|
42
|
Xu C, Wu G, Zohar Y, Du SJ. Analysis of myostatin gene structure, expression and function in zebrafish. ACTA ACUST UNITED AC 2004; 206:4067-79. [PMID: 14555747 DOI: 10.1242/jeb.00635] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Myostatin is a member of the TGF-beta family that functions as a negative regulator of skeletal muscle development and growth in mammals. Recently, Myostatin has also been identified in fish; however, its role in fish muscle development and growth remains unknown. We have reported here the isolation and characterization of myostatin genomic gene from zebrafish and analysis of its expression in zebrafish embryos, larvae and adult skeletal muscles. Our data showed that myostatin was weakly expressed in early stage zebrafish embryos, and strongly expressed in swimming larvae, juvenile and skeletal muscles of adult zebrafish. Transient expression analysis revealed that the 1.2 kb zebrafish myostatin 5' flanking sequence could direct green fluorescent protein (GFP) expression predominantly in muscle cells, suggesting that the myostatin 5' flanking sequence contained regulatory elements required for muscle expression. To determine the biological function of Myostatin in fish, we generated a transgenic line that overexpresses the Myostatin prodomain in zebrafish skeletal muscles using a muscle-specific promoter. The Myostatin prodomain could act as a dominant negative and inhibit Myostatin function in skeletal muscles. Transgenic zebrafish expressing the Myostatin prodomain exhibited no significant change in myogenic gene expression and differentiation of slow and fast muscle cells at their embryonic stage. The transgenic fish, however, exhibited an increased number of myofibers in skeletal muscles, but no significant difference in fiber size. Together, these data demonstrate that Myostatin plays an inhibitory role in hyperplastic muscle growth in zebrafish.
Collapse
Affiliation(s)
- Cheng Xu
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, MD 21202, USA
| | | | | | | |
Collapse
|
43
|
Yaron Z, Gur G, Melamed P, Rosenfeld H, Elizur A, Levavi-Sivan B. Regulation of fish gonadotropins. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 225:131-85. [PMID: 12696592 DOI: 10.1016/s0074-7696(05)25004-0] [Citation(s) in RCA: 250] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Neurohormones similar to those of mammals are carried in fish by hypothalamic nerve fibers to regulate directly follicle-stimulating hormone (FSH) and luteinizing hormone (LH). Gonadotropin-releasing hormone (GnRH) stimulates the secretion of FSH and LH and the expression of the glycoprotein hormone alpha (GPalpha), FSHbeta, and LHbeta, as well as their secretion. Its signal transduction leading to LH release is similar to that in mammals although the involvement of cyclic AMP-protein kinase A (cAMP-PKA) cannot be ruled out. Dopamine (DA) acting through DA D2 type receptors may inhibit LH release, but not that of FSH, at sites distal to activation of protein kinase C (PKC) and PKA. GnRH increases the steady-state levels of GPalpha, LHbeta, and FSHbeta mRNAs. Pituitary adenylate cyclase-activating polypeptide (PACAP) 38 and neuropeptide Y (NPY) potentiate GnRH effect on gonadotropic cells, and also act directly on the pituitary cells. Whereas PACAP increases all three subunit mRNAs, NPY has no effect on that of FSHbeta. The effect of these peptides on the expression of the gonadotropin subunit genes is transduced differentially; GnRH regulates GPalpha and LHbeta via PKC-ERK and PKA-ERK cascades, while affecting the FSHbeta transcript through a PKA-dependent but ERK-independent cascade. The signals of both NPY and PACAP are transduced via PKC and PKA, each converging at the ERK level. NPY regulates only GPalpha- and LHbeta-subunit genes whereas PACAP regulates the FSHbeta subunit as well. Like those of the mammalian counterparts, the coho salmon LHbeta gene promoter is driven by a strong proximal tripartite element to which three different transcription factors bind. These include Sf-1 and Pitx-1 as in mammals, but the function of the Egr-1 appears to have been replaced by the estrogen receptor (ER). The GnRH responsive region in tilapia FSHbeta 5' flanking region spans the canonical AP1 and CRE motifs implicating both elements in conferring GnRH responsiveness. Generally, high levels of gonadal steroids are associated with high LHbeta transcript levels whereas those of FSHbeta are reduced when pituitary cells are exposed to high steroid levels. Gonadal or hypophyseal activin also participate in the regulation of FSHbeta and LHbeta mRNA levels. However, gonadal effects are dependent on the gender and stage of maturity of the fish.
Collapse
Affiliation(s)
- Zvi Yaron
- Department of Zoology, Tel-Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | |
Collapse
|
44
|
Wang Y, Ge W. Spatial expression patterns of activin and its signaling system in the zebrafish ovarian follicle: evidence for paracrine action of activin on the oocytes. Biol Reprod 2003; 69:1998-2006. [PMID: 12930712 DOI: 10.1095/biolreprod.103.020826] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
We have previously demonstrated that activin is likely an ovarian mediator of pituitary gonadotropin(s) and local epidermal growth factor in their stimulating oocyte maturation and maturational competence in the zebrafish. However, the downstream events controlled by activin remain unknown. One possible mechanism is that activin may directly work on the oocytes to promote the development of oocyte maturational competence. To substantiate this hypothesis, we performed the present study to demonstrate the expression of the activin system in different compartments of zebrafish follicles, namely, the follicle cells and oocytes. The proteins examined include activin subunits (betaA and betaB), activin-binding protein (follistatin), activin type II receptors (type IIA and IIB), the type I activin receptor-like kinases (ALK1-like, ALK2-like, and ALK4-like), and the intracellular activin signaling molecules (Smad2, Smad3, Smad4, and Smad7). The results showed that the entire activin signaling system is expressed by the full-grown immature zebrafish oocytes ( approximately 0.65 mm in diameter), including ALK4-like (ActRIB), ALK2-like (ActRIA), ActRIIA, ActRIIB, Smad2, Smad3, Smad4, and Smad7, therefore supporting our hypothesis that the oocytes are one of the direct targets of activin actions in the zebrafish ovary. In contrast, activin itself (betaA and betaB) and ALK1-like type I receptor are predominantly expressed in the follicle cells surrounding the oocytes. Interestingly, although follistatin is expressed in both the follicle cells and oocytes, its level of expression is significantly higher in the oocytes than the follicle cells, implying that follistatin may serve as a signal from the oocytes to modulate the activity of activin produced by the follicle cells. Taken together, the present study provides convincing evidence that although all members of the activin system are expressed in the whole follicle, they exhibit distinct spatial patterns of expression among different compartments of the follicle. It is likely that activin works directly on the oocytes in a paracrine manner to promote oocyte maturation and maturational competence. On the other hand, instead of being controlled passively by the follicle cells, the oocytes may actively participate in the regulation of follicle development by releasing various modulating molecules such as follistatin.
Collapse
Affiliation(s)
- Yajun Wang
- Department of Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | |
Collapse
|
45
|
Herzog W, Zeng X, Lele Z, Sonntag C, Ting JW, Chang CY, Hammerschmidt M. Adenohypophysis formation in the zebrafish and its dependence on sonic hedgehog. Dev Biol 2003; 254:36-49. [PMID: 12606280 DOI: 10.1016/s0012-1606(02)00124-0] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Formation of the adenohypophysis in mammalian embryos occurs via an invagination of the oral ectoderm to form Rathke's pouch, which becomes exposed to opposing dorsoventral gradients of signaling proteins governing specification of the different hormone-producing pituitary cell types. One signal promoting pituitary cell proliferation and differentiation to ventral cell types is Sonic hedgehog (Shh) from the oral ectoderm. To study pituitary formation and patterning in zebrafish, we cloned four cDNAs encoding different pituitary hormones, prolactin (prl), proopiomelancortin (pomc), thyroid stimulating hormone (tsh), and growth hormone (gh), and analyzed their expression patterns relative to that of the pituitary marker lim3. prl and pomc start to be expressed at the lateral edges of the lim3 expression domain, before pituitary cells move into the head. This indicates that patterning of the pituitary anlage and terminal differentiation of pituitary cells starts while cells are still organized in a placodal fashion at the anterior edge of the developing brain. Following the expression pattern of prl and pomc during development, we show that no pituitary-specific invagination equivalent to Rathke's pouch formation takes place. Rather, pituitary cells move inwards together with stomodeal cells during oral cavity formation, with medial cells of the placode ending up posterior and lateral cells ending up anterior, resulting in an anterior-posterior, rather than a dorsoventral, patterning of the adenohypophysis. Carrying out loss- and gain-of-function experiments, we show that Shh from the ventral diencephalon plays a crucial role during induction, patterning, and growth of the zebrafish adenohypophysis. The phenotypes are very similar to those obtained upon pituitary-specific inactivation or overexpression of Shh in mouse embryo, suggesting that the role of Shh during pituitary development has been largely conserved between fish and mice, despite the different modes of pituitary formation in the two vertebrate classes.
Collapse
Affiliation(s)
- Wiebke Herzog
- Max-Planck Institute for Immunobiology, Stuebeweg 51, D-79108, Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Balemans W, Van Hul W. Extracellular regulation of BMP signaling in vertebrates: a cocktail of modulators. Dev Biol 2002. [PMID: 12376100 DOI: 10.1006/dbio.2002.0779] [Citation(s) in RCA: 428] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The transforming growth factor-beta (TGF-beta) superfamily contains a variety of growth factors which all share common sequence elements and structural motifs. These proteins are known to exert a wide spectrum of biological responses on a large variety of cell types in both vertebrates and invertebrates. Many of them have important functions during embryonic development in pattern formation and tissue specification, and in adult tissues, they are involved in processes such as wound healing, bone repair, and bone remodeling. The family is divided into two general branches: the BMP/GDF and the TGF-beta/Activin/Nodal branches, whose members have diverse, often complementary effects. It is obvious that an orchestered regulation of different actions of these proteins is necessary for proper functioning. The TGF-beta family members act by binding extracellularly to a complex of serine/threonine kinase receptors, which consequently activate Smad molecules by phosphorylation. These Smads translocate to the nucleus, where they modulate transcription of specific genes. Three levels by which this signaling pathway is regulated could be distinguished. First, a control mechanism exists in the intracellular space, where inhibitory Smads and Smurfs prevent further signaling and activation of target genes. Second, at the membrane site, the pseudoreceptor BAMBI/Nma is able to inhibit further signaling within the cells. Finally, a range of extracellular mediators are identified which modulate the functioning of members of the TGF-beta superfamily. Here, we review the insights in the extracellular regulation of members of the BMP subfamily of secreted growth factors with a major emphasis on vertebrate BMP modulation.
Collapse
Affiliation(s)
- Wendy Balemans
- Department of Medical Genetics, University of Antwerp and University Hospital, Antwerp 2610, Belgium
| | | |
Collapse
|
47
|
Ogawa K, Ishihara S, Saito Y, Mineta K, Nakazawa M, Ikeo K, Gojobori T, Watanabe K, Agata K. Induction of a noggin-like gene by ectopic DV interaction during planarian regeneration. Dev Biol 2002; 250:59-70. [PMID: 12297096 DOI: 10.1006/dbio.2002.0790] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In previous studies, we have shown that dorsoventral (DV) interaction evokes not only blastema formation, but also morphogenetic events similar to those that occur in regeneration. However, it is still unclear what kinds of signal molecules are involved in the DV interaction. To investigate the signal systems involved in the DV interaction, we focused on a noggin-like gene (Djnlg) identified by the planarian EST project. Djnlg is the first noggin homologue isolated from an invertebrate. In DjNLG, the positions of nine cysteine residues which may be essential for dimer formation were well conserved, but overall, the amino acid sequence of DjNLG did not show high similarity to the sequences of vertebrate Noggins. Expression of Djnlg was observed only in the proximal region of the branch structures in the brain of intact planarians, suggesting that Djnlg may have a role in pattern formation in the brain. Interestingly, transient strong expression of Djnlg was observed in the amputated region of regenerating planarians. Djnlg-expressing cells were detected beneath the muscle 9 h after amputation and were then detected in the ventral subepidermal region of the blastema. The induction of Djnlg expression by amputation was not affected by X-ray irradiation, even though the stem cells were completely eliminated, implying the existence of signal-producing cells which may provide a positional cue to the stem cells. In DV reversed grafting, expression of Djnlg was strongly induced in the DV boundary between the host and donor. These results suggest that ectopic DV interaction may induce expression of Djnlg in the positional cue-producing cells, and that it might be involved in stimulation of blastema formation as well as DV patterning of the body.
Collapse
Affiliation(s)
- Kazuya Ogawa
- Laboratory of Regeneration Biology, Department of Life Science, Faculty of Science, Himeji Institute of Technology, Hyogo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Maternally Supplied Smad5 Is Required for Ventral Specification in Zebrafish Embryos Prior to Zygotic Bmp Signaling. Dev Biol 2002. [DOI: 10.1006/dbio.2002.0805] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
49
|
Maves L, Jackman W, Kimmel CB. FGF3 and FGF8 mediate a rhombomere 4 signaling activity in the zebrafish hindbrain. Development 2002; 129:3825-37. [PMID: 12135921 DOI: 10.1242/dev.129.16.3825] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The segmentation of the vertebrate hindbrain into rhombomeres is highly conserved, but how early hindbrain patterning is established is not well understood. We show that rhombomere 4 (r4) functions as an early-differentiating signaling center in the zebrafish hindbrain. Time-lapse analyses of zebrafish hindbrain development show that r4 forms first and hindbrain neuronal differentiation occurs first in r4. Two signaling molecules, FGF3 and FGF8, which are both expressed early in r4, are together required for the development of rhombomeres adjacent to r4, particularly r5 and r6. Transplantation of r4 cells can induce expression of r5/r6 markers, as can misexpression of either FGF3 or FGF8. Genetic mosaic analyses also support a role for FGF signaling acting from r4. Taken together, our findings demonstrate a crucial role for FGF-mediated inter-rhombomere signaling in promoting early hindbrain patterning and underscore the significance of organizing centers in patterning the vertebrate neural plate.
Collapse
Affiliation(s)
- Lisa Maves
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403-1254, USA.
| | | | | |
Collapse
|
50
|
Aybar MJ, Mayor R. Early induction of neural crest cells: lessons learned from frog, fish and chick. Curr Opin Genet Dev 2002; 12:452-8. [PMID: 12100892 DOI: 10.1016/s0959-437x(02)00325-8] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The identification of genes in Xenopus, chick and zebrafish expressed early in prospective neural crest (NC) cells has challenged the previous view that the NC is induced during the closure of the neural tube. We compare here the early inductive molecular mechanisms in different organisms and, despite observed differences, propose a general common model for NC induction.
Collapse
Affiliation(s)
- Manuel J Aybar
- Millennium Nucleus in Developmental Biology, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile.
| | | |
Collapse
|