1
|
Damyanova KB, Nixon B, Johnston SD, Gambini A, Benitez PP, Lord T. Spermatogonial stem cell technologies: applications from human medicine to wildlife conservation†. Biol Reprod 2024; 111:757-779. [PMID: 38993049 PMCID: PMC11473898 DOI: 10.1093/biolre/ioae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/13/2024] Open
Abstract
Spermatogonial stem cell (SSC) technologies that are currently under clinical development to reverse human infertility hold the potential to be adapted and applied for the conservation of endangered and vulnerable wildlife species. The biobanking of testis tissue containing SSCs from wildlife species, aligned with that occurring in pediatric human patients, could facilitate strategies to improve the genetic diversity and fitness of endangered populations. Approaches to utilize these SSCs could include spermatogonial transplantation or testis tissue grafting into a donor animal of the same or a closely related species, or in vitro spermatogenesis paired with assisted reproduction approaches. The primary roadblock to progress in this field is a lack of fundamental knowledge of SSC biology in non-model species. Herein, we review the current understanding of molecular mechanisms controlling SSC function in laboratory rodents and humans, and given our particular interest in the conservation of Australian marsupials, use a subset of these species as a case-study to demonstrate gaps-in-knowledge that are common to wildlife. Additionally, we review progress in the development and application of SSC technologies in fertility clinics and consider the translation potential of these techniques for species conservation pipelines.
Collapse
Affiliation(s)
- Katerina B Damyanova
- Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
- Infertility and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Brett Nixon
- Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
- Infertility and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Stephen D Johnston
- School of Environment, The University of Queensland, Gatton, QLD 4343, Australia
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Andrés Gambini
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
- School of Agriculture and Food Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Patricio P Benitez
- School of Agriculture and Food Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Tessa Lord
- Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
- Infertility and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
2
|
Shakeel M, Yoon M. Changes in characteristics of spermatogonial stem cells in response to heat stress in stallions. Theriogenology 2024; 224:74-81. [PMID: 38759607 DOI: 10.1016/j.theriogenology.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/10/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024]
Abstract
Spermatogonial stem cells (SSCs) are essential for the maintenance of male fertility and survival of species. Environmental conditions, notably heat stress, have been identified as important causes of male infertility and have a negative impact on SSCs. Animals with cryptorchid testes (CT) are optimal models for the study of long-term heat stress-related changes in germ cells. The effect of heat stress on germ cells differs depending on the spermatogenesis stage. Thus, verifying whether the specific phase of spermatogenesis is dependent or independent of heat stress in stallions is important. We evaluated the heat stress-related response of SSCs by comparing the relative abundance of mRNA transcripts and expression patterns of the undifferentiated embryonic cell transcription factor 1 (UTF-1) and deleted in azoospermia-like (DAZL) in the seminiferous tubules of CT and normal testes (NT) of stallions using reverse transcription-quantitative polymerase chain reaction (RT-qPCR), immunofluorescence, and western blotting. We also analyzed the relative abundance of mRNA of different proliferative markers, including minichromosome maintenance 2 (MCM2), marker of proliferation Ki-67 (MKI-67), and proliferating cell nuclear antigen (PCNA). Testicular tissues from four Thoroughbred unilateral cryptorchid postpubertal stallions were used in this study during the breeding season. The relative abundance of the mRNA transcripts of UTF-1 and MCM2 was significantly upregulated in the CT group than that of those in the NT group. In contrast, the relative abundance of the mRNA transcripts of DAZL was significantly downregulated in the CT group than that of those in the NT group. Western blot quantification showed that the relative intensity of UTF-1 protein bands was significantly higher, while that of DAZL protein bands was significantly lower in the CT group than in the NT group. Immunofluorescence studies showed that the number of germ cells immunostained with UTF-1 was significantly higher while immunostained with DAZL was significantly lower in the CT group than that in the NT group. The higher expression level of UTF-1 in the CT group shows that undifferentiated SSCs are not affected by long-term exposure to heat stress. These results also indicate that germ cells after differentiation phase are directly affected by heat-stress conditions, such as cryptorchidism, in stallions.
Collapse
Affiliation(s)
- Muhammad Shakeel
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, 37224, Republic of Korea; Department of Clinical Studies, Faculty of Veterinary and Animal Sciences, Pir Mehr Ali Shah, Arid Agriculture University, Rawalpindi, 44000, Pakistan
| | - Minjung Yoon
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, 37224, Republic of Korea; Research Institute for Innovative Animal Science, Kyungpook National University, Sangju, 37224, Republic of Korea; Department of Horse, Companion and Wild Animal Science, Kyungpook National University, Sangju, 37224, Republic of Korea.
| |
Collapse
|
3
|
Morimoto H, Kanatsu-Shinohara M, Shinohara T. WIN18,446 enhances spermatogonial stem cell homing and fertility after germ cell transplantation by increasing blood-testis barrier permeability. J Reprod Dev 2023; 69:347-355. [PMID: 37899250 PMCID: PMC10721852 DOI: 10.1262/jrd.2023-074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/05/2023] [Indexed: 10/31/2023] Open
Abstract
Spermatogonial stem cells (SSCs) possess a unique ability to recolonize the seminiferous tubules. Upon microinjection into the adluminal compartment of the seminiferous tubules, SSCs transmigrate through the blood-testis barrier (BTB) to the basal compartment of the tubule and reinitiate spermatogenesis. It was recently discovered that inhibiting retinoic acid signaling with WIN18,446 enhances SSC colonization by transiently suppressing spermatogonia differentiation, thereby promoting fertility restoration. In this study, we report that WIN18,446 increases SSC colonization by disrupting the BTB. WIN18,446 altered the expression patterns of tight junction proteins (TJPs) and disrupted the BTB in busulfan-treated mice. WIN18,446 upregulated the expression of FGF2, one of the self-renewal factors for SSCs. While WIN18,446 enhanced SSC colonization in busulfan-treated wild-type mice, it did not increase colonization levels in busulfan-treated Cldn11-deficient mice, which lack the BTB, indicating that the enhancement of SSC colonization in wild-type testes depended on the loss of the BTB. Serial transplantation analysis revealed impaired self-renewal caused by WIN18,446, indicating that WIN18,446-mediated inhibition of retinoic acid signaling impaired SSC self-renewal. Strikingly, WIN18,446 administration resulted in the death of 45% of busulfan-treated recipient mice. These findings suggest that TJP modulation is the primary mechanism behind enhanced SSC homing by WIN18,446 and raise concerns regarding the use of WIN18,446 for human SSC transplantation.
Collapse
Affiliation(s)
- Hiroko Morimoto
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Mito Kanatsu-Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
- AMED-CREST, AMED, Tokyo 100-0004, Japan
| | - Takashi Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
4
|
Yang F, Sun J, Wu X. Primary Cultures of Spermatogonia and Testis Cells. Methods Mol Biol 2023; 2656:127-143. [PMID: 37249869 DOI: 10.1007/978-1-0716-3139-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Spermatogonial stem cells (SSCs) maintain adult spermatogenesis in mammals by undergoing self-renewal and differentiation into spermatozoa. In order to study the biology of SSCs as related to spermatogenesis, an in vitro, long-term expansion system of SSCs constitutes an ideal tool. In this chapter, we describe a robust culture system for mouse and rat SSCs in vitro. In the presence of GDNF, GFRα1, and bFGF, SSCs maintained on STO feeder layers with serum-free medium continuously proliferate for over 6 months. Complete spermatogenesis in infertile recipient mice can be attained following transplantation of the cultured mouse and rat SSCs. Using the in vitro SSC culture systems, elucidation of stem cell biology can be advanced that significantly advances our understanding of spermatogenesis and male fertility.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiachen Sun
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Wu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
5
|
Lord T, Law NC, Oatley MJ, Miao D, Du G, Oatley JM. A novel high throughput screen to identify candidate molecular networks that regulate spermatogenic stem cell functions†. Biol Reprod 2022; 106:1175-1190. [PMID: 35244684 PMCID: PMC9198950 DOI: 10.1093/biolre/ioac048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/06/2021] [Accepted: 02/22/2022] [Indexed: 11/12/2022] Open
Abstract
Spermatogenic regeneration is key for male fertility and relies on activities of an undifferentiated spermatogonial population. Here, a high-throughput approach with primary cultures of mouse spermatogonia was devised to rapidly predict alterations in functional capacity. Combining the platform with a large-scale RNAi screen of transcription factors, we generated a repository of new information from which pathway analysis was able to predict candidate molecular networks regulating regenerative functions. Extending from this database, the SRCAP-CREBBP/EP300 (Snf2-related CREBBP activator protein-CREB binding protein/E1A binding protein P300) complex was found to mediate differential levels of histone acetylation between stem cell and progenitor spermatogonia to influence expression of key self-renewal genes including the previously undescribed testis-specific transcription factor ZSCAN2 (zinc finger and SCAN domain containing 2). Single cell RNA sequencing analysis revealed that ZSCAN2 deficiency alters key cellular processes in undifferentiated spermatogonia such as translation, chromatin modification, and ubiquitination. In Zscan2 knockout mice, while spermatogenesis was moderately impacted during steady state, regeneration after cytotoxic insult was significantly impaired. Altogether, these findings have validated the utility of our high-throughput screening approach and have generated a transcription factor database that can be utilized for uncovering novel mechanisms governing spermatogonial functions.
Collapse
Affiliation(s)
- Tessa Lord
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Program, New Lambton Heights, NSW, Australia
| | - Nathan C Law
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Melissa J Oatley
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Deqiang Miao
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Guihua Du
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Jon M Oatley
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| |
Collapse
|
6
|
Čater M, Majdič G. In Vitro Culturing of Adult Stem Cells: The Importance of Serum and Atmospheric Oxygen. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1376:101-118. [PMID: 34426961 DOI: 10.1007/5584_2021_656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adult stem cells are undifferentiated cells found in many different tissues in the adult human and animal body and are thought to be important for replacing damaged and dead cells during life. Due to their differentiation abilities, they have significant potential for regeneration and consequently therapeutic potential in various medical conditions. Studies on in vitro cultivation of different types of adult stem cells have shown that they have specific requirements for optimal proliferation and stemness maintenance as well as induced differentiation. The main factors affecting the success of stem cell cultivation are the composition of the growth medium, including the presence of serum, temperature, humidity, and contact with other cells and the composition of the atmosphere in which the cells grow. In this chapter, we review the literature and describe our own experience regarding the influence of the presence of fetal bovine serum in the medium and the oxygen concentration in the atmosphere on the stemness maintenance and survival of adult stem cells from various tissue sources such as adipose tissue, muscle, brain, and testicular tissue.
Collapse
Affiliation(s)
- Maša Čater
- Laboratory for Animal Genomics, Institute for Preclinical Studies, Veterinary faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Majdič
- Laboratory for Animal Genomics, Institute for Preclinical Studies, Veterinary faculty, University of Ljubljana, Ljubljana, Slovenia. .,Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia.
| |
Collapse
|
7
|
Xie Y, Deng CC, Ouyang B, Lv LY, Yao JH, Zhang C, Chen HC, Li XY, Sun XZ, Deng CH, Liu GH. Establishing a nonlethal and efficient mouse model of male gonadotoxicity by intraperitoneal busulfan injection. Asian J Androl 2021; 22:184-191. [PMID: 31187778 PMCID: PMC7155790 DOI: 10.4103/aja.aja_41_19] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
An ideal animal model of azoospermia would be a powerful tool for the evaluation of spermatogonial stem cell (SSC) transplantation. Busulfan has been commonly used to develop such a model, but 30%–87% of mice die when administered an intraperitoneal injection of 40 mg kg−1. In the present study, hematoxylin and eosin staining, Western blot, immunofluorescence, and quantitative real-time polymerase chain reaction were used to test the effects of busulfan exposure in a mouse model that received two intraperitoneal injections of busulfan at a 3-h interval at different doses (20, 30, and 40 mg kg−1) on day 36 or a dose of 40 mg kg−1 at different time points (0, 9, 18, 27, 36, and 63 days). The survival rate of the mice was 100%. When the mice were treated with 40 mg kg−1 busulfan, dramatic SSC depletion occurred 18 days later and all of the germ cells were cleared by day 36. In addition, the gene expressions of glial cell line-derived neurotrophic factor (GDNF), fibroblast growth factor 2 (FGF2), chemokine (C-X-C Motif) ligand 12 (CXCL12), and colony-stimulating factor 1 (CSF1) were moderately increased by day 36. A 63-day, long-term observation showed the rare restoration of endogenous germ cells in the testes, suggesting that the potential period for SSC transplantation was between day 36 and day 63. Our results demonstrate that the administration of two intraperitoneal injections of busulfan (40 mg kg−1 in total) at a 3-h interval to mice provided a nonlethal and efficient method for recipient preparation in SSC transplantation and could improve treatments for infertility and the understanding of chemotherapy-induced gonadotoxicity.
Collapse
Affiliation(s)
- Yun Xie
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou 510000, China
| | - Cun-Can Deng
- Reproductive Centre, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China.,Gastrointestinal Diseases Research Institute of Guangdong Province, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Bin Ouyang
- Department of Andrology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510000, China
| | - Lin-Yan Lv
- Reproductive Centre, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China.,Gastrointestinal Diseases Research Institute of Guangdong Province, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Jia-Hui Yao
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Chi Zhang
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Hai-Cheng Chen
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Xiao-Yan Li
- Reproductive Centre, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Xiang-Zhou Sun
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Chun-Hua Deng
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Gui-Hua Liu
- Reproductive Centre, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China.,Gastrointestinal Diseases Research Institute of Guangdong Province, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| |
Collapse
|
8
|
Gul M, Hildorf S, Dong L, Thorup J, Hoffmann ER, Jensen CFS, Sønksen J, Cortes D, Fedder J, Andersen CY, Goossens E. Review of injection techniques for spermatogonial stem cell transplantation. Hum Reprod Update 2020; 26:368-391. [PMID: 32163572 DOI: 10.1093/humupd/dmaa003] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/07/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Although the prognosis of childhood cancer survivors has increased dramatically during recent years, chemotherapy and radiation treatments for cancer and other conditions may lead to permanent infertility in prepubertal boys. Recent developments have shown that spermatogonial stem cell (SSC) transplantation may be a hope for restoring fertility in adult survivors of childhood cancers. For this reason, several centres around the world are collecting and cryopreserving testicular tissue or cells anticipating that, in the near future, some patients will return for SSC transplantation. This review summarizes the current knowledge and utility of SSC transplantation techniques. OBJECTIVE AND RATIONALE The aim of this narrative review is to provide an overview of the currently used experimental injection techniques for SSC transplantation in animal and human testes. This is crucial in understanding and determining the role of the different techniques necessary for successful transplantation. SEARCH METHODS A comprehensive review of peer-reviewed publications on this topic was performed using the PubMed and Google Scholar databases. The search was limited to English language work and studies between 1994 (from the first study on SSC transplantation) and April 2019. Key search terms included mouse, rat, boar, ram, dog, sheep, goat, cattle, monkey, human, cadaver, testes, SSC transplantation, injection and technique. OUTCOMES This review provides an extensive clinical overview of the current research in the field of human SSC transplantation. Rete testis injection with ultrasonography guidance currently seems the most promising injection technique thus far; however, the ability to draw clear conclusions is limited due to long ischemia time of cadaver testis, the relatively decreased volume of the testis, the diminishing size of seminiferous tubules, a lack of intratesticular pressure and leakage into the interstitium during the injection on human cadaver testis. Current evidence does not support improved outcomes from multiple infusions through the rete testes. Overall, further optimization is required to increase the efficiency and safety of the infusion method. WIDER IMPLICATIONS Identifying a favourable injection method for SSC transplantation will provide insight into the mechanisms of successful assisted human reproduction. Future research could focus on reducing leakage and establishing the optimal infusion cell concentrations and pressure.
Collapse
Affiliation(s)
- Murat Gul
- Laboratory of Reproductive Biology, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark.,Department of Urology, Selcuk University School of Medicine, 42250 Konya, Turkey
| | - Simone Hildorf
- Department of Pediatric Surgery, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Lihua Dong
- Laboratory of Reproductive Biology, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Jorgen Thorup
- Department of Pediatric Surgery, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Eva R Hoffmann
- DNRF Center for Chromosome Stability, Department of Molecular and Cellular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Jens Sønksen
- Department of Urology, Herlev and Gentofte University Hospital, 2930 Herlev, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Dina Cortes
- Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.,Department of Pediatrics, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark
| | - Jens Fedder
- Centre of Andrology & Fertility Clinic, Department D, Odense University Hospital, 5000 Odense, Denmark.,Research Unit of Human Reproduction, Institute of Clinical Research, University of Southern Denmark, 5230 Odense, Denmark
| | - Claus Yding Andersen
- Laboratory of Reproductive Biology, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Ellen Goossens
- Biology of the Testis, Research Laboratory for Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| |
Collapse
|
9
|
Law NC, Oatley JM. Developmental underpinnings of spermatogonial stem cell establishment. Andrology 2020; 8:852-861. [PMID: 32356598 DOI: 10.1111/andr.12810] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The germline serves as a conduit for transmission of genetic and epigenetic information from one generation to the next. In males, spermatozoa are the final carriers of inheritance and their continual production is supported by a foundational population of spermatogonial stem cells (SSCs) that forms from prospermatogonial precursors during the early stages of neonatal development. In mammals, the timing for which SSCs are specified and the underlying mechanisms guiding this process remain to be completely understood. OBJECTIVES To propose an evolving concept for how the foundational SSC population is established. MATERIALS AND METHODS This review summarizes recent and historical findings from peer-reviewed publications made primarily with mouse models while incorporating limited studies from humans and livestock. RESULTS AND CONCLUSION Establishment of the SSC population appears to follow a biphasic pattern involving a period of fate programming followed by an establishment phase that culminates in formation of the SSC population. This model for establishment of the foundational SSC population from precursors is anticipated to extend across mammalian species and include humans and livestock, albeit on different timescales.
Collapse
Affiliation(s)
- Nathan C Law
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Jon M Oatley
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| |
Collapse
|
10
|
Ashtari B, Shams A, Esmaeilzadeh N, Tanbakooei S, Koruji M, Moghadam MJ, Ansari JM, Moghadam AJ, Shabani R. Separating mouse malignant cell line (EL4) from neonate spermatogonial stem cells utilizing microfluidic device in vitro. Stem Cell Res Ther 2020; 11:191. [PMID: 32448280 PMCID: PMC7245899 DOI: 10.1186/s13287-020-01671-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/25/2020] [Accepted: 04/07/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Some children who have survived cancer will be azoospermic in the future. Performing isolation and purification procedures for spermatogonial stem cells (SSC) is very critical. In this regard, performing the process of decontamination of cancerous cells is the initial step. The major objective of the present study is to separate the malignant EL4 cell line in mice and spermatogonial stem cells in vitro. METHODS The spermatogonial stem cells of sixty neonatal mice were isolated, and the procedure of co-culturing was carried out by EL4 which were classified into 2 major groups: (1) the control group (co-culture in a growth medium) and (2) the group of co-cultured cells which were separated using the microfluidic device. The percentage of cells was assessed using flow cytometry technique and common laboratory technique of immunocytochemistry and finally was confirmed through the laboratory technique of reverse transcription-polymerase chain reaction (RT-PCR). RESULTS The actual percentage of EL4 and SSC after isolation was collected at two outlets: the outputs for the smaller outlet were 0.12% for SSC and 42.14% for EL4, while in the larger outlet, the outputs were 80.38% for SSC and 0.32% for EL4; in the control group, the percentages of cells were 21.44% for SSC and 23.28% for EL4 (based on t test (p ≤ 0.05)). CONCLUSIONS The present study demonstrates that the use of the microfluidic device is effective in separating cancer cells from spermatogonial stem cells.
Collapse
Affiliation(s)
- Behnaz Ashtari
- Shahdad Ronak Commercialization Company, Pasdaran Street, Tehran, Iran
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azar Shams
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Narges Esmaeilzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Tanbakooei
- School of Mechanical Engineering, Iran University of Science & Technology, Tehran, Iran
| | - Morteza Koruji
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- School of Mechanical Engineering, Iran University of Science & Technology, Tehran, Iran
| | | | - Javad Mohajer Ansari
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Adel Johari Moghadam
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Ronak Shabani
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
- School of Mechanical Engineering, Iran University of Science & Technology, Tehran, Iran.
| |
Collapse
|
11
|
La HM, Hobbs RM. Mechanisms regulating mammalian spermatogenesis and fertility recovery following germ cell depletion. Cell Mol Life Sci 2019; 76:4071-4102. [PMID: 31254043 PMCID: PMC11105665 DOI: 10.1007/s00018-019-03201-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 06/07/2019] [Accepted: 06/19/2019] [Indexed: 12/19/2022]
Abstract
Mammalian spermatogenesis is a highly complex multi-step process sustained by a population of mitotic germ cells with self-renewal potential known as spermatogonial stem cells (SSCs). The maintenance and regulation of SSC function are strictly dependent on a supportive niche that is composed of multiple cell types. A detailed appreciation of the molecular mechanisms underpinning SSC activity and fate is of fundamental importance for spermatogenesis and male fertility. However, different models of SSC identity and spermatogonial hierarchy have been proposed and recent studies indicate that cell populations supporting steady-state germline maintenance and regeneration following damage are distinct. Importantly, dynamic changes in niche properties may underlie the fate plasticity of spermatogonia evident during testis regeneration. While formation of spermatogenic colonies in germ-cell-depleted testis upon transplantation is a standard assay for SSCs, differentiation-primed spermatogonial fractions have transplantation potential and this assay provides readout of regenerative rather than steady-state stem cell capacity. The characterisation of spermatogonial populations with regenerative capacity is essential for the development of clinical applications aimed at restoring fertility in individuals following germline depletion by genotoxic treatments. This review will discuss regulatory mechanisms of SSCs in homeostatic and regenerative testis and the conservation of these mechanisms between rodent models and man.
Collapse
Affiliation(s)
- Hue M La
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, 3800, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Robin M Hobbs
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, 3800, Australia.
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
12
|
Sun YZ, Liu ST, Li XM, Zou K. Progress in in vitro culture and gene editing of porcine spermatogonial stem cells. Zool Res 2019; 40:343-348. [PMID: 31393095 PMCID: PMC6755112 DOI: 10.24272/j.issn.2095-8137.2019.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/31/2019] [Indexed: 12/19/2022] Open
Abstract
Research on in vitro culture and gene editing of domestic spermatogonial stem cells (SSCs) is of considerable interest but remains a challenging issue in animal science. In recent years, some progress on the isolation, purification, and genetic manipulation of porcine SSCs has been reported. Here, we summarize the characteristics of porcine SSCs as well current advances in their in vitro culture, potential usage, and genetic manipulation. Furthermore, we discuss the current application of gene editing in pig cloning technology. Collectively, this commentary aims to summarize the progress made and obstacles encountered in porcine SSC research to better serve animal husbandry, improve livestock fecundity, and enhance potential clinical use.
Collapse
Affiliation(s)
- Yi-Zhuo Sun
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing Jiangsu 210095, China
| | - Si-Tong Liu
- College of Life Sciences, Jilin University, Changchun Jilin 130012, China
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun Jilin 130024, China
| | - Xiao-Meng Li
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun Jilin 130024, China; E-mail:
| | - Kang Zou
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing Jiangsu 210095, China; E-mail:
| |
Collapse
|
13
|
Kubota H, Brinster RL. Spermatogonial stem cells. Biol Reprod 2019; 99:52-74. [PMID: 29617903 DOI: 10.1093/biolre/ioy077] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/29/2018] [Indexed: 12/19/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are the most primitive spermatogonia in the testis and have an essential role to maintain highly productive spermatogenesis by self-renewal and continuous generation of daughter spermatogonia that differentiate into spermatozoa, transmitting genetic information to the next generation. Since the 1950s, many experimental methods, including histology, immunostaining, whole-mount analyses, and pulse-chase labeling, had been used in attempts to identify SSCs, but without success. In 1994, a spermatogonial transplantation method was reported that established a quantitative functional assay to identify SSCs by evaluating their ability to both self-renew and differentiate to spermatozoa. The system was originally developed using mice and subsequently extended to nonrodents, including domestic animals and humans. Availability of the functional assay for SSCs has made it possible to develop culture systems for their ex vivo expansion, which dramatically advanced germ cell biology and allowed medical and agricultural applications. In coming years, SSCs will be increasingly used to understand their regulation, as well as in germline modification, including gene correction, enhancement of male fertility, and conversion of somatic cells to biologically competent male germline cells.
Collapse
Affiliation(s)
- Hiroshi Kubota
- Laboratory of Cell and Molecular Biology, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Ralph L Brinster
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
14
|
Savvulidi F, Ptacek M, Savvulidi Vargova K, Stadnik L. Manipulation of spermatogonial stem cells in livestock species. J Anim Sci Biotechnol 2019; 10:46. [PMID: 31205688 PMCID: PMC6560896 DOI: 10.1186/s40104-019-0355-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/17/2019] [Indexed: 12/12/2022] Open
Abstract
We are entering an exciting epoch in livestock biotechnology during which the fundamental approaches (such as transgenesis, spermatozoa cryopreservation and artificial insemination) will be enhanced based on the modern understanding of the biology of spermatogonial stem cells (SSCs) combined with the outstanding recent advances in genomic editing technologies and in vitro cell culture systems. The general aim of this review is to outline comprehensively the promising applications of SSC manipulation that could in the nearest future find practical application in livestock breeding. Here, we will focus on 1) the basics of mammalian SSC biology; 2) the approaches for SSC isolation and purification; 3) the available in vitro systems for the stable expansion of isolated SSCs; 4) a discussion of how the manipulation of SSCs can accelerate livestock transgenesis; 5) a thorough overview of the techniques of SSC transplantation in livestock species (including the preparation of recipients for SSC transplantation, the ultrasonographic-guided SSC transplantation technique in large farm animals, and the perspectives to improve further the SSC transplantation efficiency), and finally, 6) why SSC transplantation is valuable to extend the techniques of spermatozoa cryopreservation and/or artificial insemination. For situations where no reliable data have yet been obtained for a particular livestock species, we will rely on the data obtained from studies conducted in rodents because the knowledge gained from rodent research is translatable to livestock species to a great extent. On the other hand, we will draw special attention to situations where such translation is not possible.
Collapse
Affiliation(s)
- Filipp Savvulidi
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Suchdol Czech Republic
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, U Nemocnice 5, 128 53 Prague, Czech Republic
| | - Martin Ptacek
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Suchdol Czech Republic
| | - Karina Savvulidi Vargova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, U Nemocnice 5, 128 53 Prague, Czech Republic
| | - Ludek Stadnik
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Suchdol Czech Republic
| |
Collapse
|
15
|
Kanatsu-Shinohara M, Morimoto H, Watanabe S, Shinohara T. Reversible inhibition of the blood-testis barrier protein improves stem cell homing in mouse testes. J Reprod Dev 2018; 64:511-522. [PMID: 30175719 PMCID: PMC6305854 DOI: 10.1262/jrd.2018-093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Stem cell homing is a complex phenomenon that involves multiple steps; thus far, attempts to increase homing efficiency have met with limited success. Spermatogonial stem cells (SSCs)
migrate to the niche after microinjection into seminiferous tubules, but the homing efficiency is very low. Here we report that reversible disruption of the blood-testis barrier (BTB)
between Sertoli cells enhances the homing efficiency of SSCs. We found that SSCs on a C57BL/6 background are triggered to proliferate in vitro when MHY1485, which stimulates
MTORC, were added to culture medium. However, the cultured cells did not produce offspring by direct injection into the seminiferous tubules. When acyline, a gonadotropin-releasing hormone
(GnRH) analogue, was administered into infertile recipients, SSC colonization increased by ~5-fold and the recipients sired offspring. In contrast, both untreated individuals and recipients
that received leuprolide, another GnRH analogue, remained infertile. Acyline not only decreased CLDN5 expression but also impaired the BTB, suggesting that increased colonization was caused
by efficient SSC migration through the BTB. Enhancement of stem cell homing by tight junction protein manipulation constitutes a new approach to improve homing efficiency, and similar
strategy may be applicable to other self-renewing tissues.
Collapse
Affiliation(s)
- Mito Kanatsu-Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Hiroko Morimoto
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Satoshi Watanabe
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Takashi Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
16
|
In Vivo Genetic Manipulation of Spermatogonial Stem Cells and Their Microenvironment by Adeno-Associated Viruses. Stem Cell Reports 2018; 10:1551-1564. [PMID: 29628393 PMCID: PMC5995272 DOI: 10.1016/j.stemcr.2018.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 03/07/2018] [Accepted: 03/07/2018] [Indexed: 12/18/2022] Open
Abstract
Adeno-associated virus (AAV) penetrates the blood-brain barrier, but it is unknown whether AAV penetrates other tight junctions. Genetic manipulation of testis has been hampered by the basement membrane of seminiferous tubules and the blood-testis barrier (BTB), which forms between Sertoli cells and divides the tubules into basal and adluminal compartments. Here, we demonstrate in vivo genetic manipulation of spermatogonial stem cells (SSCs) and their microenvironment via AAV1/9. AAV1/9 microinjected into the seminiferous tubules penetrated both the basement membrane and BTB, thereby transducing not only Sertoli cells and SSCs but also peritubular cells and Leydig cells. Moreover, when congenitally infertile KitlSl/KitlSl-d mouse testes with defective Sertoli cells received Kitl-expressing AAVs, spermatogenesis regenerated and offspring were produced. None of the offspring contained the AAV genome. Thus, AAV1/9 allows efficient germline and niche manipulation by penetrating the BTB and basement membrane, providing a promising strategy for the development of gene therapies for reproductive defects. AAVs penetrate the blood-testis barrier and infect SSCs and their environment AAVs also penetrate the basement membrane of the seminiferous tubules AAVs could rescue spermatogenesis in congenitally infertile KitlSl/KitlSl-d mice Offspring did not carry transgenes after microinsemination
Collapse
|
17
|
Tang L, Bondareva A, González R, Rodriguez-Sosa JR, Carlson DF, Webster D, Fahrenkrug S, Dobrinski I. TALEN-mediated gene targeting in porcine spermatogonia. Mol Reprod Dev 2018; 85:250-261. [PMID: 29393557 DOI: 10.1002/mrd.22961] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/22/2018] [Accepted: 01/25/2018] [Indexed: 01/05/2023]
Abstract
Spermatogonia represent a diploid germ cell population that includes spermatogonial stem cells. In this report, we describe new methods for isolation of highly enriched porcine spermatogonia based on light scatter properties, and for targeted mutagenesis in porcine spermatogonia using nucleofection and TALENs. We optimized a nucleofection protocol to deliver TALENs specifically targeting the DMD locus in porcine spermatogonia. We also validated specific sorting of porcine spermatogonia based on light scatter properties. We were able to obtain a highly enriched germ cell population with over 90% of cells being UCH-L1 positive undifferentiated spermatogonia. After gene targeting in porcine spermatogonia, indel (insertion or deletion) mutations as a result of non-homologous end joining (NHEJ) were detected in up to 18% of transfected cells. Our report demonstrates for the first time an approach to obtain a live cell population highly enriched in undifferentiated spermatogonia from immature porcine testes, and that gene targeting can be achieved in porcine spermatogonia which will enable germ line modification.
Collapse
Affiliation(s)
- Lin Tang
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Alla Bondareva
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Raquel González
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Jose R Rodriguez-Sosa
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | | | | | | | - Ina Dobrinski
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
18
|
Dose-dependent effects of busulfan on dog testes in preparation for spermatogonial stem cell transplantation. Lab Anim Res 2017; 33:264-269. [PMID: 29046703 PMCID: PMC5645606 DOI: 10.5625/lar.2017.33.3.264] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 09/14/2017] [Indexed: 12/21/2022] Open
Abstract
Successful male germ cell transplantation requires depletion of the host germ cells to allow efficient colonization of the donor spermatogonial stem cells. Although a sterilizing drug, busulfan, is commonly used for the preparation of recipient models before transplantation, the optimal dose of this drug has not yet been defined in dogs. In this study, 1-year-old mongrel dogs were intravenously injected with three different concentrations of busulfan (10, 15, or 17.5 mg/kg). Four weeks after busulfan treatment, no fully matured spermatozoa were detected in any of the busulfan-treated groups. However, small numbers of PGP9.5-positive spermatogonia were detected in all treatment groups, although no synaptonemal complex protein-3-positive spermatocytes were detected. Of note, acrosin-positive spermatids were not detected in the dogs treated with 15 or 17.5 mg/kg busulfan, but were detected in the other group. Eight weeks after busulfan treatment, the dogs treated with 10 mg/kg busulfan fully recovered, but those in the other groups did not. PGP9.5-positive spermatogonia were detected in the 10 mg/kg group, and at a similar level as in the control group, but these cells were rarely detected in the 15 and 17.5 mg/kg groups. These results suggest that a dose of 15-17.5 mg/kg is optimal for ablative treatment with busulfan to prepare the recipient dogs for male germ cell transplantation. At least eight weeks should be allowed for recovery. The results of this study might facilitate the production of recipient dogs for male germ cell transplantation and can also contribute to studies on chemotherapy.
Collapse
|
19
|
Embryonic stem cell derived germ cells induce spermatogenesis after transplantation into the testes of an adult mouse azoospermia model. Clin Sci (Lond) 2017; 131:2381-2395. [DOI: 10.1042/cs20171074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/12/2017] [Accepted: 08/02/2017] [Indexed: 01/15/2023]
Abstract
The present study aimed to: (i) identify the exogenous factors that allow in vitro differentiation of mouse spermatogonial stem cells (SSCs) from embryonic stem cells (ESCs); (ii) evaluate the effects of Sertoli cells in SSC enrichment; and (iii) assess the success of transplantation using in vitro differentiated SSCs in a mouse busulfan-treated azoospermia model. A 1-day-old embryoid body (EB) received 5 ng/ml of bone morphogenetic protein 4 (BMP4) for 4 days, 3 µM retinoic acid (RA) in a SIM mouse embryo-derived thioguanine and ouabain resistant (STO) co-culture system for 7 days, and was subsequently co-cultured for 2 days with Sertoli cells in the presence or absence of a leukaemia inhibitory factor (LIF), basic fibroblast growth factor (bFGF) and RA composition, and in the presence of these factors in simple culture medium. Higher viability, proliferation and germ cell gene expression were seen in the presence of the LIF, bFGF and RA composition, on top of Sertoli cells. Immunocytochemistry results showed higher CDH1 expression in this group. Sertoli co-culture had no effects on SSC proliferation. Eight weeks after transplantation, injected cells were observed at the base of the seminiferous tubules and in the recipient testes. The number of spermatogonia and the mass of the testes were higher in transplanted testes relative to the control group. It seems that transplantation of these cells can be useful in infertility treatment.
Collapse
|
20
|
Kanatsu-Shinohara M, Morimoto H, Shinohara T. Fertility of Male Germline Stem Cells Following Spermatogonial Transplantation in Infertile Mouse Models. Biol Reprod 2016; 94:112. [PMID: 27053363 DOI: 10.1095/biolreprod.115.137869] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/31/2016] [Indexed: 01/15/2023] Open
Abstract
Spermatogonial stem cells (SSCs) provide the foundation for spermatogenesis. Earlier studies have shown that the transplantation of SSCs restores fertility to infertile recipients. However, most of the previously described experiments have depended on transplantation using sexually immature animals, and the effectiveness of spermatogonial transplantation in mature animals has not been examined in detail. In this study, we evaluated the efficiency of offspring production by adult recipients of spermatogonial transplantation using germline stem (GS) cells, cultured spermatogonia with enriched SSC activity. GS cells were transplanted into mature WBB6F1-W/W(v) (W) or busulfan-treated mice, which were then mated with female mice to obtain offspring from donor cells. We found that GS cells produced offspring most efficiently by transplantation into busulfan (44 mg/kg)-treated mice and all recipients produced progeny within 4 mo (76-111 days) after transplantation. When the dose dependence of offspring production was examined in W mice, approximately 40-80 SSCs were estimated to be required for fertility restoration. Efficient offspring production using GS cells and spermatogonial transplantation will be useful for analyzing factors involved in male fertility.
Collapse
Affiliation(s)
- Mito Kanatsu-Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan Japan Science and Technology Agency, PRESTO, Kyoto, Japan
| | - Hiroko Morimoto
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
21
|
Azizollahi S, Aflatoonian R, Sadighi Gilani MA, Behnam B, Tajik N, Asghari-Jafarabadi M, Asgari HR, Koruji M. Alteration of spermatogenesis following spermatogonial stem cells transplantation in testicular torsion-detorsion mice. J Assist Reprod Genet 2016; 33:771-81. [PMID: 27052833 DOI: 10.1007/s10815-016-0708-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/21/2016] [Indexed: 01/15/2023] Open
Abstract
PURPOSE Testicular ischemia is the main consequence of testicular torsion, in both clinical and experimental aspects. Preservation and auto-transplantation of spermatogonial stem cells (SSCs) could be a new treatment for infertility in testicular ischemia following testicular torsion. METHODS To apply the idea in this study, animals were randomly divided into four groups of control, sham, with torsion, and with torsion followed by transplantation (TT). Isolated SSCs from neonatal mice were cultured and identified by flow cytometry (C-KIT(-), INTEGRIN β1 (+)) and RT-PCR (Reverse transcription polymerase chain reaction) for specific spermatogonial cell markers (Oct4, Gfrα-1, Plzf, Vasa, Itgα 6 , and Itgβ 1 ). SSCs were transplanted upon a 2-h testicular torsion in the TT group. Cultured cells were transplanted into ischemia reperfusion testicle 2 weeks post-testicular torsion. Eight weeks after SSCs transplantation, the SSCs-transplanted testes and epididymis were removed for sperm analysis, weight and histopathological evaluation, and pre- and post-meiotic gene expression assessment by qRT-PCR. RESULTS Our findings indicated that all evaluated parameters (epididymal sperm profile, Johnsen score, Plzf, Gfrα-1, Scp-1, Tekt-1 expressions, and histopathological profile) were significantly decreased following testicular torsion (group 3) when compared to the control group (p ≤ 0.05). However, all abovementioned parameters showed a significant increase/improvement in torsion-transplantation group compared to torsion group. However, these parameters in the TT group were significantly lower in the sham and control groups (p ≤ 0.05). CONCLUSION SSCs transplantation could up-regulate the expression of pre- and post-meiotic genes in testicular ischemia, which resulted in improvement of both testicular function and structure after testicular torsion.
Collapse
Affiliation(s)
- Saeid Azizollahi
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Aflatoonian
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mohammad Ali Sadighi Gilani
- Department of Urology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Babak Behnam
- Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,NIH Undiagnosed Diseases Program, NIH, Office of the Director, Bethesda, MD, 20892, USA.,National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA.,Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS), Hemmat Highway, P. O. Box 14155-5983, Tehran, Iran
| | - Nader Tajik
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Hamid Reza Asgari
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Koruji
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran. .,Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS), Hemmat Highway, P. O. Box 14155-5983, Tehran, Iran.
| |
Collapse
|
22
|
Zheng L, Zhu H, Mu H, Wu J, Song W, Zhai Y, Peng S, Li G, Hua J. CD49f promotes proliferation of male dairy goat germline stem cells. Cell Prolif 2016; 49:27-35. [PMID: 26841372 PMCID: PMC6495884 DOI: 10.1111/cpr.12232] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 09/18/2015] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES CD49f enhances multipotency and maintains stemness in embryonic stem cells (ESCs), however, whether it would be effective in mGSCs has remained unclear. Moreover, better standards for mGSC enrichment and purification are necessary. The present study was conducted to determine roles of CD49f in mGSC enrichment and regulation. MATERIALS AND METHODS CD49f expression patterns were investigated in dairy goats. CD49f positive cells were purified and enriched using magnetic-activated cell sorting (MACS), and characteristics of the cultured cells were assayed using alkaline phosphatase (AP) analysis, quantitative real-time PCR (QRT-PCR) and immunofluorescence analysis. Furthermore, the exogenous CD49f gene was transfected into mGSCs and its effects were analysed. RESULTS CD49f was found to be conserved in both mRNA and amino acid sequences and that it was an efficient marker for dairy goat mGSC identification, enrichment and purification. CD49f positive cells expressed higher levels of mGSC-specific markers, and proliferated faster than CD49f negative cells. Overexpression CD49f promoted proliferation of dairy goat mGSCs, and Oct4 expression was upregulated; histone H3-lysine 9 dimethylation (H3K9me2) was reduced. CONCLUSIONS Taken together, our data suggest that CD49f plays novel and dynamic roles in regulating maintenance of pluripotency in mGSCs via Oct4 crosstalk and histone methylation dynamics,which may provide new solutions for mGSCs stability in vitro.
Collapse
Affiliation(s)
- Liming Zheng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Haijing Zhu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Life Science, Yulin University, Shaanxi, 719000, China
| | - Hailong Mu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jiang Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Agriculture, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Wencong Song
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuanxin Zhai
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Sha Peng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Guangpeng Li
- Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, 010021, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
23
|
|
24
|
Shabani R, Ashtari K, Behnam B, Izadyar F, Asgari H, Asghari Jafarabadi M, Ashjari M, Asadi E, Koruji M. In vitro toxicity assay of cisplatin on mouse acute lymphoblastic leukaemia and spermatogonial stem cells. Andrologia 2015; 48:584-94. [PMID: 26428408 DOI: 10.1111/and.12490] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2015] [Indexed: 01/15/2023] Open
Abstract
Testicular cancer is the most common cancer affecting men in reproductive age, and cisplatin is one of the major helpful chemotherapeutic agents for treatment of this cancer. In addition, exposure of testes cancer cells to cisplatin could potentially eliminate tumour cells from germ cells in patients. The aim of this study was to evaluate the effect of cisplatin on viability of mouse acute lymphoblastic leukaemia cell line (EL-4) and neonatal mouse spermatogonial cells in vitro. In this study, the isolated spermatogonial stem cells (SSC) and EL-4 were divided into six groups including control (received medium), sham (received DMSO in medium) and experimental groups which received different doses of cisplatin (0.5, 5, 10 and 15 μg ml(-1) ). Cells viability was evaluated with MTT assay. The identity of the cultured cells was confirmed by the expression of specific markers. Our finding showed that viability of both SSC and EL-4 cells was reduced with the dose of 15 μg/ml when compared to the control group (P ≤ 0.05). Also, the differences between the IC50 in doses 10 and 15 μg/ml at different time were significant (P ≤ 0.05). The number of TUNEL-positive cells was increased, and the BAX and caspase-3 expressions were upregulated in EL4 cells for group that received an effective dose of cisplatin). In conclusion, despite the dramatic effects of cisplatin on both cells, spermatogonial stem cells could form colony in culture.
Collapse
Affiliation(s)
- R Shabani
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - K Ashtari
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Medical Nanotechnology and Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - B Behnam
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - F Izadyar
- Primegen Biotech LLC, Santa Ana, CA, USA
| | - H Asgari
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - M Asghari Jafarabadi
- Department of Statistics and Epidemiology, Faculty of Health, Tabriz Health Services Management Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - M Ashjari
- Chemical Engineering Department, Faculty of Engineering, University of Kashan, Kashan, Iran
| | - E Asadi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - M Koruji
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Tiptanavattana N, Techakumphu M, Tharasanit T. Simplified isolation and enrichment of spermatogonial stem-like cells from pubertal domestic cats (Felis catus). J Vet Med Sci 2015; 77:1347-53. [PMID: 26074411 PMCID: PMC4667649 DOI: 10.1292/jvms.15-0207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The efficiency of spermatogonial stem cell (SSC) isolation and culture from pubertal
donors is currently poor primarily, because of contamination with other testicular cells.
This study aimed to purify SSC-like cells using different extracellular matrixes and a
discontinuous gradient density. In experiment 1, testes (n=6) were analyzed for histology
and SSC-related protein expressions (laminin, SSEA-4, DDX-4 and GFRα-1). After enzymatic
digestion, the cell suspension was plated onto either a laminin- or gelatin-coated dish.
The number of SSC-like cells was determined at 15, 30 and 60 min of culture (experiment
2). Experiment 3 was performed to test whether or not the additional step of Percoll
gradient density centrifugation could really improve purification of SSC-like cells.
Testicular histology revealed complete spermatogenesis with laminin expression essentially
at the basal lamina of the seminiferous tubules. SSEA-4 and GFRα-1 co-localized with DDX-4
in the spermatogonia. The relative percentage of SSC-like cells, as determined by cells
expressing SSEA-4 (59.42 ± 2.18%) and GFRα-1 (42.70 ± 1.28%), revealed that the highest
SSC-like cell purity was obtained with the 15-min laminin-coated dish compared with other
incubation times and gelatin treatment (P<0.05). Percoll treatment
prior to laminin selection (15 min) significantly improved SSC-like cell recovery (91.33 ±
0.14%, P<0.001) and purity (83.82 ± 2.05% for SSEA-4 and 64.39 ± 1.51%
for GFRα-1, P<0.05). These attached cells demonstrated a typical
SSC-like cell morphology and also expressed POU5F1, RET
and ZBTB16 mRNA. In conclusion, double enrichment with Percoll gradient
density centrifugation and laminin plating highly enriched the SSC-like cells
population.
Collapse
Affiliation(s)
- Narong Tiptanavattana
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | |
Collapse
|
26
|
Aponte PM. Spermatogonial stem cells: Current biotechnological advances in reproduction and regenerative medicine. World J Stem Cells 2015; 7:669-680. [PMID: 26029339 PMCID: PMC4444608 DOI: 10.4252/wjsc.v7.i4.669] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/13/2015] [Accepted: 04/14/2015] [Indexed: 02/06/2023] Open
Abstract
Spermatogonial stem cells (SSCs) are the germ stem cells of the seminiferous epithelium in the testis. Through the process of spermatogenesis, they produce sperm while concomitantly keeping their cellular pool constant through self-renewal. SSC biology offers important applications for animal reproduction and overcoming human disease through regenerative therapies. To this end, several techniques involving SSCs have been developed and will be covered in this article. SSCs convey genetic information to the next generation, a property that can be exploited for gene targeting. Additionally, SSCs can be induced to become embryonic stem cell-like pluripotent cells in vitro. Updates on SSC transplantation techniques with related applications, such as fertility restoration and preservation of endangered species, are also covered on this article. SSC suspensions can be transplanted to the testis of an animal and this has given the basis for SSC functional assays. This procedure has proven technically demanding in large animals and men. In parallel, testis tissue xenografting, another transplantation technique, was developed and resulted in sperm production in testis explants grafted into ectopical locations in foreign species. Since SSC culture holds a pivotal role in SSC biotechnologies, current advances are overviewed. Finally, spermatogenesis in vitro, already demonstrated in mice, offers great promises to cope with reproductive issues in the farm animal industry and human clinical applications.
Collapse
|
27
|
Developments in techniques for the isolation, enrichment, main culture conditions and identification of spermatogonial stem cells. Cytotechnology 2015; 67:921-30. [PMID: 25749914 DOI: 10.1007/s10616-015-9850-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 01/27/2015] [Indexed: 01/15/2023] Open
Abstract
The in vitro culture system of spermatogonial stem cells (SSCs) provides a basis for studies on spermatogenesis, and also contributes to the development of new methods for the preservation of livestock and animal genetic modification. In vitro culture systems have mainly been established for mouse SSCs, but are lacking for farm animals. We reviewed and analyzed the current progress in SSC techniques such as isolation, purification, cultivation and identification. Based on the published studies, we concluded that two-step enzyme digestion and magnetic-activated cell sorting are fast becoming the main methods for isolation and enrichment of SSCs. With regard to the culture systems, serum and feeders were earlier thought to play an important role in the self-renewal and proliferation of SSCs, but serum- and feeder-free culture systems as a means of overcoming the limitations of SSC differentiation in long-term SSC culture are being explored. However, there is still a need to establish more efficient and ideal culture systems that can also be used for SSC culture in larger mammals. Although the lack of SSC-specific surface markers has seriously affected the efficiency of purification and identification, the transgenic study is helpful for our identification of SSCs. Therefore, future studies on SSC techniques should focus on improving serum- and feeder-free culture techniques, and discovering and identifying specific surface markers of SSCs, which will provide new ideas for the optimization of SSC culture systems for mice and promote related studies in farm animals.
Collapse
|
28
|
Zheng Y, He Y, An J, Qin J, Wang Y, Zhang Y, Tian X, Zeng W. THY1 is a surface marker of porcine gonocytes. Reprod Fertil Dev 2014; 26:533-9. [PMID: 23683542 DOI: 10.1071/rd13075] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 03/17/2013] [Indexed: 12/25/2022] Open
Abstract
Gonocytes are important for the study of spermatogenesis. Identification and isolation of gonocytes has been reported in rodents but not in pigs due to a lack of molecular markers for gonocytes. The objective of this study was to identify THY1 expression in porcine testicular tissue and subsequently utilise THY1 as a marker to isolate and enrich porcine gonocytes from testes of newborn piglets. Immunohistochemical analysis showed that THY1 was expressed in gonocytes. Double-immunofluorescent analysis of THY1 and ZBTB16 indicated that THY1 and ZBTB16 were partially co-localised in gonocytes. Double-immunofluorescent analysis of both THY1 and GATA4 suggested that THY1(+) cells were not Sertoli cells. Magnetic-activated cell sorting of THY1(+) cells yielded a cell population with an enrichment of UCHL1(+) gonocytes 3.4-fold of that of the unsorted testicular cell population. Western blot and quantitative reverse transcription-polymerase chain reaction analyses confirmed that the selected THY1(+) fraction had a higher expression of UCHL1 than the unsorted cells. In conclusion, the study demonstrated that THY1 is a surface marker of gonocytes in testes of pre-pubertal boars and could be utilised to identify and isolate porcine gonocytes. The findings will also facilitate culture and manipulation of male germline stem cells.
Collapse
Affiliation(s)
- Yi Zheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ying He
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Junhui An
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jinzhou Qin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yihan Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yaqing Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiue Tian
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wenxian Zeng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
29
|
Spermatogonial stem cell enrichment using simple grafting of testis and in vitro cultivation. Sci Rep 2014; 4:5923. [PMID: 25080919 PMCID: PMC4118148 DOI: 10.1038/srep05923] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 07/15/2014] [Indexed: 01/15/2023] Open
Abstract
Enrichment of spermatogonial stem cells (SSCs) from the mammalian adult testis faces several limitations owing to their relatively low numbers among many types of advanced germ cells and somatic cells. The aim of the present study was to improve the isolation efficiency of SSCs using a simple tissue grafting method to eliminate the existing advanced germ cells. Sliced testis parenchyma obtained from adult ICR or EGFP-expressing transgenic mice were grafted heterotropically under the dorsal skin of nude mice. The most advanced germ cells disappeared in the grafted tissues after 2–4 weeks. Grafted tissues were dissociated enzymatically and plated in culture dishes. During in vitro culture, significantly more SSCs were obtained from the grafted testes than from non-grafted controls, and the isolated SSCs had proliferative potential and were successfully maintained. Additionally, EGFP-expressing SSCs derived from graft parenchyma were transplanted into bulsufan-treated recipient mice testes. Finally, we obtained EGFP-expressing pups after in vitro fertilization using spermatozoa derived from transplanted SSCs. These results suggest that subcutaneous grafting of testis parenchyma and the subsequent culture methods provide a simple and efficient isolation method to enrich for SSCs in adult testis without specific cell sorting methods and may be useful tools for clinical applications.
Collapse
|
30
|
Herrid M, McFarlane JR. Application of testis germ cell transplantation in breeding systems of food producing species: a review. Anim Biotechnol 2014; 24:293-306. [PMID: 23947666 DOI: 10.1080/10495398.2013.785431] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A major benefit of advanced reproduction technologies (ART) in animal breeding is the ability to produce more progeny per individual parent. This is particularly useful with animals of high genetic merit. Testis germ cell transplantation (TGCT) is emerging as a novel reproductive technology with application in animal breeding systems, including the potential for use as an alternative to artificial insemination (AI), an alternative to transgenesis, part of an approach to reducing generation intervals, or an approach toward development of interspecies hybrids. There is one major difference in TGCT between rodents and some other species associated with immunotolerance in heterologous transplantation. In particular, livestock and aquatic species do not require an immunesuppression procedure to allow donor cell survival in recipient testis. Testicular stem cells from a genetically elite individual transplanted into others can develop and produce a surrogate male-an animal that produces the functional sperm of the original individual. Spermatozoa produced from testis stem cells are the only cells in the body of males that can transmit genetic information to the offspring. The isolation and genetic manipulation of testis stem cells prior to transplantation has been shown to create transgenic animals. However, the current success rate of the transplantation procedure in livestock and aquatic species is low, with a corresponding small proportion of donor spermatozoa in the recipient's semen. The propagation of donor cells in culture and preparation of recipient animals are the two main factors that limit the commercial application of this technique. The current paper reviews and compares recent progress and examines the difficulties of TGCT in both livestock and aquatic species, thereby providing new insights into the application of TGCT in food producing animals.
Collapse
Affiliation(s)
- Muren Herrid
- a Center for Bioactive Discovery in Health and Aging, University of New England , Armidale , Australia
| | | |
Collapse
|
31
|
Kanatsu-Shinohara M, Mori Y, Shinohara T. Enrichment of Mouse Spermatogonial Stem Cells Based on Aldehyde Dehydrogenase Activity1. Biol Reprod 2013; 89:140. [DOI: 10.1095/biolreprod.113.114629] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
32
|
Ishii K, Kanatsu-Shinohara M, Shinohara T. Cell-cycle-dependent colonization of mouse spermatogonial stem cells after transplantation into seminiferous tubules. J Reprod Dev 2013; 60:37-46. [PMID: 24256919 PMCID: PMC3958584 DOI: 10.1262/jrd.2013-083] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Spermatogonial stem cells (SSCs) migrate to the niche upon introduction into the
seminiferous tubules of the testis of infertile animals. However, only 5–10% of the
transplanted cells colonize recipient testes. In this study, we analyzed the impact of
cell cycle on spermatogonial transplantation. We used fluorescent ubiquitination-based
cell cycle indicator transgenic mice to examine the influence of cell cycle on SSC
activity of mouse germline stem (GS) cells, a population of cultured spermatogonia
enriched for SSCs. GS cells in the G1 phase are more efficient than those in the S/G2-M
phase in colonizing the seminiferous tubules of adult mice. Cells in the G1 phase not only
showed higher expression levels of GFRA1, a component of the GDNF self-renewal factor
receptor, but also adhered more efficiently to laminin-coated plates. Furthermore, this
cell cycle-dependency was not observed when cells were transplanted into immature pup
recipients, which do not have the blood-testis barrier (BTB) between Sertoli cells,
suggesting that cells in the G1 phase may passage through the BTB more readily than cells
in the S/G2-M phase. Thus cell cycle status is an important factor in regulating SSC
migration to the niche.
Collapse
Affiliation(s)
- Kei Ishii
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | | | | |
Collapse
|
33
|
Kim KJ, Cho CM, Kim BG, Lee YA, Kim BJ, Kim YH, Kim CG, Schmidt JA, Ryu BY. Lentiviral modification of enriched populations of bovine male gonocytes. J Anim Sci 2013; 92:106-18. [PMID: 24166994 DOI: 10.2527/jas.2013-6885] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Undifferentiated germ cells have the capacity to develop into sperm capable of fertilizing oocytes and contributing genetic material to subsequent generations. The most primitive prepubertal undifferentiated germ cells include gonocytes and undifferentiated spermatogonia, including spermatogonial stem cells (SSC). Gonocytes, present in the testis at birth, differentiate into SSC, which maintain spermatogenesis for the remainder of the male's life. Because of their capacity to contribute to lifelong spermatogenesis, undifferentiated germ cells are attractive targets for genetic modification to produce transgenic animals, including cattle. To maximize the efficiency of genetic modification of bovine gonocytes and SSC, effective enrichment techniques need to be developed. Selection of bovine gonocytes using differential plating was improved 8-fold (P < 0.001) when using a combination of extracellular matrix proteins, including laminin, fibronectin, collagen type IV, and gelatin, compared to using laminin and gelatin alone. Selected cells labeled with PKH26 formed colonies of donor-derived germ cells after transplantation into recipient mouse testes, indicating putative stem cell function. Significantly more colonies (P < 0.001) per 1 × 10(5) viable transplanted cells were formed from isolated nonadherent cells (203 ± 23.2) compared to adherent (20 ± 2.7) or Percoll (45.5 ± 4.5) selected cells. After selection, some gonocytes were transduced using a lentiviral vector containing the transgene for the enhanced green fluorescent protein. Transduction efficiency was 17%. Collectively, these data demonstrate effective methods for the selection and genetic modification of bovine undifferentiated germ cells.
Collapse
Affiliation(s)
- K-J Kim
- Department of Animal Science and Technology, Chung-Ang University, Ansung, Gyeonggi-do 456-756, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ferguson L, How JJ, Agoulnik AI. The fate of spermatogonial stem cells in the cryptorchid testes of RXFP2 deficient mice. PLoS One 2013; 8:e77351. [PMID: 24098584 PMCID: PMC3789668 DOI: 10.1371/journal.pone.0077351] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 09/02/2013] [Indexed: 12/22/2022] Open
Abstract
The environmental niche of the spermatogonial stem cell pool is critical to ensure the continued generation of the germ cell population. To study the consequences of an aberrant testicular environment in cryptorchidism we used a mouse model with a deletion of Rxfp2 gene resulting in a high intra-abdominal testicular position. Mutant males were infertile with the gross morphology of the cryptorchid testis progressively deteriorating with age. Few spermatogonia were identifiable in 12 month old cryptorchid testes. Gene expression analysis showed no difference between mutant and control testes at postnatal day 10. In three month old males a decrease in expression of spermatogonial stem cell (SSC) markers Id4, Nanos2, and Ret was shown. The direct counting of ID4+ cells supported a significant decrease of SSCs. In contrast, the expression of Plzf, a marker for undifferentiated and differentiating spermatogonia was not reduced, and the number of PLZF+ cells in the cryptorchid testis was higher in three month old testes, but equal to control in six month old mutants. The PLZF+ cells did not show a higher rate of apoptosis in cryptorchid testis. The expression of the Sertoli cell FGF2 gene required for SSC maintenance was significantly reduced in mutant testis. Based on these findings we propose that the deregulation of somatic and germ cell genes in the cryptorchid testis, directs the SSCs towards the differentiation pathway. This leads to a depletion of the SSC pool and an increase in the number of PLZF+ spermatogonial cells, which too, eventually decreases with the exhaustion of the stem cell pool. Such a dynamic suggests that an early correction of cryptorchidism is critical for the retention of the SSC pool.
Collapse
Affiliation(s)
- Lydia Ferguson
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, United States of America
| | - Javier J. How
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, United States of America
| | - Alexander I. Agoulnik
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, United States of America
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
35
|
Huleihel M, Fadlon E, Abuelhija A, Piltcher Haber E, Lunenfeld E. Glial cell line-derived neurotrophic factor (GDNF) induced migration of spermatogonial cells in vitro via MEK and NF-kB pathways. Differentiation 2013; 86:38-47. [PMID: 23939027 DOI: 10.1016/j.diff.2013.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 06/02/2013] [Accepted: 06/23/2013] [Indexed: 01/10/2023]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) regulates spermatogonial stem cell (SSC) maintenance. In the present study, we examined the levels and the cellular origin of GDNF in mouse testes during age-development, and the capacity of GDNF to induce migration of enriched GFR-α1 positive cells in vitro. The involvement of MAP kinase (MEK) and NF-kB signal pathways were examined. Our results show high levels of GDNF in testicular tissue of one-week-old mice which significantly decreased with age when examined by ELISA, real time PCR (qPCR) and immunofluorescence staining (IF) analysis. GDNF receptor (GFR-α1) expression was similar to GDNF when examined by qPCR analysis. Only Sertoli cell cultures (SCs) from one-week-old mice produced GDNF compared to SCs from older mice. However, peritubular cells from all the examined ages did not produce GDNF. The addition of recombinant GDNF (rGDNF) or supernatant from SCs from one-week-old mice to GFR-α1 positive cells induced their migration in vitro. This effect was significantly reduced by the addition of inhibitors to MEK (PD98059, U0126), NF-kB (PDTC) and IkB protease inhibitor (TPCK). Our results show for the first time the capacity of rGDNF and supernatant from SCs to induce migration of enriched GFR-α1 positive cells, and the possible involvement of MEK, NF-kB and IkB in this process. This study may suggest a novel role for GDNF in the regulation SSC niches and spermatogenesis.
Collapse
Affiliation(s)
- M Huleihel
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| | | | | | | | | |
Collapse
|
36
|
Harkey MA, Asano A, Zoulas ME, Torok-Storb B, Nagashima J, Travis A. Isolation, genetic manipulation, and transplantation of canine spermatogonial stem cells: progress toward transgenesis through the male germ-line. Reproduction 2013; 146:75-90. [PMID: 23690628 DOI: 10.1530/rep-13-0086] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The dog is recognized as a highly predictive model for preclinical research. Its size, life span, physiology, and genetics more closely match human parameters than do those of the mouse model. Investigations of the genetic basis of disease and of new regenerative treatments have frequently taken advantage of canine models. However, full utility of this model has not been realized because of the lack of easy transgenesis. Blastocyst-mediated transgenic technology developed in mice has been very slow to translate to larger animals, and somatic cell nuclear transfer remains technically challenging, expensive, and low yield. Spermatogonial stem cell (SSC) transplantation, which does not involve manipulation of ova or blastocysts, has proven to be an effective alternative approach for generating transgenic offspring in rodents and in some large animals. Our recent demonstration that canine testis cells can engraft in a host testis, and generate donor-derived sperm, suggests that SSC transplantation may offer a similar avenue to transgenesis in the canine model. Here, we explore the potential of SSC transplantation in dogs as a means of generating canine transgenic models for preclinical models of genetic diseases. Specifically, we i) established markers for identification and tracking canine spermatogonial cells; ii) established methods for enrichment and genetic manipulation of these cells; iii) described their behavior in culture; and iv) demonstrated engraftment of genetically manipulated SSC and production of transgenic sperm. These findings help to set the stage for generation of transgenic canine models via SSC transplantation.
Collapse
Affiliation(s)
- Michael A Harkey
- Clinical Research, Division, Fred Hutchinson Cancer Research Center, Mail Stop D1-100, 1100 Fairview Avenue North, PO Box 19024, Seattle, Washington 98109-1024, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Mahmoud H. Concise review: Spermatogenesis in an artificial three-dimensional system. Stem Cells 2013; 30:2355-60. [PMID: 22997006 DOI: 10.1002/stem.1238] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Culture of spermatogonial stem cells has been performed under a variety of conditions. Most featured two-dimensional systems, with different types of sera, conditioned media, feeder layers, and growth factors. Some have used three-dimensional (3D) matrices produced from gelatin, collagen, or other material. In spite of their increasingly sophisticated composition, however, complete spermatogenesis in vitro has not yet been achieved. In the seminiferous tubules, spermatogenesis occurs in an environment where cells are embedded in a 3D structure with specific niches regulating each stage of germ cell maturation mediated by hormones and paracrine/autocrine factors. We have recently reported achievement of complete in vitro spermatogenesis of mouse testicular germ cells in a 3D culture system featuring a soft agar matrix. This review discusses the advantages of the 3D culture system for studying the spermatogenic process in its entirety. Also discussed are the steps necessary to expand the applicability of the 3D culture system to human germ cell development and determine the functionality of culture-produced spermatozoa for generating offspring.
Collapse
Affiliation(s)
- Huleihel Mahmoud
- The Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
38
|
Transcriptional/translational regulation of mammalian spermatogenic stem cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 786:105-28. [PMID: 23696354 DOI: 10.1007/978-94-007-6621-1_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
39
|
Kanatsu-Shinohara M, Morimoto H, Shinohara T. Enrichment of Mouse Spermatogonial Stem Cells by Melanoma Cell Adhesion Molecule Expression1. Biol Reprod 2012; 87:139. [DOI: 10.1095/biolreprod.112.103861] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
40
|
Koruji M, Shahverdi A, Janan A, Piryaei A, Lakpour MR, Gilani Sedighi MA. Proliferation of small number of human spermatogonial stem cells obtained from azoospermic patients. J Assist Reprod Genet 2012; 29:957-67. [PMID: 22735929 DOI: 10.1007/s10815-012-9817-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 05/29/2012] [Indexed: 12/18/2022] Open
Abstract
PURPOSE This study aims to proliferate spermatogonial stem cells (SSCs) and compare the in-vitro effects of laminin and growth factors on the proliferation of adult human SSC. METHODS Isolated testicular cells were cultured in DMEM supplemented with 5 % fetal calf serum (FCS). During the culture, enriched spermatogonial cells were treated with a combination of glial cell line-derived neurotrophic factor (GDNF), basic fibroblast growth factor (bFGF), epidermal growth factor (EGF) and mouse leukemia inhibitory factor (LIF) in the presence or absence of human placental laminin-coated dishes. Cluster assay was performed during culture. Presence of spermatogonia was determined by an ultrastructural study of the cell clusters, reverse transcription polymerase chain reaction (RT-PCR) for spermatogonial markers and xenotransplantation to the testes of busulfan-treated recipient mice. Statistical significance between mean values was determined using statistical ANOVA tests. RESULTS The findings indicated that the addition of GDNF, bFGF, EGF and LIF on laminin-coated dishes significantly increased in-vitro spermatogonial cell cluster formation in comparison with the control group (p ≤ 0.001). The expression of spermatogonial markers was maintained throughout the culture period. Furthermore, a transplantation experiment showed the presence of SSC among the cultured cells. In addition, a transmission electron microscopy (TEM) study suggested the presence of spermatogonial cells of typical morphology among the cluster cells. CONCLUSIONS It can be concluded that human SSCs obtained from non-obstructive azoospermic (NOA) patients had the ability to self-renew in the culture system. This system can be used for the propagation of a small number of these cells from small biopsies.
Collapse
Affiliation(s)
- Morteza Koruji
- Cellular and Molecular Research Center and Department of Anatomical Sciences, School of Medicine, Tehran University of Medical Sciences, Hemmat Highway, Tehran, Iran.
| | | | | | | | | | | |
Collapse
|
41
|
Nasiri Z, Hosseini S, Hajian M, Abedi P, Bahadorani M, Baharvand H, Nasr-Esfahani M. Effects of different feeder layers on short-term culture of prepubertal bovine testicular germ cells In-vitro. Theriogenology 2012; 77:1519-28. [DOI: 10.1016/j.theriogenology.2011.11.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 11/20/2011] [Accepted: 11/20/2011] [Indexed: 01/06/2023]
|
42
|
Vlajković S, Cukuranović R, Bjelaković MD, Stefanović V. Possible therapeutic use of spermatogonial stem cells in the treatment of male infertility: a brief overview. ScientificWorldJournal 2012; 2012:374151. [PMID: 22536138 PMCID: PMC3317611 DOI: 10.1100/2012/374151] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 12/07/2011] [Indexed: 12/31/2022] Open
Abstract
Development of germ cells is a process starting in fetus and completed only in puberty. Spermatogonial stem cells maintain spermatogenesis throughout the reproductive life of mammals. They are undifferentiated cells defined by their ability to both self-renew and differentiate into mature spermatozoa. This self-renewal and differentiation in turn is tightly regulated by a combination of intrinsic gene expression as well as the extrinsic gene signals from the local tissue microenvironment. The human testis is prone to damage, either for therapeutic reasons or because of toxic agents from the environment. For preservation of fertility, patients who will undergo radiotherapy and/or chemotherapy have an attractive possibility to keep in store and afterwards make a transfer of spermatogonial stem cells. Germ cell transplantation is not yet ready for the human fertility clinic, but it may be reasonable for young cancer patients, with no other options to preserve their fertility. Whereas this technique has become an important research tool in rodents, a clinical application must still be regarded as experimental, and many aspects of the procedure need to be optimized prior to a clinical application in men. In future, a range of options for the preservation of male fertility will get a new significance.
Collapse
|
43
|
de Barros FRO, Worst RA, Saurin GCP, Mendes CM, Assumpção MEOA, Visintin JA. α-6 Integrin Expression in Bovine Spermatogonial Cells Purified by Discontinuous Percoll Density Gradient. Reprod Domest Anim 2012; 47:887-90. [DOI: 10.1111/j.1439-0531.2012.01985.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
44
|
Boyer A, Yeh JR, Zhang X, Paquet M, Gaudin A, Nagano MC, Boerboom D. CTNNB1 signaling in sertoli cells downregulates spermatogonial stem cell activity via WNT4. PLoS One 2012; 7:e29764. [PMID: 22253774 PMCID: PMC3257228 DOI: 10.1371/journal.pone.0029764] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 12/03/2011] [Indexed: 01/15/2023] Open
Abstract
Constitutive activation of the WNT signaling effector CTNNB1 (β-catenin) in the Sertoli cells of the Ctnnb1tm1Mmt/+;Amhr2tm3(cre)Bhr/+ mouse model results in progressive germ cell loss and sterility. In this study, we sought to determine if this phenotype could be due to a loss of spermatogonial stem cell (SSC) activity. Reciprocal SSC transplants between Ctnnb1tm1Mmt/+;Amhr2tm3(cre)Bhr/+ and wild-type mice showed that SSC activity is lost in Ctnnb1tm1Mmt/+;Amhr2tm3(cre)Bhr/+ testes over time, whereas the mutant testes could not support colonization by wild-type SSCs. Microarray analyses performed on cultured Sertoli cells showed that CTNNB1 induces the expression of genes associated with the female sex determination pathway, which was also found to occur in Ctnnb1tm1Mmt/+;Amhr2tm3(cre)Bhr/+ testes. One CTNNB1 target gene encoded the secreted signaling molecule WNT4. We therefore tested the effects of WNT4 on SSC-enriched germ cell cultures, and found that WNT4 induced cell death and reduced SSC activity without affecting cell cycle. Conversely, conditional inactivation of Wnt4 in the Ctnnb1tm1Mmt/+;Amhr2tm3(cre)Bhr/+ model rescued spermatogenesis and male fertility, indicating that WNT4 is the major effector downstream of CTNNB1 responsible for germ cell loss. Furthermore, WNT4 was found to signal via the CTNNB1 pathway in Sertoli cells, suggesting a self-reinforcing positive feedback loop. Collectively, these data indicate for the first time that ectopic activation of a signaling cascade in the stem cell niche depletes SSC activity through a paracrine factor. These findings may provide insight into the pathogenesis of male infertility, as well as embryonic gonadal development.
Collapse
Affiliation(s)
- Alexandre Boyer
- Animal Reproduction Research Centre (CRRA), Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada
| | - Jonathan R. Yeh
- Department of Obstetrics and Gynecology, McGill University, Montréal, Québec, Canada
| | - Xiangfan Zhang
- Department of Obstetrics and Gynecology, McGill University, Montréal, Québec, Canada
| | - Marilène Paquet
- Comparative Medicine and Animal Resources Centre, McGill University, Montréal, Québec, Canada
| | - Aurore Gaudin
- Animal Reproduction Research Centre (CRRA), Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada
| | - Makoto C. Nagano
- Department of Obstetrics and Gynecology, McGill University, Montréal, Québec, Canada
| | - Derek Boerboom
- Animal Reproduction Research Centre (CRRA), Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada
- * E-mail:
| |
Collapse
|
45
|
Kanatsu-Shinohara M, Takashima S, Ishii K, Shinohara T. Dynamic changes in EPCAM expression during spermatogonial stem cell differentiation in the mouse testis. PLoS One 2011; 6:e23663. [PMID: 21858196 PMCID: PMC3156235 DOI: 10.1371/journal.pone.0023663] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 07/22/2011] [Indexed: 01/15/2023] Open
Abstract
Background Spermatogonial stem cells (SSCs) have the unique ability to undergo self-renewal division. However, these cells are morphologically indistinguishable from committed spermatogonia, which have limited mitotic activity. To establish a system for SSC purification, we analyzed the expression of SSC markers CD9 and epithelial cell adhesion molecule (EPCAM), both of which are also expressed on embryonic stem (ES) cells. We examined the correlation between their expression patterns and SSC activities. Methodology and Principal Findings By magnetic cell sorting, we found that EPCAM-selected mouse germ cells have limited clonogenic potential in vitro. Moreover, these cells showed stronger expression of progenitor markers than CD9-selected cells, which are significantly more enriched in SSCs. Fluorescence-activated cell sorting of CD9-selected cells indicated a significantly higher frequency of SSCs among the CD9+EPCAMlow/- population than among the CD9+EPCAM+ population. Overexpression of the active form of EPCAM in germline stem (GS) cell cultures did not significantly influence SSC activity, whereas EPCAM suppression by short hairpin RNA compromised GS cell proliferation and increased the concentration of SSCs, as revealed by germ cell transplantation. Conclusions/Significance These results show that SSCs are the most concentrated in CD9+EPCAMlow/- population and also suggest that EPCAM plays an important role in progenitor cell amplification in the mouse spermatogenic system. The establishment of a method to distinguish progenitor spermatogonia from SSCs will be useful for developing an improved purification strategy for SSCs from testis cells.
Collapse
Affiliation(s)
- Mito Kanatsu-Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seiji Takashima
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kei Ishii
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Japan Science and Technology Agency, CREST, Kyoto, Japan
- * E-mail:
| |
Collapse
|
46
|
Can we grow sperm? A translational perspective on the current animal and human spermatogenesis models. Asian J Androl 2011; 13:677-82. [PMID: 21765440 DOI: 10.1038/aja.2011.88] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
There have been tremendous advances in both the diagnosis and treatment of male factor infertility; however, the mechanisms responsible to recreate spermatogenesis outside of the testicular environment continue to elude andrologists. Having the ability to 'grow' human sperm would be a tremendous advance in reproductive biology with multiple possible clinical applications, such as a treatment option for men with testicular failure and azoospermia of multiple etiologies. To understand the complexities of human spermatogenesis in a research environment, model systems have been designed with the intent to replicate the testicular microenvironment. Currently, there are both in vivo and in vitro model systems. In vivo model systems involve the transplantation of either spermatogonial stem cells or testicular xenographs. In vitro model systems involve the use of pluripotent stem cells and complex coculturing and/or three-dimensional culturing techniques. This review discusses the basic methodologies, possible clinical applications, benefits and limitations of each model system. Although these model systems have greatly improved our understanding of human spermatogenesis, we unfortunately have not been successful in demonstrating complete human spermatogenesis outside of the testicle.
Collapse
|
47
|
Bone morphogenetic protein 4 is an efficient inducer for mouse embryonic stem cell differentiation into primordial germ cell. In Vitro Cell Dev Biol Anim 2011; 47:391-8. [DOI: 10.1007/s11626-011-9404-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 03/15/2011] [Indexed: 11/30/2022]
|
48
|
Heim C, Minniear K, Dann CT. Imatinib has deleterious effects on differentiating spermatogonia while sparing spermatogonial stem cell self renewal. Reprod Toxicol 2011; 31:454-63. [PMID: 21295132 DOI: 10.1016/j.reprotox.2010.12.056] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 12/13/2010] [Accepted: 12/29/2010] [Indexed: 12/20/2022]
Abstract
Imatinib mesylate is among a growing number of effective cancer drugs that provide molecularly targeted therapy; however, imatinib causes reproductive defects in rodents. The availability of an in vitro system for screening the effect of drugs on spermatogenesis would be beneficial. The imatinib targets, KIT and platelet derived growth factor receptor beta (PDGFRB), were shown here to be expressed in "germline stem" (GS) cell cultures that contain spermatogonia, including spermatogonial stem cells (SSCs). GS cell cultures were utilized to determine whether imatinib affects SSC self renewal or differentiation. GS cells grown in imatinib retained self renewal based on multiple assays, including transplantation. However, growth in imatinib led to decreased numbers of differentiated spermatogonia and reduced culture growth consistent with the known requirement for KIT in survival and proliferation of spermatogonia. These results build upon the in vivo studies and support the possibility of utilizing GS cell cultures for preclinical drug tests.
Collapse
Affiliation(s)
- Crystal Heim
- Indiana University, Bloomington, IN 47405-7102, USA
| | | | | |
Collapse
|
49
|
SHINOHARA T, ISHII K, KANATSU-SHINOHARA M. Unstable Side Population Phenotype of Mouse Spermatogonial Stem Cells In Vitro. J Reprod Dev 2011; 57:288-95. [DOI: 10.1262/jrd.10-168n] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Takashi SHINOHARA
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University
- Japan Science and Technology Agency, CREST
| | - Kei ISHII
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University
| | | |
Collapse
|
50
|
Affiliation(s)
- Makoto C Nagano
- Department of Obstetrics and Gynecology, Royal Victoria Hospital, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|