1
|
Paulissen E, Martin BL. A Chemically Inducible Muscle Ablation System for the Zebrafish. Zebrafish 2024; 21:243-249. [PMID: 38436568 PMCID: PMC11301710 DOI: 10.1089/zeb.2023.0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
An effective method for tissue-specific ablation in zebrafish is the nitroreductase (NTR)/metronidazole (MTZ) system. Expressing bacterial NTR in the presence of nitroimidazole compounds causes apoptotic cell death, which can be useful for understanding many biological processes. However, this requires tissue-specific expression of the NTR enzyme, and many tissues have yet to be targeted with transgenic lines that express NTR. We generated a transgenic zebrafish line expressing NTR in differentiated skeletal muscle. Treatment of embryos with MTZ caused muscle specific cell ablation. We demonstrate this line can be used to monitor muscle regeneration in whole embryos and in transplanted transgenic cells.
Collapse
Affiliation(s)
- Eric Paulissen
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA
| | - Benjamin L. Martin
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
2
|
Chen J, Wang H, Wu S, Zhang A, Qiu Z, Huang P, Qu JY, Xu J. col1a2+ fibroblasts/muscle progenitors finetune xanthophore countershading by differentially expressing csf1a/1b in embryonic zebrafish. SCIENCE ADVANCES 2024; 10:eadj9637. [PMID: 38578990 PMCID: PMC10997200 DOI: 10.1126/sciadv.adj9637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/29/2024] [Indexed: 04/07/2024]
Abstract
Animals evolve diverse pigment patterns to adapt to the natural environment. Countershading, characterized by a dark-colored dorsum and a light-colored ventrum, is one of the most prevalent pigment patterns observed in vertebrates. In this study, we reveal a mechanism regulating xanthophore countershading in zebrafish embryos. We found that csf1a and csf1b mutants altered xanthophore countershading differently: csf1a mutants lack ventral xanthophores, while csf1b mutants have reduced dorsal xanthophores. Further study revealed that csf1a is expressed throughout the trunk, whereas csf1b is expressed dorsally. Ectopic expression of csf1a or csf1b in neurons attracted xanthophores into the spinal cord. Blocking csf1 signaling by csf1ra mutants disrupts spinal cord distribution and normal xanthophores countershading. Single-cell RNA sequencing identified two col1a2+ populations: csf1ahighcsf1bhigh muscle progenitors and csf1ahighcsf1blow fibroblast progenitors. Ablation of col1a2+ fibroblast and muscle progenitors abolished xanthophore patterns. Our study suggests that fibroblast and muscle progenitors differentially express csf1a and csf1b to modulate xanthophore patterning, providing insights into the mechanism of countershading.
Collapse
Affiliation(s)
- Jiahao Chen
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, China
- Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Honggao Wang
- Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Shuting Wu
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Ao Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PRC
| | - Zhongkai Qiu
- Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Peng Huang
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jianan Y Qu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Kowloon, China
| | - Jin Xu
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, China
- Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
3
|
Yang J, Dong X, Wen H, Li Y, Wang X, Yan S, Zuo C, Lyu L, Zhang K, Qi X. FGFs function in regulating myoblasts differentiation in spotted sea bass (Lateolabrax maculatus). Gen Comp Endocrinol 2024; 347:114426. [PMID: 38103843 DOI: 10.1016/j.ygcen.2023.114426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Fibroblast growth factors (FGFs) are a family of structurally related peptides that regulate processes such as cell proliferation, differentiation, and damage repair. In our previous study, fibroblast growth factor receptor 4 (fgfr4) was detected in the most significant quantitative trait loci (QTL), when identified of QTLs and genetic markers for growth-related traits in spotted sea bass. However, knowledge of the function of fgfr4 is lacking, even the legends to activate the receptor is unknown in fish. To remedy this problem, in the present study, a total of 33 fgfs were identified from the genomic and transcriptomic databases of spotted sea bass, of which 10 were expressed in the myoblasts. According to the expression pattern during myoblasts proliferation and differentiation, fgf6a, fgf6b and fgf18 were selected for further prokaryotic expression and purification. The recombinant proteins FGF6a, FGF6b and FGF18 were found to inhibit myoblast differentiation. Overall, our results provide a theoretical basis for the molecular mechanisms of growth regulation in economic fish such as spotted sea bass.
Collapse
Affiliation(s)
- Jing Yang
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003
| | - Ximeng Dong
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003
| | - Haishen Wen
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003
| | - Yun Li
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003
| | - Xiaojie Wang
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003
| | - Shaojing Yan
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003
| | - Chenpeng Zuo
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003
| | - Likang Lyu
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003
| | - Kaiqiang Zhang
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003
| | - Xin Qi
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003.
| |
Collapse
|
4
|
An G, Hong T, Park H, Lim W, Song G. Oxamyl exerts developmental toxic effects in zebrafish by disrupting the mitochondrial electron transport chain and modulating PI3K/Akt and p38 Mapk signaling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160458. [PMID: 36435248 DOI: 10.1016/j.scitotenv.2022.160458] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/15/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Oxamyl, a carbamate insecticide, is mainly used to control nematodes in the agricultural field. Although oxamyl is a widely used insecticide that is associated with ecological concerns, limited studies have examined the toxic effects of oxamyl on the developmental stage and the underlying mechanisms. In this study, the developmental toxicity of oxamyl was demonstrated using zebrafish, which is a representative model as it is associated with rapid embryogenesis and a toxic response similar to that of other vertebrates. The morphological alteration of zebrafish larvae was analyzed to confirm the sub-lethal toxicity of oxamyl. Analysis of transgenic zebrafish (olig2:dsRED and flk1:eGFP line) and mRNA levels of genes associated with individual organ development revealed that oxamyl exerted toxic effects on the development of neuron, notochord, and vascular system. Next, the adverse effect of oxamyl on the mitochondrial electron transport chain was examined. Treatment with oxamyl altered the PI3K/Akt signaling and p38 Mapk signaling pathways in zebrafish. Thus, this study elucidated the mechanisms underlying the developmental toxicity of oxamyl and provided information on the parameters to assess the developmental toxicity of other environmental contaminants.
Collapse
Affiliation(s)
- Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Taeyeon Hong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hahyun Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
5
|
Bomkamp C, Musgrove L, Marques DMC, Fernando GF, Ferreira FC, Specht EA. Differentiation and Maturation of Muscle and Fat Cells in Cultivated Seafood: Lessons from Developmental Biology. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:1-29. [PMID: 36374393 PMCID: PMC9931865 DOI: 10.1007/s10126-022-10174-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Cultivated meat, also known as cultured or cell-based meat, is meat produced directly from cultured animal cells rather than from a whole animal. Cultivated meat and seafood have been proposed as a means of mitigating the substantial harms associated with current production methods, including damage to the environment, antibiotic resistance, food security challenges, poor animal welfare, and-in the case of seafood-overfishing and ecological damage associated with fishing and aquaculture. Because biomedical tissue engineering research, from which cultivated meat draws a great deal of inspiration, has thus far been conducted almost exclusively in mammals, cultivated seafood suffers from a lack of established protocols for producing complex tissues in vitro. At the same time, fish such as the zebrafish Danio rerio have been widely used as model organisms in developmental biology. Therefore, many of the mechanisms and signaling pathways involved in the formation of muscle, fat, and other relevant tissue are relatively well understood for this species. The same processes are understood to a lesser degree in aquatic invertebrates. This review discusses the differentiation and maturation of meat-relevant cell types in aquatic species and makes recommendations for future research aimed at recapitulating these processes to produce cultivated fish and shellfish.
Collapse
Affiliation(s)
- Claire Bomkamp
- Department of Science & Technology, The Good Food Institute, Washington, DC USA
| | - Lisa Musgrove
- University of the Sunshine Coast, Sippy Downs, Queensland Australia
| | - Diana M. C. Marques
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Gonçalo F. Fernando
- Department of Science & Technology, The Good Food Institute, Washington, DC USA
| | - Frederico C. Ferreira
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Elizabeth A. Specht
- Department of Science & Technology, The Good Food Institute, Washington, DC USA
| |
Collapse
|
6
|
Wu P, Yong P, Zhang Z, Xu R, Shang R, Shi J, Zhang J, Bi P, Chen E, Du S. Loss of Myomixer Results in Defective Myoblast Fusion, Impaired Muscle Growth, and Severe Myopathy in Zebrafish. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:1023-1038. [PMID: 36083384 PMCID: PMC10112271 DOI: 10.1007/s10126-022-10159-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
The development and growth of fish skeletal muscles require myoblast fusion to generate multinucleated myofibers. While zebrafish fast-twitch muscle can fuse to generate multinucleated fibers, the slow-twitch muscle fibers remain mononucleated in zebrafish embryos and larvae. The mechanism underlying the fiber-type-specific control of fusion remains elusive. Recent genetic studies using mice identified a long-sought fusion factor named Myomixer. To understand whether Myomixer is involved in the fiber-type specific fusion, we analyzed the transcriptional regulation of myomixer expression and characterized the muscle growth phenotype upon genetic deletion of myomixer in zebrafish. The data revealed that overexpression of Sonic Hedgehog (Shh) drastically inhibited myomixer expression and blocked myoblast fusion, recapitulating the phenotype upon direct genetic deletion of myomixer from zebrafish. The fusion defect in myomixer mutant embryos could be faithfully rescued upon re-expression of zebrafish myomixer gene or its orthologs from shark or human. Interestingly, myomixer mutant fish survived to adult stage though were notably smaller than wildtype siblings. Severe myopathy accompanied by the uncontrolled adipose infiltration was observed in both fast and slow muscle tissues of adult myomixer mutants. Collectively, our data highlight an indispensable role of myomixer gene for cell fusion during both embryonic muscle development and post-larval muscle growth.
Collapse
Affiliation(s)
- Ping Wu
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, USA
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, China
| | - Pengzheng Yong
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, USA
| | - Zhanxiong Zhang
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, USA
| | - Rui Xu
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, USA
| | - Renjie Shang
- Center for Molecular Medicine & Department of Genetics, University of Georgia, Athens, USA
| | - Jun Shi
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, USA
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Jianshe Zhang
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, China
| | - Pengpeng Bi
- Center for Molecular Medicine & Department of Genetics, University of Georgia, Athens, USA
| | - Elizabeth Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, USA
| | - Shaojun Du
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, USA.
| |
Collapse
|
7
|
Paulissen E, Martin BL. Myogenic regulatory factors Myod and Myf5 are required for dorsal aorta formation and angiogenic sprouting. Dev Biol 2022; 490:134-143. [PMID: 35917935 DOI: 10.1016/j.ydbio.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/14/2022] [Accepted: 07/14/2022] [Indexed: 11/22/2022]
Abstract
The vertebrate embryonic midline vasculature forms in close proximity to the developing skeletal muscle, which originates in the somites. Angioblasts migrate from bilateral positions along the ventral edge of the somites until they meet at the midline, where they sort and differentiate into the dorsal aorta and the cardinal vein. This migration occurs at the same time that myoblasts in the somites are beginning to differentiate into skeletal muscle, a process which requires the activity of the basic helix loop helix (bHLH) transcription factors Myod and Myf5. Here we examined vasculature formation in myod and myf5 mutant zebrafish. In the absence of skeletal myogenesis, angioblasts migrate normally to the midline but form only the cardinal vein and not the dorsal aorta. The phenotype is due to the failure to activate vascular endothelial growth factor ligand vegfaa expression in the somites, which in turn is required in the adjacent angioblasts for dorsal aorta specification. Myod and Myf5 cooperate with Hedgehog signaling to activate and later maintain vegfaa expression in the medial somites, which is required for angiogenic sprouting from the dorsal aorta. Our work reveals that the early embryonic skeletal musculature in teleosts evolved to organize the midline vasculature during development.
Collapse
Affiliation(s)
- Eric Paulissen
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794-5215, United States
| | - Benjamin L Martin
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794-5215, United States.
| |
Collapse
|
8
|
Shi LL, Zhu KC, Wang HL. Characterization of myogenic regulatory factors, myod and myf5 from Megalobrama amblycephala and the effect of lipopolysaccharide on satellite cells in skeletal muscle. Gene 2022; 834:146608. [PMID: 35659893 DOI: 10.1016/j.gene.2022.146608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 04/27/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022]
Abstract
Myod and Myf5 are muscle-specific basic helix-loop-helix (bHLH) transcription factors that play essential roles in regulating skeletal muscle development and growth. In order to investigate potential function of myod and myf5 of Megalobrama amblycephala, an economically important freshwater fish species, in the present study, we characterized the sequences and expression profiles of M. amblycephala myod and myf5. The open reading frame (ORF) sequences of myod and myf5 encoded 275 and 240 amino acids, respectively, possessing analogous structure with the highly conserved domains, bHLH and C-terminal helix III domains. Spatio-temporal expression patterns revealed that myod and myf5 were predominant in skeletal muscle with the highest expression in white muscle, and the highest at 10 days post-hatching (dph) and the segmentation period, respectively. Furthermore, we evaluated the effects of lipopolysaccharide (LPS) on the expression of muscle-related genes in white and red muscle, and proliferation and differentiation of satellite cells. The myod, myf5 and pax-7 expression generally increased and then decreased with increase of LPS concentration and treatment time in red muscle, while these genes showed inconsistent expression patterns in white muscle. In addition, LPS administration caused the frequency increase of satellite cells in red and white muscle especially at 3 and 7 days after LPS-injection.
Collapse
Affiliation(s)
- Lin-Lin Shi
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, 430070 Wuhan, PR China
| | - Ke-Cheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China
| | - Huan-Ling Wang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, 430070 Wuhan, PR China.
| |
Collapse
|
9
|
Könemann S, von Wyl M, Vom Berg C. Zebrafish Larvae Rapidly Recover from Locomotor Effects and Neuromuscular Alterations Induced by Cholinergic Insecticides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8449-8462. [PMID: 35575681 DOI: 10.1021/acs.est.2c00161] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Owing to the importance of acetylcholine as a neurotransmitter, many insecticides target the cholinergic system. Across phyla, cholinergic signaling is essential for many neuro-developmental processes including axonal pathfinding and synaptogenesis. Consequently, early-life exposure to such insecticides can disturb these processes, resulting in an impaired nervous system. One test frequently used to assess developmental neurotoxicity is the zebrafish light-dark transition test, which measures larval locomotion as a response to light changes. However, it is only poorly understood which structural alterations cause insecticide-induced locomotion defects and how persistent these alterations are. Therefore, this study aimed to link locomotion defects with effects on neuromuscular structures, including motorneurons, synapses, and muscles, and to investigate the longevity of the effects. The cholinergic insecticides diazinon and dimethoate (organophosphates), methomyl and pirimicarb (carbamates), and imidacloprid and thiacloprid (neonicotinoids) were used to induce hypoactivity. Our analyses revealed that some insecticides did not alter any of the structures assessed, while others affected axon branching (methomyl, imidacloprid) or muscle integrity (methomyl, thiacloprid). The majority of effects, even structural, were reversible within 24 to 72 h. Overall, we find that both neurodevelopmental and non-neurodevelopmental effects of different longevity can account for the reduced locomotion. These findings provide unprecedented insights into the underpinnings of insecticide-induced hypoactivity.
Collapse
Affiliation(s)
- Sarah Könemann
- Department of Environmental Toxicology, Eawag, Überlandstrasse 133, 8600 Dübendorf, Switzerland
- École Polytechnique Fédéral de Lausanne, EPFL, Route Cantonale, 1015 Lausanne, Switzerland
| | - Melissa von Wyl
- Department of Environmental Toxicology, Eawag, Überlandstrasse 133, 8600 Dübendorf, Switzerland
- University of Zurich, UZH, Rämistrassse 71, 8006 Zurich, Switzerland
| | - Colette Vom Berg
- Department of Environmental Toxicology, Eawag, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| |
Collapse
|
10
|
Della Gaspera B, Weill L, Chanoine C. Evolution of Somite Compartmentalization: A View From Xenopus. Front Cell Dev Biol 2022; 9:790847. [PMID: 35111756 PMCID: PMC8802780 DOI: 10.3389/fcell.2021.790847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
Somites are transitory metameric structures at the basis of the axial organization of vertebrate musculoskeletal system. During evolution, somites appear in the chordate phylum and compartmentalize mainly into the dermomyotome, the myotome, and the sclerotome in vertebrates. In this review, we summarized the existing literature about somite compartmentalization in Xenopus and compared it with other anamniote and amniote vertebrates. We also present and discuss a model that describes the evolutionary history of somite compartmentalization from ancestral chordates to amniote vertebrates. We propose that the ancestral organization of chordate somite, subdivided into a lateral compartment of multipotent somitic cells (MSCs) and a medial primitive myotome, evolves through two major transitions. From ancestral chordates to vertebrates, the cell potency of MSCs may have evolved and gave rise to all new vertebrate compartments, i.e., the dermomyome, its hypaxial region, and the sclerotome. From anamniote to amniote vertebrates, the lateral MSC territory may expand to the whole somite at the expense of primitive myotome and may probably facilitate sclerotome formation. We propose that successive modifications of the cell potency of some type of embryonic progenitors could be one of major processes of the vertebrate evolution.
Collapse
|
11
|
Manneken JD, Dauer MVP, Currie PD. Dynamics of muscle growth and regeneration: Lessons from the teleost. Exp Cell Res 2021; 411:112991. [PMID: 34958765 DOI: 10.1016/j.yexcr.2021.112991] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 11/30/2022]
Abstract
The processes of myogenesis during both development and regeneration share a number of similarities across both amniotes and teleosts. In amniotes, the process of muscle formation is considered largely biphasic, with developmental myogenesis occurring through hyperplastic fibre deposition and postnatal muscle growth driven through hypertrophy of existing fibres. In contrast, teleosts continue generating new muscle fibres during adult myogenesis through a process of eternal hyperplasia using a dedicated stem cell system termed the external cell layer. During developmental and regenerative myogenesis alike, muscle progenitors interact with their niche to receive cues guiding their transition into myoblasts and ultimately mature myofibres. During development, muscle precursors receive input from neighbouring embryological tissues; however, during repair, this role is fulfilled by other injury resident cell types, such as those of the innate immune response. Recent work has focused on the role of macrophages as a pro-regenerative cell type which provides input to muscle satellite cells during regenerative myogenesis. As zebrafish harbour a satellite cell system analogous to that of mammals, the processes of regeneration can be interrogated in vivo with the imaging intensive approaches afforded in the zebrafish system. This review discusses the strengths of zebrafish with a focus on both the similarities and differences to amniote myogenesis during both development and repair.
Collapse
Affiliation(s)
- Jessica D Manneken
- Australian Regenerative Medicine Institute, Level 1, 15 Innovation Walk, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Mervyn V P Dauer
- Australian Regenerative Medicine Institute, Level 1, 15 Innovation Walk, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Level 1, 15 Innovation Walk, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia; EMBL Australia, Level 1, 15 Innovation Walk, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia.
| |
Collapse
|
12
|
Hu Z, Xu H, Lu Y, He Q, Yan C, Zhao X, Tian Y, Yang C, Zhang Z, Qiu M, Wang Y. MUSTN1 is an indispensable factor in the proliferation, differentiation and apoptosis of skeletal muscle satellite cells in chicken. Exp Cell Res 2021; 407:112833. [PMID: 34536390 DOI: 10.1016/j.yexcr.2021.112833] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
The yield and quality of the skeletal muscle are important economic traits in livestock and poultry production. The musculoskeletal embryonic nuclear protein 1 (MUSTN1) gene has been shown to be associated with embryonic development, postnatal growth, bone and skeletal muscle regeneration; however, its function in the skeletal muscle development of chicken remains unclear. Therefore, in this study, we observed that the expression level of MUSTN1 increased in conjunction with the proliferation of chicken skeletal muscle satellite cells (SMSCs). Knockdown of MUSTN1 in SMSCs downregulated the expression of cell proliferation genes as Pax7, CDK-2 and differentiation-relate genes including MyoD, MyoG, MyHC and MyH1B, whereas it upregulates the expression of cell apoptosis gene (Caspase-3) (P < 0.05). However, the combined analysis of CCK-8 and EdU showed that the cell vitality and EdU-positive cells of the si-MUSTN1 transfected group were significantly lower than those of the negative siRNA group (P < 0.05). In addition, the knockdown of MUSTN1 significantly increased the cell population in the G0/G1 phase and significantly decreased the cell population in the G2/M phase (P < 0.05), whereas the overexpression of MUSTN1 showed opposite effect. Taken together, our findings indicates that MUSTN1 is an important molecular factor that is responsible for regulating muscle growth and development in chickens, particularly, proliferation and differentiation of SMSCs.
Collapse
Affiliation(s)
- Zhi Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 61130, China
| | - Hengyong Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 61130, China
| | - Yuxiang Lu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 61130, China
| | - Qijian He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 61130, China
| | - Chaoyang Yan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 61130, China
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 61130, China
| | - Yaofu Tian
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 61130, China
| | - Chaowu Yang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, China
| | - Zengrong Zhang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, China
| | - Mohan Qiu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, China.
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 61130, China.
| |
Collapse
|
13
|
L-Carnitine ameliorates congenital myopathy in a tropomyosin 3 de novo mutation transgenic zebrafish. J Biomed Sci 2021; 28:8. [PMID: 33435938 PMCID: PMC7802209 DOI: 10.1186/s12929-020-00707-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/30/2020] [Indexed: 11/23/2022] Open
Abstract
Background Congenital myopathy (CM) is a group of clinically and genetically heterogeneous muscle disorders, characterized by muscle weakness and hypotonia from birth. Currently, no definite treatment exists for CM. A de novo mutation in Tropomyosin 3-TPM3(E151G) was identified from a boy diagnosed with CM, previously TPM3(E151A) was reported to cause CM. However, the role of TPM3(E151G) in CM is unknown. Methods Histopathological, swimming behavior, and muscle endurance were monitored in TPM3 wild-type and mutant transgenic fish, modelling CM. Gene expression profiling of muscle of the transgenic fish were studied through RNAseq, and mitochondria respiration was investigated. Results While TPM3(WT) and TPM3(E151A) fish show normal appearance, amazingly a few TPM3(E151G) fish display either no tail, a crooked body in both F0 and F1 adults. Using histochemical staining for the muscle biopsy, we found TPM3(E151G) displays congenital fiber type disproportion and TPM3(E151A) resembles nemaline myopathy. TPM3(E151G) transgenic fish dramatically swimming slower than those in TPM3(WT) and TPM3(E151A) fish measured by DanioVision and T-maze, and exhibit weaker muscle endurance by swimming tunnel instrument. Interestingly, l-carnitine treatment on TPM3(E151G) transgenic larvae significantly improves the muscle endurance by restoring the basal respiration and ATP levels in mitochondria. With RNAseq transcriptomic analysis of the expression profiling from the muscle specimens, it surprisingly discloses large downregulation of genes involved in pathways of sodium, potassium, and calcium channels, which can be rescued by l-carnitine treatment, fatty acid metabolism was differentially dysregulated in TPM3(E151G) fish and rescued by l-carnitine treatment. Conclusions These results demonstrate that TPM3(E151G) and TPM3(E151A) exhibit different pathogenicity, also have distinct gene regulatory profiles but the ion channels were downregulated in both mutants, and provides a potential mechanism of action of TPM3 pathophysiology. Our results shed a new light in the future development of potential treatment for TPM3-related CM.
Collapse
|
14
|
Ganassi M, Badodi S, Wanders K, Zammit PS, Hughes SM. Myogenin is an essential regulator of adult myofibre growth and muscle stem cell homeostasis. eLife 2020; 9:e60445. [PMID: 33001028 PMCID: PMC7599067 DOI: 10.7554/elife.60445] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023] Open
Abstract
Growth and maintenance of skeletal muscle fibres depend on coordinated activation and return to quiescence of resident muscle stem cells (MuSCs). The transcription factor Myogenin (Myog) regulates myocyte fusion during development, but its role in adult myogenesis remains unclear. In contrast to mice, myog-/-zebrafish are viable, but have hypotrophic muscles. By isolating adult myofibres with associated MuSCs, we found that myog-/- myofibres have severely reduced nuclear number, but increased myonuclear domain size. Expression of fusogenic genes is decreased, Pax7 upregulated, MuSCs are fivefold more numerous and mis-positioned throughout the length of myog-/-myofibres instead of localising at myofibre ends as in wild-type. Loss of Myog dysregulates mTORC1 signalling, resulting in an 'alerted' state of MuSCs, which display precocious activation and faster cell cycle entry ex vivo, concomitant with myod upregulation. Thus, beyond controlling myocyte fusion, Myog influences the MuSC:niche relationship, demonstrating a multi-level contribution to muscle homeostasis throughout life.
Collapse
Affiliation(s)
- Massimo Ganassi
- Randall Centre for Cell and Molecular Biophysics, King’s College LondonLondonUnited Kingdom
| | - Sara Badodi
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of LondonLondonUnited Kingdom
| | - Kees Wanders
- Randall Centre for Cell and Molecular Biophysics, King’s College LondonLondonUnited Kingdom
| | - Peter S Zammit
- Randall Centre for Cell and Molecular Biophysics, King’s College LondonLondonUnited Kingdom
| | - Simon M Hughes
- Randall Centre for Cell and Molecular Biophysics, King’s College LondonLondonUnited Kingdom
| |
Collapse
|
15
|
Osborn DPS, Li K, Cutty SJ, Nelson AC, Wardle FC, Hinits Y, Hughes SM. Fgf-driven Tbx protein activities directly induce myf5 and myod to initiate zebrafish myogenesis. Development 2020; 147:147/8/dev184689. [PMID: 32345657 PMCID: PMC7197714 DOI: 10.1242/dev.184689] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/14/2020] [Indexed: 01/02/2023]
Abstract
Skeletal muscle derives from dorsal mesoderm formed during vertebrate gastrulation. Fibroblast growth factor (Fgf) signalling cooperates with Tbx transcription factors to promote dorsal mesoderm formation, but their role in myogenesis has been unclear. Using zebrafish, we show that dorsally derived Fgf signals act through Tbx16 and Tbxta to induce slow and fast trunk muscle precursors at distinct dorsoventral positions. Tbx16 binds to and directly activates the myf5 and myod genes, which are required for commitment to myogenesis. Tbx16 activity depends on Fgf signalling from the organiser. In contrast, Tbxta is not required for myf5 expression, but binds a specific site upstream of myod that is not bound by Tbx16 and drives (dependent on Fgf signals) myod expression in adaxial slow precursors, thereby initiating trunk myogenesis. After gastrulation, when similar muscle cell populations in the post-anal tail are generated from tailbud, declining Fgf signalling is less effective at initiating adaxial myogenesis, which is instead initiated by Hedgehog signalling from the notochord. Our findings suggest a hypothesis for ancestral vertebrate trunk myogenic patterning and how it was co-opted during tail evolution to generate similar muscle by new mechanisms. This article has an associated ‘The people behind the papers’ interview. Highlighted Article: Tbx16 and Tbxta activate myf5 and myod directly during the earliest myogenesis in zebrafish, and Fgf signalling acts through Tbx16 to drive myogenesis in trunk but not tail.
Collapse
Affiliation(s)
- Daniel P S Osborn
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, SE1 1UL, UK
| | - Kuoyu Li
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, SE1 1UL, UK
| | - Stephen J Cutty
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, SE1 1UL, UK
| | - Andrew C Nelson
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, SE1 1UL, UK
| | - Fiona C Wardle
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, SE1 1UL, UK
| | - Yaniv Hinits
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, SE1 1UL, UK
| | - Simon M Hughes
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, SE1 1UL, UK
| |
Collapse
|
16
|
Arribat Y, Grepper D, Lagarrigue S, Richard J, Gachet M, Gut P, Amati F. Mitochondria in Embryogenesis: An Organellogenesis Perspective. Front Cell Dev Biol 2019; 7:282. [PMID: 31824944 PMCID: PMC6883342 DOI: 10.3389/fcell.2019.00282] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/31/2019] [Indexed: 12/30/2022] Open
Abstract
Organogenesis is well characterized in vertebrates. However, the anatomical and functional development of intracellular compartments during this phase of development remains unknown. Taking an organellogenesis point of view, we characterize the spatiotemporal adaptations of the mitochondrial network during zebrafish embryogenesis. Using state of the art microscopy approaches, we find that mitochondrial network follows three distinct distribution patterns during embryonic development. Despite of this constant morphological change of the mitochondrial network, electron transport chain supercomplexes occur at early stages of embryonic development and conserve a stable organization throughout development. The remodeling of the mitochondrial network and the conservation of its structural components go hand-in-hand with somite maturation; for example, genetic disruption of myoblast fusion impairs mitochondrial network maturation. Reciprocally, mitochondria quality represents a key factor to determine embryonic progression. Alteration of mitochondrial polarization and electron transport chain halts embryonic development in a reversible manner suggesting developmental checkpoints that depend on mitochondrial integrity. Our findings establish the subtle dialogue and co-dependence between organogenesis and mitochondria in early vertebrate development. They also suggest the importance of adopting subcellular perspectives to understand organelle-organ communications during embryogenesis.
Collapse
Affiliation(s)
- Yoan Arribat
- Aging and Muscle Metabolism Lab, Department of Physiology & Institute of Sport Sciences, School of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Dogan Grepper
- Aging and Muscle Metabolism Lab, Department of Physiology & Institute of Sport Sciences, School of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Sylviane Lagarrigue
- Aging and Muscle Metabolism Lab, Department of Physiology & Institute of Sport Sciences, School of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Joy Richard
- Nestlé Research, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Mélanie Gachet
- Aging and Muscle Metabolism Lab, Department of Physiology & Institute of Sport Sciences, School of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Philipp Gut
- Nestlé Research, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Francesca Amati
- Aging and Muscle Metabolism Lab, Department of Physiology & Institute of Sport Sciences, School of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
17
|
Keenan SR, Currie PD. The Developmental Phases of Zebrafish Myogenesis. J Dev Biol 2019; 7:E12. [PMID: 31159511 PMCID: PMC6632013 DOI: 10.3390/jdb7020012] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/16/2019] [Accepted: 05/31/2019] [Indexed: 01/11/2023] Open
Abstract
The development and growth of vertebrate axial muscle have been studied for decades at both the descriptive and molecular level. The zebrafish has provided an attractive model system for investigating both muscle patterning and growth due to its simple axial musculature with spatially separated fibre types, which contrasts to complex muscle groups often deployed in amniotes. In recent years, new findings have reshaped previous concepts that define how final teleost muscle form is established and maintained. Here, we summarise recent findings in zebrafish embryonic myogenesis with a focus on fibre type specification, followed by an examination of the molecular mechanisms that control muscle growth with emphasis on the role of the dermomyotome-like external cell layer. We also consider these data sets in a comparative context to gain insight into the evolution of axial myogenic patterning systems within the vertebrate lineage.
Collapse
Affiliation(s)
- Samuel R Keenan
- Australian Regenerative Medicine Institute, Monash University, Victoria 3800, Australia.
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Victoria 3800, Australia.
| |
Collapse
|
18
|
Rescan PY. Development of myofibres and associated connective tissues in fish axial muscle: Recent insights and future perspectives. Differentiation 2019; 106:35-41. [PMID: 30852471 DOI: 10.1016/j.diff.2019.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 01/18/2023]
Abstract
Fish axial muscle consists of a series of W-shaped muscle blocks, called myomeres, that are composed primarily of multinucleated contractile muscle cells (myofibres) gathered together by an intricate network of connective tissue that transmits forces generated by myofibre contraction to the axial skeleton. This review summarises current knowledge on the successive and overlapping myogenic waves contributing to axial musculature formation and growth in fish. Additionally, this review presents recent insights into muscle connective tissue development in fish, focusing on the early formation of collagenous myosepta separating adjacent myomeres and the late formation of intramuscular connective sheaths (i.e. endomysium and perimysium) that is completed only at the fry stage when connective fibroblasts expressing collagens arise inside myomeres. Finally, this review considers the possibility that somites produce not only myogenic, chondrogenic and myoseptal progenitor cells as previously reported, but also mesenchymal cells giving rise to muscle resident fibroblasts.
Collapse
Affiliation(s)
- Pierre-Yves Rescan
- Inra, UR1037 - Laboratoire de Physiologie et Génomique des Poissons, Campus de Beaulieu - Bât 16A, 35042 Rennes Cedex, France.
| |
Collapse
|
19
|
Kim YJ, Osborn DP, Lee JY, Araki M, Araki K, Mohun T, Känsäkoski J, Brandstack N, Kim HT, Miralles F, Kim CH, Brown NA, Kim HG, Martinez-Barbera JP, Ataliotis P, Raivio T, Layman LC, Kim SH. WDR11-mediated Hedgehog signalling defects underlie a new ciliopathy related to Kallmann syndrome. EMBO Rep 2018; 19:269-289. [PMID: 29263200 PMCID: PMC5797970 DOI: 10.15252/embr.201744632] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 12/27/2022] Open
Abstract
WDR11 has been implicated in congenital hypogonadotropic hypogonadism (CHH) and Kallmann syndrome (KS), human developmental genetic disorders defined by delayed puberty and infertility. However, WDR11's role in development is poorly understood. Here, we report that WDR11 modulates the Hedgehog (Hh) signalling pathway and is essential for ciliogenesis. Disruption of WDR11 expression in mouse and zebrafish results in phenotypic characteristics associated with defective Hh signalling, accompanied by dysgenesis of ciliated tissues. Wdr11-null mice also exhibit early-onset obesity. We find that WDR11 shuttles from the cilium to the nucleus in response to Hh signalling. WDR11 regulates the proteolytic processing of GLI3 and cooperates with the transcription factor EMX1 in the induction of downstream Hh pathway gene expression and gonadotrophin-releasing hormone production. The CHH/KS-associated human mutations result in loss of function of WDR11. Treatment with the Hh agonist purmorphamine partially rescues the WDR11 haploinsufficiency phenotypes. Our study reveals a novel class of ciliopathy caused by WDR11 mutations and suggests that CHH/KS may be a part of the human ciliopathy spectrum.
Collapse
Affiliation(s)
- Yeon-Joo Kim
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
| | - Daniel Ps Osborn
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
| | - Ji-Young Lee
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
| | - Masatake Araki
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Kimi Araki
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | | | | | | | - Hyun-Taek Kim
- Department of Biology, Chungnam National University, Daejeon, Korea
| | - Francesc Miralles
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, Korea
| | - Nigel A Brown
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
| | - Hyung-Goo Kim
- Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Juan Pedro Martinez-Barbera
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Paris Ataliotis
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
| | - Taneli Raivio
- Helsinki University Central Hospital, Helsinki, Finland
| | | | - Soo-Hyun Kim
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
| |
Collapse
|
20
|
Suarez-Bregua P, Chien CJ, Megias M, Du S, Rotllant J. Promoter architecture and transcriptional regulation of musculoskeletal embryonic nuclear protein 1b (mustn1b) gene in zebrafish. Dev Dyn 2017; 246:992-1000. [PMID: 28891223 DOI: 10.1002/dvdy.24591] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 08/09/2017] [Accepted: 09/06/2017] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Mustn1 is a specific musculoskeletal protein that plays a critical role in myogenesis and chondrogenesis in vertebrates. Whole-mount in situ hybridization revealed that mustn1b mRNAs are specifically expressed in skeletal and cardiac muscles in Zebrafish embryos. However, the precise function and the regulatory elements required for its muscle-specific expression are largely unknown. RESULTS The purpose of this study was to explore and uncover the target genomic regions that regulate mustn1b gene expression by in vivo functional characterization of the mustn1b promoter. We report here stable expression analyses of eGFP from fluorescent transgenic reporter Zebrafish line containing a 0.8kb_mustn1b-Tol2-eGFP construct. eGFP expression was specifically found in the skeletal and cardiac muscle tissues. We show that reporter Zebrafish lines generated replicate the endogenous mustn1b expression pattern in early Zebrafish embryos. Specific site directed-mutagenesis analysis revealed that promoter activity resides in two annotated genomic regulatory regions, each one corresponding to a specific functional transcription factor binding site. CONCLUSIONS Our data indicate that mustn1b is specifically expressed in skeletal and cardiac muscle tissues and its muscle specificity is controlled by the 0.2-kb promoter and flanking sequences and in vivo regulated by the action of two sequence-specific families of transcription factors. Developmental Dynamics 246:992-1000, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Chien-Ju Chien
- Department of Molecular and Cellular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Manuel Megias
- Department of Functional Biology and Health Science, University of Vigo, Vigo, Spain
| | - Shaojun Du
- Department of Molecular and Cellular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Josep Rotllant
- Aquatic Molecular Pathobiology Lab, IIM-CSIC, Vigo, Pontevedra, Spain
| |
Collapse
|
21
|
Almond KM, Trombetta LD. Copper pyrithione, a booster biocide, induces abnormal muscle and notochord architecture in zebrafish embryogenesis. ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:855-867. [PMID: 28573481 DOI: 10.1007/s10646-017-1816-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/08/2017] [Indexed: 06/07/2023]
Abstract
The metal pyrithiones, principally zinc (ZnPT) and copper (CuPT), are replacing tributyltin (TBT) as antifouling agents. Zebrafish embryos were exposed within the first hour after fertilization to 12 and 64 µg/L of CuPT for 24 h. Morphological abnormalities in notochord and muscle architecture were observed at 96 h post fertilization (hpf). TEM revealed abnormal electron dense deposits in the notochord sheath and muscle fiber degeneration in animals treated with 12 µg/L of CuPT. Embryos that were exposed to 64 µg/L of CuPT displayed severe muscle fiber degeneration including abnormal A and I band patterning and altered z disk arrangement. Abnormalities in the notochord sheath, swelling of the mitochondria and numerous lipid whorls were also noted. Total antioxidant capacity was significantly decreased in embryos exposed to 12 and 64 µg/L of CuPT. Acridine orange staining revealed an increase in apoptosis particularly in the brain, eye, heart and tail regions of both treatment groups. Apoptosis was confirmed with an increase in caspase 3/7 activity in both treatment groups. Severe alternations in primary motor neuron axon extensions, slow tonic muscle fibers and fast twitch fibers were observed in CuPT treated embryos. There was a significant upregulation in sonic hedgehog and myod1 expression at 24 hpf in the 12 µg/L treatment group. Exposed zebrafish embryos showed ultra-structural hallmarks of peroxidative injury and cell death via apoptosis. These changes question the use of copper pyrithione as an antifouling agent.
Collapse
Affiliation(s)
- Kelly M Almond
- St. John's University, 8000 Utopia Parkway, Jamaica, NY, 11439, USA
| | - Louis D Trombetta
- St. John's University, 8000 Utopia Parkway, Jamaica, NY, 11439, USA.
| |
Collapse
|
22
|
Abstract
Skeletal muscle performs an essential function in human physiology with defects in genes encoding a variety of cellular components resulting in various types of inherited muscle disorders. Muscular dystrophies (MDs) are a severe and heterogeneous type of human muscle disease, manifested by progressive muscle wasting and degeneration. The disease pathogenesis and therapeutic options for MDs have been investigated for decades using rodent models, and considerable knowledge has been accumulated on the cause and pathogenetic mechanisms of this group of human disorders. However, due to some differences between disease severity and progression, what is learned in mammalian models does not always transfer to humans, prompting the desire for additional and alternative models. More recently, zebrafish have emerged as a novel and robust animal model for the study of human muscle disease. Zebrafish MD models possess a number of distinct advantages for modeling human muscle disorders, including the availability and ease of generating mutations in homologous disease-causing genes, the ability to image living muscle tissue in an intact animal, and the suitability of zebrafish larvae for large-scale chemical screens. In this chapter, we review the current understanding of molecular and cellular mechanisms involved in MDs, the process of myogenesis in zebrafish, and the structural and functional characteristics of zebrafish larval muscles. We further discuss the insights gained from the key zebrafish MD models that have been so far generated, and we summarize the attempts that have been made to screen for small molecules inhibitors of the dystrophic phenotypes using these models. Overall, these studies demonstrate that zebrafish is a useful in vivo system for modeling aspects of human skeletal muscle disorders. Studies using these models have contributed both to the understanding of the pathogenesis of muscle wasting disorders and demonstrated their utility as highly relevant models to implement therapeutic screening regimens.
Collapse
Affiliation(s)
- M Li
- Monash University, Clayton, VIC, Australia
| | - K J Hromowyk
- The Ohio State University, Columbus, OH, United States
| | - S L Amacher
- The Ohio State University, Columbus, OH, United States
| | - P D Currie
- Monash University, Clayton, VIC, Australia
| |
Collapse
|
23
|
5′-flanking sequences of zebrafish fast myosin heavy chain genes regulate unique expression in the anterior, medial subsection and posterior tail somites of the skeletal muscle. Comp Biochem Physiol B Biochem Mol Biol 2016; 191:1-12. [DOI: 10.1016/j.cbpb.2015.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/18/2015] [Accepted: 08/18/2015] [Indexed: 11/18/2022]
|
24
|
Corallo D, Trapani V, Bonaldo P. The notochord: structure and functions. Cell Mol Life Sci 2015; 72:2989-3008. [PMID: 25833128 PMCID: PMC11114051 DOI: 10.1007/s00018-015-1897-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/23/2015] [Accepted: 03/26/2015] [Indexed: 01/08/2023]
Abstract
The notochord is an embryonic midline structure common to all members of the phylum Chordata, providing both mechanical and signaling cues to the developing embryo. In vertebrates, the notochord arises from the dorsal organizer and it is critical for proper vertebrate development. This evolutionary conserved structure located at the developing midline defines the primitive axis of embryos and represents the structural element essential for locomotion. Besides its primary structural function, the notochord is also a source of developmental signals that patterns surrounding tissues. Among the signals secreted by the notochord, Hedgehog proteins play key roles during embryogenesis. The Hedgehog signaling pathway is a central regulator of embryonic development, controlling the patterning and proliferation of a wide variety of organs. In this review, we summarize the current knowledge on notochord structure and functions, with a particular emphasis on the key developmental events that take place in vertebrates. Moreover, we discuss some genetic studies highlighting the phenotypic consequences of impaired notochord development, which enabled to understand the molecular basis of different human congenital defects and diseases.
Collapse
Affiliation(s)
- Diana Corallo
- Department of Molecular Medicine, University of Padova, Viale G. Colombo 3, 35131 Padua, Italy
| | - Valeria Trapani
- Department of Molecular Medicine, University of Padova, Viale G. Colombo 3, 35131 Padua, Italy
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, Viale G. Colombo 3, 35131 Padua, Italy
| |
Collapse
|
25
|
Adaxial cell migration in the zebrafish embryo is an active cell autonomous property that requires the Prdm1a transcription factor. Differentiation 2015; 89:77-86. [DOI: 10.1016/j.diff.2015.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/17/2015] [Accepted: 03/17/2015] [Indexed: 02/06/2023]
|
26
|
Li J, Yue Y, Dong X, Jia W, Li K, Liang D, Dong Z, Wang X, Nan X, Zhang Q, Zhao Q. Zebrafish foxc1a plays a crucial role in early somitogenesis by restricting the expression of aldh1a2 directly. J Biol Chem 2015; 290:10216-28. [PMID: 25724646 DOI: 10.1074/jbc.m114.612572] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Indexed: 11/06/2022] Open
Abstract
Foxc1a is a member of the forkhead transcription factors. It plays an essential role in zebrafish somitogenesis. However, little is known about the molecular mechanisms underlying its controlling somitogenesis. To uncover how foxc1a regulates zebrafish somitogenesis, we generated foxc1a knock-out zebrafish using TALEN (transcription activator-like effector nuclease) technology. The foxc1a null embryos exhibited defective somites at early development. Analyses on the expressions of the key genes that control processes of somitogenesis revealed that foxc1a controlled early somitogenesis by regulating the expression of myod1. In the somites of foxc1a knock-out embryos, expressions of fgf8a and deltaC were abolished, whereas the expression of aldh1a2 (responsible for providing retinoic acid signaling) was significantly increased. Once the increased retinoic acid level in the foxc1a null embryos was reduced by knocking down aldh1a2, the reduced expression of myod1 was partially rescued by resuming expressions of fgf8a and deltaC in the somites of the mutant embryos. Moreover, a chromatin immunoprecipitation assay on zebrafish embryos revealed that Foxc1a bound aldh1a2 promoter directly. On the other hand, neither knocking down fgf8a nor inhibiting Notch signaling affected the expression of aldh1a2, although knocking down fgf8a reduced expression of deltaC in the somites of zebrafish embryos at early somitogenesis and vice versa. Taken together, our results demonstrate that foxc1a plays an essential role in early somitogenesis by controlling Fgf and Notch signaling through restricting the expression of aldh1a2 in paraxial mesoderm directly.
Collapse
Affiliation(s)
- Jingyun Li
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China and the Maternal and Child Health Medical Institute, Nanjing Maternal and Child Health Care Hospital Affiliated with Nanjing Medical University, Nanjing 210004, China
| | - Yunyun Yue
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China and
| | - Xiaohua Dong
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China and
| | - Wenshuang Jia
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China and
| | - Kui Li
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China and
| | - Dong Liang
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China and
| | - Zhangji Dong
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China and
| | - Xiaoxiao Wang
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China and
| | - Xiaoxi Nan
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China and
| | - Qinxin Zhang
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China and
| | - Qingshun Zhao
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China and
| |
Collapse
|
27
|
Jackson HE, Ono Y, Wang X, Elworthy S, Cunliffe VT, Ingham PW. The role of Sox6 in zebrafish muscle fiber type specification. Skelet Muscle 2015; 5:2. [PMID: 25671076 PMCID: PMC4323260 DOI: 10.1186/s13395-014-0026-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/10/2014] [Indexed: 12/22/2022] Open
Abstract
Background The transcription factor Sox6 has been implicated in regulating muscle fiber type-specific gene expression in mammals. In zebrafish, loss of function of the transcription factor Prdm1a results in a slow to fast-twitch fiber type transformation presaged by ectopic expression of sox6 in slow-twitch progenitors. Morpholino-mediated Sox6 knockdown can suppress this transformation but causes ectopic expression of only one of three slow-twitch specific genes assayed. Here, we use gain and loss of function analysis to analyse further the role of Sox6 in zebrafish muscle fiber type specification. Methods The GAL4 binary misexpression system was used to express Sox6 ectopically in zebrafish embryos. Cis-regulatory elements were characterized using transgenic fish. Zinc finger nuclease mediated targeted mutagenesis was used to analyse the effects of loss of Sox6 function in embryonic, larval and adult zebrafish. Zebrafish transgenic for the GCaMP3 Calcium reporter were used to assay Ca2+ transients in wild-type and mutant muscle fibres. Results Ectopic Sox6 expression is sufficient to downregulate slow-twitch specific gene expression in zebrafish embryos. Cis-regulatory elements upstream of the slow myosin heavy chain 1 (smyhc1) and slow troponin c (tnnc1b) genes contain putative Sox6 binding sites required for repression of the former but not the latter. Embryos homozygous for sox6 null alleles expressed tnnc1b throughout the fast-twitch muscle whereas other slow-specific muscle genes, including smyhc1, were expressed ectopically in only a subset of fast-twitch fibers. Ca2+ transients in sox6 mutant fast-twitch fibers were intermediate in their speed and amplitude between those of wild-type slow- and fast-twitch fibers. sox6 homozygotes survived to adulthood and exhibited continued misexpression of tnnc1b as well as smaller slow-twitch fibers. They also exhibited a striking curvature of the spine. Conclusions The Sox6 transcription factor is a key regulator of fast-twitch muscle fiber differentiation in the zebrafish, a role similar to that ascribed to its murine ortholog. Electronic supplementary material The online version of this article (doi:10.1186/s13395-014-0026-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Harriet E Jackson
- ASTAR Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore, 138673 Republic of Singapore ; Bateson Centre, University of Sheffield, Western Bank, Sheffield, S10 2TN UK
| | - Yosuke Ono
- ASTAR Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore, 138673 Republic of Singapore
| | - Xingang Wang
- ASTAR Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore, 138673 Republic of Singapore
| | - Stone Elworthy
- Bateson Centre, University of Sheffield, Western Bank, Sheffield, S10 2TN UK
| | - Vincent T Cunliffe
- Bateson Centre, University of Sheffield, Western Bank, Sheffield, S10 2TN UK
| | - Philip W Ingham
- ASTAR Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore, 138673 Republic of Singapore ; Lee Kong Chian School of Medicine, Nanyang Technological University, Proteos, 61 Biopolis Drive, Singapore, 138673 Republic of Singapore ; Department of Medicine, Imperial College, South Kensington Campus, London, SW7 2AZ UK
| |
Collapse
|
28
|
Gurevich D, Siegel A, Currie PD. Skeletal myogenesis in the zebrafish and its implications for muscle disease modelling. Results Probl Cell Differ 2015; 56:49-76. [PMID: 25344666 DOI: 10.1007/978-3-662-44608-9_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Current evidence indicates that post-embryonic muscle growth and regeneration in amniotes is mediated almost entirely by stem cells derived from muscle progenitor cells (MPCs), known as satellite cells. Exhaustion and impairment of satellite cell activity is involved in the severe muscle loss associated with degenerative muscle diseases such as Muscular Dystrophies and is the main cause of age-associated muscle wasting. Understanding the molecular and cellular basis of satellite cell function in muscle generation and regeneration (myogenesis) is critical to the broader goal of developing treatments that may ameliorate such conditions. Considerable knowledge exists regarding the embryonic stages of amniote myogenesis. Much less is known about how post-embryonic amniote myogenesis proceeds, how adult myogenesis relates to embryonic myogenesis on a cellular or genetic level. Of the studies focusing on post-embryonic amniote myogenesis, most are post-mortem and in vitro analyses, precluding the understanding of cellular behaviours and genetic mechanisms in an undisturbed in vivo setting. Zebrafish are optically clear throughout much of their post-embryonic development, facilitating their use in live imaging of cellular processes. Zebrafish also possess a compartment of MPCs, which appear similar to satellite cells and persist throughout the post-embryonic development of the fish, permitting their use in examining the contribution of these cells to muscle tissue growth and regeneration.
Collapse
Affiliation(s)
- David Gurevich
- Australian Regenerative Medicine Institute, Monash University, Level 1, Building 75, Wellington Road, Clayton, VIC, 3800, Australia
| | | | | |
Collapse
|
29
|
Liu JT, Bain LJ. Arsenic inhibits hedgehog signaling during P19 cell differentiation. Toxicol Appl Pharmacol 2014; 281:243-53. [PMID: 25448440 DOI: 10.1016/j.taap.2014.10.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/02/2014] [Accepted: 10/14/2014] [Indexed: 11/30/2022]
Abstract
Arsenic is a toxicant found in ground water around the world, and human exposure mainly comes from drinking water or from crops grown in areas containing arsenic in soils or water. Epidemiological studies have shown that arsenic exposure during development decreased intellectual function, reduced birth weight, and altered locomotor activity, while in vitro studies have shown that arsenite decreased muscle and neuronal cell differentiation. The sonic hedgehog (Shh) signaling pathway plays an important role during the differentiation of both neurons and skeletal muscle. The purpose of this study was to investigate whether arsenic can disrupt Shh signaling in P19 mouse embryonic stem cells, leading to changes muscle and neuronal cell differentiation. P19 embryonic stem cells were exposed to 0, 0.25, or 0.5 μM of sodium arsenite for up to 9 days during cell differentiation. We found that arsenite exposure significantly reduced transcript levels of genes in the Shh pathway in both a time and dose-dependent manner. This included the Shh ligand, which was decreased 2- to 3-fold, the Gli2 transcription factor, which was decreased 2- to 3-fold, and its downstream target gene Ascl1, which was decreased 5-fold. GLI2 protein levels and transcriptional activity were also reduced. However, arsenic did not alter GLI2 primary cilium accumulation or nuclear translocation. Moreover, additional extracellular SHH rescued the inhibitory effects of arsenic on cellular differentiation due to an increase in GLI binding activity. Taken together, we conclude that arsenic exposure affected Shh signaling, ultimately decreasing the expression of the Gli2 transcription factor. These results suggest a mechanism by which arsenic disrupts cell differentiation.
Collapse
Affiliation(s)
- Jui Tung Liu
- Environmental Toxicology Program, Clemson University, 132 Long Hall, Clemson, SC 29634, USA
| | - Lisa J Bain
- Environmental Toxicology Program, Clemson University, 132 Long Hall, Clemson, SC 29634, USA; Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634, USA.
| |
Collapse
|
30
|
Skobo T, Benato F, Grumati P, Meneghetti G, Cianfanelli V, Castagnaro S, Chrisam M, Di Bartolomeo S, Bonaldo P, Cecconi F, Valle LD. Zebrafish ambra1a and ambra1b knockdown impairs skeletal muscle development. PLoS One 2014; 9:e99210. [PMID: 24922546 PMCID: PMC4055674 DOI: 10.1371/journal.pone.0099210] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 05/12/2014] [Indexed: 11/28/2022] Open
Abstract
The essential role of autophagy in muscle homeostasis has been clearly demonstrated by phenotype analysis of mice with muscle-specific inactivation of genes encoding autophagy-related proteins. Ambra1 is a key component of the Beclin 1 complex and, in zebrafish, it is encoded by two paralogous genes, ambra1a and ambra1b, both required for normal embryogenesis and larval development. In this study we focused on the function of Ambra1, a positive regulator of the autophagic process, during skeletal muscle development by means of morpholino (MO)-mediated knockdown and compared the phenotype of zebrafish Ambra1-depleted embryos with that of Ambra1gt/gt mouse embryos. Morphological analysis of zebrafish morphant embryos revealed that silencing of ambra1 impairs locomotor activity and muscle development, as well as myoD1 expression. Skeletal muscles in ATG-morphant embryos displayed severe histopathological changes and contained only small areas of organized myofibrils that were widely dispersed throughout the cell. Double knockdown of ambra1a and ambra1b resulted in a more severe phenotype whereas defects were much less evident in splice-morphants. The morphants phenotypes were effectively rescued by co-injection with human AMBRA1 mRNA. Together, these results indicate that ambra1a and ambra1b are required for the correct development and morphogenesis of skeletal muscle.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/deficiency
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Birefringence
- Cell Proliferation
- Embryo, Nonmammalian/abnormalities
- Embryo, Nonmammalian/metabolism
- Embryo, Nonmammalian/pathology
- Gene Expression Regulation, Developmental/drug effects
- Gene Knockdown Techniques
- Mice
- Morpholinos/pharmacology
- Movement
- Muscle Development/genetics
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/pathology
- Muscle Fibers, Skeletal/ultrastructure
- Muscle, Skeletal/abnormalities
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/embryology
- Muscle, Skeletal/metabolism
- MyoD Protein/metabolism
- Myosins/metabolism
- PAX7 Transcription Factor/metabolism
- Zebrafish/embryology
- Zebrafish/genetics
- Zebrafish Proteins/deficiency
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Tatjana Skobo
- Department of Biology, University of Padova, Padova, Italy
| | | | - Paolo Grumati
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | | | - Silvia Castagnaro
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Martina Chrisam
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Francesco Cecconi
- Department of Biology, University of Tor Vergata, Rome, Italy
- Department of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico “Santa Lucia Foundation”, Rome, Italy
- Unit of Cell Stress and Survival, Danish Cancer Society Research Center, Copenhagen, Denmark
- * E-mail: (LDV); (FC)
| | - Luisa Dalla Valle
- Department of Biology, University of Padova, Padova, Italy
- * E-mail: (LDV); (FC)
| |
Collapse
|
31
|
Primary cilia control hedgehog signaling during muscle differentiation and are deregulated in rhabdomyosarcoma. Proc Natl Acad Sci U S A 2014; 111:9151-6. [PMID: 24927541 DOI: 10.1073/pnas.1323265111] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The primary cilium acts as a cellular antenna, transducing diverse signaling pathways, and recent evidence suggests that primary cilia are important in development and cancer. However, a role for cilia in normal muscle development and rhabdomyosarcoma (RMS) has not been explored. Here we implicate primary cilia in proliferation, hedgehog (Hh) signaling, and differentiation of skeletal muscle cells. Cilia and Hh signaling are highly dynamic during the differentiation of myoblasts. We show that cilia are assembled during the initial stages of myogenic differentiation but disappear as cells progress through myogenesis, concomitant with the destruction of proteins critical for cilia assembly and shortly after the Hh effector, Gli3, leaves the cilium. Importantly, we show that ablation of primary cilia strongly suppresses Hh signaling and myogenic differentiation while enhancing proliferation. Interestingly, our data further indicate that both cilia assembly and Hh signaling are deregulated in RMS, and cilia respond to Hh ligand in certain subsets of RMS cells but not others. Together, these findings provide evidence for an essential role for both primary cilia assembly and disassembly in the control of Hh signaling and early differentiation in muscle cells. We suggest that the temporally orchestrated destruction of centrosomal and ciliary proteins is a necessary antecedent for removal of the primary cilium and cessation of Hh signaling during myogenic differentiation. Additionally, our results further stratify RMS populations and highlight cilia assembly and disassembly as potential RMS drug targets.
Collapse
|
32
|
Moncaut N, Rigby PWJ, Carvajal JJ. Dial M(RF) for myogenesis. FEBS J 2013; 280:3980-90. [DOI: 10.1111/febs.12379] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 05/31/2013] [Accepted: 06/04/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Natalia Moncaut
- Division of Cancer Biology; The Institute of Cancer Research; London; UK
| | - Peter W. J. Rigby
- Division of Cancer Biology; The Institute of Cancer Research; London; UK
| | - Jaime J. Carvajal
- Molecular Embryology Team; Centro Andaluz de Biología del Desarrollo; Seville; Spain
| |
Collapse
|
33
|
Jackson HE, Ingham PW. Control of muscle fibre-type diversity during embryonic development: the zebrafish paradigm. Mech Dev 2013; 130:447-57. [PMID: 23811405 DOI: 10.1016/j.mod.2013.06.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 06/04/2013] [Accepted: 06/04/2013] [Indexed: 01/01/2023]
Abstract
Vertebrate skeletal muscle is composed of distinct types of fibre that are functionally adapted through differences in their physiological and metabolic properties. An understanding of the molecular basis of fibre-type specification is of relevance to human health and fitness. The zebrafish provides an attractive model for investigating fibre type specification; not only are their rapidly developing embryos optically transparent, but in contrast to amniotes, the embryonic myotome shows a discrete temporal and spatial separation of fibre type ontogeny that simplifies its analysis. Here we review the current state of understanding of muscle fibre type specification and differentiation during embryonic development of the zebrafish, with a particular focus on the roles of the Prdm1a and Sox6 transcription factors, and consider the relevance of these findings to higher vertebrate muscle biology.
Collapse
Affiliation(s)
- Harriet E Jackson
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | | |
Collapse
|
34
|
Minchin JEN, Williams VC, Hinits Y, Low S, Tandon P, Fan CM, Rawls JF, Hughes SM. Oesophageal and sternohyal muscle fibres are novel Pax3-dependent migratory somite derivatives essential for ingestion. Development 2013; 140:2972-84. [PMID: 23760954 DOI: 10.1242/dev.090050] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Striated muscles that enable mouth opening and swallowing during feeding are essential for efficient energy acquisition, and are likely to have played a fundamental role in the success of early jawed vertebrates. The developmental origins and genetic requirements of these muscles are uncertain. Here, we determine by indelible lineage tracing in mouse that fibres of sternohyoid muscle (SHM), which is essential for mouth opening during feeding, and oesophageal striated muscle (OSM), which is crucial for voluntary swallowing, arise from Pax3-expressing somite cells. In vivo Kaede lineage tracing in zebrafish reveals the migratory route of cells from the anteriormost somites to OSM and SHM destinations. Expression of pax3b, a zebrafish duplicate of Pax3, is restricted to the hypaxial region of anterior somites that generate migratory muscle precursors (MMPs), suggesting that Pax3b plays a role in generating OSM and SHM. Indeed, loss of pax3b function led to defective MMP migration and OSM formation, disorganised SHM differentiation, and inefficient ingestion and swallowing of microspheres. Together, our data demonstrate Pax3-expressing somite cells as a source of OSM and SHM fibres, and highlight a conserved role of Pax3 genes in the genesis of these feeding muscles of vertebrates.
Collapse
Affiliation(s)
- James E N Minchin
- Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Pistocchi A, Gaudenzi G, Foglia E, Monteverde S, Moreno-Fortuny A, Pianca A, Cossu G, Cotelli F, Messina G. Conserved and divergent functions of Nfix in skeletal muscle development during vertebrate evolution. Development 2013; 140:1528-36. [PMID: 23482488 DOI: 10.1242/dev.076315] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During mouse skeletal muscle development, the Nfix gene has a pivotal role in regulating fetal-specific transcription. Zebrafish and mice share related programs for muscle development, although zebrafish develops at a much faster rate. In fact, although mouse fetal muscle fibers form after 15 days of development, in fish secondary muscle fibers form by 48 hours post-fertilization in a process that until now has been poorly characterized mechanically. In this work, we studied the zebrafish ortholog Nfix (nfixa) and its role in the proper switch to the secondary myogenic wave. This allowed us to highlight evolutionarily conserved and divergent functions of Nfix. In fact, the knock down of nfixa in zebrafish blocks secondary myogenesis, as in mouse, but also alters primary slow muscle fiber formation. Moreover, whereas Nfix mutant mice are motile, nfixa knockdown zebrafish display impaired motility that probably depends upon disruption of the sarcoplasmic reticulum. We conclude that, during vertebrate evolution, the transcription factor Nfix lost some specific functions, probably as a consequence of the different environment in which teleosts and mammals develop.
Collapse
Affiliation(s)
- Anna Pistocchi
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Froehlich JM, Galt NJ, Charging MJ, Meyer BM, Biga PR. In vitro indeterminate teleost myogenesis appears to be dependent on Pax3. In Vitro Cell Dev Biol Anim 2013; 49:371-85. [PMID: 23613306 DOI: 10.1007/s11626-013-9616-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 04/03/2013] [Indexed: 02/06/2023]
Abstract
The zebrafish (Danio rerio) has been used extensively as a model system for developmental studies but, unlike most teleost fish, it grows in a determinate-like manner. A close relative, the giant danio (Devario cf. aequipinnatus), grows indeterminately, displaying both hyperplasia and hypertrophy of skeletal myofibers as an adult. To better understand adult muscle hyperplasia, a postlarval/postnatal process that closely resembles secondary myogenesis during development, we characterized the expression of Pax3/7, c-Met, syndecan-4, Myf5, MyoD1, myogenin, and myostatin during in vitro myogenesis, a technique that allows for the complete progression of myogenic precursor cells to myotubes. Pax7 appears to be expressed only in newly activated MPCs while Pax3 is expressed through most of the myogenic program, as are c-Met and syndecan-4. MyoD1 appears important in all stages of myogenesis, while Myf5 is likely expressed at low to background levels, and myogenin expression is enriched in myotubes. Myostatin, like MyoD1, appears to be ubiquitous at all stages. This is the first comprehensive report of key myogenic factor expression patterns in an indeterminate teleost, one that strongly suggests that Pax3 and/or Myf5 may be involved in the regulation of this paradigm. Further, it validates this species as a model organism for studying adult myogenesis in vitro, especially mechanisms underlying nascent myofiber recruitment.
Collapse
|
37
|
Banfi S, Monti L, Acquati F, Tettamanti G, de Eguileor M, Grimaldi A. Muscle development and differentiation in the urodele Ambystoma mexicanum. Dev Growth Differ 2012; 54:489-502. [PMID: 22519643 DOI: 10.1111/j.1440-169x.2012.01338.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 02/07/2012] [Accepted: 02/08/2012] [Indexed: 01/08/2023]
Abstract
Muscle differentiation has been widely described in zebrafish and Xenopus, but nothing is known about this process in amphibian urodeles. Both anatomical features and locomotor activity in urodeles are known to show intermediate features between fish and anurans. Therefore, a better understanding of myogenesis in urodeles could be useful to clarify the evolutionary changes that led to the formation of skeletal muscle in the trunk of land vertebrates. We report here a detailed morphological and molecular investigation on several embryonic stages of Ambystoma mexicanum and show that the first differentiating muscle fibers are the slow ones, originating from a myoblast population initially localized close to the notochord that forms a superficial layer on the somitic surface afterwards. Subsequently, fast fibers differentiation ensues. We also identified and cloned A. mexicanum Myf5 as a muscle-specific transcriptional factor likely involved in urodele muscle differentiation.
Collapse
Affiliation(s)
- Serena Banfi
- Department of Biotechnology and Life Science, University of Insubria, via J.H. Dunant 3, 21100, Varese, Italy
| | | | | | | | | | | |
Collapse
|
38
|
Burguière AC, Nord H, von Hofsten J. Alkali-like myosin light chain-1 (myl1) is an early marker for differentiating fast muscle cells in zebrafish. Dev Dyn 2011; 240:1856-63. [PMID: 21674687 DOI: 10.1002/dvdy.22677] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
During myogenesis, muscle precursors become divided into either fast- or slow-twitch fibres, which in the zebrafish occupy distinct domains in the embryo. Genes encoding sarcomeric proteins specific for fast or slow fibres are frequently used as lineage markers. In an attempt to identify and evaluate early definitive markers for cells in the fast-twitch pathway, we analysed genes encoding proteins contributing to the fast sarcomeric structures. The previously uncharacterized zebrafish alkali-like myosin light chain gene (myl1) was found to be expressed exclusively in cells in the fast-twitch pathway initiated at an early stage of fast fibre differentiation. Myl1 was expressed earlier, and in a more fibre type restricted manner, than any of the previously described and frequently used fast myosin light and heavy chain and troponin muscle markers mylz2, mylz3, tnni2, tnnt3a, fMyHC1.3. In summary, this study introduces a novel marker for early differentiating fast muscle cells.
Collapse
Affiliation(s)
- A C Burguière
- Umeå Centre for Molecular Medicine, UCMM, Umeå University, Umeå, Sweden
| | | | | |
Collapse
|
39
|
Seger C, Hargrave M, Wang X, Chai RJ, Elworthy S, Ingham PW. Analysis of Pax7 expressing myogenic cells in zebrafish muscle development, injury, and models of disease. Dev Dyn 2011; 240:2440-51. [PMID: 21954137 DOI: 10.1002/dvdy.22745] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2011] [Indexed: 11/08/2022] Open
Abstract
The transcription factor Pax7 is a marker and regulator of muscle progenitors and satellite cells that contribute to the embryonic development and postembryonic growth of skeletal muscle in vertebrates, as well as to its repair and regeneration. Here, we identify Pax7(+ve) myogenic cells in the zebrafish and characterize their behavior in postembryonic stages. Mononucleate Pax7(+ve) cells can first be found associated with myofibers at 72 hours post fertilization (hpf). To follow the behavior of muscle progenitor cells in vivo, we generated transgenic lines expressing fluorescent proteins under the control of the pax7a or pax3a promoters. We established an injury model using cardiotoxin injection and monitored cell proliferation and myogenic regulatory factor expression in myogenic precursors cells and muscle fibers after injury using proliferation markers and the transgenic lines. We also analyzed Pax7(+ve) cells in animals with dystrophic phenotypes and found an increased number compared with wild-type.
Collapse
Affiliation(s)
- Claudia Seger
- MRC Centre for Developmental and Biomedical Genetics, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
| | | | | | | | | | | |
Collapse
|
40
|
Lobbardi R, Lambert G, Zhao J, Geisler R, Kim HR, Rosa FM. Fine-tuning of Hh signaling by the RNA-binding protein Quaking to control muscle development. Development 2011; 138:1783-94. [PMID: 21447554 DOI: 10.1242/dev.059121] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The development of the different muscles within the somite is a complex process that involves the Hedgehog (Hh) signaling pathway. To specify the proper number of muscle cells and organize them spatially and temporally, the Hh signaling pathway needs to be precisely regulated at different levels, but only a few factors external to the pathway have been described. Here, we report for the first time the role of the STAR family RNA-binding protein Quaking A (QkA) in somite muscle development. We show in zebrafish that the loss of QkA function affects fast muscle fiber maturation as well as Hh-induced muscle derivative specification and/or morphogenesis. Mosaic analysis reveals that fast fiber maturation depends on the activity of QkA in the environment of fast fiber progenitors. We further show that Hh signaling requires QkA activity for muscle development. By an in silico approach, we screened the 3'UTRs of known Hh signaling component mRNAs for the Quaking response element and found the transcription factor Gli2a, a known regulator of muscle fate development. Using destabilized GFP as a reporter, we show that the gli2a mRNA 3'UTR is a functional QkA target. Consistent with this notion, the loss of QkA function rescued slow muscle fibers in yot mutant embryos, which express a dominant-negative Gli2a isoform. Thus, our results reveal a new mechanism to ensure muscle cell fate diversity by fine-tuning of the Hh signaling pathway via RNA-binding proteins.
Collapse
Affiliation(s)
- Riadh Lobbardi
- Ecole Normale Supérieure, Institut de Biologie, 46 rue d'Ulm, 75005 Paris, France
| | | | | | | | | | | |
Collapse
|
41
|
Hsu RJ, Lin CC, Su YF, Tsai HJ. dickkopf-3-related gene regulates the expression of zebrafish myf5 gene through phosphorylated p38a-dependent Smad4 activity. J Biol Chem 2010; 286:6855-64. [PMID: 21159776 DOI: 10.1074/jbc.m110.161638] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Myf5 is a myogenic regulatory factor that functions in myogenesis. An intronic microRNA, miR-In300, located within zebrafish myf5 intron I, has been reported to silence myf5 through the targeting of dickkopf-3-related gene (dkk3r). However, the molecular mechanism underlying the control of myf5 expression by dkk3r is unknown. By injecting dkk3r-specific morpholino-oligonucleotide (dkk3r-MO) to knock down Dkk3r, we found that the phosphorylated p38a protein was reduced. Knockdown of p38a resulted in malformed somites and reduced myf5 transcripts, which photocopied the defects induced by injection of dkk3r-MO. To block the MAPK pathway, phosphorylation of p38 was inhibited by introduction of SB203580, which caused the down-regulation of myf5 expression. The GFP signal was dramatically decreased in somites when we injected p38a-MO into embryos derived from transgenic line Tg(myf5(80K):GFP), in which the GFP was driven by the myf5 promoter. Although these p38a-MO-induced defects were rescued by co-injection with p38a mRNA, they were not rescued with p38a mRNA containing a mutation at the phosphorylation domain. Moreover, overexpression of Smad2 or Smad3a enhanced myf5 expression, but the defects induced by the dominant negative form of either Smad2 or Smad3a equaled those of embryos injected with either dkk3r-MO or p38a-MO. These results support the involvement of Smad2·Smad3a in p38a mediation. Overexpression of Smad4 enabled the rescue of myf5 defects in the dkk3r-MO-injected embryos, but knockdown of either dkk3r or p38a caused Smad4 protein to lose stability. Therefore, we concluded that Dkk3r regulates p38a phosphorylation to maintain Smad4 stability, in turn enabling the Smad2·Smad3a·Smad4 complex to form and activate the myf5 promoter.
Collapse
Affiliation(s)
- Ren-Jun Hsu
- Institute of Molecular and Cellular Biology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 106, Taiwan
| | | | | | | |
Collapse
|
42
|
Osborn DPS, Li K, Hinits Y, Hughes SM. Cdkn1c drives muscle differentiation through a positive feedback loop with Myod. Dev Biol 2010; 350:464-75. [PMID: 21147088 DOI: 10.1016/j.ydbio.2010.12.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 12/01/2010] [Accepted: 12/03/2010] [Indexed: 01/15/2023]
Abstract
Differentiation often requires conversion of analogue signals to a stable binary output through positive feedback. Hedgehog (Hh) signalling promotes myogenesis in the vertebrate somite, in part by raising the activity of muscle regulatory factors (MRFs) of the Myod family above a threshold. Hh is known to enhance MRF expression. Here we show that Hh is also essential at a second step that increases Myod protein activity, permitting it to promote Myogenin expression. Hh acts by inducing expression of cdkn1c (p57(Kip2)) in slow muscle precursor cells, but neither Hh nor Cdkn1c is required for their cell cycle exit. Cdkn1c co-operates with Myod to drive differentiation of several early zebrafish muscle fibre types. Myod in turn up-regulates cdkn1c, thereby providing a positive feedback loop that switches myogenic cells to terminal differentiation.
Collapse
Affiliation(s)
- Daniel P S Osborn
- King's College London, Randall Division for Cell and Molecular Biophysics, London, UK
| | | | | | | |
Collapse
|
43
|
Cranioectodermal Dysplasia, Sensenbrenner syndrome, is a ciliopathy caused by mutations in the IFT122 gene. Am J Hum Genet 2010; 86:949-56. [PMID: 20493458 DOI: 10.1016/j.ajhg.2010.04.012] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 04/07/2010] [Accepted: 04/21/2010] [Indexed: 11/24/2022] Open
Abstract
Cranioectodermal dysplasia (CED) is a disorder characterized by craniofacial, skeletal, and ectodermal abnormalities. Most cases reported to date are sporadic, but a few familial cases support an autosomal-recessive inheritance pattern. Aiming at the elucidation of the genetic basis of CED, we collected 13 patients with CED symptoms from 12 independent families. In one family with consanguineous parents two siblings were affected, permitting linkage analysis and homozygosity mapping. This revealed a single region of homozygosity with a significant LOD score (3.57) on chromosome 3q21-3q24. By sequencing candidate genes from this interval we found a homozygous missense mutation in the IFT122 (WDR10) gene that cosegregated with the disease. Examination of IFT122 in our patient cohort revealed one additional homozygous missense change in the patient from a second consanguineous family. In addition, we found compound heterozygosity for a donor splice-site change and a missense change in one sporadic patient. All mutations were absent in 340 control chromosomes. Because IFT122 plays an important role in the assembly and maintenance of eukaryotic cilia, we investigated patient fibroblasts and found significantly reduced frequency and length of primary cilia as compared to controls. Furthermore, we transiently knocked down ift122 in zebrafish embryos and observed the typical phenotype found in other models of ciliopathies. Because not all of our patients harbored mutations in IFT122, CED seems to be genetically heterogeneous. Still, by identifying CED as a ciliary disorder, our study suggests that the causative mutations in the unresolved cases most likely affect primary cilia function too.
Collapse
|
44
|
Yao J, Zhou J, Liu Q, Lu D, Wang L, Qiao X, Jia W. Atoh8, a bHLH transcription factor, is required for the development of retina and skeletal muscle in zebrafish. PLoS One 2010; 5:e10945. [PMID: 20532172 PMCID: PMC2880597 DOI: 10.1371/journal.pone.0010945] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Accepted: 05/12/2010] [Indexed: 12/15/2022] Open
Abstract
Background Math6/atoh8, a bHLH transcription factor, is thought to be indispensable for early embryonic development and likely has important roles in vertebrate tissue-specific differentiation. However, the function of Atoh8 during early development is not clear because homozygous knockout causes embryonic lethality in mice. We have examined the effects of the atoh8 gene on the differentiation of retina and skeletal muscle during early development in zebrafish. Results We isolated a Math6 homologue in zebrafish, designated as zebrafish atoh8. Whole -mount in situ hybridization analysis showed that zebrafish atoh8 is dynamically expressed mainly in developing retina and skeletal muscle. Atoh8-MO knock-down resulted in reduced eye size with disorganization of retinal lamination. The reduction of atoh8 function also affected the arrangement of paraxial cells and differentiated muscle fibers during somite morphogenesis. Conclusion Our results show that Atoh8 is an important regulator for the development of both the retina and skeletal muscles necessary for neural retinal cell and myogenic differentiation during zebrafish embryogenesis.
Collapse
Affiliation(s)
- Jihua Yao
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
- * E-mail: (JY) (JY); (WJ) (WJ)
| | - Jingyao Zhou
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Qiaoling Liu
- Pathology Laboratory, Shanghai Research Center for Biomodel Organisms, Shanghai, China
| | - Daru Lu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Lu Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaojing Qiao
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - William Jia
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
- Department of Surgery, University of British Columbia, Vancouver, Canada
- * E-mail: (JY) (JY); (WJ) (WJ)
| |
Collapse
|
45
|
Hsu RJ, Lin CY, Hoi HS, Zheng SK, Lin CC, Tsai HJ. Novel intronic microRNA represses zebrafish myf5 promoter activity through silencing dickkopf-3 gene. Nucleic Acids Res 2010; 38:4384-93. [PMID: 20236986 PMCID: PMC2910042 DOI: 10.1093/nar/gkq148] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A strong, negative cis-element located at the first intron +502/+835 (I300) of zebrafish myf5 has been reported. To elucidate the molecular mechanism underlying this repression network, we microinjected zebrafish single-cell embryos with I300 RNA, resulting in the dramatic reduction of luciferase activity driven by the myf5 promoter. Within this I300 segment, we identified an intronic microRNA (miR-In300) located at +609/+632 and found that it was more highly expressed in the older mature somites than those newly formed, which negatively correlated with the distribution of zebrafish myf5 transcripts. We proved that miR-In300 suppressed the transcription of myf5 through abolishing myf5 promoter activity, and we subsequently identified the long isoform of the Dickkopf-3 gene (dkk3) as the target gene of miR-In300. We further found that injection of the dkk3-morpholinos (MOs) resulted in downregulation of myf5 transcripts in somites, whereas co-injection of myf5 mRNA with dkk3-MO1 enabled rescue of the defects induced by dkk3-MO1 alone. Finally, injection of miR-In300-MO enhanced both myf5 transcripts in somites and the level of Dkk3 protein in zebrafish embryos. Based on these findings, we concluded that miR-In300 binds to its target gene dkk3, which inhibits the translation of dkk3 mRNA and, in turn, suppresses zebrafish myf5 promoter activity.
Collapse
Affiliation(s)
- Ren-Jun Hsu
- Institute of Molecular and Cellular Biology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 106, Taiwan
| | | | | | | | | | | |
Collapse
|
46
|
Richardson MK, Gobes SM, van Leeuwen AC, Polman JA, Pieau C, Sánchez-Villagra MR. Heterochrony in limb evolution: developmental mechanisms and natural selection. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2009; 312:639-64. [DOI: 10.1002/jez.b.21250] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
47
|
Loucks EJ, Ahlgren SC. Deciphering the role of Shh signaling in axial defects produced by ethanol exposure. ACTA ACUST UNITED AC 2009; 85:556-67. [PMID: 19235835 DOI: 10.1002/bdra.20564] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The phenotype of embryos exposed to ethanol is complex and likely due to multiple alterations in developmental pathways. We have previously demonstrated that Sonic hedgehog signaling (Shh-s) was reduced in both chicken and zebrafish embryos when exposed to ethanol. METHODS There are many tissues affected by embryonic ethanol exposure, and in this article we explore the development of axial tissues, using zebrafish embryos. We then compare these effects to the phenotypes produced by exposure to two drugs that also inhibit Shh-s: cyclopamine and forskolin. RESULTS We found alterations in the development of the notochord and somites produced by all three compounds, although only ethanol produced developmental delay of epiboly. Upon observation of early developing embryos, muscle pioneer cells were completely lost in cyclopamine-treated embryos, and reduced, but less so, in embryos treated with forskolin and ethanol. Ethanol treatment produced a dose-dependent reduction in total body length that may be linked to epiboly delay seen earlier during development. Despite the differences between cyclopamine and forskolin, we found that shh mRNA injection rescued the short body length, the alteration in somite shape, and the cyclopia produced by ethanol exposure. CONCLUSIONS Taken together, each teratogen produced a unique set of phenotypic changes in the body axis, suggesting that each compound affects Shh-s and also produces a distinctive set of molecular alterations. However, addition of exogenous Shh to ethanol treated zebrafish prevented many of the gross physical phenotypes, suggesting that the suppression of Shh-s is one of the major effects of ethanol exposure.
Collapse
Affiliation(s)
- Evyn J Loucks
- Children's Memorial Research Center Program in Developmental Biology, Chicago, Illinois 60640, USA
| | | |
Collapse
|
48
|
Hinits Y, Osborn DPS, Hughes SM. Differential requirements for myogenic regulatory factors distinguish medial and lateral somitic, cranial and fin muscle fibre populations. Development 2009; 136:403-14. [PMID: 19141670 DOI: 10.1242/dev.028019] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Myogenic regulatory factors of the Myod family (MRFs) are transcription factors essential for mammalian skeletal myogenesis. However, the roles of each gene in myogenesis remain unclear, owing partly to genetic linkage at the Myf5/Mrf4 locus and to rapid morphogenetic movements in the amniote somite. In mice, Myf5 is essential for the earliest epaxial myogenesis, whereas Myod is required for timely differentiation of hypaxially derived muscle. A second major subdivision of the somite is between primaxial muscle of the somite proper and abaxial somite-derived migratory muscle precursors. Here, we use a combination of mutant and morphant analysis to ablate the function of each of the four conserved MRF genes in zebrafish, an organism that has retained a more ancestral bodyplan. We show that a fundamental distinction in somite myogenesis is into medial versus lateral compartments, which correspond to neither epaxial/hypaxial nor primaxial/abaxial subdivisions. In the medial compartment, Myf5 and/or Myod drive adaxial slow fibre and medial fast fibre differentiation. Myod-driven Myogenin activity alone is sufficient for lateral fast somitic and pectoral fin fibre formation from the lateral compartment, as well as for cranial myogenesis. Myogenin activity is a significant contributor to fast fibre differentiation. Mrf4 does not contribute to early myogenesis in zebrafish. We suggest that the differential use of duplicated MRF paralogues in this novel two-component myogenic system facilitated the diversification of vertebrates.
Collapse
Affiliation(s)
- Yaniv Hinits
- Randall Division for Cell and Molecular Biophysics and MRC Centre for Developmental Neurobiology, New Hunt's House, Guy's Campus, King's College London, SE1 1UL, UK
| | | | | |
Collapse
|
49
|
Chong SW, Korzh V, Jiang YJ. Myogenesis and molecules - insights from zebrafish Danio rerio. JOURNAL OF FISH BIOLOGY 2009; 74:1693-1755. [PMID: 20735668 DOI: 10.1111/j.1095-8649.2009.02174.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Myogenesis is a fundamental process governing the formation of muscle in multicellular organisms. Recent studies in zebrafish Danio rerio have described the molecular events occurring during embryonic morphogenesis and have thus greatly clarified this process, helping to distinguish between the events that give rise to fast v. slow muscle. Coupled with the well-known Hedgehog signalling cascade and a wide variety of cellular processes during early development, the continual research on D. rerio slow muscle precursors has provided novel insights into their cellular behaviours in this organism. Similarly, analyses on fast muscle precursors have provided knowledge of the behaviour of a sub-set of epitheloid cells residing in the anterior domain of somites. Additionally, the findings by various groups on the roles of several molecules in somitic myogenesis have been clarified in the past year. In this study, the authors briefly review the current trends in the field of research of D. rerio trunk myogenesis.
Collapse
Affiliation(s)
- S-W Chong
- Laboratory of Developmental Signalling and Patterning, Genes and Development Division, A STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore.
| | | | | |
Collapse
|
50
|
Cerda GA, Hargrave M, Lewis KE. RNA profiling of FAC-sorted neurons from the developing zebrafish spinal cord. Dev Dyn 2009; 238:150-61. [PMID: 19097188 DOI: 10.1002/dvdy.21818] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In this report, we describe a successful protocol for isolating and expression-profiling live fluorescent-protein-labelled neurons from zebrafish embryos. As a proof-of-principle for this method, we FAC-sorted and RNA-profiled GFP-labelled spinal CiA interneurons and compared the expression profile of these cells to those of post-mitotic spinal neurons in general and to all trunk cells. We show that RNA of sufficient quality and quantity to uncover both expected and novel transcription profiles via Affymetrix microarray analysis can be extracted from 5,700 to 20,000 FAC-sorted cells. As part of this study, we also further confirm the genetic homology of mammalian and zebrafish V1 interneurons, by demonstrating that zebrafish V1 cells (CiAs) express genes that encode for the transcription factors Lhx1a and Lhx5. This protocol for dissociating, sorting and RNA-profiling neurons from organogenesis-stage zebrafish embryos should also be applicable to other developing organs and tissues and potentially other model organisms.
Collapse
Affiliation(s)
- Gustavo A Cerda
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | | | | |
Collapse
|