1
|
Banousse G, Normandeau E, Semeniuk C, Bernatchez L, Audet C. Parental thermal environment controls the offspring phenotype in Brook charr (Salvelinus fontinalis): insights from a transcriptomic study. G3 (BETHESDA, MD.) 2024; 14:jkae051. [PMID: 38478598 PMCID: PMC11075542 DOI: 10.1093/g3journal/jkae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/01/2024] [Indexed: 05/08/2024]
Abstract
Brook charr is a cold-water species which is highly sensitive to increased water temperatures, such as those associated with climate change. Environmental variation can potentially induce phenotypic changes that are inherited across generations, for instance, via epigenetic mechanisms. Here, we tested whether parental thermal regimes (intergenerational plasticity) and offspring-rearing temperatures (within-generational plasticity) modify the brain transcriptome of Brook charr progeny (fry stage). Parents were exposed to either cold or warm temperatures during final gonad maturation and their progeny were reared at 5 or 8 °C during the first stages of development. Illumina Novaseq6000 was used to sequence the brain transcriptome at the yolk sac resorption stage. The number of differentially expressed genes was very low when comparing fry reared at different temperatures (79 differentially expressed genes). In contrast, 9,050 differentially expressed genes were significantly differentially expressed between fry issued from parents exposed to either cold or warm temperatures. There was a significant downregulation of processes related to neural and synaptic activity in fry originating from the warm parental group vs fry from the cold parental one. We also observed significant upregulation of DNA methylation genes and of the most salient processes associated with compensation to warming, such as metabolism, cellular response to stress, and adaptive immunity.
Collapse
Affiliation(s)
- Ghizlane Banousse
- Institut des sciences de la mer de Rimouski (ISMER), Université du Québec à Rimouski (UQAR), Rimouski, QC, Canada G5L 2Z9
| | - Eric Normandeau
- Plateforme de bio-informatique de l’IBIS (Institut de Biologie Intégrative et des Systèmes), Université Laval, Québec, QC, Canada G1V 0A6
| | - Christina Semeniuk
- Great Lakes Institute for Environmental Research (GLIER), University of Windsor, Windsor, Ont, Canada N9C 1A2
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Céline Audet
- Institut des sciences de la mer de Rimouski (ISMER), Université du Québec à Rimouski (UQAR), Rimouski, QC, Canada G5L 2Z9
| |
Collapse
|
2
|
Miltiadous A, Callahan DL, Dujon AM, Buchanan KL, Rollins LA. Maternally derived avian corticosterone affects offspring genome-wide DNA methylation in a passerine species. Mol Ecol 2024; 33:e17283. [PMID: 38288572 DOI: 10.1111/mec.17283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/13/2023] [Indexed: 03/07/2024]
Abstract
Avian embryos develop in an egg composition which reflects both maternal condition and the recent environment of their mother. In birds, yolk corticosterone (CORT) influences development by impacting pre- and postnatal growth, as well as nestling stress responses and development. One possible mechanism through which maternal CORT may affect offspring development is via changes to offspring DNA methylation. We sought to investigate this, for the first time in birds, by quantifying the impact of manipulations to maternal CORT on offspring DNA methylation. We non-invasively manipulated plasma CORT concentrations of egg-laying female zebra finches (Taeniopygia castanotis) with an acute dose of CORT administered around the time of ovulation and collected their eggs. We then assessed DNA methylation in the resulting embryonic tissue and in their associated vitelline membrane blood vessels, during early development (5 days after lay), using two established methods - liquid chromatography-mass spectrometry (LC-MS) and methylation-sensitive amplification fragment length polymorphism (MS-AFLP). LC-MS analysis showed that global DNA methylation was lower in embryos from CORT-treated mothers, compared to control embryos. In contrast, blood vessel DNA from eggs from CORT-treated mothers showed global methylation increases, compared to control samples. There was a higher proportion of global DNA methylation in the embryonic DNA of second clutches, compared to first clutches. Locus-specific analyses using MS-AFLP did not reveal a treatment effect. Our results indicate that an acute elevation of maternal CORT around ovulation impacts DNA methylation patterns in their offspring. This could provide a mechanistic understanding of how a mother's experience can affect her offspring's phenotype.
Collapse
Affiliation(s)
- Anna Miltiadous
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Damien L Callahan
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
| | - Antoine M Dujon
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
- CREEC/CANECEV (CREES), MIVEGEC, IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| | - Katherine L Buchanan
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Lee A Rollins
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Badás EP, Bauch C, Boonekamp JJ, Mulder E, Verhulst S. Ectoparasite presence and brood size manipulation interact to accelerate telomere shortening in nestling jackdaws. Mol Ecol 2023; 32:6913-6923. [PMID: 37864481 DOI: 10.1111/mec.17177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/23/2023] [Accepted: 10/12/2023] [Indexed: 10/23/2023]
Abstract
Early-life conditions impact fitness, but whether the combined effect of extrinsic stressors is additive or synergistic is not well known. This is a major knowledge gap because exposure to multiple stressors is frequent. Telomere dynamics may be instrumental when testing how stressors interact because many factors affect telomere shortening, and telomere shortening predicts survival. We evaluated the effect of manipulated brood size and natural infestation by the carnid fly Carnus hemapterus on nestling growth and telomere shortening of wild jackdaws (Corvus monedula). Telomere length, measured in blood using TRF, shortened on average by 264 bp, and on average, Carnus infection induced more telomere shortening. Further analyses showed that in enlarged broods, nestlings' telomeres shortened more when parasitized, while in reduced broods there was no effect of infection on telomere shortening. We conclude that there is a synergistic effect of number of siblings and Carnus infection on telomere shortening rate: blood-sucking parasites may negatively impact telomeres by increasing cell proliferation and/or physiological stress, and coping with infection may be less successful in enlarged broods with increased sibling competition. Larger nestlings had shorter telomeres independent of age, brood manipulation or infection. Growth was independent of infestation but in enlarged broods, nestlings were lighter at fledging. Our findings indicate that (i) evaluating consequences of early-life environmental conditions in isolation may not yield a full picture due to synergistic effects, and (ii) effects of environmental conditions may be cryptic, for example, on telomeres, with fitness consequences expressed beyond the temporal framework of the study.
Collapse
Affiliation(s)
- Elisa P Badás
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
- Department of Biodiversity, Ecology and Evolution, Complutense University of Madrid, Madrid, Spain
| | - Christina Bauch
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Jelle J Boonekamp
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Ellis Mulder
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| |
Collapse
|
4
|
Ellis GFR. Efficient, Formal, Material, and Final Causes in Biology and Technology. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1301. [PMID: 37761600 PMCID: PMC10529506 DOI: 10.3390/e25091301] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023]
Abstract
This paper considers how a classification of causal effects as comprising efficient, formal, material, and final causation can provide a useful understanding of how emergence takes place in biology and technology, with formal, material, and final causation all including cases of downward causation; they each occur in both synchronic and diachronic forms. Taken together, they underlie why all emergent levels in the hierarchy of emergence have causal powers (which is Noble's principle of biological relativity) and so why causal closure only occurs when the upwards and downwards interactions between all emergent levels are taken into account, contra to claims that some underlying physics level is by itself causality complete. A key feature is that stochasticity at the molecular level plays an important role in enabling agency to emerge, underlying the possibility of final causation occurring in these contexts.
Collapse
Affiliation(s)
- George F R Ellis
- Mathematics Department, The New Institute, University of Cape Town, 20354 Hamburg, Germany
| |
Collapse
|
5
|
Shi X, Li J, Liu T, Zhao H, Leng H, Sun K, Feng J. Divergence of cochlear transcriptomics between reference‑based and reference‑free transcriptome analyses among Rhinolophus ferrumequinum populations. PLoS One 2023; 18:e0288404. [PMID: 37432940 DOI: 10.1371/journal.pone.0288404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/26/2023] [Indexed: 07/13/2023] Open
Abstract
Differences in gene expression within tissues can lead to differences in tissue function. Understanding the transcriptome of a species helps elucidate the molecular mechanisms underlying phenotypic divergence. According to the presence or absence of a reference genome of for a studied species, transcriptome analyses can be divided into reference‑based and reference‑free methods, respectively. Presently, comparisons of complete transcriptome analysis results between those two methods are still rare. In this study, we compared the cochlear transcriptome analysis results of greater horseshoe bats (Rhinolophus ferrumequinum) from three lineages in China with different acoustic phenotypes using reference‑based and reference‑free methods to explore their differences in subsequent analysis. The results gained by reference-based results had lower false-positive rates and were more accurate because differentially expressed genes among the three populations obtained by this method had greater reliability and a higher annotation rate. Some phenotype-related enrichment terms, including those related to inorganic molecules and proton transmembrane channels, were also obtained only by the reference-based method. However, the reference‑based method might have the limitation of incomplete information acquisition. Thus, we believe that a combination of reference‑free and reference‑based methods is ideal for transcriptome analyses. The results of our study provided a reference for the selection of transcriptome analysis methods in the future.
Collapse
Affiliation(s)
- Xiaoxiao Shi
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
| | - Jun Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
| | - Tong Liu
- Department of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Hanbo Zhao
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural, Shenzhen, China
| | - Haixia Leng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, Jilin, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
- Department of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| |
Collapse
|
6
|
Sharma R, Malviya R, Singh S, Prajapati B. A Critical Review on Classified Excipient Sodium-Alginate-Based Hydrogels: Modification, Characterization, and Application in Soft Tissue Engineering. Gels 2023; 9:gels9050430. [PMID: 37233021 DOI: 10.3390/gels9050430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Alginates are polysaccharides that are produced naturally and can be isolated from brown sea algae and bacteria. Sodium alginate (SA) is utilized extensively in the field of biological soft tissue repair and regeneration owing to its low cost, high biological compatibility, and quick and moderate crosslinking. In addition to their high printability, SA hydrogels have found growing popularity in tissue engineering, particularly due to the advent of 3D bioprinting. There is a developing curiosity in tissue engineering with SA-based composite hydrogels and their potential for further improvement in terms of material modification, the molding process, and their application. This has resulted in numerous productive outcomes. The use of 3D scaffolds for growing cells and tissues in tissue engineering and 3D cell culture is an innovative technique for developing in vitro culture models that mimic the in vivo environment. Especially compared to in vivo models, in vitro models were more ethical and cost-effective, and they stimulate tissue growth. This article discusses the use of sodium alginate (SA) in tissue engineering, focusing on SA modification techniques and providing a comparative examination of the properties of several SA-based hydrogels. This review also covers hydrogel preparation techniques, and a catalogue of patents covering different hydrogel formulations is also discussed. Finally, SA-based hydrogel applications and future research areas concerning SA-based hydrogels in tissue engineering were examined.
Collapse
Affiliation(s)
- Rishav Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Bhupendra Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva 384012, India
| |
Collapse
|
7
|
Green MR, Swaney WT. Interacting effects of environmental enrichment across multiple generations on early life phenotypes in zebrafish. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B: MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022. [DOI: 10.1002/jez.b.23184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Michael R. Green
- School of Biological and Environmental Sciences Liverpool John Moores University Liverpool UK
- Chester Medical School University of Chester Chester UK
| | - William T. Swaney
- School of Biological and Environmental Sciences Liverpool John Moores University Liverpool UK
| |
Collapse
|
8
|
Phenotypic Variation in a Species Range: Another Look (Developmental Stability Study of the Meristic Variation in the Sand Lizard Lacerta agilis). Symmetry (Basel) 2022. [DOI: 10.3390/sym14112426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Variation of the meristic characteristics of pholidosis in the sand lizard, Lacerta agilis, was studied both in laboratory experiments and in natural populations. The total phenotypic variability was assessed by the variation of the sum of the number of scales on the left and on the right sides of the body (l + r), while the measure of developmental stability, providing insight into the degree of fluctuating asymmetry, or developmental variability, was assessed by the variation of the difference in the character values on the left and on the right (l − r). Experimental incubation of eggs at different temperatures demonstrates that the minimal level of both kinds of variability corresponds to a certain temperature, which can be characterized as an optimal one, increasing both with an increase and with a decrease in the temperature from this regime. The data demonstrate the crucial role of the temperature impact for the phenotypic variation under study. An increase in the level of developmental variability to the north and to the south from the center part of the species range, in the absence of an obvious trend in geographic variation of the level of total phenotypic variability, assumes an increase in the role of developmental variability in the observed phenotypic diversity at the periphery of the species range. The results obtained indicate the importance of a population phenogenetic approach, based on the developmental stability study in natural populations, to provide certain information supposing the possible nature of phenotypic diversity in a species range.
Collapse
|
9
|
Salas R, Lens L, Stienen E, Verbruggen F, Müller W. Growing up in a crowd: social environment shapes the offspring's early exploratory phenotype in a colonial breeding species. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220839. [PMID: 36300141 PMCID: PMC9579759 DOI: 10.1098/rsos.220839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
In colonial breeding species, the number of adverse social interactions during early life typically varies with breeding density. Phenotypic plasticity can help deal with this social context, by allowing offspring to adjust their behaviour. Furthermore, offspring may not be unprepared since mothers can allocate resources to their embryos that may pre-adjust them to the post-hatching conditions. Thus, we hypothesize that lesser black-backed gull chicks raised in dense breeding areas, with greater exposure to intra-specific aggression, show higher levels of anxiety and lower levels of exploration compared to chicks in low-density areas, and that this is facilitated by prenatal effects. To test this, we cross-fostered clutches within and across pre-defined high- and low-breeding density areas. We measured chicks' anxiety and exploration activity in an open-field test that included a novel and a familiar object. We found that both pre- and post-natal social environment contributed nearly equally and shaped the offspring's exploratory behaviour, but not its anxiety, in an additive way. Post-natal effects could reflect a learned avoidance of intra-specific aggression, yet identifying the pathways of the prenatal effects will require further study.
Collapse
Affiliation(s)
- Reyes Salas
- Behavioural Ecology and Ecophysiology (BECO), University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
- Terrestrial Ecology Unit (TEREC), Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
- Flemish Institute for Sea Research (VLIZ), Wandelaarkaai 7, 8400 Ostend, Belgium
| | - Luc Lens
- Terrestrial Ecology Unit (TEREC), Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Eric Stienen
- Research Institute for Nature and Forest (INBO), Herman Teirlinckgebouw, Havenlaan 88, bus 73, 1000 Brussels, Belgium
| | - Frederick Verbruggen
- Terrestrial Ecology Unit (TEREC), Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Wendt Müller
- Behavioural Ecology and Ecophysiology (BECO), University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| |
Collapse
|
10
|
Moradi B, Banihashemian M, Radmard AR, Tahmasebpour AR, Gity M, Zarkesh MR, Piri S, Zeinoddini A. A Spectrum of Ultrasound and MR Imaging of Fetal Gastrointestinal Abnormalities: Part 1 Esophagus to Colon. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2022; 41:2601-2613. [PMID: 34962317 DOI: 10.1002/jum.15932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 11/03/2021] [Accepted: 11/20/2021] [Indexed: 06/14/2023]
Abstract
Ultrasound (US) and magnetic resonance imaging (MRI) are two modalities for diagnosing fetal gastrointestinal (GI) anomalies. Ultrasound (US) is the modality of choice. MRI can be used as a complementary method. Despite its expanding utilization in central nervous system (CNS) fetal malformation, MRI has not yet been established for evaluation of fetal GI abnormalities. Therefore, more attention should be paid to the clinical implications of MRI investigations following screening by US.
Collapse
Affiliation(s)
- Behnaz Moradi
- Department of Radiology, Yas Complex Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Radiology, Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Medical Imaging Center, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Banihashemian
- Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Reza Radmard
- Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Masoumeh Gity
- Department of Radiology, Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Medical Imaging Center, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zarkesh
- Department of Neonatology, Yas Complex Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Solmaz Piri
- Department of International Affairs, National Association of Iranian Gynecologists and Obstetricians, Tehran, Iran
| | - Atefeh Zeinoddini
- Department of Radiology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
11
|
Temperature-mediated developmental plasticity in winter and summer larvae of Palaemon serratus. J Therm Biol 2022; 110:103343. [DOI: 10.1016/j.jtherbio.2022.103343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/26/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022]
|
12
|
Abstract
Animal development is an inherently complex process that is regulated by highly conserved genomic networks, and the resulting phenotype may remain plastic in response to environmental signals. Despite development having been studied in a more natural setting for the past few decades, this framework often precludes the role of microbial prokaryotes in these processes. Here, we address how microbial symbioses impact animal development from the onset of gametogenesis through adulthood. We then provide a first assessment of which developmental processes may or may not be influenced by microbial symbioses and, in doing so, provide a holistic view of the budding discipline of developmental symbiosis.
Collapse
Affiliation(s)
- Tyler J Carrier
- GEOMAR Helmholtz Centre for Ocean Research, Kiel 24105, Germany.,Zoological Institute, Christian-Albrechts University of Kiel, Kiel 24118, Germany
| | - Thomas C G Bosch
- Zoological Institute, Christian-Albrechts University of Kiel, Kiel 24118, Germany
| |
Collapse
|
13
|
Abouheif E. My road to the ants: A model clade for eco-evo-devo. Curr Top Dev Biol 2022; 147:231-290. [PMID: 35337451 DOI: 10.1016/bs.ctdb.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This chapter is the story of how I pioneered ants as a system for studying eco-evo-devo, a field that integrates developmental biology with ecology and evolutionary biology. One aim of eco-evo-devo is to understand how the interactions between genes and their environments during development facilitates the origin and evolution of novel phenotypes. In a series of six parts, I review some of the key discoveries from my lab on how novel worker caste systems in ants--soldiers and supersoldiers--originated and evolved. I also discuss some of the ideas that emerged from these discoveries, including the role that polyphenisms, hidden developmental potentials, and rudimentary organs play in facilitating developmental and evolutionary change. As superorganisms, I argue that ants are uniquely positioned to reveal types of variation that are often difficult to observe in nature. In doing so, they have the potential to transform our view of biology and provide new perspectives in medicine, agriculture, and biodiversity conservation. With my story I hope to inspire the next generation of biologists to continue exploring the unknown regions of phenotypic space to solve some of our most pressing societal challenges.
Collapse
Affiliation(s)
- Ehab Abouheif
- Department of Biology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
14
|
Ohno H, Bao Z. Small RNAs couple embryonic developmental programs to gut microbes. SCIENCE ADVANCES 2022; 8:eabl7663. [PMID: 35319987 PMCID: PMC8942359 DOI: 10.1126/sciadv.abl7663] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Embryogenesis has long been known for its robustness to environmental factors. Although developmental tuning of embryogenesis to the environment experienced by the parent may be beneficial, little is understood on whether and how developmental patterns proactively change. Here, we show that Caenorhabditis elegans undergoes alternative embryogenesis in response to maternal gut microbes. Harmful microbes result in altered endodermal cell divisions; morphological changes, including left-right asymmetric development; double association between intestinal and primordial germ cells; and partial rescue of fecundity. The miR-35 microRNA family, which is controlled by systemic endogenous RNA interference and targets the β-transducin repeat-containing protein/cell division cycle 25 (CDC25) pathway, transmits intergenerational information to regulate cell divisions and reproduction. Our findings challenge the widespread assumption that C. elegans has an invariant cell lineage that consists of a fixed cell number and provide insights into how organisms optimize embryogenesis to adapt to environmental changes through epigenetic control.
Collapse
|
15
|
Deng Z, Yang W, Blair D, Hu W, Yin M. Diversity of Brachionus plicatilis species complex (Rotifera) in inland saline waters from China: presence of a new mitochondrial clade on the Tibetan Plateau. Mol Phylogenet Evol 2022; 171:107457. [DOI: 10.1016/j.ympev.2022.107457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 02/19/2022] [Accepted: 03/15/2022] [Indexed: 12/12/2022]
|
16
|
Soldánová M, Kundid P, Scholz T, Kristoffersen R, Knudsen R. Somatic Dimorphism in Cercariae of a Bird Schistosome. Pathogens 2022; 11:pathogens11030290. [PMID: 35335614 PMCID: PMC8953619 DOI: 10.3390/pathogens11030290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022] Open
Abstract
Phenotypic polymorphism is a commonly observed phenomenon in nature, but extremely rare in free-living stages of parasites. We describe a unique case of somatic polymorphism in conspecific cercariae of the bird schistosome Trichobilharzia sp. “peregra”, in which two morphs, conspicuously different in their size, were released from a single Radix balthica snail. A detailed morphometric analysis that included multiple morphological parameters taken from 105 live and formalin-fixed cercariae isolated from several naturally infected snails provided reliable evidence for a division of all cercariae into two size groups that contained either large or small individuals. Large morph (total body length of 1368 and 1339 μm for live and formalin-fixed samples, respectively) differed significantly nearly in all morphological characteristics compared to small cercariae (total body length of 976 and 898 μm for live and formalin samples, respectively), regardless of the fixation method. Furthermore, we observed that small individuals represent the normal/commonly occurring phenotype in snail populations. The probable causes and consequences of generating an alternative, much larger phenotype in the parasite infrapopulation are discussed in the context of transmission ecology as possible benefits and disadvantages facilitating or preventing the successful completion of the life cycle.
Collapse
Affiliation(s)
- Miroslava Soldánová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic; (P.K.); (T.S.)
- Correspondence:
| | - Petra Kundid
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic; (P.K.); (T.S.)
- Department of Parasitology, Faculty of Science, University of South Bohemia in České Budějovice, 370 05 České Budějovice, Czech Republic
| | - Tomáš Scholz
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic; (P.K.); (T.S.)
- Department of Parasitology, Faculty of Science, University of South Bohemia in České Budějovice, 370 05 České Budějovice, Czech Republic
| | - Roar Kristoffersen
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, N9037 Tromsø, Norway; (R.K.); (R.K.)
| | - Rune Knudsen
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, N9037 Tromsø, Norway; (R.K.); (R.K.)
| |
Collapse
|
17
|
Perl CD, Johansen ZB, Moradinour Z, Guiraud M, Restrepo CE, Wen Jie V, Miettinen A, Baird E. Heatwave-Like Events During Development Are Sufficient to Impair Bumblebee Worker Responses to Sensory Stimuli. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.776830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Heatwaves are increasingly common globally and are known to have detrimental impacts on animal morphology and behaviour. These impacts can be severe, especially if heatwaves occur during development, even on animals that can regulate the temperature of their developing young. The onset and duration of heatwaves are stochastic and therefore may affect all or only part of development. In the heterothermic bumblebee Bombus terrestris, elevated temperatures over the entirety of development cause morphological changes in adults, despite their capability to regulate brood temperature. However, the effects of heatwaves that occur during a short period of development are unclear. We test the impact of elevated developmental temperature during the latter fraction of development on the behaviour and morphology of adult worker B. terrestris. We show that exposure to elevated temperature over a portion of late development is sufficient to impair the initial behavioural responses of workers to various sensory stimuli. Despite this, exposure to elevated temperatures during a period of development did not have any significant impact on body or organ size. The negative effect of elevated developmental temperatures was independent of the exposure time, which lasted from 11–20 days at the end of the workers’ developmental period. Thus, heat stress in bumblebees can manifest without morphological indicators and impair critical behavioural responses to relevant sensory stimuli, even if only present for a short period of time at the end of development. This has important implications for our understanding of deleterious climactic events and how we measure indicators of stress in pollinators.
Collapse
|
18
|
Pecci-Maddalena ISDEC, Skelley PE, Almeida LMDE. Erotylina Curran (Coleoptera, Erotylidae, Erotylini): redescription of type species, potential species groups and diversity of color patterns. AN ACAD BRAS CIENC 2021; 93:e20201452. [PMID: 34586321 DOI: 10.1590/0001-3765202120201452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 02/19/2021] [Indexed: 11/22/2022] Open
Abstract
The colorful genus Erotylina Curran was proposed to include a group of species originally described in Erotylus Fabricius but differing by the lack of three longitudinal carinae on the tibiae. The taxonomy of Erotylina is mostly based on coloration while information on mouthparts, thorax, male and female abdominal terminalia remain unknown. In addition, little is known about the factors underlying coloration in Erotylina and Erotylidae in general. Here we redescribe the type species of Erotylina, Erotylus leopardus Lacordaire providing the first descriptions of several morphological structures, and new data on its geographical distribution. Erotylus nicaraguae Crotch is proposed as new junior synonymy of E. leoparda. Lectotypes are designated for the following species: Erotylus leopardus Lacordaire, Erotylus nicaraguae Crotch and Erotylus confluens Crotch. Based on the geographical records, specimen labels, literature and online environmental databases, we show that E. leoparda includes two discrete morphs distributed across a latitudinal gradient, with intermediate and continuous variations distributed across altitudinal and temperature gradients. The present study sheds light on the taxonomy of Erotylina and provides the first clearest evidence of a relation between coloration, latitude, altitude, temperature variations and the distributional patterns of a taxon in Erotylidae.
Collapse
Affiliation(s)
- Italo S DE Castro Pecci-Maddalena
- Universidade Federal do Paraná (UFPR), Departamento de Zoologia, Laboratório de Sistemática e Bioecologia de Coleoptera, Caixa Postal 19020, 81531-980 Curitiba, PR, Brazil
| | - Paul E Skelley
- Florida State Collection of Arthropods, Florida Department of Agriculture - DPI, P.O. Box 147100, Gainesville, FL 32614-7100, USA
| | - Lúcia M DE Almeida
- Universidade Federal do Paraná (UFPR), Departamento de Zoologia, Laboratório de Sistemática e Bioecologia de Coleoptera, Caixa Postal 19020, 81531-980 Curitiba, PR, Brazil
| |
Collapse
|
19
|
Rossigalli-Costa N, Cury de Barros F, Cipriano AP, Prado Prandini L, Medeiros de Andrade T, Rothier PS, Lofeu L, Brandt R, Kohlsdorf T. A guide to incubate eggs of Tropidurus lizards under laboratory conditions. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2021; 336:576-584. [PMID: 34496131 DOI: 10.1002/jez.b.23095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/21/2021] [Accepted: 07/30/2021] [Indexed: 01/11/2023]
Abstract
Studies in Evo-Devo benefit from the use of a variety of organisms, as comparative approaches provide a better understanding of Biodiversity and Evolution. Standardized protocols to incubate eggs and manipulate embryo development enable postulation of additional species as suitable biological systems for research in the field. In the past decades, vertebrate lineages such as Squamata (lizards, snakes, and amphisbaenians) emerged as crucial study systems for addressing topics as diverse as phenotypic evolution and climate change. However, protocols for maintaining gravid females and incubating eggs in the lab under experimental conditions are available to only a few squamate species. This resource article presents a simple incubation guide that standardizes conditions to maintain embryos of Tropidurus catalanensis (Squamata: Tropiduridae) under different experimental conditions, manipulating relevant environmental factors like temperature and humidity. We identified associated effects relating the egg incubation condition to developmental stage, incubation time, hatching success, and resulting morphotypes. Temperature and humidity play a key role in development and require attention when establishing the experimental design. Current literature comprises information for Tropidurus lizards that ponders how general in Squamata are the ecomorphs originally described for Anolis. Studies evaluating phenotypic effects of developmental environments suggest plasticity in some of the traits that characterize the ecomorphological associations described for this family. We expect that this incubation guide encourages future studies using Tropidurus lizards to address Evo-Devo questions.
Collapse
Affiliation(s)
- Nathalia Rossigalli-Costa
- Department of Biology, FFCLRP, University of São Paulo. Avenida Bandeirantes, Ribeirão Preto, Brazil
| | - Fábio Cury de Barros
- Department of Biology, FFCLRP, University of São Paulo. Avenida Bandeirantes, Ribeirão Preto, Brazil.,Department of Ecology and Evolutionary Biology, ICAQF, Federal University of São Paulo. Rua Prof. Artur Riedel, Diadema, Brazil.,University of the Estate of Minas Gerais (UEMG/Passos). Av. Juca Stockler 1130, Passos, Brazil
| | - Ana Paula Cipriano
- Department of Biology, FFCLRP, University of São Paulo. Avenida Bandeirantes, Ribeirão Preto, Brazil
| | - Luísa Prado Prandini
- Department of Biology, FFCLRP, University of São Paulo. Avenida Bandeirantes, Ribeirão Preto, Brazil
| | | | - Priscila S Rothier
- Department of Biology, FFCLRP, University of São Paulo. Avenida Bandeirantes, Ribeirão Preto, Brazil.,Département Adaptations du Vivant, Muséum National d'Histoire Naturelle, 55 Rue Buffon, Paris, France
| | - Leandro Lofeu
- Department of Biology, FFCLRP, University of São Paulo. Avenida Bandeirantes, Ribeirão Preto, Brazil.,Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Renata Brandt
- Department of Biology, FFCLRP, University of São Paulo. Avenida Bandeirantes, Ribeirão Preto, Brazil.,Science North, Sudbury, Ontario, Canada
| | - Tiana Kohlsdorf
- Department of Biology, FFCLRP, University of São Paulo. Avenida Bandeirantes, Ribeirão Preto, Brazil
| |
Collapse
|
20
|
Ramos CH, Rodríguez-Sánchez E, Del Angel JAA, Arzola AV, Benítez M, Escalante AE, Franci A, Volpe G, Rivera-Yoshida N. The environment topography alters the way to multicellularity in Myxococcus xanthus. SCIENCE ADVANCES 2021; 7:7/35/eabh2278. [PMID: 34433567 PMCID: PMC8386931 DOI: 10.1126/sciadv.abh2278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/02/2021] [Indexed: 05/10/2023]
Abstract
The social soil-dwelling bacterium Myxococcus xanthus can form multicellular structures, known as fruiting bodies. Experiments in homogeneous environments have shown that this process is affected by the physicochemical properties of the substrate, but they have largely neglected the role of complex topographies. We experimentally demonstrate that the topography alters single-cell motility and multicellular organization in M. xanthus In topographies realized by randomly placing silica particles over agar plates, we observe that the cells' interaction with particles drastically modifies the dynamics of cellular aggregation, leading to changes in the number, size, and shape of the fruiting bodies and even to arresting their formation in certain conditions. We further explore this type of cell-particle interaction in a computational model. These results provide fundamental insights into how the environment topography influences the emergence of complex multicellular structures from single cells, which is a fundamental problem of biological, ecological, and medical relevance.
Collapse
Affiliation(s)
- Corina H Ramos
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Cd. de México, C.P. 4510, Mexico
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
| | - Edna Rodríguez-Sánchez
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
| | - Juan Antonio Arias Del Angel
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
| | - Alejandro V Arzola
- Instituto de Física, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, México
| | - Mariana Benítez
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
| | - Ana E Escalante
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
| | - Alessio Franci
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Cd. de México, C.P. 4510, Mexico
| | - Giovanni Volpe
- Department of Physics, University of Gothenburg, Gothenburg, Sweden
| | - Natsuko Rivera-Yoshida
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Cd. de México, C.P. 4510, Mexico.
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
| |
Collapse
|
21
|
Sanger TJ. Integrative developmental biology in the age of anthropogenic change. Evol Dev 2021; 23:320-332. [PMID: 33848387 DOI: 10.1111/ede.12377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/02/2021] [Accepted: 03/19/2021] [Indexed: 12/15/2022]
Abstract
Humans are changing and challenging nature in many ways. Conservation Biology seeks to limit human impacts on nature and preserve biological diversity. Traditionally, Developmental Biology and Conservation Biology have had nonoverlapping objectives, operating in distinct spheres of biological science. However, this chasm can and should be filled to help combat the emerging challenges of the 21st century. The means by which to accomplish this goal were already established within the conceptual framework of evo- and eco-devo and can be further expanded to address the ways that anthropogenic disturbance affect embryonic development. Herein, I describe ways that these approaches can be used to advance the study of reptilian embryos. More specifically, I explore the ways that a developmental perspective can advance ongoing studies of embryonic physiology in the context of global warming and chemical pollution, both of which are known stressors of reptilian embryos. I emphasize ways that these developmental perspectives can inform conservation biologists trying to develop management practices that will address the complexity of challenges facing reptilian embryos.
Collapse
Affiliation(s)
- Thomas J Sanger
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| |
Collapse
|
22
|
Cabej NR. A mechanism of inheritance of acquired traits in animals. Dev Biol 2021; 475:106-117. [PMID: 33741349 DOI: 10.1016/j.ydbio.2021.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 01/11/2023]
Abstract
Observational and experimental evidence for the inheritance of acquired traits in animals is slowly, but steadily accumulating. The onset and transmission of acquired traits implies the acquisition and transmission from parents to progeny of new information, which is different from the genetic information contained in DNA. The new non-genetic information most commonly is passed on from parents to the offspring via gamete(s), but how it is precisely transmitted to the successive generations is still unknown. Based on adequate empirical evidence presented herein, a hypothesis is proposed of the inheritance of acquired traits in animals and the flow of the relevant parental information to the offspring.
Collapse
Affiliation(s)
- Nelson R Cabej
- University of Tirana Faculty of Medicine, Universiteti i Mjekesise Tirane, Department of Biology, 147 Manhattan Terrace, Dumont, 07628, USA.
| |
Collapse
|
23
|
Cheli A, Mancuso A, Azzarone M, Fermani S, Kaandorp J, Marin F, Montroni D, Polishchuk I, Prada F, Stagioni M, Valdré G, Pokroy B, Falini G, Goffredo S, Scarponi D. Climate variation during the Holocene influenced the skeletal properties of Chamelea gallina shells in the North Adriatic Sea (Italy). PLoS One 2021; 16:e0247590. [PMID: 33661962 PMCID: PMC7932108 DOI: 10.1371/journal.pone.0247590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/09/2021] [Indexed: 12/01/2022] Open
Abstract
Understanding how marine taxa will respond to near-future climate changes is one of the main challenges for management of coastal ecosystem services. Ecological studies that investigate relationships between the environment and shell properties of commercially important marine species are commonly restricted to latitudinal gradients or small-scale laboratory experiments. This paper aimed to explore the variations in shell features and growth of the edible bivalve Chamelea gallina from the Holocene sedimentary succession to present-day thanatocoenosis of the Po Plain-Adriatic Sea system (Italy). Comparing the Holocene sub-fossil record to modern thanatocoenoses allowed obtaining an insight of shell variations dynamics on a millennial temporal scale. Five shoreface-related assemblages rich in C. gallina were considered: two from the Middle Holocene, when regional sea surface temperatures were higher than today, representing a possible analogue for the near-future global warming, one from the Late Holocene and two from the present-day. We investigated shell biometry and skeletal properties in relation to the valve length of C. gallina. Juveniles were found to be more porous than adults in all horizons. This suggested that C. gallina promoted an accelerated shell accretion with a higher porosity and lower density at the expense of mechanically fragile shells. A positive correlation between sea surface temperature and both micro-density and bulk density were found, with modern specimens being less dense, likely due to lower aragonite saturation state at lower temperature, which could ultimately increase the energetic costs of shell formation. Since no variation was observed in shell CaCO3 polymorphism (100% aragonite) or in compositional parameters among the analyzed horizons, the observed dynamics in skeletal parameters are likely not driven by a diagenetic recrystallization of the shell mineral phase. This study contributes to understand the response of C. gallina to climate-driven environmental shifts and offers insights for assessing anthropogenic impacts on this economic relevant species.
Collapse
Affiliation(s)
- Alessandro Cheli
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy
| | - Arianna Mancuso
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy
| | - Michele Azzarone
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Simona Fermani
- Department of Chemistry ‘Giacomo Ciamician’, University of Bologna, Bologna, Italy
| | - Jaap Kaandorp
- Computational Science Laboratory, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Frederic Marin
- UMR CNRS 6282 Biogéosciences, Université de Bourgogne—Franche-Comté, Dijon, France
| | - Devis Montroni
- Department of Chemistry ‘Giacomo Ciamician’, University of Bologna, Bologna, Italy
| | - Iryna Polishchuk
- Department of Materials Sciences and Engineering and the Russell Berrie Nanotechnology Institute, Technion–Israel Institute of Technology, Technion City, Haifa, Israel
| | - Fiorella Prada
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy
| | - Marco Stagioni
- Marine Biology and Fisheries Laboratory of Fano, Department of Biological, Geological and Environmental Sciences, University of Bologna, Italy
| | - Giovanni Valdré
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Boaz Pokroy
- Department of Materials Sciences and Engineering and the Russell Berrie Nanotechnology Institute, Technion–Israel Institute of Technology, Technion City, Haifa, Israel
| | - Giuseppe Falini
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy
- Department of Chemistry ‘Giacomo Ciamician’, University of Bologna, Bologna, Italy
- * E-mail: (GF); (SG); (DS)
| | - Stefano Goffredo
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy
- * E-mail: (GF); (SG); (DS)
| | - Daniele Scarponi
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
- * E-mail: (GF); (SG); (DS)
| |
Collapse
|
24
|
Laciny A. Among the shapeshifters: parasite-induced morphologies in ants (Hymenoptera, Formicidae) and their relevance within the EcoEvoDevo framework. EvoDevo 2021; 12:2. [PMID: 33653386 PMCID: PMC7923345 DOI: 10.1186/s13227-021-00173-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/09/2021] [Indexed: 12/24/2022] Open
Abstract
As social insects, ants represent extremely interaction-rich biological systems shaped by tightly integrated social structures and constant mutual exchange with a multitude of internal and external environmental factors. Due to this high level of ecological interconnection, ant colonies can harbour a diverse array of parasites and pathogens, many of which are known to interfere with the delicate processes of ontogeny and caste differentiation and induce phenotypic changes in their hosts. Despite their often striking nature, parasite-induced changes to host development and morphology have hitherto been largely overlooked in the context of ecological evolutionary developmental biology (EcoEvoDevo). Parasitogenic morphologies in ants can, however, serve as “natural experiments” that may shed light on mechanisms and pathways relevant to host development, plasticity or robustness under environmental perturbations, colony-level effects and caste evolution. By assessing case studies of parasites causing morphological changes in their ant hosts, from the eighteenth century to current research, this review article presents a first overview of relevant host and parasite taxa. Hypotheses about the underlying developmental and evolutionary mechanisms, and open questions for further research are discussed. This will contribute towards highlighting the importance of parasites of social insects for both biological theory and empirical research and facilitate future interdisciplinary work at the interface of myrmecology, parasitology, and the EcoEvoDevo framework.
Collapse
Affiliation(s)
- Alice Laciny
- Konrad Lorenz Institute for Evolution and Cognition Research, Martinstraße 12, 3400, Klosterneuburg, Austria.
| |
Collapse
|
25
|
|
26
|
Bosch TCG, McFall-Ngai M. Animal development in the microbial world: Re-thinking the conceptual framework. Curr Top Dev Biol 2021; 141:399-427. [PMID: 33602495 PMCID: PMC8214508 DOI: 10.1016/bs.ctdb.2020.11.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Animals have evolved within the framework of the microbes and are constantly exposed to diverse microbiota. This dominance of the microbial world is forcing all fields of biology to question some of their most basic premises, with developmental biology being no exception. While animals under laboratory conditions can develop and live without microbes, they are far from normal, and would not survive under natural conditions, where their fitness would be strongly compromised. Since much of the undescribed biodiversity on Earth is microbial, any consideration of animal development in the absence of the recognition of microbes will be incomplete. Here, we show that animal development may never have been autonomous, rather it requires transient or persistent interactions with the microbial world. We propose that to formulate a comprehensive understanding of embryogenesis and post-embryonic development, we must recognize that symbiotic microbes provide important developmental signals and contribute in significant ways to phenotype production. This offers limitless opportunities for the field of developmental biology to expand.
Collapse
Affiliation(s)
- Thomas C G Bosch
- Zoological Institute, Christian-Albrechts-University Kiel, Kiel, Germany.
| | - Margaret McFall-Ngai
- Pacific Biosciences Research Center, Kewalo Marine Laboratory, University of Hawai'i at Mānoa, Honolulu, HI, United States
| |
Collapse
|
27
|
Andersen F, Rocca E. Underdetermination and evidence-based policy. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2020; 84:101335. [PMID: 32773277 DOI: 10.1016/j.shpsc.2020.101335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Safety assessment of technologies and interventions is often underdetermined by evidence. For example, scientists have collected evidence concerning genetically modified plants for decades. This evidence was used to ground opposing safety protocols for "stacked genetically modified" plants, in which two or more genetically modified plants are combined. Evidence based policy would thus be rendered more effective by an approach that accounts for underdetermination. Douglas (2012) proposes an explanatory approach, based on the criteria of transparency, empirical competence, internal consistency of explanations, and predictive potency. However, sometimes multiple explanations can satisfy these criteria. We propose an additional criterion based on converse abduction, where explanations are selected on the basis of ontological background assumptions as well as by evidence. We then apply our proposed scheme to the case of the regulation of stacked genetically modified plants. We discuss the implications and suggest follow-up work concerning the generalizability of the approach.
Collapse
Affiliation(s)
- Fredrik Andersen
- Faculty of Health and Welfare, Østfold University College, Halden, Norway.
| | - Elena Rocca
- NMBU Centre for Applied Philosophy of Science, School of Economics and Business, Norwegian University of Life Sciences, Aas, Norway.
| |
Collapse
|
28
|
Environmental conditions as proximate cues of predation risk inducing defensive response in Daphnia pulex. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00583-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Parasite intensity drives fetal development and sex allocation in a wild ungulate. Sci Rep 2020; 10:15626. [PMID: 32973197 PMCID: PMC7518422 DOI: 10.1038/s41598-020-72376-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 08/17/2020] [Indexed: 11/20/2022] Open
Abstract
An understanding of the mechanisms influencing prenatal characteristics is fundamental to comprehend the role of ecological and evolutionary processes behind survival and reproductive success in animals. Although the negative influence of parasites on host fitness is undisputable, we know very little about how parasitic infection in reproductive females might influence prenatal factors such as fetal development and sex allocation. Using an archival collection of Dall’s sheep (Ovis dalli dalli), a capital breeder that depends on its body reserves to overcome the arctic winter, we investigated the direct and indirect impacts of the parasite community on fetal development and sex allocation. Using partial least squares modelling, we observed a negative effect of parasite community on fetal development, driven primarily by the nematode Marshallagia marshalli. Principal component analysis demonstrated that mothers with low parasite burden and in good body condition were more likely to have female versus male fetuses. This association was primarily driven by the indirect effect of M. marshalli on ewe body condition. Refining our knowledge of the direct and indirect impact that parasite communities can have on reproduction in mammals is critical for understanding the effects of infectious diseases on wildlife populations. This can be particularly relevant for species living in ecosystems sensitive to the effects of global climate change.
Collapse
|
30
|
Byrnes WM. E. E. Just's broad, yet hidden, influence on modern cell and developmental biology. Mol Reprod Dev 2020; 87:380-391. [DOI: 10.1002/mrd.23270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/30/2019] [Indexed: 11/12/2022]
Affiliation(s)
- W. Malcolm Byrnes
- Department of Biochemistry and Molecular BiologyHoward University College of Medicine Washington DC
| |
Collapse
|
31
|
Calvo P, Gagliano M, Souza GM, Trewavas A. Plants are intelligent, here's how. ANNALS OF BOTANY 2020; 125:11-28. [PMID: 31563953 PMCID: PMC6948212 DOI: 10.1093/aob/mcz155] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/01/2019] [Accepted: 09/26/2019] [Indexed: 05/07/2023]
Abstract
HYPOTHESES The drive to survive is a biological universal. Intelligent behaviour is usually recognized when individual organisms including plants, in the face of fiercely competitive or adverse, real-world circumstances, change their behaviour to improve their probability of survival. SCOPE This article explains the potential relationship of intelligence to adaptability and emphasizes the need to recognize individual variation in intelligence showing it to be goal directed and thus being purposeful. Intelligent behaviour in single cells and microbes is frequently reported. Individual variation might be underpinned by a novel learning mechanism, described here in detail. The requirements for real-world circumstances are outlined, and the relationship to organic selection is indicated together with niche construction as a good example of intentional behaviour that should improve survival. Adaptability is important in crop development but the term may be complex incorporating numerous behavioural traits some of which are indicated. CONCLUSION There is real biological benefit to regarding plants as intelligent both from the fundamental issue of understanding plant life but also from providing a direction for fundamental future research and in crop breeding.
Collapse
Affiliation(s)
- Paco Calvo
- Minimal Intelligence Laboratory, Universidad de Murcia, Murcia, Spain
| | - Monica Gagliano
- Biological Intelligence Laboratory, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Gustavo M Souza
- Laboratory of Plant Cognition and Electrophysiology, Federal University of Pelotas, Pelotas - RS, Brazil
| | - Anthony Trewavas
- Institute of Molecular Plant Science, Kings Buildings, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
32
|
Environment and early life: Decisive factors for stress-resilience and vulnerability. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 150:155-185. [DOI: 10.1016/bs.irn.2019.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Abdel-Raheem ST, Allen JD. Developmental Consequences of Temperature and Salinity Stress in the Sand Dollar Dendraster excentricus. THE BIOLOGICAL BULLETIN 2019; 237:227-240. [PMID: 31922907 DOI: 10.1086/706607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Animals that reside, reproduce, and develop in nearshore habitats are often exposed to strong fluctuations in abiotic conditions, including temperature and salinity. We studied the developmental response of the sand dollar Dendraster excentricus to increased temperature and reduced salinity at levels comparable to those induced by summer freshwater input into the San Juan Archipelago, Washington. We observed that embryos exposed to temperature and salinity stress exhibited polyembryony (the splitting of one embryo into multiple independent individuals), and we subsequently tested the competency of twin and normal embryos to reach metamorphosis. We found that twin embryos generated from a single egg are each capable of reaching metamorphosis. To begin investigating the mechanisms underlying polyembryony, we tested whether osmotic stress caused swelling of the fertilization envelope, thus allowing embryos the physical space to produce multiples within a single envelope. We also tested whether reduced calcium levels in low-salinity seawater reduced cell-cell adhesion and allowed cells to separate and develop as multiple embryos within a fertilization envelope. However, neither osmotic stress nor reduced calcium levels alone appear sufficient to induce polyembryony. We hypothesize that changes in the properties of the hyaline layer that lies beneath the fertilization envelope facilitate polyembryony.
Collapse
|
34
|
Rivera‐Yoshida N, Hernández‐Terán A, Escalante AE, Benítez M. Laboratory biases hinder Eco‐Evo‐Devo integration: Hints from the microbial world. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2019; 334:14-24. [DOI: 10.1002/jez.b.22917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/09/2019] [Accepted: 10/02/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Natsuko Rivera‐Yoshida
- Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de EcologíaUniversidad Nacional Autónoma de México Mexico City Mexico
- Programa de Doctorado en Ciencias BiomédicasUniversidad Nacional Autónoma de México Mexico City Mexico
- Centro de Ciencias de la ComplejidadUniversidad Nacional Autónoma de México Mexico City Mexico
| | - Alejandra Hernández‐Terán
- Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de EcologíaUniversidad Nacional Autónoma de México Mexico City Mexico
- Programa de Doctorado en Ciencias BiomédicasUniversidad Nacional Autónoma de México Mexico City Mexico
| | - Ana E. Escalante
- Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de EcologíaUniversidad Nacional Autónoma de México Mexico City Mexico
| | - Mariana Benítez
- Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de EcologíaUniversidad Nacional Autónoma de México Mexico City Mexico
- Centro de Ciencias de la ComplejidadUniversidad Nacional Autónoma de México Mexico City Mexico
| |
Collapse
|
35
|
Held LI, Sessions SK. Reflections on Bateson's rule: Solving an old riddle about why extra legs are mirror‐symmetric. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2019; 332:219-237. [DOI: 10.1002/jez.b.22910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/18/2019] [Accepted: 09/26/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Lewis I. Held
- Department of Biological SciencesTexas Tech University Lubbock Texas
| | | |
Collapse
|
36
|
Bonini‐Campos B, Lofeu L, Brandt R, Kohlsdorf T. Different developmental environments reveal multitrait plastic responses in South American Anostomidae fish. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2019; 332:238-244. [DOI: 10.1002/jez.b.22905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Bianca Bonini‐Campos
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão PretoUniversidade de São Paulo São Paulo Brazil
| | - Leandro Lofeu
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão PretoUniversidade de São Paulo São Paulo Brazil
| | - Renata Brandt
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão PretoUniversidade de São Paulo São Paulo Brazil
- Science Communication Program, School of the EnvironmentLaurentian University Ontario Canada
| | - Tiana Kohlsdorf
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão PretoUniversidade de São Paulo São Paulo Brazil
| |
Collapse
|
37
|
Root‐Bernstein M, Ladle R. Ecology of a widespread large omnivore, Homo sapiens, and its impacts on ecosystem processes. Ecol Evol 2019; 9:10874-10894. [PMID: 31641442 PMCID: PMC6802023 DOI: 10.1002/ece3.5049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/14/2019] [Indexed: 01/01/2023] Open
Abstract
Discussions of defaunation and taxon substitution have concentrated on megafaunal herbivores and carnivores, but mainly overlooked the particular ecological importance of megafaunal omnivores. In particular, the Homo spp. have been almost completely ignored in this context, despite the extinction of all but one hominin species present since the Plio-Pleistocene. Large omnivores have a particular set of ecological functions reflecting their foraging flexibility and the varied disturbances they create, functions that may maintain ecosystem stability and resilience. Here, we put the ecology of Homo sapiens in the context of comparative interspecific ecological roles and impacts, focusing on the large omnivore guild, as well as comparative intraspecific variation, focusing on hunter-gatherers.We provide an overview of the functional traits of H. sapiens, which can be used to spontaneously provide the functions for currently ecologically extinct or endangered ecosystem processes. We consider the negative impacts of variations in H. sapiens phenotypic strategies, its possible status as an invasive species, and the potential to take advantage of its learning capacities to decouple negative and positive impacts.We provide examples of how practices related to foraging, transhumance, and hunting could contribute to rewilding-inspired programs either drawing on hunter-gatherer baselines of H. sapiens, or as proxies for extinct or threatened large omnivores. We propose that a greater focus on intraspecific ecological variation and interspecific comparative ecology of H. sapiens can provide new avenues for conservation and ecological research.
Collapse
Affiliation(s)
- Meredith Root‐Bernstein
- Section for Ecoinformatics & Biodiversity, Department of BioscienceAarhus UniversityAarhusDenmark
- Institute of Ecology and BiodiversitySantiagoChile
- UMR Sciences pour l'Action et le Développement, Activités, Produits, TerritoiresINRA, AgroParisTech, Université Paris‐SaclayThiverval‐GrignonFrance
- Center of Applied Ecology and Sustainability (CAPES)SantiagoChile
| | - Richard Ladle
- School of Science and HealthFederal University of AlagoasAlagoasBrazil
- School of Geography and the EnvironmentOxford UniversityOxfordUK
| |
Collapse
|
38
|
Pigeon G, Loe LE, Bischof R, Bonenfant C, Forchhammer M, Irvine RJ, Ropstad E, Stien A, Veiberg V, Albon S. Silver spoon effects are constrained under extreme adult environmental conditions. Ecology 2019; 100:e02886. [PMID: 31502296 DOI: 10.1002/ecy.2886] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 11/05/2022]
Abstract
Early-life environmental conditions may generate cohort differences in individual fitness, subsequently affecting population growth rates. Three, nonmutually exclusive hypotheses predict the nature of these fitness differences: (1) silver spoon effects, where individuals born in good conditions perform better across the range of adult environments; (2) the "environmental saturation" hypothesis, where fitness differences only occur in intermediate adult environmental conditions; and (3) the "environmental matching" or "predictive adaptive response" (PAR) hypothesis, where fitness is highest when adult environmental conditions match those experienced in early life. We quantified the context-dependent effect of early-life environment on subsequent reproductive success, survival, and population growth rate (λ) of Svalbard reindeer, and explored how well it was explained by the three hypotheses. We found that good early-life conditions increased reproductive success compared to poor early-life conditions, but only when experiencing intermediate adult environmental conditions. This is the first example of what appears to be both "beneficial" and "detrimental environmental saturation" in a natural system. Despite weak early-life effects on survival, cohorts experiencing good early-life conditions contributed to higher population growth rates, when simulating realistic variation in adult environmental conditions. Our results show how the combination of a highly variable environment and biological constraints on fitness components can suppress silver spoon effects at both extremes of the adult environmental gradient.
Collapse
Affiliation(s)
- Gabriel Pigeon
- Faculty of Ecology and Natural Resource Management, Norwegian University of Life Sciences, Ås, NO-1432, Norway
| | - Leif Egil Loe
- Faculty of Ecology and Natural Resource Management, Norwegian University of Life Sciences, Ås, NO-1432, Norway
| | - Richard Bischof
- Faculty of Ecology and Natural Resource Management, Norwegian University of Life Sciences, Ås, NO-1432, Norway
| | - Christophe Bonenfant
- Laboratoire de Biométrie et Biologie Évolutive, UMR CNRS 5558, Université de Lyon, Villeurbanne, 69622, France
| | - Mads Forchhammer
- The University Centre in Svalbard, Longyearbyen, NO-9170, Norway
| | - R Justin Irvine
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Erik Ropstad
- Faculty of Veterinary Science, Norwegian University of Life Sciences, P.O. Box 8146, Dep, Oslo, NO-0033, Norway
| | - Audun Stien
- Department for Arctic Ecology, Norwegian Institute for Nature Research, Fram Centre, Tromsø, NO-9296, Norway
| | - Vebjørn Veiberg
- Norwegian Institute for Nature Research, P.O. Box 5685, Torgarden, Trondheim, NO-7485, Norway
| | - Steve Albon
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| |
Collapse
|
39
|
Skúlason S, Parsons KJ, Svanbäck R, Räsänen K, Ferguson MM, Adams CE, Amundsen P, Bartels P, Bean CW, Boughman JW, Englund G, Guðbrandsson J, Hooker OE, Hudson AG, Kahilainen KK, Knudsen R, Kristjánsson BK, Leblanc CA, Jónsson Z, Öhlund G, Smith C, Snorrason SS. A way forward with eco evo devo: an extended theory of resource polymorphism with postglacial fishes as model systems. Biol Rev Camb Philos Soc 2019; 94:1786-1808. [PMID: 31215138 PMCID: PMC6852119 DOI: 10.1111/brv.12534] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/12/2019] [Accepted: 05/20/2019] [Indexed: 12/16/2022]
Abstract
A major goal of evolutionary science is to understand how biological diversity is generated and altered. Despite considerable advances, we still have limited insight into how phenotypic variation arises and is sorted by natural selection. Here we argue that an integrated view, which merges ecology, evolution and developmental biology (eco evo devo) on an equal footing, is needed to understand the multifaceted role of the environment in simultaneously determining the development of the phenotype and the nature of the selective environment, and how organisms in turn affect the environment through eco evo and eco devo feedbacks. To illustrate the usefulness of an integrated eco evo devo perspective, we connect it with the theory of resource polymorphism (i.e. the phenotypic and genetic diversification that occurs in response to variation in available resources). In so doing, we highlight fishes from recently glaciated freshwater systems as exceptionally well-suited model systems for testing predictions of an eco evo devo framework in studies of diversification. Studies on these fishes show that intraspecific diversity can evolve rapidly, and that this process is jointly facilitated by (i) the availability of diverse environments promoting divergent natural selection; (ii) dynamic developmental processes sensitive to environmental and genetic signals; and (iii) eco evo and eco devo feedbacks influencing the selective and developmental environments of the phenotype. We highlight empirical examples and present a conceptual model for the generation of resource polymorphism - emphasizing eco evo devo, and identify current gaps in knowledge.
Collapse
Affiliation(s)
- Skúli Skúlason
- Department of Aquaculture and Fish BiologyHólar UniversitySauðárkrókur, 551Iceland
- Icelandic Museum of Natural History, Brynjólfsgata 5ReykjavíkIS‐107Iceland
| | - Kevin J. Parsons
- Institute of Biodiversity, Animal Health & Comparative MedicineUniversity of GlasgowGlasgow, G12 8QQU.K.
| | - Richard Svanbäck
- Animal Ecology, Department of Ecology and Genetics, Science for Life LaboratoryUppsala University, Norbyvägen 18DUppsala, SE‐752 36Sweden
| | - Katja Räsänen
- Department of Aquatic EcologyEAWAG, Swiss Federal Institute of Aquatic Science and Technology, and Institute of Integrative Biology, ETH‐Zurich, Ueberlandstrasse 133CH‐8600DübendorfSwitzerland
| | - Moira M. Ferguson
- Department of Integrative BiologyUniversity of GuelphGuelph, Ontario N1G 2W1Canada
| | - Colin E. Adams
- Scottish Centre for Ecology and the Natural Environment, IBAHCMUniversity of GlasgowGlasgow G12 8QQU.K.
| | - Per‐Arne Amundsen
- Freshwater Ecology Group, Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and EconomicsUniversity of TromsöTromsö, N‐9037Norway
| | - Pia Bartels
- Department of Ecology and Environmental ScienceUmeå UniversityUmeå, SE‐90187Sweden
| | - Colin W. Bean
- Scottish Natural Heritage, Caspian House, Mariner Court, Clydebank Business ParkClydebank, G81 2NRU.K.
| | - Janette W. Boughman
- Department of Integrative BiologyMichigan State UniversityEast Lansing, MI 48824U.S.A.
| | - Göran Englund
- Department of Ecology and Environmental ScienceUmeå UniversityUmeå, SE‐90187Sweden
| | - Jóhannes Guðbrandsson
- Institute of Life and Environmental SciencesUniversity of IcelandReykjavik, 101Iceland
| | | | - Alan G. Hudson
- Department of Ecology and Environmental ScienceUmeå UniversityUmeå, SE‐90187Sweden
| | - Kimmo K. Kahilainen
- Inland Norway University of Applied Sciences, Department of Forestry and Wildlife Management, Campus Evenstad, Anne Evenstadvei 80Koppang, NO‐2480Norway
| | - Rune Knudsen
- Freshwater Ecology Group, Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and EconomicsUniversity of TromsöTromsö, N‐9037Norway
| | | | - Camille A‐L. Leblanc
- Department of Aquaculture and Fish BiologyHólar UniversitySauðárkrókur, 551Iceland
| | - Zophonías Jónsson
- Institute of Life and Environmental SciencesUniversity of IcelandReykjavik, 101Iceland
| | - Gunnar Öhlund
- Department of Ecology and Environmental ScienceUmeå UniversityUmeå, SE‐90187Sweden
| | - Carl Smith
- School of BiologyUniversity of St Andrews, St. AndrewsFife, KY16 9AJU.K.
| | - Sigurður S. Snorrason
- Institute of Life and Environmental SciencesUniversity of IcelandReykjavik, 101Iceland
| |
Collapse
|
40
|
Solomon-Lane TK, Hofmann HA. Early-life social environment alters juvenile behavior and neuroendocrine function in a highly social cichlid fish. Horm Behav 2019; 115:104552. [PMID: 31276665 DOI: 10.1016/j.yhbeh.2019.06.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/26/2019] [Accepted: 06/28/2019] [Indexed: 12/17/2022]
Abstract
Early-life experiences can shape adult behavior, with consequences for fitness and health, yet fundamental questions remain unanswered about how early-life social experiences are translated into variation in brain and behavior. The African cichlid fish Astatotilapia burtoni, a model system in social neuroscience, is well known for its highly plastic social phenotypes in adulthood. Here, we rear juveniles in either social groups or pairs to investigate the effects of early-life social environments on behavior and neuroendocrine gene expression. We find that both juvenile behavior and neuroendocrine function are sensitive to early-life effects. Behavior robustly co-varies across multiple contexts (open field, social cue investigation, and dominance behavior assays) to form a behavioral syndrome, with pair-reared juveniles towards the end of syndrome that is less active and socially interactive. Pair-reared juveniles also submit more readily as subordinates. In a separate cohort, we measured whole brain expression of stress and sex hormone genes. Expression of glucocorticoid receptor 1a was elevated in group-reared juveniles, supporting a highly-conserved role for the stress axis mediating early-life effects. The effect of rearing environment on androgen receptor α and estrogen receptor α expression was mediated by treatment duration (1 vs. 5 weeks). Finally, expression of corticotropin-releasing factor and glucocorticoid receptor 2 decreased significantly over time. Rearing environment also caused striking differences in gene co-expression, such that expression was tightly integrated in pair-reared juveniles but not group-reared or isolates. Together, this research demonstrates the important developmental origins of behavioral phenotypes and identifies potential behavioral and neuroendocrine mechanisms.
Collapse
Affiliation(s)
- Tessa K Solomon-Lane
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, United States of America; Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, United States of America; Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX 78712, United States of America.
| | - Hans A Hofmann
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, United States of America; Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, United States of America; Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX 78712, United States of America
| |
Collapse
|
41
|
Martínez-Juárez A, Moreno-Mendoza N. Mechanisms related to sexual determination by temperature in reptiles. J Therm Biol 2019; 85:102400. [PMID: 31657741 DOI: 10.1016/j.jtherbio.2019.102400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 08/12/2019] [Accepted: 08/21/2019] [Indexed: 01/08/2023]
Abstract
A number of strategies have emerged that appear to relate to the evolution of mechanisms for sexual determination in vertebrates, among which are genetic sex determination caused by sex chromosomes and environmental sex determination, where environmental factors influence the phenotype of the sex of an individual. Within the reptile group, some orders such as: Chelonia, Crocodylia, Squamata and Rhynchocephalia, manifest one of the most intriguing and exciting environmental sexual determination mechanisms that exists, comprising temperature-dependent sex determination (TSD), where the temperature of incubation that the embryo experiences during its development is fundamental to establishing the sex of the individual. This makes them an excellent model for the study of sexual determination at the molecular, cellular and physiological level, as well as in terms of their implications at an evolutionary and ecological level. There are different hypotheses concerning how this process is triggered and this review aims to describe any new contributions to particular TSD hypotheses, analyzing them from the "eco-evo-devo" perspective.
Collapse
Affiliation(s)
- Adriana Martínez-Juárez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70228 México, D.F. 04510, Mexico
| | - Norma Moreno-Mendoza
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70228 México, D.F. 04510, Mexico.
| |
Collapse
|
42
|
Chevalier RL. Evolution, kidney development, and chronic kidney disease. Semin Cell Dev Biol 2019; 91:119-131. [PMID: 29857053 PMCID: PMC6281795 DOI: 10.1016/j.semcdb.2018.05.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/29/2018] [Accepted: 05/28/2018] [Indexed: 12/21/2022]
Abstract
There is a global epidemic of chronic kidney disease (CKD) characterized by a progressive loss of nephrons, ascribed in large part to a rising incidence of hypertension, metabolic syndrome, and type 2 diabetes mellitus. There is a ten-fold variation in nephron number at birth in the general population, and a 50% overall decrease in nephron number in the last decades of life. The vicious cycle of nephron loss stimulating hypertrophy by remaining nephrons and resulting in glomerulosclerosis has been regarded as maladaptive, and only partially responsive to angiotensin inhibition. Advances over the past century in kidney physiology, genetics, and development have elucidated many aspects of nephron formation, structure and function. Parallel advances have been achieved in evolutionary biology, with the emergence of evolutionary medicine, a discipline that promises to provide new insight into the treatment of chronic disease. This review provides a framework for understanding the origins of contemporary developmental nephrology, and recent progress in evolutionary biology. The establishment of evolutionary developmental biology (evo-devo), ecological developmental biology (eco-devo), and developmental origins of health and disease (DOHaD) followed the discovery of the hox gene family, the recognition of the contribution of cumulative environmental stressors to the changing phenotype over the life cycle, and mechanisms of epigenetic regulation. The maturation of evolutionary medicine has contributed to new investigative approaches to cardiovascular disease, cancer, and infectious disease, and promises the same for CKD. By incorporating these principles, developmental nephrology is ideally positioned to answer important questions regarding the fate of nephrons from embryo through senescence.
Collapse
Affiliation(s)
- Robert L Chevalier
- Department of Pediatrics, The University of Virginia, P.O. Box 800386, Charlottesville, VA, United States.
| |
Collapse
|
43
|
Kadekar P, Roy R. AMPK regulates germline stem cell quiescence and integrity through an endogenous small RNA pathway. PLoS Biol 2019; 17:e3000309. [PMID: 31166944 PMCID: PMC6576793 DOI: 10.1371/journal.pbio.3000309] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 06/17/2019] [Accepted: 05/16/2019] [Indexed: 01/07/2023] Open
Abstract
During suboptimal growth conditions, Caenorhabditis elegans larvae undergo a global developmental arrest called "dauer." During this stage, the germline stem cells (GSCs) become quiescent in an AMP-activated Protein Kinase (AMPK)-dependent manner, and in the absence of AMPK, the GSCs overproliferate and lose their reproductive capacity, leading to sterility when mutant animals resume normal growth. These defects correlate with the altered abundance and distribution of a number of chromatin modifications, all of which can be corrected by disabling components of the endogenous small RNA pathway, suggesting that AMPK regulates germ cell integrity by targeting an RNA interference (RNAi)-like pathway during dauer. The expression of AMPK in somatic cells restores all the germline defects, potentially through the transmission of small RNAs. Our findings place AMPK at a pivotal position linking energy stress detected in the soma to a consequent endogenous small RNA-mediated adaptation in germline gene expression, thereby challenging the "permeability" of the Weismann barrier.
Collapse
Affiliation(s)
- Pratik Kadekar
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Richard Roy
- Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
44
|
Nguyen B, Ponton F, Than A, Taylor PW, Chapman T, Morimoto J. Interactions between ecological factors in the developmental environment modulate pupal and adult traits in a polyphagous fly. Ecol Evol 2019; 9:6342-6352. [PMID: 31236225 PMCID: PMC6580268 DOI: 10.1002/ece3.5206] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/01/2019] [Accepted: 04/08/2019] [Indexed: 01/19/2023] Open
Abstract
In holometabolous insects, adult fitness depends on the quantity and quality of resource acquired at the larval stage. Diverse ecological factors can influence larval resource acquisition, but little is known about how these factors in the larval environment interact to modulate larval development and adult traits.Here, we addressed this gap by considering how key ecological factors of larval density, diet nutritional composition, and microbial growth interact to modulate pupal and adult traits in a polyphagous tephritid fruit fly, Bactrocera tryoni (aka "Queensland fruit fly").Larvae were allowed to develop at two larval densities (low and high), on diets that were protein-rich, standard, or sugar-rich and prepared with or without preservatives to inhibit or encourage microbial growth, respectively.Percentage of adult emergence and adult sex ratio were not affected by the interaction between diet composition, larval density, and preservative treatments, although low preservative content increased adult emergence in sugar-rich diets but decreased adult emergence in protein-rich and standard diets.Pupal weight, male and female adult dry weight, and female (but not male) body energetic reserves were affected by a strong three-way interaction between diet composition, larval density, and preservative treatment, whereby in general, low preservative content increased pupal weight and female lipid storage in sugar-rich diets particularly at low-larval density and differentially modulated the decrease in adult body weight caused by larval density across diets.Our findings provide insights into the ecological factors modulating larval development of a polyphagous fly species and shed light into the ecological complexity of the larval developmental environment in frugivorous insects.
Collapse
Affiliation(s)
- Binh Nguyen
- Department of Biological SciencesMacquarie UniversityNorth RydeNew South WalesAustralia
| | - Fleur Ponton
- Department of Biological SciencesMacquarie UniversityNorth RydeNew South WalesAustralia
| | - Anh Than
- Department of Biological SciencesMacquarie UniversityNorth RydeNew South WalesAustralia
- Department of EntomologyVietnam National University of AgricultureHanoiVietnam
| | - Phillip W. Taylor
- Department of Biological SciencesMacquarie UniversityNorth RydeNew South WalesAustralia
| | - Toni Chapman
- New South Wales Department of Primary IndustriesThe Elizabeth Macarthur Agricultural InstituteMeneagleNew South WalesAustralia
| | - Juliano Morimoto
- Department of Biological SciencesMacquarie UniversityNorth RydeNew South WalesAustralia
| |
Collapse
|
45
|
Vagner M, Zambonino-Infante JL, Mazurais D. Fish facing global change: are early stages the lifeline? MARINE ENVIRONMENTAL RESEARCH 2019; 147:159-178. [PMID: 31027942 DOI: 10.1016/j.marenvres.2019.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
The role of phenotypic plasticity in the acclimation and adaptive potential of an organism to global change is not currently accounted for in prediction models. The high plasticity of marine fishes is mainly attributed to their early stages, during which morphological, structural and behavioural functions are particularly sensitive to environmental constraints. This developmental plasticity can determine later physiological performances and fitness, and may further affect population dynamics and ecosystem functioning. This review asks the essential question of what role early stages play in the ability of fish to later cope with the effects of global change, considering three key environmental factors (temperature, hypoxia and acidification). After having identified the carry-over effects of early exposure reported in the literature, we propose areas that we believe warrant the most urgent attention for further research to better understand the role of developmental plasticity in the responses of marine organisms to global change.
Collapse
Affiliation(s)
- Marie Vagner
- CNRS, UMR 7266 LIENSs, Institut du littoral et de l'environnement, 2 rue Olympe de Gouges, 17000, La Rochelle, France.
| | | | - David Mazurais
- Ifremer, UMR 6539 LEMAR, ZI pointe du diable, 29280, Plouzané, France
| |
Collapse
|
46
|
Guarino R, Goffredo S, Falini G, Pugno NM. Mechanical properties of Chamelea gallina shells at different latitudes. J Mech Behav Biomed Mater 2019; 94:155-163. [PMID: 30897503 DOI: 10.1016/j.jmbbm.2019.02.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/21/2019] [Accepted: 02/28/2019] [Indexed: 10/27/2022]
Abstract
In this work we evaluate the mechanical properties of Chamelea gallina shells, collected at various locations in the Adriatic Sea, through compression tests. We present an analytical model for the extraction of the material Young's modulus and ultimate strength, based on the approximation of the valves with a simpler geometry. The effect of porosity and the computation of the energy dissipated at fracture are also discussed. Results show a dependence of the mechanical performance on the location at which the samples were collected, i.e. latitude, and thus the environmental factors can affect the rigidity, strength and toughness of the shells. These findings integrate preliminary results published in a previous work.
Collapse
Affiliation(s)
- Roberto Guarino
- Laboratory of Bio-Inspired & Graphene Nanomechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy
| | - Stefano Goffredo
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, Via F. Selmi 3, 40126 Bologna, Italy; Laboratory of Marine Biology and Fisheries at Fano, Department of Biological, Geological and Environmental Sciences, University of Bologna, Viale Adriatico 1/N, 61032 Fano, Italy
| | - Giuseppe Falini
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Nicola Maria Pugno
- Laboratory of Bio-Inspired & Graphene Nanomechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy; Ket Lab, Edoardo Amaldi Foundation, Via del Politecnico snc, 00133 Rome, Italy; School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, E1-4NS London, United Kingdom.
| |
Collapse
|
47
|
Balari S, Lorenzo G. Realization in biology? HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2019; 41:5. [PMID: 30805741 DOI: 10.1007/s40656-019-0243-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
It is widely assumed that functional and dispositional properties are not identical to their physical base, but that there is some kind of asymmetrical ontological dependence between them. In this regard, a popular idea is that the former are realized by the latter, which, under the non-identity assumption, is generally understood to be a non-causal, constitutive relation. In this paper we examine two of the most widely accepted approaches to realization, the so-called 'flat view' and the 'dimensioned view', and we analyze their explanatory relevance in the light of a number of examples from the life sciences, paying special attention to developmental phenomena. Our conclusion is that the emphasis placed by modern-day biology on such properties as variability, evolvability, and a whole collection of phenomena like modularity, robustness, and developmental constraint or developmental bias requires the adoption of a much more dynamic perspective than traditional realization frameworks are able to capture.
Collapse
Affiliation(s)
- Sergio Balari
- Departament de Filologia Catalana and Centre de Lingüística Teòrica, Facultat de Filosofia i Lletres, Edifici B, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
| | - Guillermo Lorenzo
- Departamento de Filología Española - Lingüística General, Facultad de Filosofía y Letras, Universidad de Oviedo, 33011, Oviedo, Spain
| |
Collapse
|
48
|
Shephard AM, Aksenov V, Tran J, Nelson CJ, Boreham DR, Rollo CD. Hormetic Effects of Early Juvenile Radiation Exposure on Adult Reproduction and Offspring Performance in the Cricket ( Acheta domesticus). Dose Response 2018; 16:1559325818797499. [PMID: 30210269 PMCID: PMC6130088 DOI: 10.1177/1559325818797499] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/02/2018] [Accepted: 08/07/2018] [Indexed: 01/22/2023] Open
Abstract
Exposure to low-dose ionizing radiation can have positive impacts on biological performance—a concept known as hormesis. Although radiation hormesis is well-documented, the predominant focus has been medical. In comparison, little research has examined potential effects of early life radiation stress on organismal investment in life history traits that closely influence evolutionary fitness (eg, patterns of growth, survival, and reproduction). Evaluating the fitness consequences of radiation stress is important, given that low-level radiation pollution from anthropogenic sources is considered a major threat to natural ecosystems. Using the cricket (Acheta domesticus), we tested a wide range of doses to assess whether a single juvenile exposure to radiation could induce hormetic benefits on lifetime fitness measures. Consistent with hormesis, we found that low-dose juvenile radiation positively impacted female fecundity, offspring size, and offspring performance. Remarkably, even a single low dose of radiation in early juvenile development can elicit a range of positive fitness effects emerging over the life span and even into the next generation.
Collapse
Affiliation(s)
- Alexander M Shephard
- Department of Biology, McMaster University, Hamilton, Ontario, Canada.,Department of Ecology, Evolution and Behavior, University of Minnesota, MN, USA
| | - Vadim Aksenov
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan Tran
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Connor J Nelson
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Douglas R Boreham
- Division of Medical Sciences, Northern Ontario School of Medicine, Laurentian University, Sudbury, Ontario, Canada
| | - C David Rollo
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
49
|
Karagic N, Härer A, Meyer A, Torres‐Dowdall J. Heterochronic opsin expression due to early light deprivation results in drastically shifted visual sensitivity in a cichlid fish: Possible role of thyroid hormone signaling. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2018; 330:202-214. [DOI: 10.1002/jez.b.22806] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/30/2018] [Accepted: 05/03/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Nidal Karagic
- Zoology and Evolutionary BiologyDepartment of BiologyUniversity of Konstanz Konstanz Germany
| | - Andreas Härer
- Zoology and Evolutionary BiologyDepartment of BiologyUniversity of Konstanz Konstanz Germany
| | - Axel Meyer
- Zoology and Evolutionary BiologyDepartment of BiologyUniversity of Konstanz Konstanz Germany
- Radcliffe Institute for Advanced StudyHarvard University Cambridge Massachusetts
| | - Julián Torres‐Dowdall
- Zoology and Evolutionary BiologyDepartment of BiologyUniversity of Konstanz Konstanz Germany
- ZukunftskollegUniversity of Konstanz Konstanz Germany
| |
Collapse
|
50
|
Langenhof MR, Komdeur J. Why and how the early-life environment affects development of coping behaviours. Behav Ecol Sociobiol 2018; 72:34. [PMID: 29449757 PMCID: PMC5805793 DOI: 10.1007/s00265-018-2452-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 01/19/2018] [Accepted: 01/25/2018] [Indexed: 01/02/2023]
Abstract
Understanding the ways in which individuals cope with threats, respond to challenges, make use of opportunities and mediate the harmful effects of their surroundings is important for predicting their ability to function in a rapidly changing world. Perhaps one of the most essential drivers of coping behaviour of adults is the environment experienced during their early-life development. Although the study of coping, defined as behaviours displayed in response to environmental challenges, has a long and rich research history in biology, recent literature has repeatedly pointed out that the processes through which coping behaviours develop in individuals are still largely unknown. In this review, we make a move towards integrating ultimate and proximate lines of coping behaviour research. After broadly defining coping behaviours (1), we review why, from an evolutionary perspective, the development of coping has become tightly linked to the early-life environment (2), which relevant developmental processes are most important in creating coping behaviours adjusted to the early-life environment (3), which influences have been shown to impact those developmental processes (4) and what the adaptive significance of intergenerational transmission of coping behaviours is, in the context of behavioural adaptations to a fast changing world (5). Important concepts such as effects of parents, habitat, nutrition, social group and stress are discussed using examples from empirical studies on mammals, fish, birds and other animals. In the discussion, we address important problems that arise when studying the development of coping behaviours and suggest solutions.
Collapse
Affiliation(s)
- M. Rohaa Langenhof
- Behavioural Physiology and Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Jan Komdeur
- Behavioural Physiology and Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| |
Collapse
|