1
|
Kang J, Gong J, Yang C, Lin X, Yan L, Gong Y, Xu H. Application of Human Stem Cell Derived Retinal Organoids in the Exploration of the Mechanisms of Early Retinal Development. Stem Cell Rev Rep 2023:10.1007/s12015-023-10553-x. [PMID: 37269529 DOI: 10.1007/s12015-023-10553-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2023] [Indexed: 06/05/2023]
Abstract
The intricate neural circuit of retina extracts salient features of the natural world and forms bioelectric impulse as the origin of vision. The early development of retina is a highly complex and coordinated process in morphogenesis and neurogenesis. Increasing evidence indicates that stem cells derived human retinal organoids (hROs) in vitro faithfully recapitulates the embryonic developmental process of human retina no matter in the transcriptome, cellular biology and histomorphology. The emergence of hROs greatly deepens on the understanding of early development of human retina. Here, we reviewed the events of early retinal development both in animal embryos and hROs studies, which mainly comprises the formation of optic vesicle and optic cup shape, differentiation of retinal ganglion cells (RGCs), photoreceptor cells (PRs) and its supportive retinal pigment epithelium cells (RPE). We also discussed the classic and frontier molecular pathways up to date to decipher the underlying mechanisms of early development of human retina and hROs. Finally, we summarized the application prospect, challenges and cutting-edge techniques of hROs for uncovering the principles and mechanisms of retinal development and related developmental disorder. hROs is a priori selection for studying human retinal development and function and may be a fundamental tool for unlocking the unknown insight into retinal development and disease.
Collapse
Affiliation(s)
- Jiahui Kang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Jing Gong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Cao Yang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Xi Lin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Lijuan Yan
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Yu Gong
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
- Department of Ophthalmology, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, China.
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
| |
Collapse
|
2
|
Diacou R, Nandigrami P, Fiser A, Liu W, Ashery-Padan R, Cvekl A. Cell fate decisions, transcription factors and signaling during early retinal development. Prog Retin Eye Res 2022; 91:101093. [PMID: 35817658 PMCID: PMC9669153 DOI: 10.1016/j.preteyeres.2022.101093] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 12/30/2022]
Abstract
The development of the vertebrate eyes is a complex process starting from anterior-posterior and dorso-ventral patterning of the anterior neural tube, resulting in the formation of the eye field. Symmetrical separation of the eye field at the anterior neural plate is followed by two symmetrical evaginations to generate a pair of optic vesicles. Next, reciprocal invagination of the optic vesicles with surface ectoderm-derived lens placodes generates double-layered optic cups. The inner and outer layers of the optic cups develop into the neural retina and retinal pigment epithelium (RPE), respectively. In vitro produced retinal tissues, called retinal organoids, are formed from human pluripotent stem cells, mimicking major steps of retinal differentiation in vivo. This review article summarizes recent progress in our understanding of early eye development, focusing on the formation the eye field, optic vesicles, and early optic cups. Recent single-cell transcriptomic studies are integrated with classical in vivo genetic and functional studies to uncover a range of cellular mechanisms underlying early eye development. The functions of signal transduction pathways and lineage-specific DNA-binding transcription factors are dissected to explain cell-specific regulatory mechanisms underlying cell fate determination during early eye development. The functions of homeodomain (HD) transcription factors Otx2, Pax6, Lhx2, Six3 and Six6, which are required for early eye development, are discussed in detail. Comprehensive understanding of the mechanisms of early eye development provides insight into the molecular and cellular basis of developmental ocular anomalies, such as optic cup coloboma. Lastly, modeling human development and inherited retinal diseases using stem cell-derived retinal organoids generates opportunities to discover novel therapies for retinal diseases.
Collapse
Affiliation(s)
- Raven Diacou
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Prithviraj Nandigrami
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Andras Fiser
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Wei Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ruth Ashery-Padan
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ales Cvekl
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
3
|
Grigoryan EN. Self-Organization of the Retina during Eye Development, Retinal Regeneration In Vivo, and in Retinal 3D Organoids In Vitro. Biomedicines 2022; 10:1458. [PMID: 35740479 PMCID: PMC9221005 DOI: 10.3390/biomedicines10061458] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 11/23/2022] Open
Abstract
Self-organization is a process that ensures histogenesis of the eye retina. This highly intricate phenomenon is not sufficiently studied due to its biological complexity and genetic heterogeneity. The review aims to summarize the existing central theories and ideas for a better understanding of retinal self-organization, as well as to address various practical problems of retinal biomedicine. The phenomenon of self-organization is discussed in the spatiotemporal context and illustrated by key findings during vertebrate retina development in vivo and retinal regeneration in amphibians in situ. Described also are histotypic 3D structures obtained from the disaggregated retinal progenitor cells of birds and retinal 3D organoids derived from the mouse and human pluripotent stem cells. The review highlights integral parts of retinal development in these conditions. On the cellular level, these include competence, differentiation, proliferation, apoptosis, cooperative movements, and migration. On the physical level, the focus is on the mechanical properties of cell- and cell layer-derived forces and on the molecular level on factors responsible for gene regulation, such as transcription factors, signaling molecules, and epigenetic changes. Finally, the self-organization phenomenon is discussed as a basis for the production of retinal organoids, a promising model for a wide range of basic scientific and medical applications.
Collapse
Affiliation(s)
- Eleonora N Grigoryan
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
4
|
Quinn PM, Wijnholds J. Retinogenesis of the Human Fetal Retina: An Apical Polarity Perspective. Genes (Basel) 2019; 10:E987. [PMID: 31795518 PMCID: PMC6947654 DOI: 10.3390/genes10120987] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/20/2022] Open
Abstract
The Crumbs complex has prominent roles in the control of apical cell polarity, in the coupling of cell density sensing to downstream cell signaling pathways, and in regulating junctional structures and cell adhesion. The Crumbs complex acts as a conductor orchestrating multiple downstream signaling pathways in epithelial and neuronal tissue development. These pathways lead to the regulation of cell size, cell fate, cell self-renewal, proliferation, differentiation, migration, mitosis, and apoptosis. In retinogenesis, these are all pivotal processes with important roles for the Crumbs complex to maintain proper spatiotemporal cell processes. Loss of Crumbs function in the retina results in loss of the stratified appearance resulting in retinal degeneration and loss of visual function. In this review, we begin by discussing the physiology of vision. We continue by outlining the processes of retinogenesis and how well this is recapitulated between the human fetal retina and human embryonic stem cell (ESC) or induced pluripotent stem cell (iPSC)-derived retinal organoids. Additionally, we discuss the functionality of in utero and preterm human fetal retina and the current level of functionality as detected in human stem cell-derived organoids. We discuss the roles of apical-basal cell polarity in retinogenesis with a focus on Leber congenital amaurosis which leads to blindness shortly after birth. Finally, we discuss Crumbs homolog (CRB)-based gene augmentation.
Collapse
Affiliation(s)
- Peter M.J. Quinn
- Department of Ophthalmology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
- The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands
| |
Collapse
|
5
|
Pan Y, Kelly LE, El-Hodiri HM. Identification of retinal homeobox (rax) gene-dependent genes by a microarray approach: The DNA endoglycosylase neil3 is a major downstream component of the rax genetic pathway. Dev Dyn 2018; 247:1199-1210. [PMID: 30311321 DOI: 10.1002/dvdy.24679] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/01/2018] [Accepted: 10/01/2018] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND The retinal homeobox (rx/rax) gene is a transcription factor expressed in the developing eye field that is necessary for normal eye development. rax is necessary for retinal specification and stem cell development. The genetic program of early retinal development, including rax expression, can be induced in naïve ectoderm by activation of insulin-like growth factor (IGF) signaling. We have undertaken a microarray-based approach to identify rax-dependent IGF-induced genes. RESULTS We identified 21 IGF-induced genes that exhibit at least a two-fold decrease in expression when rax expression is knocked down. Ten of these genes were expressed in the developing eye, eight were expressed in the ciliary marginal zone of the mature tadpole retina, and four could significantly rescue the rax knockdown phenotype. One of these, the nei endonuclease VIII-like 3 (neil3) gene, rescued the rax knockdown phenotype to a remarkable degree. We found that neil3 is necessary for normal retinal lamination and retinal neuron differentiation. CONCLUSIONS We have identified neil3 as a component of the rax genetic pathway necessary for normal retinal progenitor cell development. neil3 is involved in the base excision DNA repair pathway, suggesting that this pathway is essential for normal rax-dependent progenitor cell development in the mature retina. Developmental Dynamics 247:1199-1210, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yi Pan
- Center for Molecular and Human Genetics, Nationwide Children's Research Institute, The Ohio State University, Columbus, Ohio
| | - Lisa E Kelly
- Center for Molecular and Human Genetics, Nationwide Children's Research Institute, The Ohio State University, Columbus, Ohio
| | - Heithem M El-Hodiri
- Center for Molecular and Human Genetics, Nationwide Children's Research Institute, The Ohio State University, Columbus, Ohio.,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio
| |
Collapse
|
6
|
Abstract
As the embryonic ectoderm is induced to form the neural plate, cells inside this epithelium acquire restricted identities that will dictate their behavior and progressive differentiation. The first behavior adopted by most neural plate cells is called neurulation, a morphogenetic movement shaping the neuroepithelium into a tube. One cell population is not adopting this movement: the eye field. Giving eye identity to a defined population inside the neural plate is therefore a key neural fate decision. While all other neural population undergo neurulation similarly, converging toward the midline, the eye field moves outwards, away from the rest of the forming neural tube, to form vesicles. Thus, while delay in acquisition of most other fates would not have significant morphogenetic consequences, defect in the establishment of the eye field would dramatically impact the formation of the eye. Yet, very little is understood of the molecular and cellular mechanisms driving them. Here, we summarize what is known across vertebrate species and propose a model highlighting what is required to form the essential vesicles that initiate the vertebrate eyes.
Collapse
Affiliation(s)
- Florence A Giger
- Department of Developmental Neurobiology, Centre for Developmental Neurobiology and MRC Centre for Developmental Disorders, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Corinne Houart
- Department of Developmental Neurobiology, Centre for Developmental Neurobiology and MRC Centre for Developmental Disorders, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, London, United Kingdom
| |
Collapse
|
7
|
Pillai-Kastoori L, Wen W, Morris AC. Keeping an eye on SOXC proteins. Dev Dyn 2015; 244:367-376. [PMID: 25476579 PMCID: PMC4344926 DOI: 10.1002/dvdy.24235] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/10/2014] [Accepted: 11/28/2014] [Indexed: 12/17/2022] Open
Abstract
The formation of a mature, functional eye requires a complex series of cell proliferation, migration, induction among different germinal layers, and cell differentiation. These processes are regulated by extracellular cues such as the Wnt/BMP/Hh/Fgf signaling pathways, as well as cell intrinsic transcription factors that specify cell fate. In this review article, we provide an overview of stages of embryonic eye morphogenesis, extrinsic and intrinsic factors that are required for each stage, and pediatric ocular diseases that are associated with defective eye development. In addition, we focus on recent findings about the roles of the SOXC proteins in regulating vertebrate ocular development and implicating SOXC mutations in human ocular malformations.
Collapse
Affiliation(s)
| | - Wen Wen
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Ann C. Morris
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
8
|
Blackiston DJ, Anderson GM, Rahman N, Bieck C, Levin M. A novel method for inducing nerve growth via modulation of host resting potential: gap junction-mediated and serotonergic signaling mechanisms. Neurotherapeutics 2015; 12:170-84. [PMID: 25449797 PMCID: PMC4322068 DOI: 10.1007/s13311-014-0317-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A major goal of regenerative medicine is to restore the function of damaged or missing organs through the implantation of bioengineered or donor-derived components. It is necessary to understand the signals and cues necessary for implanted structures to innervate the host, as organs devoid of neural connections provide little benefit to the patient. While developmental studies have identified neuronal pathfinding molecules required for proper patterning during embryogenesis, strategies to initiate innervation in structures transplanted at later times or alternate locations remain limited. Recent work has identified membrane resting potential of nerves as a key regulator of growth cone extension or arrest. Here, we identify a novel role of bioelectricity in the generation of axon guidance cues, showing that neurons read the electric topography of surrounding cells, and demonstrate these cues can be leveraged to initiate sensory organ transplant innervation. Grafts of fluorescently labeled embryological eye primordia were used to produce ectopic eyes in Xenopus laevis tadpoles. Depolarization of host tissues through anion channel activation or other means led to a striking hyperinnervation of the body by these ectopic eyes. A screen of possible transduction mechanisms identified serotonergic signaling to be essential for hyperinnervation to occur, and our molecular data suggest a possible model of bioelectrical control of the distribution of neurotransmitters that guides nerve growth. Together, these results identify the molecular components of bioelectrical signaling among cells that regulates axon guidance, and suggest novel biomedical and bioengineering strategies for triggering neuronal outgrowth using ion channel drugs already approved for human use.
Collapse
Affiliation(s)
- Douglas J. Blackiston
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155 USA
| | - George M. Anderson
- Yale Child Study Center and Department of Laboratory Medicine, Yale University School of Medicine, 230 S. Frontage Rd., New Haven, CT 06519 USA
| | - Nikita Rahman
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155 USA
| | - Clara Bieck
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155 USA
| | - Michael Levin
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155 USA
| |
Collapse
|
9
|
Giudetti G, Giannaccini M, Biasci D, Mariotti S, Degl'innocenti A, Perrotta M, Barsacchi G, Andreazzoli M. Characterization of the Rx1-dependent transcriptome during early retinal development. Dev Dyn 2014; 243:1352-61. [PMID: 24801179 DOI: 10.1002/dvdy.24145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/29/2014] [Accepted: 05/04/2014] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The transcription factor Rx1, also known as Rax, controls key properties of retinal precursors including migration behavior, proliferation, and maintenance of multipotency. However, Rx1 effector genes are largely unknown. RESULTS To identify genes controlled by Rx1 in early retinal precursors, we compared the transcriptome of Xenopus embryos overexpressing Rx1 to that of embryos in which Rx1 was knocked-down. In particular, we selected 52 genes coherently regulated, i.e., actived in Rx1 gain of function and repressed in Rx1 loss of function experiments, or vice versa. RT-qPCR and in situ hybridization confirmed the trend of regulation predicted by microarray data for the selected genes. Most of the genes upregulated by Rx1 are coexpressed with this transcription factor, while downregulated genes are either not expressed or expressed at very low levels in the early developing retina. Putative direct Rx1 target genes, activated by GR-Rx1 in the absence of protein synthesis, include Ephrin B1 and Sh2d3c, an interactor of ephrinB1 receptor, which represent candidate novel effectors for the migration promoting activity of Rx1. CONCLUSIONS This study identifies previously undescribed Rx1 regulated genes mainly involved in transcription regulation, cell migration/adhesion, and cell proliferation that contribute to delineate the molecular mechanisms underlying Rx1 activities.
Collapse
Affiliation(s)
- Guido Giudetti
- Unità di Biologia Cellulare e dello Sviluppo, Dipartimento di Biologia, Università di Pisa, Pisa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Ougland R, Lando D, Jonson I, Dahl JA, Moen MN, Nordstrand LM, Rognes T, Lee JT, Klungland A, Kouzarides T, Larsen E. ALKBH1 is a histone H2A dioxygenase involved in neural differentiation. Stem Cells 2013; 30:2672-82. [PMID: 22961808 PMCID: PMC3546389 DOI: 10.1002/stem.1228] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 08/19/2012] [Indexed: 12/18/2022]
Abstract
AlkB homolog 1 (ALKBH1) is one of nine members of the family of mammalian AlkB homologs. Most Alkbh1(-/-) mice die during embryonic development, and survivors are characterized by defects in tissues originating from the ectodermal lineage. In this study, we show that deletion of Alkbh1 prolonged the expression of pluripotency markers in embryonic stem cells and delayed the induction of genes involved in early differentiation. In vitro differentiation to neural progenitor cells (NPCs) displayed an increased rate of apoptosis in the Alkbh1(-/-) NPCs when compared with wild-type cells. Whole-genome expression analysis and chromatin immunoprecipitation revealed that ALKBH1 regulates both directly and indirectly, a subset of genes required for neural development. Furthermore, our in vitro enzyme activity assays demonstrate that ALKBH1 is a histone dioxygenase that acts specifically on histone H2A. Mass spectrometric analysis demonstrated that histone H2A from Alkbh1(-/-) mice are improperly methylated. Our results suggest that ALKBH1 is involved in neural development by modifying the methylation status of histone H2A.
Collapse
Affiliation(s)
- Rune Ougland
- Centre for Molecular Biology and Neuroscience, Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet and University of Oslo, Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Blackiston DJ, Levin M. Ectopic eyes outside the head in Xenopus tadpoles provide sensory data for light-mediated learning. ACTA ACUST UNITED AC 2013; 216:1031-40. [PMID: 23447666 DOI: 10.1242/jeb.074963] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A major roadblock in the biomedical treatment of human sensory disorders, including blindness, has been an incomplete understanding of the nervous system and its ability to adapt to changes in sensory modality. Likewise, fundamental insight into the evolvability of complex functional anatomies requires understanding brain plasticity and the interaction between the nervous system and body architecture. While advances have been made in the generation of artificial and biological replacement components, the brain's ability to interpret sensory information arising from ectopic locations is not well understood. We report the use of eye primordia grafts to create ectopic eyes along the body axis of Xenopus tadpoles. These eyes are morphologically identical to native eyes and can be induced at caudal locations. Cell labeling studies reveal that eyes created in the tail send projections to the stomach and trunk. To assess function we performed light-mediated learning assays using an automated machine vision and environmental control system. The results demonstrate that ectopic eyes in the tail of Xenopus tadpoles could confer vision to the host. Thus ectopic visual organs were functional even when present at posterior locations. These data and protocols demonstrate the ability of vertebrate brains to interpret sensory input from ectopic structures and incorporate them into adaptive behavioral programs. This tractable new model for understanding the robust plasticity of the central nervous system has significant implications for regenerative medicine and sensory augmentation technology.
Collapse
Affiliation(s)
- Douglas J Blackiston
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA
| | | |
Collapse
|
12
|
Santos-Ledo A, Cavodeassi F, Carreño H, Aijón J, Arévalo R. Ethanol alters gene expression and cell organization during optic vesicle evagination. Neuroscience 2013; 250:493-506. [PMID: 23892006 PMCID: PMC3988994 DOI: 10.1016/j.neuroscience.2013.07.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 06/25/2013] [Accepted: 07/10/2013] [Indexed: 01/12/2023]
Abstract
Ethanol alters eye morphogenesis at early stages of embryogenesis. The expression patterns of some genes important for eye morphogenesis are perturbed. Ethanol is related to alterations in cell morphology. Ethanol interferes with the optic vesicles evagination.
Ethanol has been described as a teratogen in vertebrate development. During early stages of brain formation, ethanol affects the evagination of the optic vesicles, resulting in synophthalmia or cyclopia, phenotypes where the optic vesicles partially or totally fuse. The mechanisms by which ethanol affects the morphogenesis of the optic vesicles are however largely unknown. In this study we make use of in situ hybridization, electron microscopy and immunohistochemistry to show that ethanol has profound effects on cell organization and gene expression during the evagination of the optic vesicles. Exposure to ethanol during early eye development alters the expression patterns of some genes known to be important for eye morphogenesis, such as rx3/1 and six3a. Furthermore, exposure to ethanol interferes with the acquisition of neuroepithelial features by the eye field cells, which is clear at ultrastructual level. Indeed, ethanol disrupts the acquisition of fusiform cellular shapes within the eye field. In addition, tight junctions do not form and retinal progenitors do not properly polarize, as suggested by the mis-localization and down-regulation of zo1. We also show that the ethanol-induced cyclopic phenotype is significantly different to that observed in cyclopic mutants, suggesting a complex effect of ethanol on a variety of targets. Our results show that ethanol not only disrupts the expression pattern of genes involved in retinal morphogenesis, such as rx3 and rx1, but also disrupts the changes in cell polarity that normally occur during eye field splitting. Thus, ethylic teratology seems to be related not only to modifications in gene expression and cell death but also to alterations in cell morphology.
Collapse
Affiliation(s)
- A Santos-Ledo
- Departamento de Biología Celular y Patología, IBSAL-Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Spain
| | | | | | | | | |
Collapse
|
13
|
Gallina D, Todd L, Fischer AJ. A comparative analysis of Müller glia-mediated regeneration in the vertebrate retina. Exp Eye Res 2013; 123:121-30. [PMID: 23851023 DOI: 10.1016/j.exer.2013.06.019] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 06/13/2013] [Accepted: 06/18/2013] [Indexed: 10/26/2022]
Abstract
This article reviews the current state of knowledge regarding the potential of Müller glia to become neuronal progenitor cells in the avian retina. We compare and contrast the remarkable proliferative and neurogenic capacity of Müller glia in the fish retina to the limited capacity of Müller glia in avian and rodent retinas. We summarize recent findings regarding the secreted factors, signaling pathways and cell intrinsic factors that have been implicated in the formation of Müller glia-derived progenitors. We discuss several key similarities and differences between the fish, rodent and chick model systems, highlighting several of the key transcription factors and signaling pathways that regulate the formation of Müller glia-derived progenitors.
Collapse
Affiliation(s)
- Donika Gallina
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Ave, Columbus, OH 43210-1239, USA
| | - Levi Todd
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Ave, Columbus, OH 43210-1239, USA
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Ave, Columbus, OH 43210-1239, USA.
| |
Collapse
|
14
|
Singh A, Winterbottom EF, Ji YJ, Hwang YS, Daar IO. Abelson interactor 1 (ABI1) and its interaction with Wiskott-Aldrich syndrome protein (wasp) are critical for proper eye formation in Xenopus embryos. J Biol Chem 2013; 288:14135-14146. [PMID: 23558677 DOI: 10.1074/jbc.m112.445643] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abl interactor 1 (Abi1) is a scaffold protein that plays a central role in the regulation of actin cytoskeleton dynamics as a constituent of several key protein complexes, and homozygous loss of this protein leads to embryonic lethality in mice. Because this scaffold protein has been shown in cultured cells to be a critical component of pathways controlling cell migration and actin regulation at cell-cell contacts, we were interested to investigate the in vivo role of Abi1 in morphogenesis during the development of Xenopus embryos. Using morpholino-mediated translation inhibition, we demonstrate that knockdown of Abi1 in the whole embryo, or specifically in eye field progenitor cells, leads to disruption of eye morphogenesis. Moreover, signaling through the Src homology 3 domain of Abi1 is critical for proper movement of retinal progenitor cells into the eye field and their appropriate differentiation, and this process is dependent upon an interaction with the nucleation-promoting factor Wasp (Wiskott-Aldrich syndrome protein). Collectively, our data demonstrate that the Abi1 scaffold protein is an essential regulator of cell movement processes required for normal eye development in Xenopus embryos and specifically requires an Src homology 3 domain-dependent interaction with Wasp to regulate this complex morphogenetic process.
Collapse
Affiliation(s)
- Arvinder Singh
- Laboratory of Cell and Developmental Signaling, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702
| | - Emily F Winterbottom
- Laboratory of Cell and Developmental Signaling, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702
| | - Yon Ju Ji
- Laboratory of Cell and Developmental Signaling, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702
| | - Yoo-Seok Hwang
- Laboratory of Cell and Developmental Signaling, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702
| | - Ira O Daar
- Laboratory of Cell and Developmental Signaling, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702.
| |
Collapse
|
15
|
Zaghloul NA, Yan B, Moody SA. Step-wise specification of retinal stem cells during normal embryogenesis. Biol Cell 2012; 97:321-37. [PMID: 15836431 DOI: 10.1042/bc20040521] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The specification of embryonic cells to produce the retina begins at early embryonic stages as a multi-step process that gradually restricts fate potentials. First, a subset of embryonic cells becomes competent to form retina by their lack of expression of endo-mesoderm-specifying genes. From these cells, a more restricted subset is biased to form retina by virtue of their close proximity to sources of bone morphogenetic protein antagonists during neural induction. During gastrulation, the definitive RSCs (retinal stem cells) are specified as the eye field by interactions with underlying mesoderm and the expression of a network of retina-specifying genes. As the eye field is transformed into the optic vesicle and optic cup, a heterogeneous population of RPCs (retinal progenitor cells) forms to give rise to the different domains of the retina: the optic stalk, retinal pigmented epithelium and neural retina. Further diversity of RPCs appears to occur under the influences of cell-cell interactions, cytokines and combinations of regulatory genes, leading to the differentiation of a multitude of different retinal cell types. This review examines what is known about each sequential step in retinal specification during normal vertebrate development, and how that knowledge will be important to understand how RSCs might be manipulated for regenerative therapies to treat retinal diseases.
Collapse
Affiliation(s)
- Norann A Zaghloul
- Department of Anatomy and Cell Biology, The George Washington University, 2300 Eye Street, NW, Washington, DC 20037, USA
| | | | | |
Collapse
|
16
|
Moody SA. Targeted microinjection of synthetic mRNAs to alter retina gene expression in Xenopus embryos. Methods Mol Biol 2012; 884:91-111. [PMID: 22688700 DOI: 10.1007/978-1-61779-848-1_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The individual cells of the Xenopus cleavage-stage embryo have been fate mapped, revealing which of these cells contribute to the retina. Using this retina fate map, one can specifically modulate levels of gene expression in retina lineages to determine the function of proteins in various aspects of early retinal development, such as formation of the eye fields and determination of specific cell fates. This chapter presents the techniques for identifying specific retina blastomere precursor cells, and injecting them with lineage tracers, mRNAs encoding wild-type and mutant constructs or morpholino antisense oligonucleotides to alter gene expression.
Collapse
Affiliation(s)
- Sally A Moody
- Department of Anatomy and Regenerative Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
17
|
Moody SA. Testing retina fate commitment in Xenopus by blastomere deletion, transplantation, and explant culture. Methods Mol Biol 2012; 884:115-127. [PMID: 22688701 DOI: 10.1007/978-1-61779-848-1_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The lineages of individual cells of the Xenopus cleavage-stage embryo have been fate-mapped to reveal the subset of blastomeres that are the major and minor precursors of the retina. Using this retina fate map, one can test the commitment of each of these cells to various retinal cell fates by manipulating the environment in which they develop. This chapter presents the techniques for identifying specific retina blastomere precursor cells, deleting them to test whether they are required for producing specific kinds of retinal cells, transplanting them to novel embryonic locations in host embryos to test whether they are committed to produce specific kinds of retinal cells, and growing them in explant culture to determine if their ability to produce specific kinds of retinal cells is autonomous.
Collapse
Affiliation(s)
- Sally A Moody
- Department of Anatomy and Regenerative Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
18
|
Socodato R, Brito R, Calaza KC, Paes-de-Carvalho R. Developmental regulation of neuronal survival by adenosine in the in vitro and in vivo avian retina depends on a shift of signaling pathways leading to CREB phosphorylation or dephosphorylation. J Neurochem 2010; 116:227-39. [PMID: 21054391 DOI: 10.1111/j.1471-4159.2010.07096.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Previous studies have shown a cAMP/protein kinase A-dependent neuroprotective effect of adenosine on glutamate or re-feeding-induced apoptosis in chick retina neuronal cultures. In the present work, we have studied the effect of adenosine on the survival of retinal progenitor cells. Cultures obtained from 6-day-old (E6) or from 8-day-old (E8) chick embryos were challenged 2 h (C0) or 1 day (C1) after seeding and analyzed after 3-4 days in vitro. Surprisingly, treatment with the selective A2a adenosine receptor agonists N(6) -[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)-ethyl]adenosine (DPMA) or 3-[4-[2-[[6-amino-9-[(2R,3R,4S,5S)-5-(ethylcarbamoyl)-3,4-dihydroxy-oxolan-2-yl]purin-2-yl]amino]ethyl]phenyl]propanoic acid (CGS21680) promoted cell death when added at E6C0 but not at E6C1 or E8C0. DPMA-induced cell death involved activation of A2a receptors and the phospholipase C/protein kinase C but not the cAMP/protein kinase A pathway, and was not correlated with early modulation of precursor cells proliferation. Regarding cyclic nucleotide responsive element binding protein (CREB) phosphorylation, cultures from E6 embryos behave in an opposite manner from that from E8 embryos, both in vitro and in vivo. While the phospho-CREB level was high at E6C0 cultures and could be diminished by DPMA, it was lower at E8C0 and could be increased by DPMA. Similar to what was observed in cell survival studies, CREB dephosphorylation induced by DPMA in E6C0 cultures was dependent on the Phospholipase C/protein kinase C pathway. Accordingly, cell death induced by DPMA was inhibited by okadaic acid, a phosphatase blocker. Moreover, DPMA as well as the adenosine uptake blocker nitrobenzyl mercaptopurine riboside (NBMPR) modulate cell survival and CREB phosphorylation in a population of cells in the ganglion cell layer in vivo. These data suggest that A2a adenosine receptors as well as CREB may display a novel and important function by controlling the repertoire of developing retinal neurons.
Collapse
Affiliation(s)
- Renato Socodato
- Laboratories of Cellular Neurobiology and Neurobiology of Retina, Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil
| | | | | | | |
Collapse
|
19
|
Abstract
Vertebrate eyes begin as a small patch of cells at the most anterior end of the early brain called the eye field. If these cells are removed from an amphibian embryo, the eyes do not form. If the eye field is transplanted to another location on the embryo or cultured in a dish, it forms eyes. These simple cut and paste experiments were performed at the beginning of the last century and helped to define the embryonic origin of the vertebrate eye. The genes necessary for eye field specification and eventual eye formation, by contrast, have only recently been identified. These genes and the molecular mechanisms regulating the initial formation of the Xenopus laevis eye field are the subjects of this review.
Collapse
Affiliation(s)
- Michael E Zuber
- Center for Vision Research, SUNY Eye Institute, Departments of Ophthalmology and Biochemistry & Molecular Biology, Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
20
|
Brown KE, Keller PJ, Ramialison M, Rembold M, Stelzer EHK, Loosli F, Wittbrodt J. Nlcam modulates midline convergence during anterior neural plate morphogenesis. Dev Biol 2009; 339:14-25. [PMID: 20005219 DOI: 10.1016/j.ydbio.2009.12.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 12/02/2009] [Accepted: 12/03/2009] [Indexed: 01/13/2023]
Abstract
During development, different cell types must undergo distinct morphogenetic programs so that tissues develop the right dimensions in the appropriate place. In early eye morphogenesis, retinal progenitor cells (RPCs) move first towards the midline, before turning around to migrate out into the evaginating optic vesicles. Neighbouring forebrain cells, however, converge rapidly and then remain at the midline. These differential behaviours are regulated by the transcription factor Rx3. Here, we identify a downstream target of Rx3, the Ig-domain protein Nlcam, and characterise its role in regulating cell migration during the initial phase of optic vesicle morphogenesis. Through sophisticated live imaging and comprehensive cell tracking experiments in zebrafish, we show that ectopic expression of Nlcam in RPCs, as is observed in Rx3 mutants, causes enhanced convergence of these cells. Expression levels of Nlcam therefore regulate the migratory properties of RPCs. Our results provide evidence that the two phases of optic vesicle morphogenesis: slowed convergence and outward-directed migration, are under different genetic control. We propose that Nlcam forms part of the guidance machinery directing rapid midline migration of forebrain precursors, where it is normally expressed, and that its ectopic expression upon loss of Rx3 imparts these migratory characteristics upon RPCs.
Collapse
Affiliation(s)
- Katherine E Brown
- Developmental Biology, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
21
|
Identification of small Sca-1+, Lin−, CD45− multipotential cells in the neonatal murine retina. Exp Hematol 2009; 37:1096-107, 1107.e1. [DOI: 10.1016/j.exphem.2009.05.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 05/21/2009] [Accepted: 05/29/2009] [Indexed: 01/07/2023]
|
22
|
Andreazzoli M. Molecular regulation of vertebrate retina cell fate. ACTA ACUST UNITED AC 2009; 87:284-95. [DOI: 10.1002/bdrc.20161] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Viczian AS, Solessio EC, Lyou Y, Zuber ME. Generation of functional eyes from pluripotent cells. PLoS Biol 2009; 7:e1000174. [PMID: 19688031 PMCID: PMC2716519 DOI: 10.1371/journal.pbio.1000174] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Accepted: 07/07/2009] [Indexed: 11/18/2022] Open
Abstract
The directed differentiation of pluripotent cells into specific cell-types is a major hurdle in regenerative medicine. This study shows the eye field transcription factor factors can direct pluripotent cells into functioning frog eyes. Pluripotent cells such as embryonic stem (ES) and induced pluripotent stem (iPS) cells are the starting point from which to generate organ specific cell types. For example, converting pluripotent cells to retinal cells could provide an opportunity to treat retinal injuries and degenerations. In this study, we used an in vivo strategy to determine if functional retinas could be generated from a defined population of pluripotent Xenopus laevis cells. Animal pole cells isolated from blastula stage embryos are pluripotent. Untreated, these cells formed only epidermis, when transplanted to either the flank or eye field. In contrast, misexpression of seven transcription factors induced the formation of retinal cell types. Induced retinal cells were committed to a retinal lineage as they formed eyes when transplanted to the flanks of developing embryos. When the endogenous eye field was replaced with induced retinal cells, they formed eyes that were molecularly, anatomically, and electrophysiologically similar to normal eyes. Importantly, induced eyes could guide a vision-based behavior. These results suggest the fate of pluripotent cells may be purposely altered to generate multipotent retinal progenitor cells, which differentiate into functional retinal cell classes and form a neural circuitry sufficient for vision. The goal of regenerative medicine is to replace dead or dying cells. Successful cell replacement depends on the ability of donor cells to differentiate into all functional cell types lost in the target organ. Blindness resulting from retinal disease or damage, for example, would require the replacement of as many as seven specialized cell types found in the retina. The most celebrated characteristic of pluripotent cells is their ability to differentiate into any adult cell type. This defining feature, however, presents the challenge of identifying the conditions for their conversion to the cell types needed for tissue repair. We asked if pluripotent cells could be directed to generate all the retinal cell types necessary to form a functional eye in the frog, Xenopus laevis. If left untreated, transplanted pluripotent cells only form the epidermal layer of the skin. However, when forced to express the eye field transcription factor (EFTF) genes, the cells differentiate into all seven retinal cell classes and eventually organize themselves into a functioning eye that can detect light and guide tadpoles in a vision-based behavior. Our results demonstrate that pluripotent cells can be purposely altered to generate all the functional retinal cell classes necessary for sight.
Collapse
Affiliation(s)
- Andrea S. Viczian
- Department of Ophthalmology, State University of New York (SUNY) Upstate Medical University, Syracuse, New York, United States of America
- Department of Biochemistry and Molecular Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, New York, United States of America
| | - Eduardo C. Solessio
- Department of Ophthalmology, State University of New York (SUNY) Upstate Medical University, Syracuse, New York, United States of America
| | - Yung Lyou
- Department of Biochemistry and Molecular Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, New York, United States of America
| | - Michael E. Zuber
- Department of Ophthalmology, State University of New York (SUNY) Upstate Medical University, Syracuse, New York, United States of America
- Department of Biochemistry and Molecular Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, New York, United States of America
- * E-mail:
| |
Collapse
|
24
|
Lee HS, Mood K, Battu G, Ji YJ, Singh A, Daar IO. Fibroblast growth factor receptor-induced phosphorylation of ephrinB1 modulates its interaction with Dishevelled. Mol Biol Cell 2009; 20:124-33. [PMID: 19005214 PMCID: PMC2613129 DOI: 10.1091/mbc.e08-06-0662] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 10/03/2008] [Accepted: 10/31/2008] [Indexed: 11/11/2022] Open
Abstract
The Eph family of receptor tyrosine kinases and their membrane-bound ligands, the ephrins, have been implicated in regulating cell adhesion and migration during development by mediating cell-to-cell signaling events. The transmembrane ephrinB1 protein is a bidirectional signaling molecule that signals through its cytoplasmic domain to promote cellular movements into the eye field, whereas activation of the fibroblast growth factor receptor (FGFR) represses these movements and retinal fate. In Xenopus embryos, ephrinB1 plays a role in retinal progenitor cell movement into the eye field through an interaction with the scaffold protein Dishevelled (Dsh). However, the mechanism by which the FGFR may regulate this cell movement is unknown. Here, we present evidence that FGFR-induced repression of retinal fate is dependent upon phosphorylation within the intracellular domain of ephrinB1. We demonstrate that phosphorylation of tyrosines 324 and 325 disrupts the ephrinB1/Dsh interaction, thus modulating retinal progenitor movement that is dependent on the planar cell polarity pathway. These results provide mechanistic insight into how fibroblast growth factor signaling modulates ephrinB1 control of retinal progenitor movement within the eye field.
Collapse
Affiliation(s)
- Hyun-Shik Lee
- Laboratory of Cell and Developmental Signaling, National Cancer Institute-Frederick, Frederick, MD 21702
| | - Kathleen Mood
- Laboratory of Cell and Developmental Signaling, National Cancer Institute-Frederick, Frederick, MD 21702
| | - Gopala Battu
- Laboratory of Cell and Developmental Signaling, National Cancer Institute-Frederick, Frederick, MD 21702
| | - Yon Ju Ji
- Laboratory of Cell and Developmental Signaling, National Cancer Institute-Frederick, Frederick, MD 21702
| | - Arvinder Singh
- Laboratory of Cell and Developmental Signaling, National Cancer Institute-Frederick, Frederick, MD 21702
| | - Ira O. Daar
- Laboratory of Cell and Developmental Signaling, National Cancer Institute-Frederick, Frederick, MD 21702
| |
Collapse
|
25
|
Zaghloul NA, Moody SA. Alterations of rx1 and pax6 expression levels at neural plate stages differentially affect the production of retinal cell types and maintenance of retinal stem cell qualities. Dev Biol 2007; 306:222-40. [PMID: 17434474 DOI: 10.1016/j.ydbio.2007.03.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 02/28/2007] [Accepted: 03/12/2007] [Indexed: 01/23/2023]
Abstract
rx1 and pax6 are necessary for the establishment of the vertebrate eye field and for the maintenance of the retinal stem cells that give rise to multiple retinal cell types. They also are differentially expressed in cellular layers in the retina when cell fates are being specified, and their expression levels differentially affect the production of amacrine cell subtypes. To determine whether rx1 and pax6 expression after the eye field is established simply maintains stem cell-like qualities or affects cell type differentiation, we used hormone-inducible constructs to increase or decrease levels/activity of each protein at two different neural plate stages. Our results indicate that rx1 regulates the size of the retinal stem cell pool because it broadly affected all cell types, whereas pax6 regulates more restricted retinal progenitor cells because it selectively affected different cell types in a time-dependent manner. Analysis of rx1 and pax6 effects on proliferation, and expression of stem cell or differentiation markers demonstrates that rx1 maintains cells in a stem cell state by promoting proliferation and delaying expression of neural identity and differentiation markers. Although pax6 also promotes proliferation, it differentially regulates neural identity and differentiation genes. Thus, these two genes work in parallel to regulate different, but overlapping aspects of retinal cell fate determination.
Collapse
Affiliation(s)
- Norann A Zaghloul
- Department of Anatomy and Cell Biology, George Washington University Medical Center, 2300 I (eye) Street, NW, Washington, DC 20854, USA
| | | |
Collapse
|
26
|
Yan B, Moody SA. The competence of Xenopus blastomeres to produce neural and retinal progeny is repressed by two endo-mesoderm promoting pathways. Dev Biol 2007; 305:103-19. [PMID: 17428460 PMCID: PMC1892348 DOI: 10.1016/j.ydbio.2007.01.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Revised: 01/11/2007] [Accepted: 01/31/2007] [Indexed: 10/23/2022]
Abstract
Only a subset of cleavage stage blastomeres in the Xenopus embryo is competent to contribute cells to the retina; ventral vegetal blastomeres do not form retina even when provided with neuralizing factors or transplanted to the most retinogenic position of the embryo. These results suggest that endogenous maternal factors in the vegetal region repress the ability of blastomeres to form retina. Herein we provide three lines of evidence that two vegetal-enriched maternal factors (VegT, Vg1), which are known to promote endo-mesodermal fates, negatively regulate which cells are competent to express anterior neural and retinal fates. First, both molecules can repress the ability of dorsal-animal retinogenic blastomeres to form retina, converting the lineage from neural/retinal to non-neural ectodermal and endo-mesodermal fates. Second, reducing the endogenous levels of either factor in dorsal-animal retinogenic blastomeres expands expression of neural/retinal genes and enlarges the retina. The dorsal-animal repression of neural/retinal fates by VegT and Vg1 is likely mediated by Sox17alpha and Derriere but not by XNr1. VegT and Vg1 likely exert their effects on neural/retinal fates through at least partially independent pathways because Notch1 can reverse the effects of VegT and Derriere but not those of Vg1 or XNr1. Third, reduction of endogenous VegT and/or Vg1 in ventral vegetal blastomeres can induce a neural fate, but only allows expression of a retinal fate when both BMP and Wnt signaling pathways are concomitantly repressed.
Collapse
Affiliation(s)
- Bo Yan
- Department of Anatomy and Cell Biology, The George Washington University Medical Center, 2300 Eye Street, N.W., Washington, DC 20037, USA
| | | |
Collapse
|
27
|
Esteve P, Bovolenta P. Secreted inducers in vertebrate eye development: more functions for old morphogens. Curr Opin Neurobiol 2006; 16:13-9. [PMID: 16413771 DOI: 10.1016/j.conb.2006.01.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Accepted: 01/04/2006] [Indexed: 02/04/2023]
Abstract
Cell signaling molecules secreted from strategically localized positions coordinate cell behavior to enable progressive specification of embryonic tissues. These molecules converge on a few signaling pathways that are reiteratively used in different tissues at different times for generating cell type-specific patterns of gene expression. Although our current knowledge of the system is fragmentary, eye development seems to follow this general strategy. In line with this idea, recent studies have added new information on how Fgf and Wnt signaling participates in the formation of the eye field. In addition, later on in development, Fgf controls the onset of retinal neurogenesis and Shh and GDF11 control its feedback regulation.
Collapse
Affiliation(s)
- Pilar Esteve
- Departamento de Neurobiología del Desarrollo, Instituto Cajal, Consejo Superior de Investigaciones Cientificas, Doctor Arce 37, Madrid 28002, Spain
| | | |
Collapse
|
28
|
Lee HS, Bong YS, Moore KB, Soria K, Moody SA, Daar IO. Dishevelled mediates ephrinB1 signalling in the eye field through the planar cell polarity pathway. Nat Cell Biol 2005; 8:55-63. [PMID: 16362052 DOI: 10.1038/ncb1344] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Accepted: 11/25/2005] [Indexed: 02/01/2023]
Abstract
An important step in retinal development is the positioning of progenitors within the eye field where they receive the local environmental signals that will direct their ultimate fate. Recent evidence indicates that ephrinB1 functions in retinal progenitor movement, but the signalling pathway is unclear. We present evidence that ephrinB1 signals through its intracellular domain to control retinal progenitor movement into the eye field by interacting with Xenopus Dishevelled (Xdsh), and by using the planar cell polarity (PCP) pathway. Blocking Xdsh translation prevents retinal progeny from entering the eye field, similarly to the morpholino-mediated loss of ephrinB1 (ref. 2). Overexpression of Xdsh can rescue the phenotype induced by loss of ephrinB1, and this rescue (as well as a physical association between Xdsh and ephrinB1) is completely dependent on the DEP (Dishevelled, Egl-10, Pleckstrin) domain of Xdsh. Similar gain- and loss-of-function experiments suggest that Xdsh associates with ephrinB1 and mediates ephrinB1 signalling through downstream members of the PCP pathway during eye field formation.
Collapse
Affiliation(s)
- Hyun-Shik Lee
- Laboratory of Protein Dynamics and Signaling, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | | | | | | | | | | |
Collapse
|
29
|
Carron C, Bourdelas A, Li HY, Boucaut JC, Shi DL. Antagonistic interaction between IGF and Wnt/JNK signaling in convergent extension in Xenopus embryo. Mech Dev 2005; 122:1234-47. [PMID: 16169711 DOI: 10.1016/j.mod.2005.06.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 06/17/2005] [Accepted: 06/17/2005] [Indexed: 10/25/2022]
Abstract
The homeobox gene Otx2 is expressed during gastrulation in the anterior domain of the vertebrate embryo and is involved in neural and head induction during Xenopus early development. It also prevents convergent extension movements in trunk and posterior mesoderm. Insulin-like growth factors (IGFs) were shown to have similar function. However, whether they interact and the mechanism by which they affect convergent extension remain unclear. We show that IGF pathway specifically induces the expression of Otx2 in the early gastrula and blocks convergent extension of neuroectoderm and mesoderm through the transcriptional activation of Otx2 gene. Otx2 represses the expression of Xbra and Xwnt-11, and the effects of IGF on gastrulation movements can be partially rescued by antisense Otx2 morpholino oligonucleotide. These indicate that IGF pathway interacts with Otx2 to restrict Xbra and Xwnt-11 expression in the trunk and posterior regions. Consistent with this, we show that inhibition of IGF signaling or Otx2 function induces Xbra and Xwnt11 expression and convergent extension in ectodermal cells. Furthermore, the blockade of convergent extension by IGF-I and Otx2 can be rescued by coexpression of Xwnt-11 or a constitutively active Jun N-terminal kinase (JNK). Because Xbra and Xwnt-11 are required for convergent extension movements and Xwnt-11 activates the non-canonical Wnt-11/JNK pathway, our results reveal a mutually exclusive function between IGF and Wnt-11/JNK pathways in regulating cell behaviours during vertebrate head and trunk development.
Collapse
Affiliation(s)
- Clémence Carron
- Groupe de Biologie Expérimentale, Laboratoire de Biologie du Développement, CNRS UMR 7622, Université Paris 6, 9 quai Saint-Bernard, 75005 Paris, France
| | | | | | | | | |
Collapse
|
30
|
Margalit A, Segura-Totten M, Gruenbaum Y, Wilson KL. Barrier-to-autointegration factor is required to segregate and enclose chromosomes within the nuclear envelope and assemble the nuclear lamina. Proc Natl Acad Sci U S A 2005; 102:3290-5. [PMID: 15728376 PMCID: PMC552915 DOI: 10.1073/pnas.0408364102] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Accepted: 01/19/2005] [Indexed: 11/18/2022] Open
Abstract
Barrier-to-autointegration factor (BAF) binds dsDNA, LEM-domain proteins, and lamins. Caenorhabditis elegans BAF requires Ce-lamin and two LEM-domain proteins (Ce-emerin and Ce-MAN1) to localize during nuclear assembly. It was unknown whether Ce-lamin and LEM proteins, in turn, depend on Ce-BAF (mutually dependent structural roles). RNA interference-mediated down-regulation of Ce-BAF caused gross defects in chromosome segregation, chromatin decondensation, and mitotic progression as early as the two-cell stage, and embryos died at the approximately 100-cell stage. Nuclear pores reassembled, whereas Ce-lamin, Ce-emerin, and Ce-MAN1 bound chromatin but remained patchy and disorganized. The nuclear membranes formed but failed to enclose anaphase-bridged chromatin. Time-lapse imaging showed two phenotypes: anaphase-bridged chromatin that eventually resolved, and segregated chromatin that returned to the midzone. Thus, the assembly of BAF, lamins, and LEM-domain proteins is mutually dependent, and is required to capture segregated chromosomes within the nascent nuclear envelope. Embryos that escaped lethality by down-regulation of Ce-BAF grew into sterile adults with misplaced distal tip cells and gonads, further suggesting that mild postembryonic reductions in BAF disrupt tissue-specific functions.
Collapse
Affiliation(s)
- Ayelet Margalit
- Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | | | | | | |
Collapse
|
31
|
Brugmann SA, Pandur PD, Kenyon KL, Pignoni F, Moody SA. Six1 promotes a placodal fate within the lateral neurogenic ectoderm by functioning as both a transcriptional activator and repressor. Development 2004; 131:5871-81. [PMID: 15525662 DOI: 10.1242/dev.01516] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cranial placodes, which give rise to sensory organs in the vertebrate head, are important embryonic structures whose development has not been well studied because of their transient nature and paucity of molecular markers. We have used markers of pre-placodal ectoderm (PPE) (six1, eya1) to determine that gradients of both neural inducers and anteroposterior signals are necessary to induce and appropriately position the PPE. Overexpression of six1 expands the PPE at the expense of neural crest and epidermis, whereas knock-down of Six1 results in reduction of the PPE domain and expansion of the neural plate, neural crest and epidermis. Using expression of activator and repressor constructs of six1 or co-expression of wild-type six1 with activating or repressing co-factors (eya1 and groucho, respectively), we demonstrate that Six1 inhibits neural crest and epidermal genes via transcriptional repression and enhances PPE genes via transcriptional activation. Ectopic expression of neural plate, neural crest and epidermal genes in the PPE demonstrates that these factors mutually influence each other to establish the appropriate boundaries between these ectodermal domains.
Collapse
Affiliation(s)
- Samantha A Brugmann
- Department of Anatomy and Cell Biology, Institute for Biomedical Sciences, The George Washington University, Washington, DC 20037, USA
| | | | | | | | | |
Collapse
|
32
|
Esteve P, Lopez-Rios J, Bovolenta P. SFRP1 is required for the proper establishment of the eye field in the medaka fish. Mech Dev 2004; 121:687-701. [PMID: 15210177 DOI: 10.1016/j.mod.2004.03.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2003] [Revised: 03/09/2004] [Accepted: 03/10/2004] [Indexed: 11/29/2022]
Abstract
Secreted Frizzled Related Proteins (SFRPs) are a family of soluble molecules structurally related to the Wnt receptors. Functional analysis in different vertebrate species suggests that these molecules are multifunctional modulators of Wnt and possibly other signalling pathways. Sfrp1 a member of this family, is strongly expressed throughout embryonic development in different vertebrate species. Its function is, however, poorly understood. To address the role of this protein at early stages of embryonic development, we have used the medaka fish (Oryzias latipes) as a model system. Here, we describe the characterisation and the expression analysis of olSfrp1. We also show that morpholino-based interference with olSfrp1 expression results in embryos with a reduced eye field, a phenotype that, in the most affected embryos, is associated with a shortening and widening of the A-P axis. Because the expression of posterior diencephalic markers is unchanged but that of rostral telencephalic ones is expanded, we propose that olSfrp1 is needed for a proper establishment of the eye field within the forebrain. In addition, olSfrp1 may contribute to the control of mesodermal convergence extension movements that take place during gastrulation.
Collapse
Affiliation(s)
- Pilar Esteve
- Departamento de Neurobiologia del Desarrollo, Instituto Cajal, CSIC, Avenida Dr Arce 37, Madrid 28002, Spain
| | | | | |
Collapse
|
33
|
Moore KB, Mood K, Daar IO, Moody SA. Morphogenetic Movements Underlying Eye Field Formation Require Interactions between the FGF and ephrinB1 Signaling Pathways. Dev Cell 2004; 6:55-67. [PMID: 14723847 DOI: 10.1016/s1534-5807(03)00395-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The definitive retinal progenitors of the eye field are specified by transcription factors that both promote a retinal fate and control cell movements that are critical for eye field formation. However, the molecular signaling pathways that regulate these movements are largely undefined. We demonstrate that both the FGF and ephrin pathways impact eye field formation. Activating the FGF pathway before gastrulation represses cellular movements in the presumptive anterior neural plate and prevents cells from expressing a retinal fate, independent of mesoderm induction or anterior-posterior patterning. Inhibiting the FGF pathway promotes cell dispersal and significantly increases eye field contribution. ephrinB1 reverse signaling is required to promote cellular movements into the eye field, and can rescue the FGF receptor-induced repression of retinal fate. These results indicate that FGF modulation of ephrin signaling regulates the positioning of retinal progenitor cells within the definitive eye field.
Collapse
Affiliation(s)
- Kathryn B Moore
- Department of Anatomy and Cell Biology, The George Washington University Medical Center, Washington, DC 20037, USA
| | | | | | | |
Collapse
|
34
|
Andreazzoli M, Gestri G, Cremisi F, Casarosa S, Dawid IB, Barsacchi G. Xrx1 controls proliferation and neurogenesis in Xenopus anterior neural plate. Development 2003; 130:5143-54. [PMID: 12975341 DOI: 10.1242/dev.00665] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Xenopus neuroectoderm, posterior cells start differentiating at the end of gastrulation, while anterior cells display an extended proliferative period and undergo neurogenesis only at tailbud stage. Recent studies have identified several important components of the molecular pathways controlling posterior neurogenesis, but little is known about those controlling the timing and positioning of anterior neurogenesis. We investigate the role of Xrx1, a homeobox gene required for eye and anterior brain development, in the control of proliferation and neurogenesis of the anterior neural plate. Xrx1 is expressed in the entire proliferative region of the anterior neural plate delimited by cells expressing the neuronal determination gene X-ngnr-1, the neurogenic gene X-Delta-1, and the cell cycle inhibitor p27Xic1. Positive and negative signals position Xrx1 expression to this region. Xrx1 is activated by chordin and Hedgehog gene signaling, which induce anterior and proliferative fate, and is repressed by the differentiation-promoting activity of neurogenin and retinoic acid. Xrx1 is required for anterior neural plate proliferation and, when overexpressed, induces proliferation, inhibits X-ngnr-1, X-Delta-1 and N-tubulin and counteracts X-ngnr-1- and retinoic acid-mediated differentiation. We find that Xrx1 does not act by increasing lateral inhibition but by inducing the antineurogenic transcriptional repressors Xhairy2 and Zic2, and by repressing p27Xic1. The effects of Xrx1 on proliferation, neurogenesis and gene expression are restricted to the most rostral region of the embryo, implicating this gene as an anterior regulator of neurogenesis.
Collapse
Affiliation(s)
- Massimiliano Andreazzoli
- Dipartimento di Fisiologia e Biochimica, Università degli Studi di Pisa, Via Carducci 13, 56010 Ghezzano (Pisa), Italy.
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
During embryonic development, the array of vastly different neuronal types that are incorporated into the functional architecture of the mature neuroretina derives from a common population of multipotent retinal progenitor cells (RPCs). Retinogenesis proceeds in a precise chronological order, with the seven principal cell classes generated in successive phases. Cell biological experiments established that this histogenetic order, at least in part, reflects intrinsic changes within the RPC pool. In recent years a number of molecules controlling various aspects of cell fate specification from RPCs have been identified. However, few attempts have been made to integrate previous concepts that emerged from cell biological studies and more recent results based on molecular genetic experiments. This review aims at providing an overview of recent advances in our understanding of the cellular and molecular mechanisms underlying retinal neuronal diversification, with a particular focus on cell-intrinsic factors.
Collapse
Affiliation(s)
- Till Marquardt
- The Salk Institute of Biological Studies, GEL-P, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
36
|
Hyer J, Kuhlman J, Afif E, Mikawa T. Optic cup morphogenesis requires pre-lens ectoderm but not lens differentiation. Dev Biol 2003; 259:351-63. [PMID: 12871706 DOI: 10.1016/s0012-1606(03)00205-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The formation of the vertebrate optic cup is a morphogenetic event initiated after the optic vesicle contacts the overlying surface/pre-lens ectoderm. Placodes form in both the optic neuroepithelium and lens ectoderm. Subsequently, both placodes invaginate to form the definitive optic cup and lens, respectively. We examined the role of the lens tissue in inducing and/or maintaining optic cup invagination in ovo. Lens tissue was surgically removed at various stages of development, from pre-lens ectoderm stages to invaginating lens placode. Removal of the pre-lens ectoderm resulted in persistent optic vesicles that initiated neural retinal differentiation but failed to invaginate. In striking contrast, ablation of the lens placode gave rise to optic vesicles that underwent invagination and formed the optic cup. The results suggest that: (1) the optic vesicle neuroepithelium requires a temporally specific association with pre-lens ectoderm in order to undergo optic cup morphogenesis; and (2) the optic cup can form in the absence of lens formation. If ectopic BMP is added, a neural retina does not develop and optic cup morphogenesis fails, although lens formation appears normal. FGF-induced neural retina differentiation in the absence of the pre-lens ectoderm is not sufficient to create an optic cup. We hypothesize the presence of a signal coming from the pre-lens ectoderm that induces the optic vesicle to form an optic cup.
Collapse
Affiliation(s)
- Jeanette Hyer
- Department of Neurosurgery, University of California/San Francisco, Box 0520, 513 Parnassus Ave., San Francisco, CA 94143-0520, USA.
| | | | | | | |
Collapse
|
37
|
Abstract
The developmental history of the vertebrate eye begins at an early embryonic stage, with the formation of the body axes and induction of neural tissue. Several recent experimental embryological and genetic studies in teleost fish have produced new insights into the morphogenetic and molecular regulation of eye formation. Molecular signaling pathways and patterned expression of transcription factors implicated in eye determination are discussed, and the importance of morphogenetic cell movements is emphasized.
Collapse
|