1
|
Buhl E, Kim YA, Parsons T, Zhu B, Santa-Maria I, Lefort R, Hodge JJ. Effects of Eph/ephrin signalling and human Alzheimer's disease-associated EphA1 on behaviour and neurophysiology. Neurobiol Dis 2022; 170:105752. [DOI: 10.1016/j.nbd.2022.105752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 04/09/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
|
2
|
Baltanás FC, Zarich N, Rojas-Cabañeros JM, Santos E. SOS GEFs in health and disease. Biochim Biophys Acta Rev Cancer 2020; 1874:188445. [PMID: 33035641 DOI: 10.1016/j.bbcan.2020.188445] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
SOS1 and SOS2 are the most universal and widely expressed family of guanine exchange factors (GEFs) capable or activating RAS or RAC1 proteins in metazoan cells. SOS proteins contain a sequence of modular domains that are responsible for different intramolecular and intermolecular interactions modulating mechanisms of self-inhibition, allosteric activation and intracellular homeostasis. Despite their homology, analyses of SOS1/2-KO mice demonstrate functional prevalence of SOS1 over SOS2 in cellular processes including proliferation, migration, inflammation or maintenance of intracellular redox homeostasis, although some functional redundancy cannot be excluded, particularly at the organismal level. Specific SOS1 gain-of-function mutations have been identified in inherited RASopathies and various sporadic human cancers. SOS1 depletion reduces tumorigenesis mediated by RAS or RAC1 in mouse models and is associated with increased intracellular oxidative stress and mitochondrial dysfunction. Since WT RAS is essential for development of RAS-mutant tumors, the SOS GEFs may be considered as relevant biomarkers or therapy targets in RAS-dependent cancers. Inhibitors blocking SOS expression, intrinsic GEF activity, or productive SOS protein-protein interactions with cellular regulators and/or RAS/RAC targets have been recently developed and shown preclinical and clinical effectiveness blocking aberrant RAS signaling in RAS-driven and RTK-driven tumors.
Collapse
Affiliation(s)
- Fernando C Baltanás
- Centro de Investigación del Cáncer - IBMCC (CSIC-USAL) and CIBERONC, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Natasha Zarich
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Jose M Rojas-Cabañeros
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Eugenio Santos
- Centro de Investigación del Cáncer - IBMCC (CSIC-USAL) and CIBERONC, Universidad de Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
3
|
Finney AC, Orr AW. Guidance Molecules in Vascular Smooth Muscle. Front Physiol 2018; 9:1311. [PMID: 30283356 PMCID: PMC6157320 DOI: 10.3389/fphys.2018.01311] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/30/2018] [Indexed: 12/21/2022] Open
Abstract
Several highly conserved families of guidance molecules, including ephrins, Semaphorins, Netrins, and Slits, play conserved and distinct roles in tissue remodeling during tissue patterning and disease pathogenesis. Primarily, these guidance molecules function as either secreted or surface-bound ligands that interact with their receptors to activate a variety of downstream effects, including cell contractility, migration, adhesion, proliferation, and inflammation. Vascular smooth muscle cells, contractile cells comprising the medial layer of the vessel wall and deriving from the mural population, regulate vascular tone and blood pressure. While capillaries lack a medial layer of vascular smooth muscle, mural-derived pericytes contribute similarly to capillary tone to regulate blood flow in various tissues. Furthermore, pericyte coverage is critical in vascular development, as perturbations disrupt vascular permeability and viability. During cardiovascular disease, smooth muscle cells play a more dynamic role in which suppression of contractile markers, enhanced proliferation, and migration lead to the progression of aberrant vascular remodeling. Since many types of guidance molecules are expressed in vascular smooth muscle and pericytes, these may contribute to blood vessel formation and aberrant remodeling during vascular disease. While vascular development is a large focus of the existing literature, studies emerged to address post-developmental roles for guidance molecules in pathology and are of interest as novel therapeutic targets. In this review, we will discuss the roles of guidance molecules in vascular smooth muscle and pericyte function in development and disease.
Collapse
Affiliation(s)
- Alexandra Christine Finney
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States
| | - Anthony Wayne Orr
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States
- Department of Pathology and Translational Medicine, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States
| |
Collapse
|
4
|
Zafar S, Schmitz M, Younus N, Tahir W, Shafiq M, Llorens F, Ferrer I, Andéoletti O, Zerr I. Creutzfeldt-Jakob Disease Subtype-Specific Regional and Temporal Regulation of ADP Ribosylation Factor-1-Dependent Rho/MLC Pathway at Pre-Clinical Stage. J Mol Neurosci 2015; 56:329-48. [PMID: 25896910 DOI: 10.1007/s12031-015-0544-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/09/2015] [Indexed: 10/23/2022]
Abstract
Small GTPases of the Arf family mainly activate the formation of coated carrier vesicles. We showed that class-I Arf1 interacts specifically with full length GPI-anchored cellular prion protein (PrP(C)). Several recent reports have also demonstrated a missing link between the endoplasmic reticulum and the Golgi-complex role for proper folding, but the exact molecular mechanism is not yet fully understood. In the present study, we identified and characterized the interactive role of Arf1 during PrP(C) intracellular distribution under pathophysiological conditions. PrP(C) interaction with Arf1 was investigated in cortical primary neuronal cultures of PrP(C) wild type and knockout mice (PrP(-/-)). Arf1 and PrP(C) co-binding affinity was confirmed using reverse co-immunoprecipitation, co-localization affinity using confocal laser-scanning microscopy. Treatment with brefeldin-A modulated Arf1 expression and resulted in down-regulation and redistribution of PrP(C) into cytosolic region. In the pre-symptomatic stage of the disease, Arf1 expression was significantly downregulated in the frontal cortex in tg340 mice expressing about fourfold of human PrP-M129 with PrP null background that had been inoculated with human sCJD MM1 brain tissue homogenates (sCJD MM1 mice). In addition, the frontal cortex of CJD human brain demonstrated significant binding capacity of Arf1 protein using co-immunoprecipitation analysis. We also examined Arf1 expression in the brain of CJD patients with the subtypes MM1 and VV2 and found that it was regulated in a region-specific manner. In the frontal cortex, Arf1 expression was not significantly changed in either MM1 or VV2 subtype. Interestingly, Arf1 expression was significantly reduced in the cerebellum in both subtypes as compared to controls. Furthermore, we observed altered RhoA activity, which in turn affects myosin light-chain (MLC) phosphorylation and Arf1-dependent PI3K pathway. Together, our findings underscore a key early symptomatic role of Arf1 in neurodegeneration. Targeting the Arf/Rho/MLC signaling axis might be a promising strategy to uncover the missing link which probably influences disease progression and internal homeostasis of misfolded proteins.
Collapse
Affiliation(s)
- Saima Zafar
- Department of Neurology, Clinical Dementia Center and DZNE, Georg-August University, University Medical Center Goettingen (UMG), Robert-Koch-Str. 40, 37075, Goettingen, Germany,
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Li J, Pu P, Le W. The SAX-3 receptor stimulates axon outgrowth and the signal sequence and transmembrane domain are critical for SAX-3 membrane localization in the PDE neuron of C. elegans. PLoS One 2013; 8:e65658. [PMID: 23776520 PMCID: PMC3680500 DOI: 10.1371/journal.pone.0065658] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 04/25/2013] [Indexed: 01/02/2023] Open
Abstract
SAX-3, a receptor for Slit in C. elegans, is well characterized for its function in axonal development. However, the mechanism that regulates the membrane localization of SAX-3 and the role of SAX-3 in axon outgrowth are still elusive. Here we show that SAX-3::GFP caused ectopic axon outgrowth, which could be suppressed by the loss-of-function mutation in unc-73 (a guanine nucleotide exchange factor for small GTPases) and unc-115 (an actin binding protein), suggesting that they might act downstream of SAX-3 in axon outgrowth. We also examined genes related to axon development for their possible involvement in the subcellular localization of SAX-3. We found the unc-51 mutants appeared to accumulate SAX-3::GFP in the neuronal cell body of the posterior deirid (PDE) neuron, indicating that UNC-51 might play a role in SAX-3 membrane localization. Furthermore, we demonstrate that the N-terminal signal sequence and the transmembrane domain are essential for the subcellular localization of SAX-3 in the PDE neurons.
Collapse
Affiliation(s)
- Jia Li
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Pu Pu
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Weidong Le
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
6
|
Song JK, Giniger E. Noncanonical Notch function in motor axon guidance is mediated by Rac GTPase and the GEF1 domain of Trio. Dev Dyn 2011; 240:324-32. [PMID: 21246649 DOI: 10.1002/dvdy.22525] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The receptor Notch interacts with the Abl tyrosine kinase signaling pathway to control axon growth and guidance in Drosophila motor neurons. In part, this is mediated by binding to Trio, a guanine nucleotide exchange factor (GEF) for Rho GTPases. We show here that one of the two GEF domains of Trio, the Rac-specific GEF1, is essential for Trio-dependent motor axon guidance and for the genetic suppression of Notch function in motor axon patterning, but the Rho-specific GEF2 domain is not. Consistent with this, we show that Rac, and not Rho1 or Cdc42, interacts genetically with Notch in a manner indistinguishable from that of bona fide Abl signaling components. We infer, therefore, that Rac is a key component of Abl signaling in Drosophila motor axons, and specifically that it is the crucial Rho GTPase in "noncanonical" Notch/Abl signaling.
Collapse
Affiliation(s)
- Jeong K Song
- Axon Guidance and Neural Connectivity Unit, Basic Neuroscience Program, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
7
|
Suter DM, Miller KE. The emerging role of forces in axonal elongation. Prog Neurobiol 2011; 94:91-101. [PMID: 21527310 DOI: 10.1016/j.pneurobio.2011.04.002] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 03/18/2011] [Accepted: 04/06/2011] [Indexed: 11/26/2022]
Abstract
An understanding of how axons elongate is needed to develop rational strategies to treat neurological diseases and nerve injury. Growth cone-mediated neuronal elongation is currently viewed as occurring through cytoskeletal dynamics involving the polymerization of actin and tubulin subunits at the tip of the axon. However, recent work suggests that axons and growth cones also generate forces (through cytoskeletal dynamics, kinesin, dynein, and myosin), forces induce axonal elongation, and axons lengthen by stretching. This review highlights results from various model systems (Drosophila, Aplysia, Xenopus, chicken, mouse, rat, and PC12 cells), supporting a role for forces, bulk microtubule movements, and intercalated mass addition in the process of axonal elongation. We think that a satisfying answer to the question, "How do axons grow?" will come by integrating the best aspects of biophysics, genetics, and cell biology.
Collapse
Affiliation(s)
- Daniel M Suter
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-2054, United States.
| | | |
Collapse
|
8
|
Dent EW, Gupton SL, Gertler FB. The growth cone cytoskeleton in axon outgrowth and guidance. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a001800. [PMID: 21106647 DOI: 10.1101/cshperspect.a001800] [Citation(s) in RCA: 412] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Axon outgrowth and guidance to the proper target requires the coordination of filamentous (F)-actin and microtubules (MTs), the dynamic cytoskeletal polymers that promote shape change and locomotion. Over the past two decades, our knowledge of the many guidance cues, receptors, and downstream signaling cascades involved in neuronal outgrowth and guidance has increased dramatically. Less is known, however, about how those cascades of information converge and direct appropriate remodeling and interaction of cytoskeletal polymers, the ultimate effectors of movement and guidance. During development, much of the communication that occurs between environmental guidance cues and the cytoskeleton takes place at the growing tip of the axon, the neuronal growth cone. Several articles on this topic focus on the "input" to the growth cone, the myriad of receptor types, and their corresponding cognate ligands. Others investigate the signaling cascades initiated by receptors and propagated by second messenger pathways (i.e., kinases, phosphatases, GTPases). Ultimately, this plethora of information converges on proteins that associate directly with the actin and microtubule cytoskeletons. The role of these cytoskeletal-associated proteins, as well as the cytoskeleton itself in axon outgrowth and guidance, is the subject of this article.
Collapse
Affiliation(s)
- Erik W Dent
- Department of Anatomy, University of Wisconsin-Madison, 53706, USA
| | | | | |
Collapse
|
9
|
Drosophila Importin-α2 is involved in synapse, axon and muscle development. PLoS One 2010; 5:e15223. [PMID: 21151903 PMCID: PMC2997784 DOI: 10.1371/journal.pone.0015223] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 10/30/2010] [Indexed: 01/22/2023] Open
Abstract
Nuclear import is required for communication between the cytoplasm and the nucleus and to enact lasting changes in gene transcription following stimuli. Binding to an Importin-α molecule in the cytoplasm is often required to mediate nuclear entry of a signaling protein. As multiple isoforms of Importin-α exist, some may be responsible for the entry of distinct cargoes rather than general nuclear import. Indeed, in neuronal systems, Importin-α isoforms can mediate very specific processes such as axonal tiling and communication of an injury signal. To study nuclear import during development, we examined the expression and function of Importin-α2 in Drosophila melanogaster. We found that Importin-α2 was expressed in the nervous system where it was required for normal active zone density at the NMJ and axonal commissure formation in the central nervous system. Other aspects of synaptic morphology at the NMJ and the localization of other synaptic markers appeared normal in importin-α2 mutants. Importin-α2 also functioned in development of the body wall musculature. Mutants in importin-α2 exhibited errors in muscle patterning and organization that could be alleviated by restoring muscle expression of Importin-α2. Thus, Importin-α2 is needed for some processes in the development of both the nervous system and the larval musculature.
Collapse
|
10
|
Hall A, Lalli G. Rho and Ras GTPases in axon growth, guidance, and branching. Cold Spring Harb Perspect Biol 2010; 2:a001818. [PMID: 20182621 DOI: 10.1101/cshperspect.a001818] [Citation(s) in RCA: 318] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The establishment of precise neuronal cell morphology provides the foundation for all aspects of neurobiology. During development, axons emerge from cell bodies after an initial polarization stage, elongate, and navigate towards target regions guided by a range of environmental cues. The Rho and Ras families of small GTPases have emerged as critical players at all stages of axonogenesis. Their ability to coordinately direct multiple signal transduction pathways with precise spatial control drives many of the activities that underlie this morphogenetic program: the dynamic assembly, disassembly, and reorganization of the actin and microtubule cytoskeletons, the interaction of the growing axon with other cells and extracellular matrix, the delivery of lipids and proteins to the axon through the exocytic machinery, and the internalization of membrane and proteins at the leading edge of the growth cone through endocytosis. This article highlights the contribution of Rho and Ras GTPases to axonogenesis.
Collapse
Affiliation(s)
- Alan Hall
- Memorial Sloan-Kettering Cancer Center, Cell Biology Program, New York, New York 10065, USA
| | | |
Collapse
|
11
|
Murray A, Naeem A, Barnes SH, Drescher U, Guthrie S. Slit and Netrin-1 guide cranial motor axon pathfinding via Rho-kinase, myosin light chain kinase and myosin II. Neural Dev 2010; 5:16. [PMID: 20569485 PMCID: PMC2907369 DOI: 10.1186/1749-8104-5-16] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 06/22/2010] [Indexed: 11/28/2022] Open
Abstract
Background In the developing hindbrain, cranial motor axon guidance depends on diffusible repellent factors produced by the floor plate. Our previous studies have suggested that candidate molecules for mediating this effect are Slits, Netrin-1 and Semaphorin3A (Sema3A). It is unknown to what extent these factors contribute to floor plate-derived chemorepulsion of motor axons, and the downstream signalling pathways are largely unclear. Results In this study, we have used a combination of in vitro and in vivo approaches to identify the components of floor plate chemorepulsion and their downstream signalling pathways. Using in vitro motor axon deflection assays, we demonstrate that Slits and Netrin-1, but not Sema3A, contribute to floor plate repulsion. We also find that the axon pathways of dorsally projecting branchiomotor neurons are disrupted in Netrin-1 mutant mice and in chick embryos expressing dominant-negative Unc5a receptors, indicating an in vivo role for Netrin-1. We further demonstrate that Slit and Netrin-1 signalling are mediated by Rho-kinase (ROCK) and myosin light chain kinase (MLCK), which regulate myosin II activity, controlling actin retrograde flow in the growth cone. We show that MLCK, ROCK and myosin II are required for Slit and Netrin-1-mediated growth cone collapse of cranial motor axons. Inhibition of these molecules in explant cultures, or genetic manipulation of RhoA or myosin II function in vivo causes characteristic cranial motor axon pathfinding errors, including the inability to exit the midline, and loss of turning towards exit points. Conclusions Our findings suggest that both Slits and Netrin-1 contribute to floor plate-derived chemorepulsion of cranial motor axons. They further indicate that RhoA/ROCK, MLCK and myosin II are components of Slit and Netrin-1 signalling pathways, and suggest that these pathways are of key importance in cranial motor axon navigation.
Collapse
Affiliation(s)
- Ailish Murray
- MRC Centre for Developmental Neurobiology, King's College, London, UK
| | | | | | | | | |
Collapse
|
12
|
Banerjee S, Blauth K, Peters K, Rogers SL, Fanning AS, Bhat MA. Drosophila neurexin IV interacts with Roundabout and is required for repulsive midline axon guidance. J Neurosci 2010; 30:5653-67. [PMID: 20410118 PMCID: PMC2869042 DOI: 10.1523/jneurosci.6187-09.2010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 02/26/2010] [Accepted: 03/14/2010] [Indexed: 11/21/2022] Open
Abstract
Slit/Roundabout (Robo) signaling controls midline repulsive axon guidance. However, proteins that interact with Slit/Robo at the cell surface remain largely uncharacterized. Here, we report that the Drosophila transmembrane septate junction-specific protein Neurexin IV (Nrx IV) functions in midline repulsive axon guidance. Nrx IV is expressed in the neurons of the developing ventral nerve cord, and nrx IV mutants show crossing and circling of ipsilateral axons and fused commissures. Interestingly, the axon guidance defects observed in nrx IV mutants seem independent of its other binding partners, such as Contactin and Neuroglian and the midline glia protein Wrapper, which interacts in trans with Nrx IV. nrx IV mutants show diffuse Robo localization, and dose-dependent genetic interactions between nrx IV/robo and nrx IV/slit indicate that they function in a common pathway. In vivo biochemical studies reveal that Nrx IV associates with Robo, Slit, and Syndecan, and interactions between Robo and Slit, or Nrx IV and Slit, are affected in nrx IV and robo mutants, respectively. Coexpression of Nrx IV and Robo in mammalian cells confirms that these proteins retain the ability to interact in a heterologous system. Furthermore, we demonstrate that the extracellular region of Nrx IV is sufficient to rescue Robo localization and axon guidance phenotypes in nrx IV mutants. Together, our studies establish that Nrx IV is essential for proper Robo localization and identify Nrx IV as a novel interacting partner of the Slit/Robo signaling pathway.
Collapse
Affiliation(s)
| | | | - Kimberly Peters
- Department of Biology, Carolina Center for Genome Sciences, Lineberger Cancer Center
| | - Stephen L. Rogers
- Department of Biology, Carolina Center for Genome Sciences, Lineberger Cancer Center
| | | | - Manzoor A. Bhat
- Department of Cell and Molecular Physiology
- Curriculum in Neurobiology
- University of North Carolina Neuroscience Center, and
- Neurodevelopmental Disorders Research Center, University of North Carolina School of Medicine Chapel Hill, Chapel Hill, North Carolina 27599-7545
| |
Collapse
|
13
|
Le Trionnaire G, Francis F, Jaubert-Possamai S, Bonhomme J, De Pauw E, Gauthier JP, Haubruge E, Legeai F, Prunier-Leterme N, Simon JC, Tanguy S, Tagu D. Transcriptomic and proteomic analyses of seasonal photoperiodism in the pea aphid. BMC Genomics 2009; 10:456. [PMID: 19788735 PMCID: PMC2763885 DOI: 10.1186/1471-2164-10-456] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 09/29/2009] [Indexed: 12/04/2022] Open
Abstract
Background Aphid adaptation to harsh winter conditions is illustrated by an alternation of their reproductive mode. Aphids detect photoperiod shortening by sensing the length of the night and switch from viviparous parthenogenesis in spring and summer, to oviparous sexual reproduction in autumn. The photoperiodic signal is transduced from the head to the reproductive tract to change the fate of the future oocytes from mitotic diploid embryogenesis to haploid formation of gametes. This process takes place in three consecutive generations due to viviparous parthenogenesis. To understand the molecular basis of the switch in the reproductive mode, transcriptomic and proteomic approaches were used to detect significantly regulated transcripts and polypeptides in the heads of the pea aphid Acyrthosiphon pisum. Results The transcriptomic profiles of the heads of the first generation were slightly affected by photoperiod shortening. This suggests that trans-generation signalling between the grand-mothers and the viviparous embryos they contain is not essential. By analogy, many of the genes and some of the proteins regulated in the heads of the second generation are implicated in visual functions, photoreception and cuticle structure. The modification of the cuticle could be accompanied by a down-regulation of the N-β-alanyldopamine pathway and desclerotization. In Drosophila, modification of the insulin pathway could cause a decrease of juvenile hormones in short-day reared aphids. Conclusion This work led to the construction of hypotheses for photoperiodic regulation of the switch of the reproductive mode in aphids.
Collapse
|
14
|
Hsouna A, VanBerkum MFA. Abelson tyrosine kinase and Calmodulin interact synergistically to transduce midline guidance cues in the Drosophila embryonic CNS. Int J Dev Neurosci 2007; 26:345-54. [PMID: 18243630 DOI: 10.1016/j.ijdevneu.2007.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 12/17/2007] [Accepted: 12/18/2007] [Indexed: 11/18/2022] Open
Abstract
Calmodulin and Abelson tyrosine kinase are key signaling molecules transducing guidance cues at the Drosophila embryonic midline. A reduction in the signaling strength of either pathway alone induces ectopic midline crossing errors in a few segments. When Calmodulin and Abelson signaling levels are simultaneously reduced, the frequency of ectopic crossovers is synergistically enhanced as all segments exhibit crossing errors. But as the level of signaling is further reduced, commissures begin to fuse and large gaps form in the longitudinal connectives. Quantitative analysis suggests that the level of Abelson activity is particularly important. Like Calmodulin, Abelson interacts with son-of-sevenless to increase ectopic crossovers suggesting all three contribute to midline repulsive signaling. Axons cross the midline in almost every segment if Frazzled is co-overexpressed with the Calmodulin inhibitor, but the crossovers induced by the Calmodulin inhibitor itself do not require endogenous Frazzled. Thus, Calmodulin and Abelson tyrosine kinase are key signaling molecules working synergistically to transduce both midline attractive and repulsive cues. While they may function downstream of specific receptors, the emergence of commissural and longitudinal connective defects point to a novel convergence of Calmodulin and Abelson signaling during the regulation of actin and myosin dynamics underlying a guidance decision.
Collapse
Affiliation(s)
- Anita Hsouna
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | | |
Collapse
|
15
|
Dorsten JN, Kolodziej PA, VanBerkum MFA. Frazzled regulation of myosin II activity in the Drosophila embryonic CNS. Dev Biol 2007; 308:120-32. [PMID: 17568577 DOI: 10.1016/j.ydbio.2007.05.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 05/10/2007] [Accepted: 05/14/2007] [Indexed: 12/30/2022]
Abstract
Frazzled (Fra) is a chemoattractive guidance receptor regulating the cytoskeletal dynamics underlying growth cone steering at the Drosophila embryonic midline. Here, by genetically evaluating the role of Rho GTPases in Fra signaling in vivo, we uncover a Rho-dependent pathway apparently regulating conventional myosin II activity. Midline crossing errors induced by expressing activated Cdc42(v12) or Rac(v12) are suppressed by a heterozygous loss of fra(4) signaling but, in a Fra(wt) gain-of-function condition, no interaction is detected. In contrast, the frequency of crossovers is enhanced approximately 5-fold when Fra(wt) is co-expressed with activated Rho(v14) and this interaction specifically requires the cytoplasmic P3 motif of Fra. Expression of Rho(v14) and activated MLCK (ctMLCK) synergistically increase ectopic crossovers and both require phosphorylation of the regulatory light chain (Sqh) of myosin II. Abelson tyrosine kinase may also help regulate myosin II activity. Heterozygous abl(4) abolishes the midline crossing errors induced by ctMLCK alone or in combination with Fra(wt); suppression of Rho(v14) crossovers is not observed. Interestingly, an interaction between Fra and an activated Abl (Bcr-Abl) also specifically requires the P3 motif. Therefore, the P3 motif of Frazzled appears to initiate Rho and Abl dependent signals to directly or indirectly regulate myosin II activity in growth cones.
Collapse
Affiliation(s)
- Joy N Dorsten
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | | | | |
Collapse
|
16
|
Modzelewska K, Elgort MG, Huang J, Jongeward G, Lauritzen A, Yoon CH, Sternberg PW, Moghal N. An activating mutation in sos-1 identifies its Dbl domain as a critical inhibitor of the epidermal growth factor receptor pathway during Caenorhabditis elegans vulval development. Mol Cell Biol 2007; 27:3695-707. [PMID: 17339331 PMCID: PMC1899997 DOI: 10.1128/mcb.01630-06] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Proper regulation of receptor tyrosine kinase (RTK)-Ras-mitogen-activated protein kinase (MAPK) signaling pathways is critical for normal development and the prevention of cancer. SOS is a dual-function guanine nucleotide exchange factor (GEF) that catalyzes exchange on Ras and Rac. Although the physiologic role of SOS and its CDC25 domain in RTK-mediated Ras activation is well established, the in vivo function of its Dbl Rac GEF domain is less clear. We have identified a novel gain-of-function missense mutation in the Dbl domain of Caenorhabditis elegans SOS-1 that promotes epidermal growth factor receptor (EGFR) signaling in vivo. Our data indicate that a major developmental function of the Dbl domain is to inhibit EGF-dependent MAPK activation. The amount of inhibition conferred by the Dbl domain is equal to that of established trans-acting inhibitors of the EGFR pathway, including c-Cbl and RasGAP, and more than that of MAPK phosphatase. In conjunction with molecular modeling, our data suggest that the C. elegans mutation, as well as an equivalent mutation in human SOS1, activates the MAPK pathway by disrupting an autoinhibitory function of the Dbl domain on Ras activation. Our work suggests that functionally similar point mutations in humans could directly contribute to disease.
Collapse
Affiliation(s)
- Katarzyna Modzelewska
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Room 3242, Salt Lake City, UT 84112-5550, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Hur EM, Kim KT. A role of local signalling in the establishment and maintenance of the asymmetrical architecture of a neuron. J Neurochem 2007; 101:600-10. [PMID: 17217410 DOI: 10.1111/j.1471-4159.2006.04372.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Significant progress has been made in the identification of intrinsic and extrinsic factors involved in the development of nervous system. It is remarkable that the establishment and maintenance of the asymmetrical architecture of a neuron is coordinated by a limited repertoire of signalling machineries. However, the details of signalling mechanisms responsible for creating specificity and diversity required for proper development of the nervous system remain largely to be investigated. An emerging body of evidence suggests that specificity and diversity can be achieved by differential regulation of signalling components at distinct subcellular localizations. Many aspects of neuronal polarization and morphogenesis are attributed to localized signalling. Further diversity and specificity of receptor signalling can be achieved by the regulation of molecules outside the cell. Recent evidence suggests that extracellular matrix molecules are essential extrinsic cues that function to foster the growth of neurons. Therefore, it is important to understand where the signalling machineries are activated and how they are combined with other factors in order to understand the molecular mechanism underlying neuronal development.
Collapse
Affiliation(s)
- Eun-Mi Hur
- Department of Life Science and Division of Molecular and Life Sciences, Systems Biodynamics NCRC, Pohang University of Science and Technology, Pohang, South Korea
| | | |
Collapse
|
18
|
Yang L, Bashaw GJ. Son of sevenless directly links the Robo receptor to rac activation to control axon repulsion at the midline. Neuron 2006; 52:595-607. [PMID: 17114045 DOI: 10.1016/j.neuron.2006.09.039] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 09/13/2006] [Accepted: 09/29/2006] [Indexed: 11/23/2022]
Abstract
Son of sevenless (Sos) is a dual specificity guanine nucleotide exchange factor (GEF) that regulates both Ras and Rho family GTPases and thus is uniquely poised to integrate signals that affect both gene expression and cytoskeletal reorganization. Here, using genetics, biochemistry, and cell biology, we demonstrate that Sos is recruited to the plasma membrane, where it forms a ternary complex with the Roundabout receptor and the SH3-SH2 adaptor protein Dreadlocks (Dock) to regulate Rac-dependent cytoskeletal rearrangement in response to the Slit ligand. Intriguingly, the Ras and Rac-GEF activities of Sos can be uncoupled during Robo-mediated axon repulsion; Sos axon guidance function depends on its Rac-GEF activity, but not its Ras-GEF activity. These results provide in vivo evidence that the Ras and RhoGEF domains of Sos are separable signaling modules and support a model in which Robo recruits Sos to the membrane via Dock to activate Rac during midline repulsion.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Cell Communication/physiology
- Cell Line, Tumor
- Cell Membrane/metabolism
- Cues
- Cytoskeleton/genetics
- Cytoskeleton/metabolism
- Drosophila/cytology
- Drosophila/embryology
- Drosophila/metabolism
- Drosophila Proteins
- Gene Expression Regulation, Developmental/physiology
- Growth Cones/metabolism
- Growth Cones/ultrastructure
- Humans
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Nervous System/cytology
- Nervous System/embryology
- Nervous System/metabolism
- Protein Structure, Tertiary/physiology
- Protein Transport/physiology
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Signal Transduction/physiology
- Son of Sevenless Protein, Drosophila/chemistry
- Son of Sevenless Protein, Drosophila/genetics
- Son of Sevenless Protein, Drosophila/metabolism
- rac GTP-Binding Proteins/genetics
- rac GTP-Binding Proteins/metabolism
- Roundabout Proteins
Collapse
Affiliation(s)
- Long Yang
- Department of Neuroscience, University of Pennsylvania School of Medicine, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
19
|
MacMullin A, Jacobs JR. Slit coordinates cardiac morphogenesis in Drosophila. Dev Biol 2006; 293:154-64. [PMID: 16516189 DOI: 10.1016/j.ydbio.2006.01.027] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 01/26/2006] [Accepted: 01/27/2006] [Indexed: 12/27/2022]
Abstract
Slit is a secreted guidance cue that conveys repellent or attractive signals from target and guidepost cells. In Drosophila, responsive cells express one or more of three Robo receptors. The cardial cells of the developing heart express both Slit and Robo2. This is the first report of coincident expression of a Robo and its ligand. In slit mutants, cardial cell alignment, polarization and uniform migration are disrupted. The heart phenotype of robo2 mutants is similar, with fewer migration defects. In the guidance of neuronal growth cones in Drosophila, there is a phenotypic interaction between slit and robo heterozygotes, and also with genes required for Robo signaling. In contrast, in the heart, slit has little or no phenotypic interaction with Robo-related genes, including Robo2, Nck2, and Disabled. However, there is a strong phenotypic interaction with Integrin genes and their ligands, including Laminin and Collagen, and intracellular messengers, including Talin and ILK. This indicates that Slit participates in adhesion or adhesion signaling during heart development.
Collapse
Affiliation(s)
- Allison MacMullin
- Department of Biology, McMaster University, LSB 429, 1280 Main St. W., Hamilton, ON, Canada L8S 4K1
| | | |
Collapse
|
20
|
Abstract
An enormous literature has been developed on investigations of the growth and guidance of axons during development and after injury. In this review, we provide a guide to this literature as a resource for biomedical investigators. We first review briefly the molecular biology that is known to regulate migration of the growth cone and branching of axonal arbors. We then outline some important fundamental considerations that are important to the modeling of the phenomenology of these guidance effects and of what is known of their underlying internal mechanisms. We conclude by providing some thoughts on the outlook for future biomedical modeling in the field.
Collapse
Affiliation(s)
- Susan Maskery
- Biomedical Informatics, Windber Research Institute, Windber, PA 15963, USA.
| | | |
Collapse
|
21
|
Abstract
How axons in the developing nervous system successfully navigate to their correct targets is a fundamental problem in neurobiology. Understanding the mechanisms that mediate axon guidance will give important insight into how the nervous system is correctly wired during development and may have implications for therapeutic approaches to developmental brain disorders and nerve regeneration. Achieving this understanding will require unraveling the molecular logic that ensures the proper expression and localization of axon guidance cues and receptors, and elucidating the signaling events that regulate the growth cone cytoskeleton in response to guidance receptor activation. Studies of axon guidance at the midline of many experimental systems, from the ventral midline of Drosophila to the vertebrate spinal cord, have led to important mechanistic insights into the complex problem of wiring the nervous system. Here we review recent advances in understanding the regulation of midline axon guidance, with a particular emphasis on the contributions made from molecular genetic studies of invertebrate model systems.
Collapse
Affiliation(s)
- David S Garbe
- Department of Neuroscience, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
22
|
Forsthoefel DJ, Liebl EC, Kolodziej PA, Seeger MA. The Abelson tyrosine kinase, the Trio GEF and Enabled interact with the Netrin receptor Frazzled in Drosophila. Development 2005; 132:1983-94. [PMID: 15790972 DOI: 10.1242/dev.01736] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The attractive Netrin receptor Frazzled (Fra), and the signaling molecules Abelson tyrosine kinase (Abl), the guanine nucleotide-exchange factor Trio,and the Abl substrate Enabled (Ena), all regulate axon pathfinding at the Drosophila embryonic CNS midline. We detect genetic and/or physical interactions between Fra and these effector molecules that suggest that they act in concert to guide axons across the midline. Mutations in Abland trio dominantly enhance fra and Netrin mutant CNS phenotypes, and fra;Abl and fra;trio double mutants display a dramatic loss of axons in a majority of commissures. Conversely,heterozygosity for ena reduces the severity of the CNS phenotype in fra, Netrin and trio,Abl mutants. Consistent with an in vivo role for these molecules as effectors of Fra signaling, heterozygosity for Abl, trio or ena reduces the number of axons that inappropriately cross the midline in embryos expressing the chimeric Robo-Fra receptor. Fra interacts physically with Abl and Trio in GST-pulldown assays and in co-immunoprecipitation experiments. In addition, tyrosine phosphorylation of Trio and Fra is elevated in S2 cells when Abl levels are increased. Together, these data suggest that Abl, Trio, Ena and Fra are integrated into a complex signaling network that regulates axon guidance at the CNS midline.
Collapse
Affiliation(s)
- David J Forsthoefel
- The Ohio State University, Department of Molecular Genetics and Center for Molecular Neurobiology, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
23
|
Hu H, Li M, Labrador JP, McEwen J, Lai EC, Goodman CS, Bashaw GJ. Cross GTPase-activating protein (CrossGAP)/Vilse links the Roundabout receptor to Rac to regulate midline repulsion. Proc Natl Acad Sci U S A 2005; 102:4613-8. [PMID: 15755809 PMCID: PMC555501 DOI: 10.1073/pnas.0409325102] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The regulators of the Rho-family GTPases, GTPase-activating proteins (GAPs) and guanine exchange factors (GEFs), play important roles in axon guidance. By means of a functional genomic study of the Rho-family GEFs and GAPs in Drosophila, we have identified a Rho-family GAP, CrossGAP (CrGAP), which is involved in Roundabout (Robo) receptor-mediated repulsive axon guidance. CrGAP physically associates with the Robo receptor. Too much or too little CrGAP activity leads to defects in Robo-mediated repulsion at the midline choice point. The CrGAP gain-of-function phenotype mimics the loss-of-function phenotypes of both Robo and Rac. Dosage-sensitive genetic interactions among CrGAP, Robo, and Rac support a model in which CrGAP transduces signals downstream of Robo receptor to regulate Rac-dependent cytoskeletal changes.
Collapse
Affiliation(s)
- Hailan Hu
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Our brain serves as a center for cognitive function and neurons within the brain relay and store information about our surroundings and experiences. Modulation of this complex neuronal circuitry allows us to process that information and respond appropriately. Proper development of neurons is therefore vital to the mental health of an individual, and perturbations in their signaling or morphology are likely to result in cognitive impairment. The development of a neuron requires a series of steps that begins with migration from its birth place and initiation of process outgrowth, and ultimately leads to differentiation and the formation of connections that allow it to communicate with appropriate targets. Over the past several years, it has become clear that the Rho family of GTPases and related molecules play an important role in various aspects of neuronal development, including neurite outgrowth and differentiation, axon pathfinding, and dendritic spine formation and maintenance. Given the importance of these molecules in these processes, it is therefore not surprising that mutations in genes encoding a number of regulators and effectors of the Rho GTPases have been associated with human neurological diseases. This review will focus on the role of the Rho GTPases and their associated signaling molecules throughout neuronal development and discuss how perturbations in Rho GTPase signaling may lead to cognitive disorders.
Collapse
Affiliation(s)
- Eve-Ellen Govek
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | |
Collapse
|
25
|
Ng J, Luo L. Rho GTPases regulate axon growth through convergent and divergent signaling pathways. Neuron 2005; 44:779-93. [PMID: 15572110 DOI: 10.1016/j.neuron.2004.11.014] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2004] [Revised: 08/20/2004] [Accepted: 10/15/2004] [Indexed: 11/16/2022]
Abstract
Rho GTPases are essential regulators of cytoskeletal reorganization, but how they do so during neuronal morphogenesis in vivo is poorly understood. Here we show that the actin depolymerization factor cofilin is essential for axon growth in Drosophila neurons. Cofilin function in axon growth is inhibited by LIM kinase and activated by Slingshot phosphatase. Dephosphorylating cofilin appears to be the major function of Slingshot in regulating axon growth in vivo. Genetic data provide evidence that Rho or Rac/Cdc42, via effector kinases Rok or Pak, respectively, activate LIM kinase to inhibit axon growth. Importantly, Rac also activates a Pak-independent pathway that promotes axon growth, and different RacGEFs regulate these distinct pathways. These genetic analyses reveal convergent and divergent pathways from Rho GTPases to the cytoskeleton during axon growth in vivo and suggest that different developmental outcomes could be achieved by biases in pathway selection.
Collapse
Affiliation(s)
- Julian Ng
- Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA.
| | | |
Collapse
|
26
|
Lundström A, Gallio M, Englund C, Steneberg P, Hemphälä J, Aspenström P, Keleman K, Falileeva L, Dickson BJ, Samakovlis C. Vilse, a conserved Rac/Cdc42 GAP mediating Robo repulsion in tracheal cells and axons. Genes Dev 2004; 18:2161-71. [PMID: 15342493 PMCID: PMC515293 DOI: 10.1101/gad.310204] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Accepted: 06/21/2004] [Indexed: 11/25/2022]
Abstract
Slit proteins steer the migration of many cell types through their binding to Robo receptors, but how Robo controls cell motility is not clear. We describe the functional analysis of vilse, a Drosophila gene required for Robo repulsion in epithelial cells and axons. Vilse defines a conserved family of RhoGAPs (Rho GTPase-activating proteins), with representatives in flies and vertebrates. The phenotypes of vilse mutants resemble the tracheal and axonal phenotypes of Slit and Robo mutants at the CNS midline. Dosage-sensitive genetic interactions between vilse, slit, and robo mutants suggest that vilse is a component of robo signaling. Moreover, overexpression of Vilse in the trachea of robo mutants ameliorates the phenotypes of robo, indicating that Vilse acts downstream of Robo to mediate midline repulsion. Vilse and its human homolog bind directly to the intracellular domains of the corresponding Robo receptors and promote the hydrolysis of RacGTP and, less efficiently, of Cdc42GTP. These results together with genetic interaction experiments with robo, vilse, and rac mutants suggest a mechanism whereby Robo repulsion is mediated by the localized inactivation of Rac through Vilse.
Collapse
Affiliation(s)
- Annika Lundström
- Department of Developmental Biology, Wenner-Gren Institute, Stockholm University, S-106 96 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Jhaveri D, Saharan S, Sen A, Rodrigues V. Positioning sensory terminals in the olfactory lobe of Drosophila by Robo signaling. Development 2004; 131:1903-12. [PMID: 15056612 DOI: 10.1242/dev.01083] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Olfactory receptor neurons and the interneurons of the olfactory lobe are organized in distinct units called glomeruli. We have used expression patterns and genetic analysis to demonstrate that a combinatorial code of Roundabout (Robo) receptors act to position sensory terminals within the olfactory lobe. Groups of sensory neurons possess distinct blends of Robo and Robo3 and disruption of levels by loss-of-function or ectopic expression results in aberrant targeting. In the wild type, most of the neurons send collateral branches to the contralateral lobe. Our data suggests that guidance of axons across brain hemispheres is mediated by Slit-dependent Robo2 signaling. The location of sensory arbors at distinct positions within the lobe allows short-range interactions with projection neurons leading to formation of the glomeruli.
Collapse
Affiliation(s)
- Dhanisha Jhaveri
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
| | | | | | | |
Collapse
|
28
|
Abstract
Development of the nervous system requires remarkable changes in cell structure that are dependent upon the cytoskeleton. The importance of specific components of the neuronal cytoskeleton, such as microtubules and neurofilaments, to neuronal function and development has been well established. Recently, increasing focus has been put on understanding the functional role of the actin cytoskeleton in neurons. Important modulators of the actin cytoskeleton are the large family of myosins, many of which (classes I, II, III, V, VI, VII, IX, and XV; Fig. 1) are expressed in developing neurons or sensory cells. Myosins are force-producing proteins that have been implicated in a wide variety of cellular functions in the developing nervous system, including neuronal migration, process outgrowth, and growth cone motility, as well as other aspects of morphogenesis, axonal transport, and synaptic and sensory functions. We review the roles that neuronal myosins play in these functions with particular focus on the first three events listed above, as well as sensory function.
Collapse
Affiliation(s)
- Michael E Brown
- Department of Anatomy and Neurobiology, Washington University School of Medicine, Box 8108, 660 S. Euclid Avenue, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
29
|
Matsuura R, Tanaka H, Go MJ. Distinct functions of Rac1 and Cdc42 during axon guidance and growth cone morphogenesis in Drosophila. Eur J Neurosci 2004; 19:21-31. [PMID: 14750960 DOI: 10.1046/j.1460-9568.2003.03084.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rho family small GTPases are thought to be key molecules in the regulation of cytoskeletal organization, especially for actin filaments. In order to examine the functions of Rac1 and Cdc42 in axon guidance at the midline of the central nervous system in Drosophila embryos, we either activated or inactivated Rac1 and Cdc42 in all postmitotic neurons. We found that the phenotypes of Cdc42 activation and Rac1 inactivation were similar to those of roundabout mutants, in that many extra axons crossed the midline. We also found that Rac1 inactivation is dominant over Roundabout receptor activation. Our observations indicate that Rac1 and Cdc42 have distinct functions in downstream signalling events triggered by Roundabout receptors. In order to further examine the functional difference between Rac1 and Cdc42 in the growth cone morphogenesis, we used primary embryonic cultures to closely observe neurite formation. We showed that activation of Rac1 and Cdc42 has distinct effects on neurite formation, particularly on growth cone morphology and the actin filaments within. Both Rac1 and Cdc42 activation induced large growth cones and long filopodia, but Cdc42 did so more efficiently than Rac1. Only Rac1 activation, however, induced thick actin bundles in the filopodia. We also found a clear difference between Rac1 and Cdc42 in terms of the response to an inhibitor of actin polymerization. Our results suggest that Cdc42 is specifically involved in the regulation of actin filaments in growth cones, whereas Rac1 is involved in additional functions.
Collapse
Affiliation(s)
- Ryouta Matsuura
- Department of Developmental Neurobiology, Kumamoto University Graduate School of Medical Sciences, Honjo 1-1-1, Kumamoto 860-8556, Japan
| | | | | |
Collapse
|
30
|
Araújo SJ, Tear G. Axon guidance mechanisms and molecules: lessons from invertebrates. Nat Rev Neurosci 2003; 4:910-22. [PMID: 14595402 DOI: 10.1038/nrn1243] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sofia J Araújo
- Molecular Neurobiology Department, Medical Research Council Centre for Developmental Neurobiology, New Hunts House, Guy's Campus, King's College, London, SE1 1UL, UK
| | | |
Collapse
|
31
|
Royo NC, Schouten JW, Fulp CT, Shimizu S, Marklund N, Graham DI, McIntosh TK. From cell death to neuronal regeneration: building a new brain after traumatic brain injury. J Neuropathol Exp Neurol 2003; 62:801-11. [PMID: 14503636 DOI: 10.1093/jnen/62.8.801] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
During the past decade, there has been accumulating evidence of the involvement of passive and active cell death mechanisms in both the clinical setting and in experimental models of traumatic brain injury (TBI). Traditionally, research for a treatment of TBI consists of strategies to prevent cell death using acute pharmacological therapy. However, to date, encouraging experimental work has not been translated into successful clinical trials. The development of cell replacement therapies may offer an alternative or a complementary strategy for the treatment of TBI. Recent experimental studies have identified a variety of candidate cell lines for transplantation into the injured CNS. Additionally, the characterization of the neurogenic potential of specific regions of the adult mammalian brain and the elucidation of the molecular controls underlying regeneration may allow for the development of neuronal replacement therapies that do not require transplantation of exogenous cells. These novel strategies may represent a new opportunity of great interest for delayed intervention in patients with TBI.
Collapse
Affiliation(s)
- Nicolas C Royo
- Head Injury Center, Department of Neurosurgery University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Hsouna A, Kim YS, VanBerkum MFA. Abelson tyrosine kinase is required to transduce midline repulsive cues. JOURNAL OF NEUROBIOLOGY 2003; 57:15-30. [PMID: 12973825 DOI: 10.1002/neu.10232] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tyrosine phosphorylation-dependent signaling cascades play key roles in determining the formation of an axon pathway. The cytoplasmic Abelson tyrosine kinase participate in several signaling pathways that orchestrate both growth cone advance and steering in response to guidance cues. Here, a genetic approach is used to evaluate the role for Abelson in growth cones during a decision to cross or not to cross the Drosophila embryonic midline. Our data indicate that both loss- and gain-of-function conditions for Abl cause neurons within the pCC/MP2 pathway to project across the midline incorrectly. The frequency of abnormal crossovers is enhanced by mutations in the genes encoding the midline repellent, Slit, or its receptor, Roundabout. In comm mutants, where repulsive signals remain elevated, increasing or decreasing Abl activity partially rescues commissure formation. Thus, both too much and too little Abl activity causes axons to cross the midline inappropriately, indicating that Abl plays a critical role in transducing midline repulsive cues. How Abl functions in this role is not yet clear, but we suggest that Abl may help regulate cytoskeletal dynamics underlying a growth cone's response to midline cues.
Collapse
Affiliation(s)
- Anita Hsouna
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, Michigan 48202, USA
| | | | | |
Collapse
|
33
|
Fan X, Labrador JP, Hing H, Bashaw GJ. Slit stimulation recruits Dock and Pak to the roundabout receptor and increases Rac activity to regulate axon repulsion at the CNS midline. Neuron 2003; 40:113-27. [PMID: 14527437 DOI: 10.1016/s0896-6273(03)00591-9] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Drosophila Roundabout (Robo) is the founding member of a conserved family of repulsive axon guidance receptors that respond to secreted Slit proteins. Here we present evidence that the SH3-SH2 adaptor protein Dreadlocks (Dock), the p21-activated serine-threonine kinase (Pak), and the Rac1/Rac2/Mtl small GTPases can function during Robo repulsion. Loss-of-function and genetic interaction experiments suggest that limiting the function of Dock, Pak, or Rac partially disrupts Robo repulsion. In addition, Dock can directly bind to Robo's cytoplasmic domain, and the association of Dock and Robo is enhanced by stimulation with Slit. Furthermore, Slit stimulation can recruit a complex of Dock and Pak to the Robo receptor and trigger an increase in Rac1 activity. These results provide a direct physical link between the Robo receptor and an important cytoskeletal regulatory protein complex and suggest that Rac can function in both attractive and repulsive axon guidance.
Collapse
Affiliation(s)
- Xueping Fan
- Department of Neuroscience, University of Pennsylvania School of Medicine, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|