1
|
Dermal absorption of gallium antimonide in vitro and pro-inflammatory effects on human dermal fibroblasts. Toxicol In Vitro 2020; 71:105064. [PMID: 33279584 DOI: 10.1016/j.tiv.2020.105064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/17/2020] [Accepted: 12/01/2020] [Indexed: 11/23/2022]
Abstract
Gallium antimonide (GaSb) is a group III-V compound semiconductor with a comparatively narrow band gap energy (0.73 eV at 300 K) that allows efficient operation in the near-infrared region. This property may be useful in developing new biomedical instruments such as epidermal optoelectronic devices. The present study investigated the absorption of GaSb in pig skin in vitro for 24 h using Franz cells. A donor solution was prepared by soaking GaSb thin films in synthetic sweat. The results showed that both gallium and antimony penetrated the skin, and permeation and resorption occurred for gallium. Histopathological findings showed no inflammatory responses in pig skin exposed to GaSb for 24 h. Cytotoxicity was significantly elevated after 3 and 7 days, and pro-inflammatory cytokines and IL-8 levels were low after 1 and 3 days but elevated 7 days following the direct culturing of human dermal fibroblasts (HDF) on GaSb thin films. These results demonstrate that the short-term cytotoxicity and pro-inflammatory effect of GaSb on HDF were relatively low.
Collapse
|
2
|
Winters BR, Pleil JD, Boyer JC, Nylander-French LA, Wallace MAG, Madden MC. Review: Endogenously Produced Volatiles for In Vitro Toxicity Testing Using Cell Lines. APPLIED IN VITRO TOXICOLOGY 2018; 4:129-138. [PMID: 31037250 PMCID: PMC5994904 DOI: 10.1089/aivt.2017.0038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Due to the ∼86,000 chemicals registered under the Toxic Substances Control Act and increasing ethical concerns regarding animal testing, it is not economically or technically feasible to screen every registered chemical for toxicity using animal-based toxicity assays. To address this challenge, regulatory agencies are investigating high-throughput screening in vitro methods to increase speed of toxicity testing, while reducing the overall cost. One approach for rapid toxicity testing currently being investigated is monitoring of volatile emissions produced by cell lines in culture. Such a metabolomics approach would measure gaseous emissions from a cell line and determine if such gaseous metabolites are altered upon exposure to a xenobiotic. Herein, we describe the history and rationale of monitoring endogenously produced volatiles for identification of pathologic conditions, as well as emerging applications in toxicity testing for such an approach.
Collapse
Affiliation(s)
- Brett R. Winters
- Curriculum in Toxicology, University of North Carolina, Chapel Hill, North Carolina
| | - Joachim D. Pleil
- Exposure Methods and Measurements Division, NERL/ORD, United States Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Jayne C. Boyer
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Leena A. Nylander-French
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - M. Ariel Geer Wallace
- Exposure Methods and Measurements Division, NERL/ORD, United States Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Michael C. Madden
- Environmental Public Health Division, NHEERL/ORD, United States Environmental Protection Agency, Research Triangle Park, North Carolina
| |
Collapse
|
3
|
Spayd SE, Robson MG, Buckley BT. Whole-house arsenic water treatment provided more effective arsenic exposure reduction than point-of-use water treatment at New Jersey homes with arsenic in well water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 505:1361-9. [PMID: 24975493 PMCID: PMC4264565 DOI: 10.1016/j.scitotenv.2014.06.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 06/02/2014] [Accepted: 06/09/2014] [Indexed: 05/05/2023]
Abstract
A comparison of the effectiveness of whole house (point-of-entry) and point-of-use arsenic water treatment systems in reducing arsenic exposure from well water was conducted. The non-randomized observational study recruited 49 subjects having elevated arsenic in their residential home well water in New Jersey. The subjects obtained either point-of-entry or point-of-use arsenic water treatment. Prior ingestion exposure to arsenic in well water was calculated by measuring arsenic concentrations in the well water and obtaining water-use histories for each subject, including years of residence with the current well and amount of water consumed from the well per day. A series of urine samples was collected from the subjects, some starting before water treatment was installed and continuing for at least nine months after treatment had begun. Urine samples were analyzed and speciated for inorganic-related arsenic concentrations. A two-phase clearance of inorganic-related arsenic from urine and the likelihood of a significant body burden from chronic exposure to arsenic in drinking water were identified. After nine months of water treatment the adjusted mean of the urinary inorganic-related arsenic concentrations was significantly lower (p<0.0005) in the point-of-entry treatment group (2.5 μg/g creatinine) than in the point-of-use treatment group (7.2 μg/g creatinine). The results suggest that whole house arsenic water treatment systems provide a more effective reduction of arsenic exposure from well water than that obtained by point-of-use treatment.
Collapse
Affiliation(s)
- Steven E Spayd
- Rutgers School of Public Health, 683 Hoes Lane West, Piscataway, NJ, USA, 08854.
| | - Mark G Robson
- Rutgers School of Public Health, 683 Hoes Lane West, Piscataway, NJ, USA, 08854; Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, Piscataway NJ, USA, 08854
| | - Brian T Buckley
- Rutgers School of Public Health, 683 Hoes Lane West, Piscataway, NJ, USA, 08854; Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, Piscataway NJ, USA, 08854
| |
Collapse
|
4
|
Herbert KJ, Holloway A, Cook AL, Chin SP, Snow ET. Arsenic exposure disrupts epigenetic regulation of SIRT1 in human keratinocytes. Toxicol Appl Pharmacol 2014; 281:136-45. [PMID: 25281835 DOI: 10.1016/j.taap.2014.09.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/09/2014] [Accepted: 09/22/2014] [Indexed: 02/08/2023]
Abstract
Arsenic is an environmental toxin which increases skin cancer risk for exposed populations worldwide; however the underlying biomolecular mechanism for arsenic-induced carcinogenesis is complex and poorly defined. Recent investigations show that histone deacetylase and DNA methyltransferase activity is impaired, and epigenetic patterns of gene regulation are consistently altered in cancers associated with arsenic exposure. Expression of the histone deacetylase SIRT1 is altered in solid tumours and haematological malignancies; however its role in arsenic-induced pathology is unknown. In this study we investigated the effect of arsenic on epigenetic regulation of SIRT1 and its targeting microRNA, miR-34a in primary human keratinocytes. Acetylation of histone H4 at lysine 16 (H4K16) increased in keratinocytes exposed to 0.5μM arsenite [As(III)]; and this was associated with chromatin remodelling at the miR-34a promoter. Moreover, although SIRT1 protein initially increased in these As(III)-exposed cells, after 24days expression was not significantly different from untreated controls. Extended exposure to low-dose As(III) (0.5μM; >5weeks) compromised the pattern of CpG methylation at SIRT1 and miR-34a gene promoters, and this was associated with altered expression for both genes. We have found that arsenic alters epigenetic regulation of SIRT1 expression via structural reorganisation of chromatin at the miR-34a gene promoter in the initial 24h of exposure; and over time, through shifts in miR-34a and SIRT1 gene methylation. Taken together, this investigation demonstrates that arsenic produces cumulative disruptions to epigenetic regulation of miR-34a expression, and this is associated with impaired coordination of SIRT1 functional activity.
Collapse
Affiliation(s)
- Katharine J Herbert
- School of Health Sciences, University of Tasmania, Launceston, TAS 7250, Australia
| | - Adele Holloway
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, TAS 7000, Australia
| | - Anthony L Cook
- School of Health Sciences, University of Tasmania, Launceston, TAS 7250, Australia
| | - Suyin P Chin
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, TAS 7000, Australia
| | - Elizabeth T Snow
- School of Health Sciences, University of Tasmania, Launceston, TAS 7250, Australia.
| |
Collapse
|
5
|
Udensi UK, Tackett AJ, Byrum S, Avaritt NL, Sengupta D, Moreland LW, Tchounwou PB, Isokpehi RD. Proteomics-Based Identification of Differentially Abundant Proteins from Human Keratinocytes Exposed to Arsenic Trioxide. JOURNAL OF PROTEOMICS & BIOINFORMATICS 2014; 7:166-178. [PMID: 25419056 PMCID: PMC4240501 DOI: 10.4172/jpb.1000317] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Arsenic is a widely distributed environmental toxicant that can cause multi-tissue pathologies. Proteomic assays allow for the identification of biological processes modulated by arsenic in diverse tissue types. METHOD The altered abundance of proteins from HaCaT human keratinocyte cell line exposed to arsenic was quantified using a label-free LC-MS/MS mass spectrometry workflow. Selected proteomics results were validated using western blot and RT-PCR. A functional annotation analytics strategy that included visual analytical integration of heterogeneous data sets was developed to elucidate functional categories. The annotations integrated were mainly tissue localization, biological process and gene family. RESULT The abundance of 173 proteins was altered in keratinocytes exposed to arsenic; in which 96 proteins had increased abundance while 77 proteins had decreased abundance. These proteins were also classified into 69 Gene Ontology biological process terms. The increased abundance of transferrin receptor protein (TFRC) was validated and also annotated to participate in response to hypoxia. A total of 33 proteins (11 increased abundance and 22 decreased abundance) were associated with 18 metabolic process terms. The Glutamate--cysteine ligase catalytic subunit (GCLC), the only protein annotated with the term sulfur amino acid metabolism process, had increased abundance while succinate dehydrogenase [ubiquinone] iron-sulfur subunit, mitochondrial precursor (SDHB), a tumor suppressor, had decreased abundance. CONCLUSION A list of 173 differentially abundant proteins in response to arsenic trioxide was grouped using three major functional annotations covering tissue localization, biological process and protein families. A possible explanation for hyperpigmentation pathologies observed in arsenic toxicity is that arsenic exposure leads to increased iron uptake in the normally hypoxic human skin. The proteins mapped to metabolic process terms and differentially abundant are candidates for evaluating metabolic pathways perturbed by arsenicals.
Collapse
Affiliation(s)
- Udensi K Udensi
- RCMI Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, Jackson Mississippi 39217, USA
| | - Alan J Tackett
- Proteomics Facility, University of Arkansas for Medical Sciences, Department of Biochemistry and Molecular Biology, Little Rock, AR 72205, USA
| | - Stephanie Byrum
- Proteomics Facility, University of Arkansas for Medical Sciences, Department of Biochemistry and Molecular Biology, Little Rock, AR 72205, USA
| | - Nathan L Avaritt
- Proteomics Facility, University of Arkansas for Medical Sciences, Department of Biochemistry and Molecular Biology, Little Rock, AR 72205, USA
| | - Deepanwita Sengupta
- Proteomics Facility, University of Arkansas for Medical Sciences, Department of Biochemistry and Molecular Biology, Little Rock, AR 72205, USA
| | - Linley W Moreland
- Proteomics Facility, University of Arkansas for Medical Sciences, Department of Biochemistry and Molecular Biology, Little Rock, AR 72205, USA
| | - Paul B Tchounwou
- RCMI Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, Jackson Mississippi 39217, USA
| | - Raphael D Isokpehi
- RCMI Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, Jackson Mississippi 39217, USA
- Department of Biology, School of Science, Engineering and Mathematics, Bethune-Cookman University, Daytona Beach FL 32114, USA
| |
Collapse
|
6
|
Martinez VD, Becker-Santos DD, Vucic EA, Lam S, Lam WL. Induction of human squamous cell-type carcinomas by arsenic. J Skin Cancer 2011; 2011:454157. [PMID: 22175027 PMCID: PMC3235812 DOI: 10.1155/2011/454157] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 10/07/2011] [Indexed: 01/14/2023] Open
Abstract
Arsenic is a potent human carcinogen. Around one hundred million people worldwide have potentially been exposed to this metalloid at concentrations considered unsafe. Exposure occurs generally through drinking water from natural geological sources, making it difficult to control this contamination. Arsenic biotransformation is suspected to have a role in arsenic-related health effects ranging from acute toxicities to development of malignancies associated with chronic exposure. It has been demonstrated that arsenic exhibits preference for induction of squamous cell carcinomas in the human, especially skin and lung cancer. Interestingly, keratins emerge as a relevant factor in this arsenic-related squamous cell-type preference. Additionally, both genomic and epigenomic alterations have been associated with arsenic-driven neoplastic process. Some of these aberrations, as well as changes in other factors such as keratins, could explain the association between arsenic and squamous cell carcinomas in humans.
Collapse
Affiliation(s)
- Victor D. Martinez
- Department of Integrative Oncology, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, Canada V5Z 1L3
| | | | | | | | | |
Collapse
|
7
|
Gentry PR, McDonald TB, Sullivan DE, Shipp AM, Yager JW, Clewell HJ. Analysis of genomic dose-response information on arsenic to inform key events in a mode of action for carcinogenicity. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:1-14. [PMID: 19551812 DOI: 10.1002/em.20505] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A comprehensive literature search was conducted to identify information on gene expression changes following exposures to inorganic arsenic compounds. This information was organized by compound, exposure, dose/concentration, species, tissue, and cell type. A concentration-related hierarchy of responses was observed, beginning with changes in gene/protein expression associated with adaptive responses (e.g., preinflammatory responses, delay of apoptosis). Between 0.1 and 10 microM, additional gene/protein expression changes related to oxidative stress, proteotoxicity, inflammation, and proliferative signaling occur along with those related to DNA repair, cell cycle G2/M checkpoint control, and induction of apoptosis. At higher concentrations (10-100 microM), changes in apoptotic genes dominate. Comparisons of primary cell results with those obtained from immortalized or tumor-derived cell lines were also evaluated to determine the extent to which similar responses are observed across cell lines. Although immortalized cells appear to respond similarly to primary cells, caution must be exercised in using gene expression data from tumor-derived cell lines, where inactivation or overexpression of key genes (e.g., p53, Bcl-2) may lead to altered genomic responses. Data from acute in vivo exposures are of limited value for evaluating the dose-response for gene expression, because of the transient, variable, and uncertain nature of tissue exposure in these studies. The available in vitro gene expression data, together with information on the metabolism and protein binding of arsenic compounds, provide evidence of a mode of action for inorganic arsenic carcinogenicity involving interactions with critical proteins, such as those involved in DNA repair, overlaid against a background of chemical stress, including proteotoxicity and depletion of nonprotein sulfhydryls. The inhibition of DNA repair under conditions of toxicity and proliferative pressure may compromise the ability of cells to maintain the integrity of their DNA.
Collapse
|
8
|
Berglund SR, Santana AR, Li D, Rice RH, Rocke DM, Goldberg Z. Proteomic analysis of low dose arsenic and ionizing radiation exposure on keratinocytes. Proteomics 2009; 9:1925-38. [PMID: 19294697 DOI: 10.1002/pmic.200800118] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Human exposure to arsenic and ionizing radiation (IR) occur environmentally at low levels. While the human health effects of arsenic and IR have been examined separately, there is little information regarding their combined effects at doses approaching environmental levels. Arsenic toxicity may be affected by concurrent IR especially given their known individual carcinogenic actions at higher doses. We found that keratinocytes responded to either low dose arsenic and/or low dose IR exposure, resulting in differential proteomic expression based on 2-DE, immunoblotting and statistical analysis. Seven proteins were identified that passed a rigorous statistical screen for differential expression in 2-DE and also passed a strict statistical screen for follow-up immunoblotting. These included: alpha-enolase, epidermal-fatty acid binding protein, heat shock protein 27, histidine triad nucleotide-binding protein 1, lactate dehydrogenase A, protein disulfide isomerase precursor, and S100A9. Four proteins had combined effects that were different than would be expected based on the response to either individual toxicant. These data demonstrate a possible reaction to the combined insult that is substantially different from that of either separate treatment. Several proteins had different responses than what has been seen from high dose exposures, adding to the growing literature suggesting that the cellular responses to low dose exposures are distinct.
Collapse
|
9
|
Oshikawa S, Geater A, Chongsuvivatwong V, Chakraborti D. Arsenic contamination of Ronphibun residents associated with uses of arsenic-contaminated shallow-well water other than drinking. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2007; 42:1753-1761. [PMID: 17952776 DOI: 10.1080/10934520701564251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
High levels of urinary arsenic have been reported among residents of an area of southern Thailand where many households have shallow wells heavily contaminated with arsenic. However, the finding that very few of the residents in this area have used contaminated shallow-well water for drinking or cooking in the last 10 years prompted this investigation. The aim was to identify the uses of shallow-well water by adult residents that were related to a positive association between shallow-well water and urinary arsenic levels. Information on shallow-well water use for all personal and domestic purposes was obtained and arsenic levels of household shallow-well water and urine (after refraining from seafood for 2 days) were measured. Urinary and shallow-well water arsenic levels were strongly positively associated among residents who regularly used shallow-well water for bathing (including washing face, hair, hands and feet) but not among residents regularly using arsenic-safe water for bathing or regularly using shallow-well water for other purposes, such as brushing teeth, domestic cleaning or washing food and utensils. The findings suggest that appreciable transdermal absorption of arsenic is possible and that successful abatement of human contamination with arsenic may require the provision of arsenic-safe water, not only for consumption but also for personal hygiene purposes.
Collapse
Affiliation(s)
- Shoko Oshikawa
- Epidemiology Unit, Faculty of Medicine, Prince of Songkla University, Thailand.
| | | | | | | |
Collapse
|
10
|
Meliker JR, Franzblau A, Slotnick MJ, Nriagu JO. Major contributors to inorganic arsenic intake in southeastern Michigan. Int J Hyg Environ Health 2006; 209:399-411. [PMID: 16731038 DOI: 10.1016/j.ijheh.2006.03.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Revised: 03/31/2006] [Accepted: 03/31/2006] [Indexed: 10/24/2022]
Abstract
Accurate estimates of inorganic arsenic intake are critical for evaluating potential health risks. Intake estimates have not been critically examined in regions of the United States where people are at risk from arsenic concentrations in drinking water exceeding the maximum contaminant limit of 10 microg/l. In southeastern Michigan, approximately 8% of the population is exposed to arsenic in drinking water >10 microg/l. Four hundred and forty participants of a control group in this region, frequency matched to cases in a population-based bladder cancer case-control study, answered a questionnaire about water and food consumption and smoking history. Water samples were collected from participants' current residences and analyzed for arsenic. Water arsenic data were combined with questionnaire data and published data of inorganic arsenic concentrations in select foods and cigarettes to examine the influence of arsenic in water at home, at work, and at other places, as well as inorganic arsenic intake from food and cigarettes. Monte Carlo simulations and analyses of individual-level intake estimates were conducted to quantify the variability attributed to different parameters in this primarily elderly white male population of southeastern Michigan. The 95th percentile of total inorganic arsenic intake ranges from 11 to 24 microg/day, depending on the intake metric selected. Results indicate that arsenic in home drinking water is the largest source of inorganic arsenic, accounting for 55.1% of the variance in the intake estimates. Food intake explains 37.3% of the variance, with rice being the largest contributor. In the upper decile of intake, consumption of plain water and beverages made with water at home, and ingestion of arsenic in water at work, also contribute to intake estimates. Water used for cooking and arsenic from smoking, however, only minimally alter the intake estimates. This is due to a relatively small volume of water absorbed into cooked foods and low concentrations of arsenic in cigarettes. Results from this study will assist investigators in better characterizing exposure to inorganic arsenic.
Collapse
Affiliation(s)
- Jaymie R Meliker
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48104, USA.
| | | | | | | |
Collapse
|
11
|
Graham-Evans B, Cohly HHP, Yu H, Tchounwou PB. Arsenic-induced genotoxic and cytotoxic effects in human keratinocytes, melanocytes and dendritic cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2006; 1:83-9. [PMID: 16696182 DOI: 10.3390/ijerph2004020083] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Arsenical keratosis and skin cancer are among the most common health effects associated with acute and chronic exposures to arsenic. This study examines the acute and chronic dose-responses of arsenic in established human cell lines using keratinocytes (HaCaT), melanocytes (CRL1675) and dendritic cells (THP-1 + A23187). Chronic conditions were established by treating the three cell lines with at least 8 passages in 0.2 microg/mL arsenic trioxide. Cytotoxicity was assessed using the fluorescein diacetate assay after 72 hrs of exposure. Single cell gel electrophoresis (Comet assay) was used to measure DNA damage. Acute exposure to arsenic had LD10 and LD25 values of 0.38 microg/mL and 3.0 microg/mL for keratinocytes; 0.19 microg/mL and 0.38 microg/mL for melanocytes; and 0.38 microg/mL and 0.75 microg/mL for dendritic cells. Cytotoxicity assays for chronically exposed cells resulted in LD10, and LD25 values of 0.4 microg/mL and 0.8 microg/mL for keratinocytes; 0.10 microg/mL and 0.20 microg/mL for melanocytes; and 0.10 microg/mL and 1.0 microg/mL for dendritic cells. The Comet assay showed that arsenic was highly genotoxic to the three cell lines. No significant differences (p > 0.05) in DNA cleavage were observed between acute and chronic exposures. In acute exposure arsenic genotoxicity was more severe with dendritic cells while melanocytes were more sensitive to arsenic cytotoxicity. Similarly, chronically exposed dendritic cells showed the maximum genotoxic damage while melanocytes were more sensitive to arsenic cytotoxicity. In conclusion, this research shows that arsenic is dermatotoxic, showing a high degree of genotoxicity and cytotoxicity to skin cells.
Collapse
Affiliation(s)
- Barbara Graham-Evans
- Molecular Toxicology Research Laboratory, NIH-Center for Environmental Health, Jackson State University, Jackson, MS 39217, USA
| | | | | | | |
Collapse
|
12
|
Kwon E, Zhang H, Wang Z, Jhangri GS, Lu X, Fok N, Gabos S, Li XF, Le XC. Arsenic on the hands of children after playing in playgrounds. ENVIRONMENTAL HEALTH PERSPECTIVES 2004; 112:1375-80. [PMID: 15471728 PMCID: PMC1247563 DOI: 10.1289/ehp.7197] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Accepted: 06/17/2004] [Indexed: 05/18/2023]
Abstract
Increasing concerns over the use of wood treated with chromated copper arsenate (CCA) in playground structures arise from potential exposure to arsenic of children playing in these playgrounds. Limited data from previous studies analyzing arsenic levels in sand samples collected from CCA playgrounds are inconsistent and cannot be directly translated to the amount of children's exposure to arsenic. The objective of this study was to determine the quantitative amounts of arsenic on the hands of children in contact with CCA-treated wood structures or sand in playgrounds. We compared arsenic levels on the hands of 66 children playing in eight CCA playgrounds with levels of arsenic found on the hands of 64 children playing in another eight playgrounds not constructed with CCA-treated wood. The children's age and duration of playtime were recorded at each playground. After play, children's hands were washed in a bag containing 150 mL of deionized water. Arsenic levels in the hand-washing water were quantified by inductively coupled plasma mass spectrometry. Our results show that the ages of the children sampled and the duration of play in the playgrounds were similar between the groups of CCA and non-CCA playgrounds. The mean amount of water-soluble arsenic on children's hands from CCA playgrounds was 0.50 microg (range, 0.0078-3.5 microg). This was significantly higher (p < 0.001) than the mean amount of water-soluble arsenic on children's hands from non-CCA playgrounds, which was 0.095 microg (range, 0.011-0.41 microg). There was no significant difference in the amount of sand on the children's hands and the concentration of arsenic in the sand between the CCA and non-CCA groups. The higher values of arsenic on the hands of children playing in the CCA playgrounds are probably due to direct contact with CCA-treated wood. Washing hands after play would reduce the levels of potential exposure because most of the arsenic on children's hands was washed off with water. The maximum amount of arsenic on children's hands from the entire group of study participants was < 4 microg, which is lower than the average daily intake of arsenic from water and food.
Collapse
Affiliation(s)
- Elena Kwon
- Department of Public Health Sciences, Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada T6G 2G3
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Bhattacharyya R, Chatterjee D, Nath B, Jana J, Jacks G, Vahter M. High arsenic groundwater: mobilization, metabolism and mitigation--an overview in the Bengal Delta Plain. Mol Cell Biochem 2004; 253:347-55. [PMID: 14619986 DOI: 10.1023/a:1026001024578] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The widespread occurrence of high inorganic arsenic in natural waters is attributed to human carcinogen and is identified as a major global public health issue. The scale of the problem in terms of population exposure (36 million) and geographical area coverage (173 x 10(3) Km2) to high arsenic contaminated groundwater (50-3200 microgL(-1)) compared to the National drinking water standard (50 microgL(-1)) and WHO recommended provisional limit (10 microgL(-1)) is greatest in the Holocene alluvium and deltaic aquifers of the Bengal Delta Plain (Bangladesh and West Bengal, India). This large-scale 'natural' high arsenic groundwater poses a great threat to human health via drinking water. Mobilization, metabolism and mitigation issues of high arsenic groundwater are complex and need holistic approach for sustainable development of the resource. Mobilization depends on the redox geochemistry of arsenic that plays a vital role in the release and subsequent transport of arsenic in groundwater. Metabolism narrates the biological response vis-à-vis clinical manifestations of arsenic due to various chemical and biological factors. Mitigation includes alternative source for safe drinking water supply. Drinking water quality regulatory standards as well as guidelines are yet to cover risk assessments for such metal toxicity. Lowering of the ingested inorganic arsenic level and introduction of newer treatment options (implementation of laterite, the natural material) to ensure safe water supply (arsenic free and/or low arsenic within permissible limit) are the urgent need to safe guard the mass arsenic poisoning and internal arsenic related health problems.
Collapse
Affiliation(s)
- Rupa Bhattacharyya
- Department of Chemistry, University of Kalyani, Kalyani, West Bengal, India
| | | | | | | | | | | |
Collapse
|
14
|
Hemond HF, Solo-Gabriele HM. Children's exposure to arsenic from CCA-treated wooden decks and playground structures. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2004; 24:51-64. [PMID: 15028000 DOI: 10.1111/j.0272-4332.2004.00411.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
CCA-treated wood is widely used in the fabrication of outdoor decks and playground equipment. Because arsenic can be removed from the surface of CCA-treated wood both by physical contact and by leaching, it is important to determine whether children who play on such structures may ingest arsenic in quantities sufficient to be of public health concern. Based on a review of existing studies, it is estimated that arsenic doses in amounts of tens of micrograms per day may be incurred by children having realistic levels of exposure to CCA-treated decks and playground structures. The most important exposure pathway appears to be oral ingestion of arsenic that is first dislodged from the wood by direct hand contact, then transferred to the mouth by children's hand-to-mouth activity. The next most important pathway appears to be dermal absorption of arsenic, while ingestion of soil that has become contaminated by leaching from CCA-treated structures appears to be of lesser importance, except possibly in the case of children with pica. Considerable uncertainty, however, is associated with quantitative estimates of children's arsenic exposure from CCA-treated wood. Priorities for refining estimates of arsenic dose include detailed studies of the hand-to-mouth transfer of arsenic, studies of the dermal and gastrointestinal absorption of dislodgeable arsenic, and studies in which doses of arsenic to children playing in contact with CCA-treated wood are directly determined by measurement of arsenic in their urine, hair, and nails.
Collapse
Affiliation(s)
- Harold F Hemond
- RM Parsons Laboratory, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | |
Collapse
|