1
|
Oner M, Lin E, Chen MC, Hsu FN, Shazzad Hossain Prince GM, Chiu KY, Teng CLJ, Yang TY, Wang HY, Yue CH, Yu CH, Lai CH, Hsieh JT, Lin H. Future Aspects of CDK5 in Prostate Cancer: From Pathogenesis to Therapeutic Implications. Int J Mol Sci 2019; 20:ijms20163881. [PMID: 31395805 PMCID: PMC6720211 DOI: 10.3390/ijms20163881] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 01/03/2023] Open
Abstract
Cyclin-dependent kinase 5 (CDK5) is a unique member of the cyclin-dependent kinase family. CDK5 is activated by binding with its regulatory proteins, mainly p35, and its activation is essential in the development of the central nervous system (CNS) and neurodegeneration. Recently, it has been reported that CDK5 plays important roles in regulating various biological and pathological processes, including cancer progression. Concerning prostate cancer, the androgen receptor (AR) is majorly involved in tumorigenesis, while CDK5 can phosphorylate AR and promotes the proliferation of prostate cancer cells. Clinical evidence has also shown that the level of CDK5 is associated with the progression of prostate cancer. Interestingly, inhibition of CDK5 prevents prostate cancer cell growth, while drug-triggered CDK5 hyperactivation leads to apoptosis. The blocking of CDK5 activity by its small interfering RNAs (siRNA) or Roscovitine, a pan-CDK inhibitor, reduces the cellular AR protein level and triggers the death of prostate cancer cells. Thus, CDK5 plays a crucial role in the growth of prostate cancer cells, and AR regulation is one of the important pathways. In this review paper, we summarize the significant studies on CDK5-mediated regulation of prostate cancer cells. We propose that the CDK5–p35 complex might be an outstanding candidate as a diagnostic marker and potential target for prostate cancer treatment in the near future.
Collapse
Affiliation(s)
- Muhammet Oner
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Eugene Lin
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
- Department of Urology, Chang Bing Show Chwan Memorial Hospital, Changhua 505, Taiwan
| | - Mei-Chih Chen
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
| | - Fu-Ning Hsu
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | | | - Kun-Yuan Chiu
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Chieh-Lin Jerry Teng
- Division of Hematology/Medical Oncology, Department of Internal, Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Tsung-Ying Yang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Hsin-Yi Wang
- Department of Nuclear Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Chia-Herng Yue
- Department of Surgery, Tung's Taichung Metro Harbor Hospital, Taichung 435, Taiwan
| | - Ching-Han Yu
- Department of Physiology, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Chang Gung Medical University, Taoyuan 33302, Taiwan
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ho Lin
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
- Program in Translational Medicine and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
2
|
Lemieszek MK, Ribeiro M, Guichard Alves H, Marques G, Nunes FM, Rzeski W. Boletus edulis ribonucleic acid – a potent apoptosis inducer in human colon adenocarcinoma cells. Food Funct 2016; 7:3163-75. [DOI: 10.1039/c6fo00132g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Despite the large popularity of the Boletus edulis mushroom, little is known about its influence on human health and the possibilities of its therapeutic use.
Collapse
Affiliation(s)
| | - Miguel Ribeiro
- CQ-Vila Real
- Chemistry Research Centre
- Chemistry Department
- University of Trás-os-Montes e Alto Douro
- 5001-801 Vila Real
| | - Helena Guichard Alves
- CQ-Vila Real
- Chemistry Research Centre
- Chemistry Department
- University of Trás-os-Montes e Alto Douro
- 5001-801 Vila Real
| | - Guilhermina Marques
- CITAB – Centre for the Research and Technology of Agro-Environment and Biological Sciences
- Department of Agronomy
- University of Trás-os-Montes e Alto Douro
- 5001-801 Vila Real
- Portugal
| | - Fernando Milheiro Nunes
- CQ-Vila Real
- Chemistry Research Centre
- Chemistry Department
- University of Trás-os-Montes e Alto Douro
- 5001-801 Vila Real
| | - Wojciech Rzeski
- Department of Medical Biology
- Institute of Agricultural Medicine
- 20-090 Lublin
- Poland
- Department of Virology and Immunology
| |
Collapse
|
3
|
SYK is a target of lymphocyte-derived microparticles in the induction of apoptosis of human retinoblastoma cells. Apoptosis 2015; 20:1613-22. [DOI: 10.1007/s10495-015-1177-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
4
|
Frión-Herrera Y, Díaz-García A, Ruiz-Fuentes J, Rodríguez-Sánchez H, Sforcin JM. Brazilian green propolis induced apoptosis in human lung cancer A549 cells through mitochondrial-mediated pathway. ACTA ACUST UNITED AC 2015. [PMID: 26206395 DOI: 10.1111/jphp.12449] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Propolis effect on the growth and apoptosis of human lung adenocarcinoma (A549 cells) was investigated as well as its mechanisms. METHODS Cells were incubated with propolis for 72 h, and 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assays were employed to assess cell viability and the inhibitory concentration (IC). Apoptosis was detected by Acridine Orange/Ethidium Bromide and 4',6-diamidino-2-phenylindole staining after 24 and 48 h of incubation with ¼ IC50 of propolis by testing the mitochondrial membrane potential (ΔΨm) and the expression of apoptosis-related genes (p53, Caspase-3, Bax, Bcl-2, Bcl-XL , Noxa, Puma and p21) by reverse transcription polymerase chain reaction. KEY FINDINGS Propolis displayed antiproliferative and cytotoxic effects on A549 cells in a dose- and time-dependent manner, but it did not suppress the growth of normal Vero cells. An enhanced apoptosis was seen in A549 propolis-treated cells after 48 h compared with the control cells. Propolis decreased mitochondrial membrane potential by overexpression of pro-apoptotic genes (Bax and Noxa) and reduction of the antiapoptotic gene Bcl-XL . The expression level of other genes remained unchanged (p53, Caspse-3 and Bax), whereas p21 expression was increased. Propolis induced caspase-independent apoptosis through a p53-independent mitochondrial pathway, and cell cycle arrest by upregulation of p21. CONCLUSIONS Although propolis induces apoptosis mainly by p53-independent manner, it may be induced by another pathway, and new insights may arise for preventing or treating lung cancer.
Collapse
Affiliation(s)
- Yahima Frión-Herrera
- Department of Microbiology and Immunology, Biosciences Institute, UNESP, Botucatu, São Paulo, Brazil
| | - Alexis Díaz-García
- Laboratories of Biofarmaceuticals and Chemistries Productions (LABIOFAM), Havana, Cuba
| | | | | | - José Maurício Sforcin
- Department of Microbiology and Immunology, Biosciences Institute, UNESP, Botucatu, São Paulo, Brazil
| |
Collapse
|
5
|
Muñiz-Hernández S, Hernández-Pedro N, Macedo-Pérez OE, Arrieta O. Alterations in Retinoic Acid Receptors in Non-Small Cell Lung Cancer and Their Clinical Implications. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/jct.2015.68072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Chen MC, Hsu SL, Lin H, Yang TY. Retinoic acid and cancer treatment. Biomedicine (Taipei) 2014; 4:22. [PMID: 25520935 PMCID: PMC4265016 DOI: 10.7603/s40681-014-0022-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 11/05/2014] [Indexed: 12/18/2022] Open
Abstract
Retinoic acid which belongs to the retinoid class of chemical compounds is an important metabolite of vitamin A in diets. It is currently understood that retinoic acid plays important roles in cell development and differentiation as well as cancer treatment. Lung, prostate, breast, ovarian, bladder, oral, and skin cancers have been demonstrated to be suppressed by retinoic acid. Our results also show that low doses and high doses of retinoic acid may respectively cause cell cycle arrest and apoptosis of cancer cells. Also, the common cell cycle inhibiting protein, p27, and the new cell cycle regulator, Cdk5, are involved in retinoic acid’s effects. These results provide new evidence indicating that the molecular mechanisms of/in retinoic acid may control cancer cells’ fates. Since high doses of retinoic acid may lead to cytotoxicity, it is probably best utilized as a potential supplement in one’s daily diet to prevent or suppress cancer progression. In this review, we have collected numerous references demonstrating the findings of retinoic acid in melanoma, hepatoma, lung cancer, breast cancer, and prostate cancer. We hope these observations will shed light on the future investigation of retinoic acid in cancer prevention and therapy.
Collapse
Affiliation(s)
- Mei-Chih Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taichung, Taiwan
| | - Shih-Lan Hsu
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taichung, Taiwan
| | - Ho Lin
- Department of Life Sciences, National Chung Hsing University, No. 250, Kuokuang Rd., Taichung 402, Taichung, Taiwan
| | - Tsung-Ying Yang
- Department of Chest Medicine, Taichung Veterans General Hospital, No. 160, Taichung Harbor Rd., Sec. 3, Taichung 407, Taichung, Taiwan
| |
Collapse
|
7
|
Kanai F, Obi S, Fujiyama S, Shiina S, Tamai H, Mochizuki H, Koike Y, Imamura J, Yamaguchi T, Saida I, Yokosuka O, Omata M. An open-label phase I/II study of tamibarotene in patients with advanced hepatocellular carcinoma. Hepatol Int 2013. [PMID: 26202410 DOI: 10.1007/s12072-013-9459-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIM Tamibarotene is a synthetic retinoid expected to inhibit tumor-cell proliferation and to induce apoptosis by selective interaction with retinoic acid receptor α/β. We conducted an open-label phase I/II study to determine the maximum tolerated dose (MTD) and recommended dose (RD), and to evaluate the pharmacokinetics, efficacy, and safety profiles for advanced hepatocellular carcinoma (HCC). METHODS Patients with histologically confirmed, measurable, unresectable HCC of Child-Pugh classification A or B and with no effective systemic or local therapies were eligible. In phase I, patients were assigned based on the 3 + 3 dose escalation criteria to receive tamibarotene at 8, 12, and 16 mg/day. The RD determined in phase I was employed for phase II. The planned sample size in phase II was 25, including the RD-treated patients in phase I. RESULTS Thirty-six patients were enrolled. No patients experienced dose-limiting toxicity (DLT) at 8 mg/day. However, two out of six patients experienced the DLTs at 12 mg/day: one experienced thrombosis in a limb vein and pulmonary artery, and the other experienced an increase of γ-GTP. The MTD and RD were determined as 12 and 8 mg/day, respectively. In phase II, one patient achieved partial response, and seven achieved stable disease. The disease control rate was 32 % (95 % CI: 15.0-53.5). The following drug-related serious adverse events were reported: thrombosis in a limb vein, pulmonary artery, and portal vein; interstitial lung disease; and vomiting. CONCLUSIONS Tamibarotene demonstrated the inhibition of tumor cell growth in advanced HCC with acceptable tolerance.
Collapse
Affiliation(s)
- Fumihiko Kanai
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba, 260-8670, Japan.
| | - Shuntaro Obi
- Department of Hepatology, Kyoundo Hospital, 1-8 Kandasurugadai, Chiyoda-ku, Tokyo, 101-0062, Japan.
| | - Shigetoshi Fujiyama
- Department of Gastroenterology and Hepatology, Kumamoto Shinto General Hospital, 1-17-27 Shinyashiki, Kumamoto City, Kumamoto, 862-8655, Japan.
| | - Shuichiro Shiina
- Department of Gastroenterology, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Hideyuki Tamai
- Second Department of Internal Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama City, Wakayama, 641-0012, Japan.
| | - Hitoshi Mochizuki
- Department of Gastroenterology, Yamanashi Prefectural Central Hospital, 1-1-1 Fujimi, Kofu City, Yamanashi, 400-8506, Japan.
| | - Yukihiro Koike
- Department of Gastroenterology, Kanto Central Hospital, 6-25-1 Kamiyouga, Setagaya-ku, Tokyo, 158-8531, Japan.
| | - Jun Imamura
- Division of Hepatology, Department of Internal Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo, 113-8677, Japan.
| | - Takayoshi Yamaguchi
- Clinical Research 1, Zeria Pharmaceutical Co., Ltd, 10-11 Nihonbashi Kobuna-cho, Chuo-ku, Tokyo, 103-8351, Japan.
| | - Isamu Saida
- Clinical Research 1, Zeria Pharmaceutical Co., Ltd, 10-11 Nihonbashi Kobuna-cho, Chuo-ku, Tokyo, 103-8351, Japan.
| | - Osamu Yokosuka
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba, 260-8670, Japan.
| | - Masao Omata
- Yamanashi Prefectural Hospital Organization, 1-1-1 Fujimi, Kofu City, Yamanashi, 400-8506, Japan.
| |
Collapse
|
8
|
|
9
|
Russo A, Esposito D, Catillo M, Pietropaolo C, Crescenzi E, Russo G. Human rpL3 induces G₁/S arrest or apoptosis by modulating p21 (waf1/cip1) levels in a p53-independent manner. Cell Cycle 2012; 12:76-87. [PMID: 23255119 DOI: 10.4161/cc.22963] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
It is now largely accepted that ribosomal proteins may be implicated in a variety of biological functions besides that of components of the translation machinery. Many evidences show that a subset of ribosomal proteins are involved in the regulation of the cell cycle and apoptosis through modulation of p53 activity. In addition, p53-independent mechanisms of cell cycle arrest in response to alterations of ribosomal proteins availability have been described. Here, we identify human rpL3 as a new regulator of cell cycle and apoptosis through positive regulation of p21 expression in a p53-independent system. We demonstrate that the rpL3-mediated p21 upregulation requires the specific interaction between rpL3 and Sp1. Furthermore, in our experimental system, p21 overexpression leads to a dual outcome, activating the G₁/S arrest of the cell cycle or the apoptotic pathway through mitochondria, depending on its intracellular levels. It is noteworthy that depletion of p21 abrogates both effects. Taken together, our findings unravel a novel extraribosomal function of rpL3 and reinforce the proapoptotic role of p21 in addition to its widely reported ability as an inhibitor of cell proliferation.
Collapse
Affiliation(s)
- Annapina Russo
- Dipartimento di Biochimica e Biotecnologie Mediche; Università Federico II, Naples, Italy
| | | | | | | | | | | |
Collapse
|
10
|
Retinoic Acid Induces Apoptosis of Prostate Cancer DU145 Cells through Cdk5 Overactivation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:580736. [PMID: 23304206 PMCID: PMC3532922 DOI: 10.1155/2012/580736] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 11/09/2012] [Accepted: 11/16/2012] [Indexed: 01/09/2023]
Abstract
Retinoic acid (RA) has been believed to be an anticancer drug for a long history. However, the molecular mechanisms of RA actions on cancer cells remain diverse. In this study, the dose-dependent inhibition of RA on DU145 cell proliferation was identified. Interestingly, RA treatment triggered p35 cleavage (p25 formation) and Cdk5 overactivation, and all could be blocked by Calpain inhibitor, Calpeptin (CP). Subsequently, RA-triggered DU145 apoptosis detected by sub-G1 phase accumulation and Annexin V staining could also be blocked by CP treatment. Furthermore, RA-triggered caspase 3 activation and following Cdk5 over-activation were destroyed by treatments of both CP and Cdk5 knockdown. In conclusion, we report a new mechanism in which RA could cause apoptosis of androgen-independent prostate cancer cells through p35 cleavage and Cdk5 over-activation. This finding may contribute to constructing a clearer image of RA function and bring RA as a valuable chemoprevention agent for prostate cancer patients.
Collapse
|
11
|
Park EJ, Kondratyuk TP, Morrell A, Kiselev E, Conda-Sheridan M, Cushman M, Ahn S, Choi Y, White JJ, van Breemen RB, Pezzuto JM. Induction of retinoid X receptor activity and consequent upregulation of p21WAF1/CIP1 by indenoisoquinolines in MCF7 cells. Cancer Prev Res (Phila) 2011; 4:592-607. [PMID: 21464033 DOI: 10.1158/1940-6207.capr-10-0004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Retinoid X receptor (RXR) has been targeted for the chemoprevention and treatment of cancer. To discover potential agents acting through RXRs, we utilized an RXR response element (RXRE)-luciferase reporter gene assay. Following extensive screening, 3-amino-6-(3-aminopropyl)-5,6-dihydro-5,11-dioxo-11H-indeno[1,2-c]isoquinoline dihydrochloride (AM6-36) was found to induce RXRE-luciferase activities. AM6-36 inhibited COX-2 expression and anchorage-independent growth with 12-O-tetradecanoylphorbol 13-acetate-stimulated JB6 Cl41 cells, induced the expression of CD38 in HL-60 cells, and attenuated the growth of N-methyl-N-nitrosourea-induced mammary tumors in rats. Consistent with other reports describing the antiproliferative effects of RXR agonists in breast cancers, AM6-36 showed growth inhibition with cultured MCF7 breast cancer cells, accompanied by G(2)/M-phase arrest at lower concentrations and enhanced S-phase arrest at higher concentrations. On the basis of DNA microarray analysis, AM6-36 upregulated the expression of CDKN1A, a target gene of RXR, by 35-fold. In accord with this response, the expression of the corresponding protein, p21(WAF1/CIP1), was increased in the presence of AM6-36. Induction of p21 by AM6-36 was abrogated following transient knockdown of RXRα, demonstrating that the effect of AM6-36 on the expression of p21 is closely related to modulation of RXRα transcriptional activity. Intestinal permeability was suggested with Caco-2 cells and limited metabolism resulted when AM6-36 was incubated with human liver microsomes. Oral administration with rats resulted in 0.8 μg/mL, 4.3 μg/g, and 0.3 μg/g in serum, liver, and mammary gland, respectively. In sum, these data suggest that AM6-36 is a promising lead for the treatment or prevention of breast cancer and provide a strong rationale for testing in more advanced antitumor systems.
Collapse
Affiliation(s)
- Eun-Jung Park
- College of Pharmacy, University of Hawaii at Hilo, 34 Rainbow Drive, Hilo, HI 96720, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Liu J, Xu J, Ding JW. ATRA in combination with nedaplatin inhibits cell proliferation but promotes apoptosis in human hepatoma cell line Huh-7. Shijie Huaren Xiaohua Zazhi 2010; 18:2538-2544. [DOI: 10.11569/wcjd.v18.i24.2538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To observe the effects of all-trans retinoic acid (ATRA) and nedaplatin, alone or in combination, on cell proliferation and apoptosis in human hepatoma cell line Huh-7, and to determine whether the two drugs in combination have a synergistic effect in treating hepatocarcinoma.
METHODS: After Huh-7 cells were incubated with different concentrations of ATRA (10-4, 10-5 and 10-6 mol/L) and nedaplatin (1, 2 and 5 mg/L), alone or in combination, for 24, 48 and 72 h, cell morphology changes were observed using an inverted microscope; cell proliferation was evaluated by MTT assay; and apoptosis was evaluated by flow cytometry.
RESULTS: Both ATRA and nedaplatin could markedly inhibit cell proliferation in a time- and concentration-dependent manner (all P < 0.01). ATRA and nedaplatin in combination had a significant synergistic effect on cell proliferation compared with ATRA or nedaplatin alone (both P < 0.01). Both ATRA and nedaplatin promoted the apoptosis of Huh-7 cells. The apoptosis rate was significantly lower in Huh-7 cells treated with ATRA and nedaplatin alone for 48 h than in those treated with the two drugs in combination (28.49% ± 0.6%, 42.57% ± 1.03% vs 55.35% ± 1.30%, both P < 0.01), suggesting a synergistic effect of combined nedaplatin and ATRA on the apoptosis of Huh-7 cells.
CONCLUSION: Both ATRA and nedaplatin can inhibit cell proliferation and promote apoptosis in human hepatoma cell line Huh-7. ATRA combined with nedaplatin has a significant synergistic effect on the proliferation and apoptosis of Huh-7 cells.
Collapse
|
13
|
Inoue T, Kato K, Kato H, Asanoma K, Kuboyama A, Ueoka Y, Yamaguchi SI, Ohgami T, Wake N. Level of reactive oxygen species induced by p21Waf1/CIP1 is critical for the determination of cell fate. Cancer Sci 2009; 100:1275-83. [PMID: 19432898 PMCID: PMC11158913 DOI: 10.1111/j.1349-7006.2009.01166.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 03/09/2009] [Accepted: 03/12/2009] [Indexed: 11/29/2022] Open
Abstract
p21(WAF(1)/)(CIP(1)) is a well-known cell cycle regulatory protein which is overexpressed in several cancer cell lines, and known to determine cell fate. We generated three recombinant adenovirus vectors that expressed either the full-length p21 (Ad-p21F), a p21 mutant with a deletion of the C-terminal proliferative cell nuclear antigen (PCNA) binding domain (Ad-p21N), or a p21 mutant with a deletion of the N-terminal cyclin-dependent kinase binding domain (Ad-p21C). We transfected these vectors into five cancer cell lines. Premature senescence was induced in all of the lines only following transfection with Ad-p21N and Ad-p21F. In addition, apoptosis was also induced in LoVo and HCT116 cells that harbored wild-type p53 and the reactive oxygen species (ROS) level was higher than in senescent cells. Finally, the induction of apoptosis was inhibited by using siRNA to downregulate p53. This observation implies that there is a feedback signaling loop involving p21/ROS/p53 in apoptotic responses. It appears to be, at least in part, driven by high levels of p21 protein. Next, we investigated the cell death effect of endogenous p21 protein on cell fate using sodium butyrate (NaB). Treatment with 1 mM NaB or 2 to 5 mM NaB induced senescence or apoptosis, respectively. The level of intracellular ROS in 5 mM NaB treated cells was 2-fold higher, compared with that in 1 mM NaB treated cells. We also demonstrated that DNA damage response signals including ataxia telangiectasia mutated, gammaH2AX, and p38 MAPK were involved in NaB-induced cell death. The magnitude of intracellular ROS levels in response to p21 elicited either senescence or apoptosis in the cancer cell lines.
Collapse
Affiliation(s)
- Takafumi Inoue
- Department of Obstetrics and Gynecology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Hsieh YY, Chang CC, Bau DT, Tsai FJ, Tsai CH, Chen CP. The p21 codon 31∗C- and DRD2 codon 313∗T-related genotypes/alleles, but not XRCC1 codon 399, hOGG1 codon 326, and DRD1-48 polymorphisms, are correlated with the presence of leiomyoma. Fertil Steril 2009; 91:869-77. [DOI: 10.1016/j.fertnstert.2007.07.1328] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2007] [Revised: 07/12/2007] [Accepted: 07/12/2007] [Indexed: 11/25/2022]
|
15
|
Appleyard MVCL, O'Neill MA, Murray KE, Paulin FEM, Bray SE, Kernohan NM, Levison DA, Lane DP, Thompson AM. Seliciclib (CYC202, R-roscovitine) enhances the antitumor effect of doxorubicin in vivo in a breast cancer xenograft model. Int J Cancer 2009; 124:465-72. [PMID: 19003963 DOI: 10.1002/ijc.23938] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We sought to determine whether seliciclib (CYC202, R-roscovitine) could increase the antitumor effects of doxorubicin, with no increase in toxicity, in an MCF7 breast cancer xenograft model. The efficacy of seliciclib combined with doxorubicin was compared with single agent doxorubicin or seliciclib administered to MCF7 cells and to nude mice bearing established MCF7 xenografts. Post-treatment cells and tumors were examined by cell cycle analysis, immunohistochemistry and real-time PCR. Seliciclib significantly enhanced the antitumor effect of doxorubicin without additional murine toxicity. MIB1 (ki67) immunohistochemistry demonstrated reduced proliferation with treatment. The levels of p21 and p27 increased after treatment with doxorubicin or seliciclib alone or in combination, compared to untreated controls. However, no changes in p53 protein (DO1, CM1), survivin or p53 phosphorylation (SER15) were observed in treated tumors compared with controls. In conclusion, the CDK inhibitor seliciclib (R-roscovitine) enhances the antitumor effect of doxorubicin in MCF7 tumors without increased toxicity with a mechanism that involves cell cycle arrest rather than apoptosis.
Collapse
Affiliation(s)
- Maria Virginia C L Appleyard
- Department of Surgery and Molecular Oncology, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kannan-Thulasiraman P, Dolniak B, Kaur S, Sassano A, Kalvakolanu DV, Hay N, Platanias LC. Role of the translational repressor 4E-BP1 in the regulation of p21(Waf1/Cip1) expression by retinoids. Biochem Biophys Res Commun 2008; 368:983-9. [PMID: 18280804 DOI: 10.1016/j.bbrc.2008.02.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 02/08/2008] [Indexed: 01/18/2023]
Abstract
The mechanisms by which retinoids regulate initiation of mRNA translation for proteins that mediate their biological effects are not known. We have previously shown that all-trans-retinoic acid (ATRA) induces mTOR-mediated activation of the p70 S6 kinase, suggesting the existence of a mechanism by which retinoids may regulate mRNA translation. We now demonstrate that treatment of acute promyelocytic leukemia (APL)-derived NB4 cells with ATRA results in dissociation of the translational repressor 4E-BP1 from the eukaryotic initiation factor eIF4E, and subsequent formation of eIF4G-eIF4E complexes. We also show that siRNA-mediated inhibition of 4E-BP1 expression enhances ATRA-dependent upregulation of p21(Waf1/Cip1), a protein that plays a key role in the induction of retinoid-dependent responses. Our data also establish that ATRA- or cis-RA-dependent p21(Waf1/Cip1) protein expression is enhanced in mouse embryonic fibroblasts with targeted disruption of the 4e-bp1 gene, in the absence of any effects on the transcriptional regulation of the p21(Waf1/Cip1) gene. Moreover, generation of ATRA- or cis-retinoic acid (cis-RA)-antiproliferative responses is enhanced in 4E-BP1 knockout cells. Altogether, these findings strongly suggest a key regulatory role for the translational repressor 4E-BP1 in the generation of retinoid-dependent functional responses.
Collapse
Affiliation(s)
- Padma Kannan-Thulasiraman
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School and Jesse Brown VA Medical Center, 303 East Superior, Chicago, IL, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Borbath I, Leclercq IA, Abarca-Quinones J, Desaeger C, Lebrun V, Moulin P, Sempoux C, Horsmans Y. Inhibition of early preneoplastic events in the rat liver by the somatostatin analog lanreotide. Cancer Sci 2007; 98:1831-9. [PMID: 17900309 PMCID: PMC11158449 DOI: 10.1111/j.1349-7006.2007.00626.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 08/16/2007] [Accepted: 08/21/2007] [Indexed: 12/21/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related death, and its incidence is increasing worldwide. Due to the known risk factors (mainly hepatitis B and C viruses), we believe there is a rationale for a chemopreventive approach to treat HCC. Here, based on described in vitro data, we evaluated the preventive effects of lanreotide, a somatostatin analog, on the induction of early carcinogenic events. We monitored preneoplastic foci induced by a two-stage initiation/promotion model of hepatocarcinogenesis in male Wistar rats, using diethylnitrosamine and 2-acetylaminofluorene. Lanreotide was given starting the day after the first diethylnitrosamine injection. By quantitative morphometry, we showed that lanreotide significantly decreases the size of induced preneoplastic foci. Analysis of proliferation and apoptosis assessed by immunohistochemistry, showed decreased proliferation and increased cell death in rats treated with lanreotide. As these events were associated with a significant decreased expression of the cell cycle regulator cyclin D1 and an increased expression of the cyclin-dependent kinase inhibitor p27(kip1) compared to the non-treated group, it is tempting to speculate that these factors are involved in the favorable effect of lanreotide. In conclusion, lanreotide significantly decreases early carcinogenic transformation in a two-step rat model. As lanreotide has a low toxicity profile, we believe it would be interesting to evaluate its effect in chemoprevention of HCC.
Collapse
Affiliation(s)
- Ivan Borbath
- Gastroenterology Laboratory, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Avenue Hippocrate, 10, Brussels 1200, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Zhang H, Chen P, Bai S, Huang C. The histone deacetylase inhibitor MS-275 inducesp21WAF1/Cip1 expression in human Hep3B hepatoma cells. Drug Dev Res 2007. [DOI: 10.1002/ddr.20167] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
He G, Kuang J, Huang Z, Koomen J, Kobayashi R, Khokhar AR, Siddik ZH. Upregulation of p27 and its inhibition of CDK2/cyclin E activity following DNA damage by a novel platinum agent are dependent on the expression of p21. Br J Cancer 2006; 95:1514-24. [PMID: 17088910 PMCID: PMC2360737 DOI: 10.1038/sj.bjc.6603448] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The cisplatin analogue 1R,2R-diaminocyclohexane(trans-diacetato)(dichloro)platinumIV (DAP) is a DNA-damaging agent that will be entering clinical trials for its potent cytotoxic effects against cisplatin-resistant tumour cells. This cytotoxicity may reside in its ability to selectively activate G1-phase checkpoint response by inhibiting CDKs via the p53/p21 pathway. We have now evaluated the role of another CDK inhibitor p27 as a contributor to DAP-mediated inhibition of G1-phase CDK2 activity. Our studies in ovarian A2780 tumour cells demonstrate that p27 levels induced by DAP are comparable to or greater than those seen for p21. The induction of p27 is not through a transcriptional mechanism, but rather is due to a four-fold increase in protein stabilisation through a mechanism dependent on p21. Moreover, DAP-induced p21 promoted the selective increase of p27 in the CDK2 complex, but not in CDK4 complex, and this selective increase contributed to inhibition of the CDK2 kinase activity. The inhibited complex contained either p27 or p21, but not both, with the relative levels of cyclin E associated with p27 and p21 indicating that about 25% of the inhibition of CDK2 activity was due to p27 and 75% due to p21. This study provides the first evidence that p27 upregulation is directly attributable to activation of the p53/p21 pathway by a DNA-damaging agent, and promulgates p53/p21/p27 axis as a significant component of checkpoint response.
Collapse
Affiliation(s)
- G He
- Department of Experimental Therapeutics, Unit 353, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - J Kuang
- Department of Experimental Therapeutics, Unit 353, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Z Huang
- Department of Experimental Therapeutics, Unit 353, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - J Koomen
- Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - R Kobayashi
- Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - A R Khokhar
- Department of Experimental Therapeutics, Unit 353, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Z H Siddik
- Department of Experimental Therapeutics, Unit 353, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
- E-mail:
| |
Collapse
|
20
|
Pataer A, Fanale MA, Roth JA, Swisher SG, Hunt KK. Induction of apoptosis in human lung cancer cells following treatment with amifostine and an adenoviral vector containing wild-type p53. Cancer Gene Ther 2006; 13:806-14. [PMID: 16628227 DOI: 10.1038/sj.cgt.7700960] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Adenoviral delivery of the p53 gene is a potential therapeutic approach for the treatment of lung cancer. Furthermore, amifostine is a cytoprotective agent and recent reports have described its potentiation of chemotherapy's antitumor activity in lung cancer. Therefore, we wished to investigate the ability of amifostine both alone and in combination with p53-based therapy to induce apoptosis, and to understand the mechanisms by which this apoptosis occurs. Using p53 null and wild-type p53 human lung cancer cells and normal human bronchial epithelial cells, we evaluated the effects of amifostine on proliferation and apoptosis. We then analyzed Adp53 in combination with amifostine and performed isobologram analysis. Expression of p53, p21(WAF1), Bax, Bak, bcl-2, as well as total and phosphorylated Cdc2 in the absence and presence of olomoucine, a phosphorylated Cdc2 kinase inhibitor, was then determined. Amifostine-induced apoptosis in human lung cancer cells in a dose-dependent fashion. The combination of amifostine and Adp53 significantly enhanced, with a supra-additive effect, the inhibition of proliferation of lung cancer cells. This enhancement of apoptosis by amifostine was associated with activation of p53 and dephosphorylation of Cdc2 proteins. Notably, olomoucine effectively prevented amifostine and/or Adp53-induced Cdc2 kinase activation and subsequent apoptosis. Our data shows that amifostine alone can induce apoptosis of human lung cancer cells, and that the combination of Adp53 with amifostine resulted in significantly higher levels of apoptosis. In addition, it appears that Cdc2 kinase plays an important role in the induction of apoptosis by amifostine and Adp53.
Collapse
Affiliation(s)
- A Pataer
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
21
|
Mernitz H, Smith DE, Zhu AX, Wang XD. 9-cis-Retinoic acid inhibition of lung carcinogenesis in the A/J mouse model is accompanied by increased expression of RAR-beta but no change in cyclooxygenase-2. Cancer Lett 2006; 244:101-8. [PMID: 16413115 DOI: 10.1016/j.canlet.2005.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Accepted: 12/04/2005] [Indexed: 11/30/2022]
Abstract
9-cis-Retinoic acid (9cRA) binds both retinoic acid receptors (RARs) and retinoid X receptors (RXRs) and has been shown to be a potential chemopreventive agent both in lung cancer cell culture studies and in clinical trials studying former smokers. However, direct evidence of the efficacy of 9cRA against lung tumor development in vivo is lacking. In the present study, we determined whether treatment with 9cRA has the potential to inhibit lung carcinogenesis by upregulating RAR-beta and down-regulating COX-2 expression in the A/J mouse lung cancer model. A/J mice (n=14-15/group) were treated as follows: (1) Control (Sham treated); (2) NNK (100mg NNK/kg body weight); (3) NNK+9cRA (15mg/kg diet); and (4) NNK+celecoxib (a COX-2-specific inhibitor, 500mg/kg diet). Tumor incidence, tumor multiplicity, RAR-beta mRNA, COX-2 mRNA, and COX-2 protein levels in lung samples of mice were determined 4 months after carcinogen injection. The results showed that mice receiving 9cRA supplementation had significantly lower tumor multiplicity (48% reduction, P<0.05) and showed a trend toward lower tumor incidence (40% reduction, P=0.078), as compared with the mice given NNK alone. Although, celecoxib treatment resulted in greater declines in tumor incidence and tumor multiplicity (75 and 88%, respectively, P<0.05), the chemoprotective effects of celecoxib were accompanied by increased mortality while 9cRA treatment resulted in no weight-loss associated toxicity or mortality. Supplementation with 9cRA was effective in increasing RAR-beta mRNA, but this increase was not accompanied by decreased levels of COX-2 mRNA or protein. These results suggest that 9cRA supplementation may provide protection against lung carcinogenesis and this effect may be mediated in part by 9cRA induction of RAR-beta, but not inhibition of COX-2 transcription.
Collapse
Affiliation(s)
- Heather Mernitz
- Nutrition and Cancer Biology Laboratory, Jean Mayer United States Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA 02111, USA
| | | | | | | |
Collapse
|
22
|
Migone F, Deinnocentes P, Smith BF, Bird RC. Alterations in CDK1 expression and nuclear/nucleolar localization following induction in a spontaneous canine mammary cancer model. J Cell Biochem 2006; 98:504-18. [PMID: 16317763 DOI: 10.1002/jcb.20707] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transcription of CDK1 is induced as cells re-enter the cell cycle from quiescence and these early cell cycle re-entry events have been modeled by okadaic acid treatment due to its activity on specific enhancer sequences in the human CDK1 promoter. To investigate heterogeneity of control of this mechanism in the context of neoplastic transformation, a cellular model derived from spontaneous canine mammary cancer (CMT) was developed that includes six cell lines derived from different animals. Notable heterogeneity in response to okadaic acid was observed in expression of CDK1 mRNA and protein. In response to okadaic acid treatment, two CMT cell lines exhibited a CDK1 mRNA induction while one cell line exhibited CDK1 mRNA suppression, and three remained unchanged. Despite this variability, three CMT cell lines arrested in S or G2/M phase and five exhibited marked increases in apoptosis. Moderation of some of these differences were observed at the level of CDK1 protein as three of six CMT cell lines exhibited only moderate enhancement in CDK1 protein levels while three remained essentially unchanged. Some additional differences in distribution of CDK1 protein, favoring enhanced nuclear over cytoplasmic CDK1 localization, were observed in treated cells in the form of concentrated nuclear CDK1 labeled foci. Confocal microscopy revealed the presence of brightly labeled punctate foci containing CDK1 protein within nuclei as well as nucleoli in okadaic acid treated non-mitotic cells suggesting a role for this kinase outside the normal G2/mitotic phase of the cell cycle and suggesting a possible new function within the nucleolus.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- CDC2 Protein Kinase/genetics
- CDC2 Protein Kinase/metabolism
- Cell Nucleolus/metabolism
- Cell Nucleus/metabolism
- Cytoplasm/metabolism
- Disease Models, Animal
- Dogs
- G2 Phase/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- HeLa Cells
- Humans
- Mammary Glands, Animal/enzymology
- Mammary Glands, Animal/pathology
- Mammary Neoplasms, Experimental/enzymology
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Okadaic Acid/pharmacology
- Protein Transport
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- S Phase/drug effects
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Felicia Migone
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama 36849, USA
| | | | | | | |
Collapse
|
23
|
Ralhan R, Chakravarti N, Kaur J, Sharma C, Kumar A, Mathur M, Bahadur S, Shukla NK, Deo SVS. Clinical significance of altered expression of retinoid receptors in oral precancerous and cancerous lesions: Relationship with cell cycle regulators. Int J Cancer 2005; 118:1077-89. [PMID: 16161051 DOI: 10.1002/ijc.21483] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alterations in expression of retinoid receptors are implicated in human cancers. We hypothesized that altered expression of retinoic acid receptors (RARalpha,beta,gamma) and retinoid X receptor RXRalpha and their relationship with cell cycle regulators (p53, p16, p21) is associated with development, progression and prognosis of oral cancer. Immunohistochemical analysis of RAR alpha, beta, gamma and RXRalpha proteins was carried out on serial sections from 244 oral squamous cell carcinomas (OSCCs), 102 potentially malignant lesions (65 hyperplasias, 37 dysplasias), 83 matched histologically normal oral tissues and 29 normal mucosa from non-exposed individuals without oral lesions and correlated with expression of cell cycle regulators p53, p16 and p21 as well as with clinicopathological parameters. Expression of retinoid receptors RARbeta, RARgamma, RXRalpha and cell cycle regulators p16 and p21 was decreased in majority of oral SCCs as well as in potentially malignant lesions. Multivariate stepwise logistic regression analysis carried out for comparison of non-exposed normal oral mucosa with histologically normal oral tissues from patients with oral lesions showed significant loss of RARbeta or p53 accumulation (RARbeta(-)/p53(+) Odd's ratio, OR = 266.6, p = 0.000); non-exposed normal mucosa from individuals without oral lesions with potentially malignant lesion was RARbeta(-)/p21(-)/p53(+) (OR = 215.7, p = 0.000); matched normal to potentially malignant stage was RARalpha(+)/p21(-) (OR = 4.414, p = 0.005); hyperplasia to dysplasia was RARalpha(+)/p53(+) (OR = 4.72, p = 0.005) and potentially malignant to malignant phenotype was RARalpha(+) (OR = 2.061, p = 0.004). The prognostic relevance of these factors was assessed in 115 of these SCC patients who were followed-up for a maximum period of 94 months (median 21 months). Multivariate analysis using Cox's proportional Hazard's model showed that RARalpha(+)/p21(-) phenotype was associated with shorter disease-free survival (Hazard's ratio, HR = 1.863, p = 0.0471). To our knowledge, this is the first large study showing alterations in expression of retinoid receptors at the protein level at different stages in development and progression of oral SCC. It also underscored the prognostic significance of retinoid receptors and their interactions with cell cycle regulators in multistep oral tumorigenesis.
Collapse
Affiliation(s)
- Ranju Ralhan
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi-100029, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lee LTO, Tan-Un KC, Lin MCM, Chow BKC. Retinoic acid activates human secretin gene expression by Sp proteins and nuclear factor I in neuronal SH-SY5Y cells. J Neurochem 2005; 93:339-50. [PMID: 15816857 DOI: 10.1111/j.1471-4159.2005.03018.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Secretin is a neuropeptide that is expressed in distinct central neurones. As there is no information on how the secretin gene is regulated in neuronal cells, a well established neuronal differentiation cell model, SH-SY5Y, was used to study transcriptional regulation of the human secretin gene. High secretin transcript and peptide levels were found in this cell, and secretin gene expression and promoter activity were up-regulated upon all-trans retinoic acid (RA) treatment. Within the promoter, a functional GC-box 1 (-131 from ATG, relative to the ATG initiation codon) was found to be regulated by a brain-specific Sp protein, Sp4, and ubiquitous factors Sp1 and Sp3. The human secretin gene in SH-SY5Y cells is controlled by the (Sp1 + Sp4)/Sp3 ratio and the RA-induced activation is a partial result of a decrease in Sp3 levels. In addition to the GC-box 1, an N1 motif in close proximity was also responsible for RA-induced secretin gene activation. Competitive gel mobility shift and southwestern blot studies revealed binding of Nuclear Factor I (NFI) with the N1 motif. Overexpression of NFI-C increased promoter activity upon RA treatment. Consistent with this observation, NFI-C transcript levels were augmented after RA treatment. We conclude that RA induction of the secretin gene in neuronal cells is regulated by the combined actions of reducing Sp3 and increasing NFI-C expression.
Collapse
Affiliation(s)
- Leo Tsz-On Lee
- Department of Zoology, The University of Hong Kong, Hong Kong, China
| | | | | | | |
Collapse
|
25
|
Osanai M, Petkovich M. Expression of the retinoic acid-metabolizing enzyme CYP26A1 limits programmed cell death. Mol Pharmacol 2005; 67:1808-17. [PMID: 15703382 DOI: 10.1124/mol.104.005769] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vitamin A deficiency has been associated with increased incidence of certain types of cancer; however, the mechanisms by which vitamin A depletion promotes tumorigenesis are poorly understood. In addition all-trans-retinoic acid (RA), the most active form of vitamin A metabolites, has been shown to limit carcinogenesis in animal models and to trigger programmed cell death (apoptosis) in certain types of tumor cells. On the other hand, we show here that various cell lines overexpressing CYP26A1, a cytochrome P450 enzyme specifically involved in the catabolic inactivation of RA, exhibit increased resistance to various apoptogenic factors, including death receptor ligands such as tumor necrosis factor-related apoptosis-inducing ligand. This resistance could be reversed by pretreatment with ketoconazole, a broad-spectrum inhibitor of cytochrome P450 enzymes. In addition, synthetic retinoids Am80 (4[(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)carbamoyl]benzoic acid) and Am580 [4(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphtamido)benzoic acid], which are resistant to CYP26A1 metabolism, can restore the sensitivity of these cells to apoptogens. Thus, these findings support the idea that CYP26 expression levels may play a role in determining cellular commitment to apoptosis, and increased RA metabolism may be at least partially responsible for these observed effects.
Collapse
Affiliation(s)
- Makoto Osanai
- Department of Biochemistry and Pathology, Division of Cell Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
26
|
Lal L, Li Y, Smith J, Sassano A, Uddin S, Parmar S, Tallman MS, Minucci S, Hay N, Platanias LC. Activation of the p70 S6 kinase by all-trans-retinoic acid in acute promyelocytic leukemia cells. Blood 2004; 105:1669-77. [PMID: 15471950 DOI: 10.1182/blood-2004-06-2078] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although the mechanisms by which all-trans-retinoic acid (RA) regulates gene transcription are well understood, very little is known on the signaling events regulating RA-dependent initiation of mRNA translation. We examined whether the mammalian target of rapamycin (mTOR)/p70 S6 kinase pathway is activated by RA. RA treatment of sensitive cell lines resulted in phosphorylation/activation of mTOR and downstream induction of p70 S6 kinase activity. Such phosphorylation/activation of p70 S6 kinase was inducible in primary acute promyelocytic leukemia (APL) blasts and RA-sensitive NB-4 cells, but was defective in an NB-4 variant cell line (NB-4.007/6) that is resistant to the biologic effects of RA. The RA-dependent activation of p70 S6 kinase was also phosphatidylinositol 3' kinase (PI3'K)-dependent, and resulted in downstream phosphorylation of the S6 ribosomal protein on Ser235/236 and Ser240/244, events important for initiation of translation for mRNAs with oligopyrimidine tracts in their 5' untranslated region. RA treatment of leukemia cells also resulted in an mTOR-mediated phosphorylation of the 4E-BP1 repressor of mRNA translation, to induce its deactivation and dissociation from the eukaryotic initiation factor-4E (eIF-4E) complex. Altogether, these findings provide evidence for the existence of a novel RA-activated cellular pathway that regulates cap-dependent translation, and strongly suggest that this cascade plays a role in the induction of retinoid responses in APL cells.
Collapse
Affiliation(s)
- Lakhvir Lal
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical School, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Geller JI, Szekely-Szucs K, Petak I, Doyle B, Houghton JA. P21Cip1 is a critical mediator of the cytotoxic action of thymidylate synthase inhibitors in colorectal carcinoma cells. Cancer Res 2004; 64:6296-303. [PMID: 15342418 DOI: 10.1158/0008-5472.can-04-0863] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have demonstrated previously that interferon (IFN)-gamma sensitizes human colon carcinoma cell lines to the cytotoxic effects of 5-fluorouracil combined with leucovorin and to the thymidylate synthase inhibitor, ZD9331, dependent on thymineless stress-induced DNA damage, independent of p53. Here we demonstrate that the cyclin-dependent kinase (CDK) inhibitor p21(Cip1) regulates thymineless stress-induced cytotoxicity in these cells. HCT116 wild-type (wt) and p53-/- cells underwent apoptosis and loss in clonogenic survival when exposed to ZD9331, whereas p21Cip1-/- cells were resistant. In contrast, IFN-gamma induced marked cytotoxicity in p21Cip1-/- cells only. ZD9331 induced p21Cip1 up-regulation in all of the cell lines examined, as did thymidine deprivation in thymidylate synthase-deficient (thymidylate synthase-) cells. Furthermore, selective induction of p21Cip1 in RKO was sufficient to induce apoptosis. P21Cip1, cdk1, cdk2, and cyclin E mRNA expression increased coincident with S-phase accumulation in HT29 cells treated with ZD9331 or 5fluorouracil/leucovorin, as demonstrated by cDNA microarray analyses. Cell cycle analyses revealed that HCT116 wt and p21Cip1 -/- cells accumulated in S phase within 24 h of ZD9331 exposure; however, wt cells exited S-phase more rapidly, where apoptosis occurred before mitosis, either in late S or G2. Finally, the CDK inhibitor roscovitine potentiated the cytotoxic activity of ZD9331 in both wt and p21Cip1-/- cells, strongly suggesting a role for p21Cip1-dependent CDK inhibition in cytotoxicity induced by thymidylate synthase inhibition. In summary, p21Cip1 positively regulates the cytotoxic action of thymidylate synthase inhibitors, negatively regulates the cytotoxic action of IFN-gamma, and enhances S-phase exit after thymineless stress, possibly via interaction with CDK-cyclin complexes.
Collapse
Affiliation(s)
- James I Geller
- Division of Molecular Therapeutics, Department of Hematology-Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | |
Collapse
|
28
|
Wang JC, Hsu SL, Hwang GY. Inhibition of tumorigenicity of the hepatitis B virus X gene in Chang liver cell line. Virus Res 2004; 102:133-9. [PMID: 15084395 DOI: 10.1016/j.virusres.2004.01.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2003] [Revised: 01/20/2004] [Accepted: 01/20/2004] [Indexed: 01/01/2023]
Abstract
The hepatitis B virus X gene, which encodes the HBx protein, has multiple functions and is involved in hepatocarcinogenesis. However, the exact role of HBx in hepatocarcinogenesis is still controversial. We have established an inducible (tet-off system) HBx-expressing cell line, Chang-HBx. Compared with the original of Chang liver cell line (ATCC CCL13), Chang-HBx grows faster in serum-containing medium but slower in serum-free medium. Chang-HBx colony formation in soft agar shows an anchorage-demanding character and its tumorigenicity potential in BALB/c nude mice were substantially inhibited. HBx also causes the induction of G1 phase arrest of cell growth in early infection of HBV and therefore plays a negative role in tumorigenicity. An excellent mice animal model for producing hepatoma was also provided in this study.
Collapse
Affiliation(s)
- Jing-Chyi Wang
- Department of Biology, Tunghai University, 181, Sec. 3, Chungkang Road, Taichung, Taiwan, ROC
| | | | | |
Collapse
|
29
|
Hsieh YY, Chang CC, Hsu CW, Lin CS. Gene transfections with p53 and p21 inhibit cell proliferation, collagen type I, leukemia inhibitory factor, and tumor necrosis factor-α expression in leiomyoma cells. Fertil Steril 2004; 81:1665-70. [PMID: 15193492 DOI: 10.1016/j.fertnstert.2004.02.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2003] [Revised: 02/04/2004] [Accepted: 02/04/2004] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To transfect the p53 and p21 gene into the leiomyoma cells isolated from patients and observe their influence on the cell proliferation, leukemia inhibitory factor production, and gene expression of collagen type I as well as tumor necrosis factor-alpha (TNF-alpha) of cultured cells. DESIGN Prospective study. SETTING An assisted reproductive technology (ART) and genetic unit of a medical center. PATIENT(S) Leiomyoma cells isolated from leiomyoma tissue of 12 patients were divided into three groups: [1]. vehicle DNA, [2]. p53 gene, and [3]. p21 gene transfections. INTERVENTION(S) The pcDNA3.1 was used as vector to carry p53 and p21 genes for transfer. After gene transfection, RNAs of the leiomyoma cells were extracted for further analyses of gene expression. MAIN OUTCOME MEASURE(S) Relative cell numbers were determined by 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyl tetrazolium bromide (MTT) assay. The leukemia inhibitory factor (LIF) concentration was determined with ELISA. Gene expressions of collagen type I and TNF-alpha were detected by reverse transcriptase-polymerase chain reaction (RT-PCR). Gene expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as an internal control. The cell proliferation, LIF production, as well as gene expressions of collagen type I and TNF-alpha in each group were compared. RESULTS Relative cell numbers (%)/LIF production (in picograms per milliliter) in each group were: [1]. 100/58, [2]. 71/43, and [3]. 106/65. The ratios of gene expression of collagen type I/TNF-alpha with GAPDH in each group were: [1]. 1.64/0.335, [2]. 1.25/0.434, and [3]. 1.77/0.234. CONCLUSION(S) Transfection with p53 significantly inhibits proliferation of leiomyoma cells and decreases collagen type I gene expression and LIF production. The p21 transfection inhibits TNF-alpha gene expression.
Collapse
Affiliation(s)
- Yao-Yuan Hsieh
- Department of Obstetrics and Gynecology, China Medical College Hospital, Taichung, Taiwan
| | | | | | | |
Collapse
|
30
|
Price PM, Safirstein RL, Megyesi J. Protection of renal cells from cisplatin toxicity by cell cycle inhibitors. Am J Physiol Renal Physiol 2004; 286:F378-84. [PMID: 12965891 DOI: 10.1152/ajprenal.00192.2003] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The optimal use of cisplatin as a chemotherapeutic drug has been limited by its nephrotoxicity. Murine models have been used to study cisplatin-induced acute renal failure. After cisplatin administration, cells of the S3 segment in the renal proximal tubule are especially sensitive and undergo extensive necrosis in vivo. Similarly, cultured proximal tubule cells undergo apoptosis in vitro after cisplatin exposure. We have shown in vivo that kidney cells enter the cell cycle after cisplatin administration but that cell cycle-inhibitory proteins p21 and 14-3-3sigma are also upregulated. These proteins coordinate the cell cycle, and deletion of either of the genes resulted in increased nephrotoxicity in vivo or increased cell death in vitro after exposure to cisplatin. However, it was not known whether cell cycle inhibition before acute renal failure could protect from cisplatin-induced cell death, especially in cells with functional p21 and 14-3-3sigma genes. Using several cell cycle inhibitors, including a p21 adenovirus, and the drugs roscovitine and olomoucine, we have been able to completely protect a mouse kidney proximal tubule cell culture from cisplatin-induced apoptosis. The protection by p21 was independent of an effect on the cell cycle and was likely caused by selective inhibition of caspase-dependent and -independent cell death pathways in the cells.
Collapse
Affiliation(s)
- Peter M Price
- Department of Internal medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | | | |
Collapse
|
31
|
Kambhampati S, Li Y, Verma A, Sassano A, Majchrzak B, Deb DK, Parmar S, Giafis N, Kalvakolanu DV, Rahman A, Uddin S, Minucci S, Tallman MS, Fish EN, Platanias LC. Activation of protein kinase C delta by all-trans-retinoic acid. J Biol Chem 2003; 278:32544-51. [PMID: 12805378 DOI: 10.1074/jbc.m301523200] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
All-trans-retinoic acid (RA) is a potent inhibitor of leukemia cell proliferation and induces differentiation of acute promyelocytic leukemia cells in vitro and in vivo. For RA to induce its biological effects in target cells, binding to specific retinoic acid nuclear receptors is required. The resulting complexes bind to RA-responsive elements (RAREs) in the promoters of RA-inducible genes to initiate gene transcription and to generate protein products that mediate the biological effects of RA. In this report, we provide evidence that a member of the protein kinase C (PKC) family of proteins, PKC delta, is activated during RA treatment of the NB-4 and HL-60 acute myeloid leukemia cell lines as well as the MCF-7 breast cancer cell line. Such RA-dependent phosphorylation was also observed in primary acute promyelocytic leukemia cells and resulted in activation of the kinase domain of PKC delta. In studies aimed at understanding the functional relevance of PKC delta in the induction of RA responses, we found that pharmacological inhibition of PKC delta (but not of other PKC isoforms) diminished RA-dependent gene transcription via RAREs. On the other hand, overexpression of a constitutively active form of the kinase strongly enhanced RA-dependent gene transcription via RAREs. Gel shift assays and chromatin immunoprecipitation studies demonstrated that PKC delta associated with retinoic acid receptor-alpha and was present in an RA-inducible protein complex that bound to RAREs. Pharmacological inhibition of PKC delta activity abrogated the induction of cell differentiation and growth inhibition of NB-4 blast cells, demonstrating that its function is required for such effects. Altogether, our data provide strong evidence that PKC delta is activated in an RA-dependent manner and plays a critical role in the generation of the biological effects of RA in malignant cells.
Collapse
Affiliation(s)
- Suman Kambhampati
- Robert H. Lurie Comprehensive Cancer Center and the Division of Hematology-Oncology, Northwestern University Feinberg School of Medicine and Lakeside Veterans Affairs Medical Center, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Liu S, Bishop WR, Liu M. Differential effects of cell cycle regulatory protein p21(WAF1/Cip1) on apoptosis and sensitivity to cancer chemotherapy. Drug Resist Updat 2003; 6:183-95. [PMID: 12962684 DOI: 10.1016/s1368-7646(03)00044-x] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
p21(WAF1/Cip1) was initially identified as a cell cycle regulatory protein that can cause cell cycle arrest. It is induced by both p53-dependent and p53-independent mechanisms. This mini-review briefly discusses its currently known functions in apoptosis and drug sensitivity. As an inhibitor of cell proliferation, p21(WAF1/Cip1) plays an important role in drug-induced tumor suppression. Nevertheless, a number of recent studies have shown that p21(WAF1/Cip1) can assume both pro- or anti-apoptotic functions in response to anti-tumor agents depending on cell type and cellular context. This dual role of p21(WAF1/Cip1) in cancer cells complicates using p21(WAF1/Cip1) status to predict response to anti-tumor agents. However, it is possible to develop p21(WAF1/Cip1)-targeted reagents or p21(WAF1/Cip1) gene transfer techniques to have a beneficial effect within a well-defined therapeutic context. Better understanding of the roles of p21(WAF1/Cip1) in tumors should enable a more rational approach to anti-tumor drug design and therapy.
Collapse
Affiliation(s)
- Suxing Liu
- Biological Research-Oncology, Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA.
| | | | | |
Collapse
|
33
|
Alisi A, Leoni S, Piacentani A, Conti Devirgiliis L. Retinoic acid modulates the cell-cycle in fetal rat hepatocytes and HepG2 cells by regulating cyclin-cdk activities. Liver Int 2003; 23:179-86. [PMID: 12955881 DOI: 10.1034/j.1600-0676.2003.00829.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Retinoic acid (RA), the most biologically active metabolite of vitamin A, is known to modulate cell proliferation, apoptosis and differentiation, with different effects depending on the cellular context. Retinoic acid can exert its effects by directly or indirectly influencing the expression of genes involved in the control of cell proliferation. In the present report we investigate the possible correlation between the antiproliferative, differentiative and apoptotic effects previously observed on rat hepatocytes and HepG2 cells, with a possible modulation of cell-cycle regulators. We demonstrate that RA induces growth arrest and differentiation in HepG2 cells by influencing the activities of cyclin-cdk complexes involved in the regulation of G1/S transition and S-phase progression, in particular by modifying the binding of these complexes to p21 and p27 inhibitors. In fetal cells, however, the induction of apoptosis and differentiation by RA was obtained via inhibition of cyclin D1-cdk4 activity, as result of an increased binding to the p16 inhibitor. Retinoic acid also modulates c-myc and Bcl-2 expression. In conclusion, our data suggest that RA could be useful to regulate the reversion of transformed phenotype and could also be utilized as a chemiopreventive agent in cells of hepatic origin.
Collapse
Affiliation(s)
- A Alisi
- Department of Cellular and Developmental Biology, University La Sapienza, Rome, Italy
| | | | | | | |
Collapse
|
34
|
Gu L, Zheng H, Murray SA, Ying H, Jim Xiao ZX. Deregulation of Cdc2 kinase induces caspase-3 activation and apoptosis. Biochem Biophys Res Commun 2003; 302:384-91. [PMID: 12604359 DOI: 10.1016/s0006-291x(03)00189-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Progression of the cell cycle and control of apoptosis are tightly linked processes. It has been reported that manifestation of apoptosis requires cdc2 kinase activity yet the mechanism(s) of which is largely unclear. In an attempt to study the role of human MDM2 (HDM2) in interphase and mitosis, we employed the Xenopus cell-free system to study HDM2 protein stability. Interestingly, HDM2 is specifically cleaved in Xenopus mitotic extracts but not in the interphase extracts. We demonstrate that HDM2 cleavage is dependent on caspase-3 and that activation of cdc2 kinase results in caspase-3 activation in the Xenopus cell-free system. Furthermore, expression of cdc2 kinase in mammalian cells leads to activation of caspase-3 and apoptosis. Taken together, these data indicate that deregulation of cdc2 kinase activity can trigger apoptotic machinery that leads to caspase-3 activation and apoptosis.
Collapse
Affiliation(s)
- Ling Gu
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
35
|
Wu Q, Kirschmeier P, Hockenberry T, Yang TY, Brassard DL, Wang L, McClanahan T, Black S, Rizzi G, Musco ML, Mirza A, Liu S. Transcriptional regulation during p21WAF1/CIP1-induced apoptosis in human ovarian cancer cells. J Biol Chem 2002; 277:36329-37. [PMID: 12138103 DOI: 10.1074/jbc.m204962200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In this study we used adenovirus vector-mediated transduction of either the p53 gene (rAd-p53) or the p21(WAF1/CIP1) gene (rAd-p21) to mimic both p53-dependent and -independent up-regulation of p21(WAF1/CIP1) within a human ovarian cancer cell line, 2774, and the derivative cell lines, 2774qw1 and 2774qw2. We observed that rAd-p53 can induce apoptosis in both 2774 and 2774qw1 cells but not in 2774qw2 cells. Surprisingly, overexpression of p21(WAF1/CIP1) also triggered apoptosis within these two cell lines. Quantitative reverse transcription-PCR analysis revealed that the differential expression of BAX, BCL2, and caspase 3 genes, specific in rAd-p53-induced apoptotic cells, was not altered in rAd-p21-induced apoptotic cells, suggesting p21(WAF1/CIP1)-induced apoptosis through a pathway distinguishable from p53-induced apoptosis. Expression analysis of 2774qw1 cells infected with rAd-p21 on 60,000 cDNA microarrays identified 159 genes in response to p21(WAF1/CIP1) expression in at least one time point with 2.5-fold change as a cutoff. Integration of the data with the parallel microarray experiments with rAd-p53 infection allowed us to extract 66 genes downstream of both p53 and p21(WAF1/CIP1) and 93 genes in response to p21(WAF1/CIP1) expression in a p53-independent pathway. The genes in the former set may play a dual role in both p53-dependent and p53-independent pathways, and the genes in the latter set gave a mechanistic molecular explanation for p53-independent p21(WAF1/CIP1)-induced apoptosis. Furthermore, promoter sequence analysis suggested that transcription factor E2F family is partially responsible for the differential expression of genes following p21(WAF1/CIP1). This study has profound significance toward understanding the role of p21(WAF1/CIP1) in p53-independent apoptosis.
Collapse
Affiliation(s)
- Qun Wu
- Tumor Biology Department, Schering-Plough Research Institute, Kenilworth, New Jersey 07033, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kang KH, Lee JH, Kim KC, Ham SW, Kim MY, Choi KH. Induction of p73beta by a naphthoquinone analog is mediated by E2F-1 and triggers apoptosis in HeLa cells. FEBS Lett 2002; 522:161-7. [PMID: 12095638 DOI: 10.1016/s0014-5793(02)02921-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recently, p73 was identified as a structural and functional homolog of p53. The p73 protein activates the transcription of genes downstream of p53 and induces apoptosis when overexpressed in several cell lines, similar to the tumor suppressor p53. However, the extracellular stimuli and molecular mechanisms regulating p73 activity remain to be elucidated. In this paper, we present evidence that the naphthoquinone analog, 2,3-dichloro-5,8-dihydroxy-1,4-naphthoquinone (NA), is a novel apoptotic stimulus that induces p73beta expression. Treatment with NA induced the expression of p73beta mRNA and protein and its downstream genes, p21 and bax, in HeLa cells. Similar results were obtained in MCF7 cells (p53(+/+), p73(+/+)). In the MCF7 cells, p53 protein level was rather decreased by NA treatment. Overexpression of p73beta led to the apoptosis of HeLa cells and enhancement of NA-induced cell death. Expression of p73beta was mediated by E2F-1, which was activated via release from pRB after exposure of cells to NA. We additionally observed that overexpression of pRB inhibited NA-induced apoptosis. These results imply that p53-independent p73beta-dependent p21 expression is involved in NA-induced apoptosis of HeLa cells.
Collapse
Affiliation(s)
- Kyung-Hwa Kang
- Department of Biology, College of Natural Sciences, Chung-Ang University, Heuksuk-dong 221, Dongjak-ku, Seoul 156-756, South Korea
| | | | | | | | | | | |
Collapse
|
37
|
Villerbu N, Gaben AM, Redeuilh G, Mester J. Cellular effects of purvalanol A: a specific inhibitor of cyclin-dependent kinase activities. Int J Cancer 2002; 97:761-9. [PMID: 11857351 DOI: 10.1002/ijc.10125] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have studied the effects of purvalanol A on the cell cycle progression, proliferation and viability. In synchronized cells, purvalanol A induced a reversible arrest the progression in G1 and G2 phase of the cell cycle, but did not prevent the completion of DNA synthesis in S-phase cells. The specificity of action of the drug was supported by the selective inhibition of the phosphorylation of cyclin-dependent kinase (cdk) substrates such as Rb and cyclin E. The cell contents of cyclins D1 and E were lower in cells incubated with purvalanol A compared to controls, but the level of the cdk inhibitory protein p21(WAF1/CIP1) was increased, indicating that the drug did not cause a general inhibition of gene expression. Purvalanol A did not inhibit transcription under cell-free conditions. This compound, however, caused an inhibition of the estradiol-induced expression of an integrated luciferase gene, suggesting that cdk or related enzymes may participate in the regulation of the activity of certain promoters. When exponentially growing cells, both mouse fibroblasts and human cancer cell lines, were incubated with purvalanol A for prolonged periods of time (24 hr), a lasting inhibition of cell proliferation as well as cell death were observed. In contrast, a 24 hr incubation of quiescent (non-transformed) cells with purvalanol A did not prevent their resumption of cell cycle after removal of the drug.
Collapse
|
38
|
Qin LF, Ng IO. Exogenous expression of p21(WAF1/CIP1) exerts cell growth inhibition and enhances sensitivity to cisplatin in hepatoma cells. Cancer Lett 2001; 172:7-15. [PMID: 11595124 DOI: 10.1016/s0304-3835(01)00701-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effects of exogenous expression of p21(WAF1/CIP1) in hepatoma cells were examined. Two stably p21(WAF1/CIP1)-transfected clones and one clone transfected with expression vector only were used for study. Introduction of p21(WAF1/CIP1) resulted in significant cell growth inhibition, and the magnitude of the cell growth inhibition in these transfected cells was proportional to the level of p21(WAF1/CIP1) protein expressed. Exogenous p21(WAF1/CIP1) expression also significantly enhanced chemosensitivity to cisplatin. In addition, apoptosis occurred earlier in cells transfected with p21(WAF1/CIP1) after cisplatin treatment. These findings raise the potential that forced upregulation of p21(WAF1/CIP1) in hepatocellular carcinoma (HCC) may reduce the doses of cisplatin to achieve similar responses and suggest the possible use of p21(WAF1/CIP1) in HCC treatment.
Collapse
Affiliation(s)
- L F Qin
- Room 127B, University Pathology Building, Department of Pathology, the University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | | |
Collapse
|
39
|
Nabeyrat E, Corroyer S, Besnard V, Cazals-Laville V, Bourbon J, Clement A. Retinoic acid protects against hyperoxia-mediated cell-cycle arrest of lung alveolar epithelial cells by preserving late G1 cyclin activities. Am J Respir Cell Mol Biol 2001; 25:507-14. [PMID: 11694457 DOI: 10.1165/ajrcmb.25.4.4478] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The epithelium of the lung alveolus is a major target for oxidant injury, and its proper repair after injury is dependent on the proliferative response of the alveolar epithelial type 2 cells. Recently, we have provided evidence that retinoic acid (RA) stimulates proliferation of type 2 cells. In the present study, we examined the effects of RA on the proliferative response of alveolar type 2 cells exposed to elevated oxygen (O(2)). We showed that pretreatment by RA was able to prevent the growth arrest and cell loss of O(2)-exposed cells. To gain insights into the mechanisms involved, we studied the effects of RA on the cyclin-dependent kinase (CDK) system. The activity of cyclin E-CDK2 complex was found to be decreased in O(2)-exposed cells. Interestingly, this decrease was no longer observed when cells were pretreated with RA. Analysis of p21(CIP1), an inhibitor of CDK, revealed an increased expression in O(2)-exposed cells that was no longer observed in cells treated with RA. These effects were associated with a reduced association of p21(CIP1) with cyclin E-CDK2 complexes in the presence of RA. In addition, studies of Smad activity strongly suggest that the mechanisms through which RA preserves late G(1) cyclin-CDK complex activity may involve interference with the transforming growth factor-beta signaling pathway.
Collapse
Affiliation(s)
- E Nabeyrat
- Département de Pneumologie Pédiatrique-INSERM U515, Hôpital Trousseau, 26, Ave Dr. Netter, 75012 Paris, France
| | | | | | | | | | | |
Collapse
|
40
|
Hsieh Y, Tsai F, Chang C, Chen W, Tsai C, Tsai H, Lin C. p21 gene codon 31 arginine/serine polymorphism: non-association with endometriosis. J Clin Lab Anal 2001; 15:184-7. [PMID: 11436200 PMCID: PMC6808162 DOI: 10.1002/jcla.1025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
p21, an important regulator of the cell cycle, acts as a mediator of the growth-suppressing and -promoting functions of p53. We aimed to investigate the association between codon 31 polymorphisms of p21 gene and endometriosis. Women were divided into two groups: endometriosis (n = 102) and nonendometriosis (n = 119). The gene polymorphism for p21 codon 31 involved a base change from AGC to AGA and amino acid changes from serine (Ser) to arginine (Arg). Polymorphisms (Ser homozygotes, heterozygotes, Arg homozygotes) between both groups were detected and compared. Associations between the endometriosis and polymorphisms were evaluated. The results revealed that the distributions of different p21 polymorphisms in both groups were nonsignificantly different. The proportions of Ser homozygote/heterozygote/Arg homozygote in endometriosis and nonendometriois populations were 26.5/48.0/25.5% and 17.6/50.4/31.9%, respectively. We concluded the noncorrelation between the endometriosis and the p21 codon 31 polymorphism. p21 gene codon 31 arginine/serine polymorphism is not a useful marker for prediction of endometriosis susceptibility.
Collapse
Affiliation(s)
- Yao‐Yuan Hsieh
- Department of Obstetrics and Gynecology, China Medical College Hospital, Taichung, Taiwan
| | - Fuu‐Jen Tsai
- Department of Pediatrics and Medical Genetics, China Medical College Hospital, Taichung, Taiwan
| | - Chi‐Chen Chang
- Department of Obstetrics and Gynecology, China Medical College Hospital, Taichung, Taiwan
| | - Wen‐Chi Chen
- Department of Urology, China Medical College Hospital, Taichung, Taiwan
| | - Chang‐Hai Tsai
- Department of Pediatrics and Medical Genetics, China Medical College Hospital, Taichung, Taiwan
| | - Horng‐Der Tsai
- Department of Obstetrics and Gynecology, China Medical College Hospital, Taichung, Taiwan
| | - Cheng‐Chieh Lin
- Department of Family Medicine, China Medical College Hospital, Taichung, Taiwan
| |
Collapse
|
41
|
Alsayed Y, Uddin S, Mahmud N, Lekmine F, Kalvakolanu DV, Minucci S, Bokoch G, Platanias LC. Activation of Rac1 and the p38 mitogen-activated protein kinase pathway in response to all-trans-retinoic acid. J Biol Chem 2001; 276:4012-9. [PMID: 11060298 DOI: 10.1074/jbc.m007431200] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several signaling pathways are activated by all-trans-retinoic acid (RA) to mediate induction of differentiation and apoptosis of malignant cells. In the present study we provide evidence that the p38 MAP kinase pathway is activated in a RA-dependent manner in the NB-4, acute pro-myelocytic leukemia, and the MCF-7, breast carcinoma, cell lines. RA treatment of cells induces a time- and dose-dependent phosphorylation of p38, and such phosphorylation results in activation of its catalytic domain. p38 activation is not inducible by RA in a variant NB-4 cell line, NB-4.007/6, which is resistant to the effects of RA, suggesting a role for this pathway in the induction of RA responses. Our data also demonstrate that the small G-protein Rac1 is activated by RA and functions as an upstream regulator of p38 activation, whereas the MAPKAPK-2 serine kinase is a downstream effector for the RA-activated p38. To obtain information on the functional role of the Rac1/p38/MAPKAPK-2 pathway in RA signaling, the effects of pharmacological inhibition of p38 on RA-induced gene transcription and cell differentiation were determined. Our results indicate that treatment of cells with the SB203580 inhibitor does not inhibit RA-dependent gene transcription via retinoic acid response elements or induction of Stat1 protein expression. However, treatment with SB203580 or SB202190 strongly enhances RA-dependent induction of cell differentiation and RA-regulated growth inhibitory responses. Altogether, our findings demonstrate that the Rac1/p38 MAP kinase pathway is activated in a RA-dependent manner and exhibits negative regulatory effects on the induction of differentiation.
Collapse
Affiliation(s)
- Y Alsayed
- Section of Hematology-Oncology, Department of Medicine, University of Illinois and West Side Veterans Affairs Medical Center, Chicago, Illinois 60607, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Huang GC, Zhang JS, Zhang YE. Effects of retinoic acid on proliferation, phenotype and expression of cyclin-dependent kinase inhibitors in TGF-beta1-stimulated rat hepatic stellate cells. World J Gastroenterol 2000; 6:819-823. [PMID: 11819702 PMCID: PMC4728268 DOI: 10.3748/wjg.v6.i6.819] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2000] [Revised: 09/12/2000] [Accepted: 09/19/2000] [Indexed: 02/06/2023] Open
Abstract
AIM:To study the molecular mechanisms of retinoic acid (RA)on prolix-feration and expression of cyclin-dependent kinase inhibitors (CKI), i.e.p16, p21 and p27 in cultured rat hepatic stellate cells (HSC) stimulated with transforming growth factor beta 1 (TGF-beta1).METHODS:HSC were isolated from healthy rat livers and cultured.After stimulated with 1mg/L TGF-beta1, subcultured HSC were treated with or without 1nmol/L RA. MTT assay, immunocytochemistry (ICC) for p16, p21, p27 and alpha-smooth muscle actin (alpha-SMA) protein, in situ hybridization (ISH) for retinoic acid receptor beta 2 (RAR-beta2) and p16, p21 and p27 mRNA and quantitative image analysis (partially) were performed.RESULTS:inhibited HSC proliferation (41.50%,P<0.05),decreased the protein level of alpha-SMA (55.09%, P<0.05), and induced HSC to express RAR-beta2 mRNA. In addition, RA increased the protein level of p16 (218.75%, P <0.05) and induced p21 protein expression; meanwhile, p27 was undetectable by ICC in both control and RA-treated HSC. However, RA had no influence on the mRNA levels of p16, p21 or p27 as determined by ISH.CONCLUSION:Up-regulation of p16 and p21 on post-transcriptional level may contribute, in part, to RA inhibition of TGF-beta 1-initiated rat HSC activation in vitro.
Collapse
|
43
|
Abstract
Vitamin A, its physiologic metabolites, and synthetic derivatives (retinoids) have been shown to have protective effects against the development of certain types of cancer. In addition, pharmacologic amounts of retinoids have been used with some success in the treatment of a few human tumors. The chemoprevention effect of retinoids is most likely exerted at the tumor-promotion phase of carcinogenesis. Retinoids block tumor promotion by inhibiting proliferation, inducing apoptosis, inducing differentiation, or a combination of these actions. Clinically, isotretinoin (13-cis-retinoic acid) significantly decreases the incidence of second primary tumors in patients with head-and-neck cancer and reduces appearance of non-melanoma skin cancer in patients with xeroderma pigmentosum. Retinoic acid has proved to be an effective treatment for promyelocytic leukemia. However, retinoid resistance limits its use as a single agent. Clinical trials are in progress to determine the efficacy of retinoids in treating other types of cancer such as neuroblastoma and breast carcinoma. The development of receptor-selective retinoids and selective inhibitors of retinoid metabolism may lead to further use of retinoids in both chemoprevention and treatment of cancer.
Collapse
Affiliation(s)
- R M Niles
- Department of Biochemistry and Molecular Biology, Marshall University School of Medicine, Huntington, West Virginia 25754, USA.
| |
Collapse
|
44
|
Leville CD, Osipov VO, Jean-Claude JM, Seabrook GR, Towne JB, Cambria RA. All-trans-retinoic acid decreases cell proliferation and increases apoptosis in an animal model of vein bypass grafting. Surgery 2000; 128:178-84. [PMID: 10922989 DOI: 10.1067/msy.2000.107371] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND We have previously demonstrated a decrease in intimal hyperplasia in vein bypass grafts from animals treated with all-trans-retinoic acid (atRA). The purpose of this study was to examine the effect of atRA on proliferation and apoptosis rates in healing vein bypass grafts. METHODS Interposition jugular vein bypass grafts were placed in the carotid artery of 30 New Zealand white rabbits. Animals received either atRA (10 mg/kg/d) or vehicle (corn oil) for a period of 2 weeks. Animals were killed at 3, 7, or 28 days after graft placement after having received 3 doses of 5-bromo-2'-¿Deoxyuridine (BRDU, 35 Mg/KG). Animals Were Perfusion Fixed, And Vein Grafts Were Prepared For Immunohistochemistry By Using Antibodies To Brdu, Proliferating Cell Nuclear Antigen, And Bcl-XL. Apoptosis Was Measured By Using The Tunel Assay. Histologic Sections Were Analyzed By A Pathologist Blinded To The Study, And An Index Of Positively Stained Cells Was Generated For Each Layer Of The Vein Graft Wall. RESULTS All-trans-retinoic acid reduced the proliferation index in the neointima of vein grafts during the first week after surgery. Apoptotic rates were higher in the intima of vein grafts from animals treated with atRA, which could not be explained by changes in bcl-xl expression. No differences were noted in the media or adventitia between the groups. CONCLUSIONS atRA decreased cell proliferation and increased apoptosis in the intima of healing vein bypass grafts. These effects contribute to decreased intimal hyperplasia, which has been previously noted.
Collapse
Affiliation(s)
- C D Leville
- Division of Vascular Surgery and the Department of Pathology, Medical College of Wisconsin, Milwaukee, USA
| | | | | | | | | | | |
Collapse
|
45
|
Radominska-Pandya A, Chen G, Czernik PJ, Little JM, Samokyszyn VM, Carter CA, Nowak GD. Direct interaction of all-trans-retinoic acid with protein kinase C (PKC). Implications for PKC signaling and cancer therapy. J Biol Chem 2000; 275:22324-30. [PMID: 10748087 DOI: 10.1074/jbc.m907722199] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein kinase C (PKC) regulates fundamental cellular functions including proliferation, differentiation, tumorigenesis, and apoptosis. All-trans-retinoic acid (atRA) modulates PKC activity, but the mechanism of this regulation is unknown. Amino acid alignments and crystal structure analysis of retinoic acid (RA)-binding proteins revealed a putative atRA-binding motif in PKC, suggesting existence of an atRA binding site on the PKC molecule. This was supported by photolabeling studies showing concentration- and UV-dependent photoincorporation of [(3)H]atRA into PKCalpha, which was effectively protected by 4-OH-atRA, 9-cis-RA, and atRA glucuronide, but not by retinol. Photoaffinity labeling demonstrated strong competition between atRA and phosphatidylserine (PS) for binding to PKCalpha, a slight competition with phorbol-12-myristate-13-acetate, and none with diacylglycerol, fatty acids, or Ca(2+). At pharmacological concentrations (10 micrometer), atRA decreased PKCalpha activity through the competition with PS but not phorbol-12-myristate-13-acetate, diacylglycerol, or Ca(2+). These results let us hypothesize that in vivo, pharmacological concentrations of atRA may hamper binding of PS to PKCalpha and prevent PKCalpha activation. Thus, this study provides the first evidence for direct binding of atRA to PKC isozymes and suggests the existence of a general mechanism for regulation of PKC activity during exposure to retinoids, as in retinoid-based cancer therapy.
Collapse
Affiliation(s)
- A Radominska-Pandya
- Department of Biochemistry, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Söderpalm AK, Karlsson J, Caffé AR, vanVeen T. 9-cis-retinoic acid in combination with retinal pigment epithelium induces apoptosis in cultured retinal explants only during early postnatal development. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1999; 118:169-76. [PMID: 10611516 DOI: 10.1016/s0165-3806(99)00141-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Retinoic acid is one of the active metabolites of vitamin A and has profound effects on the development of the CNS including retina. Previously, we have shown that rod-specific apoptosis is induced in retinal explants from neonatal mice by exposure to 9-cis-retinoic acid (9CRA) when the retinal pigment epithelium (RPE) is present. In explants lacking RPE, it instead has a differentiation-promoting effect seen as an accelerated opsin expression on postnatal day 3. To investigate the long-term effect of 9CRA exposure, we have explanted retinas from neonatal C3H mice with or without RPE attached and placed in organ culture. After 19 or 48 h in culture or 7, 8 or 13 days in culture, the explants were either fixed for histochemical examination or frozen for assay of DEVDase activity. We found that long-term exposure to 9CRA caused a decrease in the number of cell layers in the outer nuclear layer (ONL) only in explants with the RPE attached. When explants with RPE attached were exposed to 9CRA only during the second postnatal week, neither an increase in DEVDase activity, TUNEL-positive cells, nor a decrease in cell layers of the ONL could be demonstrated, indicating that the retina was insensitive to the apoptosis-inducing effect of 9CRA after the first postnatal week. The absence of RPE in control explants resulted in a higher number of rosettes and the extrusion of cells into the subretinal space.
Collapse
Affiliation(s)
- A K Söderpalm
- Department of Zoology, Göteborg University, Box 463, S-405 30, Göteborg, Sweden.
| | | | | | | |
Collapse
|