1
|
Liu J, Luo S, Wang G, Hu X, Chen G, Xu Q. Molecular Cloning, Tissue Distribution and Antiviral Immune Response of Duck Src. Genes (Basel) 2024; 15:1044. [PMID: 39202404 PMCID: PMC11353579 DOI: 10.3390/genes15081044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
As a founding member of the Src family of kinases, Src has been confirmed to participate in the regulation of immune responses, integrin signaling, and motility. Ducks are usually asymptomatic carriers of RNA viruses such as Newcastle disease virus and avian influenza virus, which can be deadly to chickens. The beneficial role of Src in modulating the immune response remains largely unknown in ducks. Here, we characterized the duck Src and found that it contains a 192-base-pair 5' untranslated region, a 1602-base-pair coding region, and a 2541-base-pair 3' untranslated region, encoding 533 amino acid residues. Additionally, duSrc transcripts were significantly activated in duck tissues infected by Newcastle disease virus compared to controls. The duSrc transcripts were notably widespread in all tissues examined, and the expression level was higher in liver, blood, lung, pancreas, and thymus. Moreover, we found the expression levels of IFN-β, NF-κB, IRF3, and Src were significantly increased in DEFs after infection with 5'ppp dsRNA, but there was no significant difference before and after treatment in DF1 cells. Furthermore, overexpression of duSrc followed by stimulation with 5'ppp dsRNA led to an elevation of IFN-β levels. The SH3 and PTKc domains of duSrc contributed to promoting the activity of IFN-β and NF-κB in DEFs stimulated by 5'ppp dsRNA.
Collapse
Affiliation(s)
| | | | | | | | | | - Qi Xu
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (J.L.); (S.L.); (X.H.); (G.C.)
| |
Collapse
|
2
|
Myers PJ, Lee SH, Lazzara MJ. An integrated mechanistic and data-driven computational model predicts cell responses to high- and low-affinity EGFR ligands. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.25.543329. [PMID: 37425852 PMCID: PMC10327094 DOI: 10.1101/2023.06.25.543329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The biophysical properties of ligand binding heavily influence the ability of receptors to specify cell fates. Understanding the rules by which ligand binding kinetics impact cell phenotype is challenging, however, because of the coupled information transfers that occur from receptors to downstream signaling effectors and from effectors to phenotypes. Here, we address that issue by developing an integrated mechanistic and data-driven computational modeling platform to predict cell responses to different ligands for the epidermal growth factor receptor (EGFR). Experimental data for model training and validation were generated using MCF7 human breast cancer cells treated with the high- and low-affinity ligands epidermal growth factor (EGF) and epiregulin (EREG), respectively. The integrated model captures the unintuitive, concentration-dependent abilities of EGF and EREG to drive signals and phenotypes differently, even at similar levels of receptor occupancy. For example, the model correctly predicts the dominance of EREG over EGF in driving a cell differentiation phenotype through AKT signaling at intermediate and saturating ligand concentrations and the ability of EGF and EREG to drive a broadly concentration-sensitive migration phenotype through cooperative ERK and AKT signaling. Parameter sensitivity analysis identifies EGFR endocytosis, which is differentially regulated by EGF and EREG, as one of the most important determinants of the alternative phenotypes driven by different ligands. The integrated model provides a new platform to predict how phenotypes are controlled by the earliest biophysical rate processes in signal transduction and may eventually be leveraged to understand receptor signaling system performance depends on cell context. One-sentence summary Integrated kinetic and data-driven EGFR signaling model identifies the specific signaling mechanisms that dictate cell responses to EGFR activation by different ligands.
Collapse
|
3
|
Rachmian N, Krizhanovsky V. Senescent cells in the brain and where to find them. FEBS J 2023; 290:1256-1266. [PMID: 36221897 DOI: 10.1111/febs.16649] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/25/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022]
Abstract
Cellular senescence is a process in which cells change their characteristic phenotype in response to stress and enter a state of prolonged cell cycle arrest accompanied by a distinct secretory phenotype. Cellular senescence has both beneficial and detrimental outcomes. With age, senescent cells progressively accumulate in tissues and might be the bridge connecting ageing to many age-related pathologies. In recent years, evidence emerged supporting the accumulation of brain senescent cells during neurological disorders and ageing. Here, we will discuss the different brain cell populations that exhibit a senescent phenotype. Subsequently, we will explore several senolytic strategies which have been developed to eliminate senescent cells. Finally, we will examine their potential to directly eliminate these senescent brain cells.
Collapse
Affiliation(s)
- Noa Rachmian
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel.,Department of Brain Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Valery Krizhanovsky
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
4
|
Basu D, Pal R, Sarkar M, Barma S, Halder S, Roy H, Nandi S, Samadder A. To Investigate Growth Factor Receptor Targets and Generate Cancer Targeting Inhibitors. Curr Top Med Chem 2023; 23:2877-2972. [PMID: 38164722 DOI: 10.2174/0115680266261150231110053650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 01/03/2024]
Abstract
Receptor tyrosine kinase (RTK) regulates multiple pathways, including Mitogenactivated protein kinases (MAPKs), PI3/AKT, JAK/STAT pathway, etc. which has a significant role in the progression and metastasis of tumor. As RTK activation regulates numerous essential bodily processes, including cell proliferation and division, RTK dysregulation has been identified in many types of cancers. Targeting RTK is a significant challenge in cancer due to the abnormal upregulation and downregulation of RTK receptors subfamily EGFR, FGFR, PDGFR, VEGFR, and HGFR in the progression of cancer, which is governed by multiple RTK receptor signalling pathways and impacts treatment response and disease progression. In this review, an extensive focus has been carried out on the normal and abnormal signalling pathways of EGFR, FGFR, PDGFR, VEGFR, and HGFR and their association with cancer initiation and progression. These are explored as potential therapeutic cancer targets and therefore, the inhibitors were evaluated alone and merged with additional therapies in clinical trials aimed at combating global cancer.
Collapse
Affiliation(s)
- Debroop Basu
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Riya Pal
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, IndiaIndia
| | - Maitrayee Sarkar
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Soubhik Barma
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Sumit Halder
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Harekrishna Roy
- Nirmala College of Pharmacy, Vijayawada, Guntur, Andhra Pradesh, India
| | - Sisir Nandi
- Global Institute of Pharmaceutical Education and Research (Affiliated to Uttarakhand Technical University), Kashipur, 244713, India
| | - Asmita Samadder
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
- Cytogenetics and Molecular Biology Lab., Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| |
Collapse
|
5
|
Portugal CC, Almeida TO, Socodato R, Relvas JB. Src family kinases (SFKs): critical regulators of microglial homeostatic functions and neurodegeneration in Parkinson's and Alzheimer's diseases. FEBS J 2022; 289:7760-7775. [PMID: 34510775 DOI: 10.1111/febs.16197] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 08/03/2021] [Accepted: 09/10/2021] [Indexed: 01/14/2023]
Abstract
c-Src was the first protein kinase to be described as capable of phosphorylating tyrosine residues. Subsequent identification of other tyrosine-phosphorylating protein kinases with a similar structure to c-Src gave rise to the concept of Src family kinases (SFKs). Microglia are the resident innate immune cell population of the CNS. Under physiological conditions, microglia actively participate in brain tissue homeostasis, continuously patrolling the neuronal parenchyma and exerting neuroprotective actions. Activation of pathogen-associated molecular pattern (PAMP) and damage-associated molecular pattern (DAMP) receptors induces microglial proliferation, migration toward pathological foci, phagocytosis, and changes in gene expression, concurrent with the secretion of cytokines, chemokines, and growth factors. A significant body of literature shows that SFK stimulation positively associates with microglial activation and neuropathological conditions, including Alzheimer's and Parkinson's diseases. Here, we review essential microglial homeostatic functions regulated by SFKs, including phagocytosis, environmental sensing, and secretion of inflammatory mediators. In addition, we discuss the potential of SFK modulation for microglial homeostasis in Parkinson's and Alzheimer's diseases.
Collapse
Affiliation(s)
- Camila C Portugal
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal
| | - Tiago O Almeida
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal.,Doutoramento em Ciências Biomédicas, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Portugal
| | - Renato Socodato
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal
| | - João B Relvas
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal.,Department of Biomedicine, Faculty of Medicine, University of Porto, Portugal
| |
Collapse
|
6
|
Arora G, Adinugraha P, Aijaz A, Vargas Pelaez A, Rachko M. Pericardial Effusion Secondary to Nilotinib in an Elderly Patient With Chronic Myelogenous Leukemia. Cureus 2022; 14:e23855. [PMID: 35530911 PMCID: PMC9072281 DOI: 10.7759/cureus.23855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2022] [Indexed: 11/18/2022] Open
Abstract
Tyrosine kinase inhibitors (TKIs) are the first-line treatment for patients with chronic myelogenous leukemia (CML). Serositis, including pleural and pericardial effusions, is a frequent adverse event with some TKIs while less frequent with others. We present a case of a 76-year-old woman with CML on nilotinib who presented with progressive fatigue and was eventually found to have cardiac tamponade from a large pericardial effusion attributed to nilotinib. The patient required urgent therapeutic pericardiocentesis and switching of TKIs from nilotinib to bosutinib.
Collapse
|
7
|
Effects of Electrical Stimulation on the Signal Transduction-Related Proteins, c-Src and Focal Adhesion Kinase, in Fibroblasts. Life (Basel) 2022; 12:life12040531. [PMID: 35455022 PMCID: PMC9024655 DOI: 10.3390/life12040531] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/28/2022] [Accepted: 04/02/2022] [Indexed: 11/29/2022] Open
Abstract
Electrical stimulation of the skin and muscles, e.g., in the fields of rehabilitation medicine and acupuncture, is known to locally increase blood flow and metabolism, and thus have beneficial health effects. However, little is known about the changes in cellular morphology or regulation of the localization of specific proteins in response to electrical stimuli. The present study was performed to examine the effects of electrical stimulation on the cytoskeletal system of cultured fibroblasts. Following application of electrical stimulation to cultured fibroblastic cells for a period of about 2 h, the stress fibers in the cells became thicker and the cells showed a contracted appearance. Cells were subjected to periodic electrical stimulation for 0 (unstimulated control), 2, 5, or 20 h. The stress fibers showed an increase in thickness within 2 h, and became gradually thicker until 20 h. In addition, the focal adhesions and stress fibers were enlarged after 2 h of continuous stimulation, and both stress fibers and focal adhesions became larger and thicker after 20 h of periodic stimulation. Cells showed increased staining of focal adhesions with anti-phosphotyrosine antibody (PY-20) after electrical stimulation. Cells also showed increased staining of tyrosine-phosphorylated focal adhesion kinase (FAK) (pY397) and tyrosine-phosphorylated c-Src (pY418), indicating that electrical stimulation affected signal transduction-related proteins.
Collapse
|
8
|
Bonar NA, Gittin DI, Petersen CP. Src acts with WNT/FGFRL signaling to pattern the planarian anteroposterior axis. Development 2022; 149:274880. [PMID: 35297964 PMCID: PMC8995084 DOI: 10.1242/dev.200125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 03/03/2022] [Indexed: 01/18/2023]
Abstract
Tissue identity determination is crucial for regeneration, and the planarian anteroposterior (AP) axis uses positional control genes expressed from body wall muscle to determine body regionalization. Canonical Wnt signaling establishes anterior versus posterior pole identities through notum and wnt1 signaling, and two Wnt/FGFRL signaling pathways control head and trunk domains, but their downstream signaling mechanisms are not fully understood. Here, we identify a planarian Src homolog that restricts head and trunk identities to anterior positions. src-1(RNAi) animals formed enlarged brains and ectopic eyes and also duplicated trunk tissue, similar to a combination of Wnt/FGFRL RNAi phenotypes. src-1 was required for establishing territories of positional control gene expression in Schmidtea mediterranea, indicating that it acts at an upstream step in patterning the AP axis. Double RNAi experiments and eye regeneration assays suggest src-1 can act in parallel to at least some Wnt and FGFRL factors. Co-inhibition of src-1 with other posterior-promoting factors led to dramatic patterning changes and a reprogramming of Wnt/FGFRLs into controlling new positional outputs. These results identify src-1 as a factor that promotes robustness of the AP positional system that instructs appropriate regeneration.
Collapse
Affiliation(s)
- Nicolle A Bonar
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - David I Gittin
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Christian P Petersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.,Robert Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
9
|
Zhang X, Xu H, Bi X, Hou G, Liu A, Zhao Y, Wang G, Cao X. Src acts as the target of matrine to inhibit the proliferation of cancer cells by regulating phosphorylation signaling pathways. Cell Death Dis 2021; 12:931. [PMID: 34642304 PMCID: PMC8511016 DOI: 10.1038/s41419-021-04221-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 09/15/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022]
Abstract
Studies have shown that matrine has antitumor activity against many types of cancers. However, the direct target in cancer cells of its anticancer effect has not been identified. The purpose of this study was to find the molecular target of matrine to inhibit the proliferation of cancer cells and explore its mechanism of action. Herein we showed that matrine inhibited the proliferation of cancer in vitro and in vivo. Pull-down assay with matrine-amino coupling resins and liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) identified Src as the target of matrine. Cellular thermal shift assay (CETSA) and drug affinity responsive target stability (DARTS) provided solid evidences that matrine directly bound to Src. Bioinformatics prediction and pull-down experiment demonstrated that Src kinase domain was required for its interaction with matrine and Ala392 in the kinase domain participated in matrine-Src interaction. Intriguingly, matrine was proven to inhibit Src kinase activity in a non-ATP-competitive manner by blocking the autophosphorylation of Tyr419 in Src kinase domain. Matrine down-regulated the phosphorylation levels of MAPK/ERK, JAK2/STAT3, and PI3K/Akt signaling pathways via targeting Src. Collectively, matrine targeted Src, inhibited its kinase activity, and down-regulated its downstream MAPK/ERK, JAK2/STAT3, and PI3K/Akt phosphorylation signaling pathways to inhibit the proliferation of cancer cells.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Hui Xu
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoyang Bi
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guoqing Hou
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Andong Liu
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Youyun Zhao
- Department of Clinical Laboratory, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430073, China
| | - Guoping Wang
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xuan Cao
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
10
|
Paul T, Ellahie AY, Almohtasib YS, Sinha U, El Omri H. Dasatinib‐induced chylothorax: An unusual presentation of a common adverse event—A case report with literature review. EJHAEM 2021; 2:545-550. [PMID: 35844702 PMCID: PMC9175909 DOI: 10.1002/jha2.226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 11/25/2022]
Abstract
Tyrosine kinase inhibitors (TKIs) are the key agents for treating CML and BCR–ABL+ B‐ALL. Dasatinib is a potent second‐generation TKI. Here, we have discussed the case of a 51‐year‐old gentleman diagnosed with B‐myeloid mixed‐phenotype acute leukemia with t(9;22)(q34.1;q11.2); BCR–ABL1p210, in complete hematological, cytogenetic, and molecular remission, who developed chylothorax. Though pleural effusion is a commonly observed adverse effect of dasatinib therapy, chylothorax is rare. The ability of Dasatinib to inhibit multiple families of tyrosine kinases could be considered the etiology. Discontinuation of the drug resolved the symptom, but pleural effusion recurred once Dasatinib was resumed. Chylothorax induced by Dasatinib is a differential to be kept in mind, owing to the limited number of cases being reported.
Collapse
Affiliation(s)
- Theresa Paul
- Department of Internal Medicine Hamad Medical Corporation Doha Qatar
| | - Anil Yousaf Ellahie
- Department of Hematology National Centre for Cancer Care and Research Doha Qatar
| | | | - Urshita Sinha
- Department of Internal Medicine Hamad Medical Corporation Doha Qatar
| | - Halima El Omri
- Department of Hematology National Centre for Cancer Care and Research Doha Qatar
| |
Collapse
|
11
|
Cheng X, Wang J, Liu C, Jiang T, Yang N, Liu D, Zhao H, Xu Z. Zinc transporter SLC39A13/ZIP13 facilitates the metastasis of human ovarian cancer cells via activating Src/FAK signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:199. [PMID: 34154618 PMCID: PMC8215834 DOI: 10.1186/s13046-021-01999-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/30/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Zinc transporters have been found to be associated with the pathogenesis of numerous human diseases including cancer. As the most lethal gynecologic malignancy, ovarian cancer is characterized by rapid progression and widespread metastases. However, the function and underlying mechanism of zinc transporters in ovarian cancer metastasis remain unclear. METHODS The relationship between zinc transporter gene expressions and clinical outcomes of ovarian cancer was assessed with the online database Kaplan-Meier plotter ( http://kmplot.com/analysis/ ). Immunohistochemistry was performed to investigate the prognostic importance of ZIP13. The expression of ZIP13 in ovarian cancer cell lines was depleted to explore its effect on proliferation, adhesion, migration, and invasion both in vitro and in vivo assays. RNA-Seq, quantitative RT-PCR, and western blot analysis were performed to explore ZIP13-regulated downstream target genes. RESULTS The expressions of several zinc transporters were highly associated the clinical outcomes of ovarian cancer patients. Among them, high ZIP13 expression was an independent prognostic factor for poor survival in patients with ovarian cancer. ZIP13 knockout suppressed the malignant phenotypes of ovarian cancer cells both in vitro and in vivo. Further investigation revealed that ZIP13 regulated intracellular zinc distribution and then affected the expressions of genes involved in extracellular matrix organization and cytokine-mediated signaling pathway. This led to the activation of Src/FAK pathway with increased expressions of pro-metastatic genes but decreased expressions of tumor suppressor genes. CONCLUSIONS ZIP13 is shown to be a novel driver of metastatic progression by modulating the Src/FAK signaling pathway, which may serve as a promising biomarker for prognostic evaluation and targeted therapy in ovarian cancer.
Collapse
Affiliation(s)
- Xinxin Cheng
- Department of Physiology and Pathophysiology, Tianjin Medical University, 300070, Tianjin, China
| | - Jie Wang
- Department of Physiology and Pathophysiology, Tianjin Medical University, 300070, Tianjin, China
| | - Chunling Liu
- Department of Pathology, North China University of Science and Technology Affiliated Tangshan People's Hospital, 063000, Tangshan, China
| | - Tianduo Jiang
- Department of Physiology and Pathophysiology, Tianjin Medical University, 300070, Tianjin, China
| | - Ningzhi Yang
- Department of Physiology and Pathophysiology, Tianjin Medical University, 300070, Tianjin, China
| | - Dan Liu
- Department of Physiology and Pathophysiology, Tianjin Medical University, 300070, Tianjin, China
| | - Huanhuan Zhao
- Department of Physiology and Pathophysiology, Tianjin Medical University, 300070, Tianjin, China
| | - Zhelong Xu
- Department of Physiology and Pathophysiology, Tianjin Medical University, 300070, Tianjin, China.
| |
Collapse
|
12
|
Katoh K. Regulation of Fibroblast Cell Polarity by Src Tyrosine Kinase. Biomedicines 2021; 9:biomedicines9020135. [PMID: 33535441 PMCID: PMC7912711 DOI: 10.3390/biomedicines9020135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 11/20/2022] Open
Abstract
Src protein tyrosine kinases (SFKs) are a family of nonreceptor tyrosine kinases that are localized beneath the plasma membrane and are activated during cell adhesion, migration, and elongation. Due to their involvement in the activation of signal transduction cascades, SFKs have been suggested to play important roles in the determination of cell polarity during cell extension and elongation. However, the mechanism underlying Src-mediated polarity formation remains unclear. The present study was performed to investigate the mechanisms underlying Src-induced cell polarity formation and cell elongation using Src knockout fibroblasts (SYFs) together with an inhibitor of Src. Normal and Src knockout fibroblasts were also transfected with a wild-type c-Src, dominant negative c-Src, or constitutively active c-Src gene to analyze the changes in cell morphology. SYF cells cultured on a glass substrate elongated symmetrically into spindle-shaped cells, with the formation of focal adhesions at both ends of the cells. When normal fibroblasts were treated with Src Inhibitor No. 5, a selective inhibitor of Src tyrosine kinases, they elongated into symmetrical spindle-shaped cells, similar to SYF cells. These results suggest that cell polarity during extension and elongation may be regulated by SFKs and that the expression and regulation of Src are important for the formation of polarity during cell elongation.
Collapse
Affiliation(s)
- Kazuo Katoh
- Laboratory of Human Anatomy and Cell Biology, Faculty of Health Sciences, Tsukuba University of Technology, Tsukuba-city, Ibaraki 305-8521, Japan
| |
Collapse
|
13
|
SRC Signaling in Cancer and Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1270:57-71. [PMID: 33123993 DOI: 10.1007/978-3-030-47189-7_4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pioneering experiments performed by Harold Varmus and Mike Bishop in 1976 led to one of the most influential discoveries in cancer research and identified the first cancer-causing oncogene called Src. Later experimental and clinical evidence suggested that Src kinase plays a significant role in promoting tumor growth and progression and its activity is associated with poor patient survival. Thus, several Src inhibitors were developed and approved by FDA for treatment of cancer patients. Tumor microenvironment (TME) is a highly complex and dynamic milieu where significant cross-talk occurs between cancer cells and TME components, which consist of tumor-associated macrophages, fibroblasts, and other immune and vascular cells. Growth factors and chemokines activate multiple signaling cascades in TME and induce multiple kinases and pathways, including Src, leading to tumor growth, invasion/metastasis, angiogenesis, drug resistance, and progression. Here, we will systemically evaluate recent findings regarding regulation of Src and significance of targeting Src in cancer therapy.
Collapse
|
14
|
Fyn Tyrosine Kinase as Harmonizing Factor in Neuronal Functions and Dysfunctions. Int J Mol Sci 2020; 21:ijms21124444. [PMID: 32580508 PMCID: PMC7352836 DOI: 10.3390/ijms21124444] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 12/25/2022] Open
Abstract
Fyn is a non-receptor or cytoplasmatic tyrosine kinase (TK) belonging to the Src family kinases (SFKs) involved in multiple transduction pathways in the central nervous system (CNS) including synaptic transmission, myelination, axon guidance, and oligodendrocyte formation. Almost one hundred years after the original description of Fyn, this protein continues to attract extreme interest because of its multiplicity of actions in the molecular signaling pathways underlying neurodevelopmental as well as neuropathologic events. This review highlights and summarizes the most relevant recent findings pertinent to the role that Fyn exerts in the brain, emphasizing aspects related to neurodevelopment and synaptic plasticity. Fyn is a common factor in healthy and diseased brains that targets different proteins and shapes different transduction signals according to the neurological conditions. We will primarily focus on Fyn-mediated signaling pathways involved in neuronal differentiation and plasticity that have been subjected to considerable attention lately, opening the fascinating scenario to target Fyn TK for the development of potential therapeutic interventions for the treatment of CNS injuries and certain neurodegenerative disorders like Alzheimer’s disease.
Collapse
|
15
|
The "Janus" Role of C/EBPs Family Members in Cancer Progression. Int J Mol Sci 2020; 21:ijms21124308. [PMID: 32560326 PMCID: PMC7352866 DOI: 10.3390/ijms21124308] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
CCAAT/enhancer-binding proteins (C/EBPs) constitute a family of transcription factors composed of six members that are critical for normal cellular differentiation in a variety of tissues. They promote the expression of genes through interaction with their promoters. Moreover, they have a key role in regulating cellular proliferation through interaction with cell cycle proteins. C/EBPs are considered to be tumor suppressor factors due to their ability to arrest cell growth (contributing to the terminal differentiation of several cell types) and for their role in cellular response to DNA damage, nutrient deprivation, hypoxia, and genotoxic agents. However, C/EBPs can elicit completely opposite effects on cell proliferation and cancer development and they have been described as both tumor promoters and tumor suppressors. This "Janus" role of C/EBPs depends on different factors, such as the type of tumor, the isoform/s expressed in cells, the type of dimerization (homo- or heterodimerization), the presence of inhibitory elements, and the ability to inhibit the expression of other tumor suppressors. In this review, we discuss the implication of the C/EBPs family in cancer, focusing on the molecular aspects that make these transcription factors tumor promoters or tumor suppressors.
Collapse
|
16
|
Src Family Kinases as Therapeutic Targets in Advanced Solid Tumors: What We Have Learned so Far. Cancers (Basel) 2020; 12:cancers12061448. [PMID: 32498343 PMCID: PMC7352436 DOI: 10.3390/cancers12061448] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 12/17/2022] Open
Abstract
Src is the prototypal member of Src Family tyrosine Kinases (SFKs), a large non-receptor kinase class that controls multiple signaling pathways in animal cells. SFKs activation is necessary for the mitogenic signal from many growth factors, but also for the acquisition of migratory and invasive phenotype. Indeed, oncogenic activation of SFKs has been demonstrated to play an important role in solid cancers; promoting tumor growth and formation of distant metastases. Several drugs targeting SFKs have been developed and tested in preclinical models and many of them have successfully reached clinical use in hematologic cancers. Although in solid tumors SFKs inhibitors have consistently confirmed their ability in blocking cancer cell progression in several experimental models; their utilization in clinical trials has unveiled unexpected complications against an effective utilization in patients. In this review, we summarize basic molecular mechanisms involving SFKs in cancer spreading and metastasization; and discuss preclinical and clinical data highlighting the main challenges for their future application as therapeutic targets in solid cancer progression
Collapse
|
17
|
Mukherjee A, Singh R, Udayan S, Biswas S, Reddy PP, Manmadhan S, George G, Kumar S, Das R, Rao BM, Gulyani A. A Fyn biosensor reveals pulsatile, spatially localized kinase activity and signaling crosstalk in live mammalian cells. eLife 2020; 9:50571. [PMID: 32017701 PMCID: PMC7000222 DOI: 10.7554/elife.50571] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
Cell behavior is controlled through spatio-temporally localized protein activity. Despite unique and often contradictory roles played by Src-family-kinases (SFKs) in regulating cell physiology, activity patterns of individual SFKs have remained elusive. Here, we report a biosensor for specifically visualizing active conformation of SFK-Fyn in live cells. We deployed combinatorial library screening to isolate a binding-protein (F29) targeting activated Fyn. Nuclear-magnetic-resonance (NMR) analysis provides the structural basis of F29 specificity for Fyn over homologous SFKs. Using F29, we engineered a sensitive, minimally-perturbing fluorescence-resonance-energy-transfer (FRET) biosensor (FynSensor) that reveals cellular Fyn activity to be spatially localized, pulsatile and sensitive to adhesion/integrin signaling. Strikingly, growth factor stimulation further enhanced Fyn activity in pre-activated intracellular zones. However, inhibition of focal-adhesion-kinase activity not only attenuates Fyn activity, but abolishes growth-factor modulation. FynSensor imaging uncovers spatially organized, sensitized signaling clusters, direct crosstalk between integrin and growth-factor-signaling, and clarifies how compartmentalized Src-kinase activity may drive cell fate.
Collapse
Affiliation(s)
- Ananya Mukherjee
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India.,SASTRA University, Thanjavur, India
| | - Randhir Singh
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Sreeram Udayan
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Sayan Biswas
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | | | - Saumya Manmadhan
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Geen George
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Shilpa Kumar
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Ranabir Das
- National Centre for Biological Sciences, Bangalore, India
| | - Balaji M Rao
- North Carolina State University, Raleigh, United States
| | - Akash Gulyani
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| |
Collapse
|
18
|
Al-Abcha A, Iftikhar MH, Abu Rous F, Laird-Fick H. Chylothorax: complication attributed to dasatinib use. BMJ Case Rep 2019; 12:12/12/e231653. [PMID: 31848139 DOI: 10.1136/bcr-2019-231653] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
A 63-year-old woman with a medical history of chronic myelogenous leukaemia treated with dasatinib, chronic obstructive pulmonary disease and heart failure with preserved ejection fraction presented with difficulty in breathing. Chest X-ray showed large right-sided pleural effusion, which was confirmed on a CT angiogram of the chest. Echocardiogram showed an ejection fraction of 61% with moderate to severely dilated right ventricle and right ventricular systolic pressure of 60 mm Hg. Diagnostic and therapeutic thoracentesis was performed, and 2.2 L of pleural fluid was removed. Pleural fluid analysis was consistent with chylothorax. Significant symptomatic improvement was noted after thoracentesis. In the absence of an alternate explanation, chylothorax was attributed to dasatinib, which was switched to nilotinib. This resulted in resolution of her pleural effusions.
Collapse
Affiliation(s)
- Abdullah Al-Abcha
- Internal Medicine, Michigan State University, East Lansing, Michigan, USA
| | | | - Fawzi Abu Rous
- Internal Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Heather Laird-Fick
- Internal Medicine, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
19
|
Agius MP, Ko KS, Johnson TK, Kwarcinski FE, Phadke S, Lachacz EJ, Soellner MB. Selective Proteolysis to Study the Global Conformation and Regulatory Mechanisms of c-Src Kinase. ACS Chem Biol 2019; 14:1556-1563. [PMID: 31287657 PMCID: PMC7254491 DOI: 10.1021/acschembio.9b00306] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein kinase pathways are traditionally mapped by monitoring downstream phosphorylation. Meanwhile, the noncatalytic functions of protein kinases remain under-appreciated as critical components of kinase signaling. c-Src is a protein kinase known to have noncatalytic signaling function important in healthy and disease cell signaling. Large conformational changes in the regulatory domains regulate c-Src's noncatalytic functions. Herein, we demonstrate that changes in the global conformation of c-Src can be monitored using a selective proteolysis methodology. Further, we use this methodology to investigate changes in the global conformation of several clinical and nonclinical mutations of c-Src. Significantly, we identify a novel activating mutation observed clinically, W121R, that can escape down-regulation mechanisms. Our methodology can be expanded to monitor the global conformation of other tyrosine kinases, including c-Abl, and represents an important tool toward the elucidation of the noncatalytic functions of protein kinases.
Collapse
Affiliation(s)
- Michael P. Agius
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI
| | - Kristin S. Ko
- Department of Chemistry, University of Michigan, Ann Arbor, MI
| | - Taylor K. Johnson
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI
| | | | - Sameer Phadke
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Eric J. Lachacz
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Matthew B. Soellner
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Department of Chemistry, University of Michigan, Ann Arbor, MI
| |
Collapse
|
20
|
c-Src Recruitment is Involved in c-MET-Mediated Malignant Behaviour of NT2D1 Non-Seminoma Cells. Int J Mol Sci 2019; 20:ijms20020320. [PMID: 30646583 PMCID: PMC6358843 DOI: 10.3390/ijms20020320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 12/19/2022] Open
Abstract
c-MET pathway over-activation is the signature of malignancy acquisition or chemotherapy resistance of many cancers. We recently demonstrated that type II Testicular Germ Cell Tumours (TGCTs) express c-MET receptor. In particular, we elucidated that the non-seminoma lesions express c-MET protein at higher level, compared with the seminoma ones. In line with this observation, NTERA-2 clone D1 (NT2D1) non-seminoma cells increase their proliferation, migration and invasion in response to Hepatocyte Growth Factor (HGF). One of the well-known adaptor-proteins belonging to c-MET signaling cascade is c-Src. Activation of c-Src is related to the increase of aggressiveness of many cancers. For this reason, we focused on the role of c-Src in c-MET-triggered and HGF-dependent NT2D1 cell activities. In the present paper, we have elucidated that this adaptor-protein is involved in HGF-dependent NT2D1 cell proliferation, migration and invasion, since Src inhibitor-1 administration abrogates these responses. Despite these biological evidences western blot analyses have not revealed the increase of c-Src activation because of HGF administration. However, notably, immunofluorescence analyses revealed that cytoplasmic and membrane-associated localization of c-Src shifted to the nuclear compartment after HGF stimulation. These results shed new light in the modality of HGF-dependent c-Src recruitment, and put the basis for novel investigations on the relationship between c-Src, and TGCT aggressiveness.
Collapse
|
21
|
Lamar JM, Xiao Y, Norton E, Jiang ZG, Gerhard GM, Kooner S, Warren JSA, Hynes RO. SRC tyrosine kinase activates the YAP/TAZ axis and thereby drives tumor growth and metastasis. J Biol Chem 2018; 294:2302-2317. [PMID: 30559289 PMCID: PMC6378979 DOI: 10.1074/jbc.ra118.004364] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 11/27/2018] [Indexed: 01/02/2023] Open
Abstract
When properly employed, targeted therapies are effective cancer treatments. However, the development of such therapies requires the identification of targetable drivers of cancer development and metastasis. The expression and nuclear localization of the transcriptional coactivators Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) are increased in many human cancers, and experimental evidence indicates that aberrant YAP or TAZ activation drives tumor formation and metastasis. Although these findings make YAP and TAZ appealing therapeutic targets, both have important functions in adult tissues, so directly targeting them could cause adverse effects. The identification of pathways active in cancer cells and required for YAP/TAZ activity could provide a way to inhibit YAP and TAZ. Here, we show that SRC proto-oncogene, nonreceptor tyrosine kinase (SRC) is an important driver of YAP/TAZ activity in human breast cancer and melanoma cells. SRC activation increased YAP/TAZ activity and the expression of YAP/TAZ-regulated genes. In contrast, SRC inhibition or knockdown repressed both YAP/TAZ activity and the expression of YAP/TAZ-regulated genes. We also show that SRC increases the activity of YAP and TAZ by repressing large tumor suppressor homolog (LATS), and we identify the GTPase-activating protein GIT ArfGAP 1 (GIT1) as an SRC effector that regulates both YAP and TAZ. Importantly, we demonstrate that SRC-mediated YAP/TAZ activity promotes tumor growth and enhances metastasis and that SRC-dependent tumor progression depends, at least in part, on YAP and TAZ. Our findings suggest that therapies targeting SRC could help manage some YAP/TAZ-dependent cancers.
Collapse
Affiliation(s)
- John M Lamar
- From the Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York 12208 and .,the Koch Institute for Integrative Cancer Research
| | - Yuxuan Xiao
- From the Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York 12208 and
| | - Emily Norton
- From the Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York 12208 and
| | - Zhi-Gang Jiang
- the Koch Institute for Integrative Cancer Research.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Genevieve M Gerhard
- From the Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York 12208 and
| | - Simrin Kooner
- From the Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York 12208 and
| | - Janine S A Warren
- From the Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York 12208 and
| | - Richard O Hynes
- the Koch Institute for Integrative Cancer Research, .,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.,Department of Biology, and
| |
Collapse
|
22
|
Src promotes anti-inflammatory (M2) macrophage generation via the IL-4/STAT6 pathway. Cytokine 2018; 111:209-215. [DOI: 10.1016/j.cyto.2018.08.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/19/2018] [Accepted: 08/28/2018] [Indexed: 01/12/2023]
|
23
|
Zhang Y, Zhu L, Cao G, Sahib Zar M, Hu X, Wei Y, Xue R, Gong C. Cell entry of BmCPV can be promoted by tyrosine-protein kinase Src64B-like protein. Enzyme Microb Technol 2018; 121:1-7. [PMID: 30554639 DOI: 10.1016/j.enzmictec.2018.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 09/30/2018] [Accepted: 10/26/2018] [Indexed: 11/15/2022]
Abstract
Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) is a non-enveloped dsRNA virus, which specifically infect the midgut epithelium of B. mori. BmCPV enters permissive cells via clathrin-dependent endocytosis employing β1 integrin mediated internalization. Until now, the cell entry mechanism of BmCPV has not been known clearly. Here, we investigated whether tyrosine-protein kinase Src64B-like is involved in the cell entry of BmCPV. The Src64B-like gene was cloned and expressed in Escherichia coli (E. coli), and the recombinant protein Src64B-like was used to immunize mouse for preparation of anti-Src64B-like polyclonal antibody (pAb). After Src64B-like gene was silenced by RNAi, the infection of BmCPV was reduced by 59.48% ± 2.18% and 92.22% ± 1.12% in vitro and in vivo autonomously. Contrary to it, BmCPV infection could be enhanced by increasing the expression of Src64B-like. In addition, immunofluorescence assay showed that Src64B-like protein did not co-localize with BmCPV in the cultured BmN cells during viral infection. These results indicate that Src64B-like protein participates and plays an important role in the cell entry of BmCPV, but not contacting directly with BmCPV.
Collapse
Affiliation(s)
- Yiling Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China; School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, China
| | - Liyuan Zhu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Guangli Cao
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Mian Sahib Zar
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China; Institute of Synthetic Biology (iSynBio), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, 1068 Xuevuan Avenue, Shenzhen University Town, Shenzhen, 518055, China
| | - Xiaolong Hu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Yuhong Wei
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Renyu Xue
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Chengliang Gong
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
24
|
Xu YZ, Thuraisingam T, Kanagaratham C, Tao S, Radzioch D. c-Src kinase is involved in the tyrosine phosphorylation and activity of SLC11A1 in differentiating macrophages. PLoS One 2018; 13:e0196230. [PMID: 29723216 PMCID: PMC5933793 DOI: 10.1371/journal.pone.0196230] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 04/09/2018] [Indexed: 11/18/2022] Open
Abstract
Studies have demonstrated that the solute carrier family 11 member 1 (SLC11A1) is heavily glycosylated and phosphorylated in macrophages. However, the mechanisms of SLC11A1 phosphorylation, and the effects of phosphorylation on SLC11A1 activity remain largely unknown. Here, the tyrosine phosphorylation of SLC11A1 is observed in SLC11A1-expressing U937 cells when differentiated into macrophages by phorbol myristate acetate (PMA). The phosphorylation of SLC11A1 is almost completely blocked by treatment with PP2, a selective inhibitor of Src family kinases. Furthermore, we found that SLC11A1 is a direct substrate for active c-Src kinase and siRNA-mediated knockdown of cellular Src (c-Src) expression results in a significant decrease in tyrosine phosphorylation. We found that PMA induces the interaction of SLC11A1 with c-Src kinase. We demonstrated that SLC11A1 is phosphorylated by Src family kinases at tyrosine 15 and this type of phosphorylation is required for SLC11A1-mediated modulation of NF-κB activation and nitric oxide (NO) production induced by LPS. Our results demonstrate important roles for c-Src tyrosine kinase in phosphorylation and activation of SLC11A1 in macrophages.
Collapse
Affiliation(s)
- Yong Zhong Xu
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Thusanth Thuraisingam
- Division of Dermatology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Cynthia Kanagaratham
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Shao Tao
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Danuta Radzioch
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
- * E-mail:
| |
Collapse
|
25
|
Redner RL, Beumer JH, Kropf P, Agha M, Boyiadzis M, Dorritie K, Farah R, Hou JZ, Im A, Lim SH, Raptis A, Sehgal A, Christner SM, Normolle D, Johnson DE. A phase-1 study of dasatinib plus all-trans retinoic acid in acute myeloid leukemia. Leuk Lymphoma 2018; 59:2595-2601. [PMID: 29616864 DOI: 10.1080/10428194.2018.1443330] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Src family kinases (SFKs) are hyperactivated in acute myeloid leukemia (AML). SFKs impede the retinoic acid receptor, and SFK inhibitors enhance all-trans retinoic acid (ATRA)-mediated cellular differentiation in AML cell lines and primary blasts. To translate these findings into the clinic, we undertook a phase-I dose-escalation study of the combination of the SFK inhibitor dasatinib and ATRA in patients with high-risk myeloid neoplasms. Nine subjects were enrolled: six received 70 mg dasatinib plus 45 mg/m2 ATRA daily, and three received 100 mg dasatinib plus 45 mg/m2 ATRA daily for 28 days. Headache and QTc prolongations were the only two grade 3 adverse events observed. No significant clinical responses were observed. We conclude that the combination of 70 mg dasatinib and 45 mg/m2 ATRA daily is safe with acceptable toxicity. Our results provide the safety profile for further investigations into the clinical efficacy of this combination therapy in myeloid malignancies.
Collapse
Affiliation(s)
- Robert L Redner
- a Cancer Therapeutics Program, UPMC Hillman Cancer Center , Pittsburgh , PA , USA.,b Division of Hematology-Oncology, Department of Medicine , University of Pittsburgh School of Medicine , Pittsburgh , PA , USA
| | - Jan H Beumer
- a Cancer Therapeutics Program, UPMC Hillman Cancer Center , Pittsburgh , PA , USA.,b Division of Hematology-Oncology, Department of Medicine , University of Pittsburgh School of Medicine , Pittsburgh , PA , USA.,c Department of Pharmaceutical Sciences , University of Pittsburgh School of Pharmacy , Pittsburgh , PA , USA
| | - Patricia Kropf
- b Division of Hematology-Oncology, Department of Medicine , University of Pittsburgh School of Medicine , Pittsburgh , PA , USA
| | - Mounzer Agha
- a Cancer Therapeutics Program, UPMC Hillman Cancer Center , Pittsburgh , PA , USA.,b Division of Hematology-Oncology, Department of Medicine , University of Pittsburgh School of Medicine , Pittsburgh , PA , USA
| | - Michael Boyiadzis
- a Cancer Therapeutics Program, UPMC Hillman Cancer Center , Pittsburgh , PA , USA.,b Division of Hematology-Oncology, Department of Medicine , University of Pittsburgh School of Medicine , Pittsburgh , PA , USA
| | - Kathleen Dorritie
- a Cancer Therapeutics Program, UPMC Hillman Cancer Center , Pittsburgh , PA , USA.,b Division of Hematology-Oncology, Department of Medicine , University of Pittsburgh School of Medicine , Pittsburgh , PA , USA
| | - Rafic Farah
- a Cancer Therapeutics Program, UPMC Hillman Cancer Center , Pittsburgh , PA , USA.,b Division of Hematology-Oncology, Department of Medicine , University of Pittsburgh School of Medicine , Pittsburgh , PA , USA
| | - Jing-Zhao Hou
- a Cancer Therapeutics Program, UPMC Hillman Cancer Center , Pittsburgh , PA , USA.,b Division of Hematology-Oncology, Department of Medicine , University of Pittsburgh School of Medicine , Pittsburgh , PA , USA
| | - Annie Im
- a Cancer Therapeutics Program, UPMC Hillman Cancer Center , Pittsburgh , PA , USA.,b Division of Hematology-Oncology, Department of Medicine , University of Pittsburgh School of Medicine , Pittsburgh , PA , USA
| | - Seah H Lim
- b Division of Hematology-Oncology, Department of Medicine , University of Pittsburgh School of Medicine , Pittsburgh , PA , USA
| | - Anastasios Raptis
- a Cancer Therapeutics Program, UPMC Hillman Cancer Center , Pittsburgh , PA , USA.,b Division of Hematology-Oncology, Department of Medicine , University of Pittsburgh School of Medicine , Pittsburgh , PA , USA
| | - Alison Sehgal
- a Cancer Therapeutics Program, UPMC Hillman Cancer Center , Pittsburgh , PA , USA.,b Division of Hematology-Oncology, Department of Medicine , University of Pittsburgh School of Medicine , Pittsburgh , PA , USA
| | - Susan M Christner
- a Cancer Therapeutics Program, UPMC Hillman Cancer Center , Pittsburgh , PA , USA
| | - Daniel Normolle
- d Department of Biostatistics , University of Pittsburgh Graduate School of Public Health , Pittsburgh , PA , USA
| | - Daniel E Johnson
- b Division of Hematology-Oncology, Department of Medicine , University of Pittsburgh School of Medicine , Pittsburgh , PA , USA
| |
Collapse
|
26
|
Kojima M, Nakamura N, Amaki J, Numata H, Miyaoka M, Motoori T, Matsumoto K, Ando K. Human herpesvirus 8-unrelated primary effusion lymphoma-like lymphoma following tyrosine kinase inhibitor treatment for chronic myelogenous leukemia. J Clin Exp Hematop 2018; 57:69-73. [PMID: 29021516 DOI: 10.3960/jslrt.17020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A 69-year-old man was diagnosed with chronic myelogenous leukemia (CML) and treated with dasatinib. After two years on dasatinib, the patient achieved complete molecular response, but dasatinib treatment was discontinued due to exacerbation of pleural effusion. Nilotinib and imatinib were started but stopped due to an increase in pleural effusion. Thoracentesis was performed and he was diagnosed with human herpesvirus 8-unrelated primary effusion lymphoma (PEL)-like lymphoma. Complex chromosomal abnormality, including BCL6 rearrangement, was found on chromosome analysis. To the best of our knowledge, this is the first report of PEL-like lymphoma following tyrosine kinase inhibitor treatment for CML.
Collapse
Affiliation(s)
- Minoru Kojima
- Department of Hematology, Ebina General Hospital.,Division of Hematology/Oncology, Department of Internal Medicine, Tokai University School of Medicine.,Department of Internal Medicine, Sangenjaya-daiichi Hospital
| | - Naoya Nakamura
- Department of Pathology, Tokai University School of Medicine
| | - Jun Amaki
- Department of Hematology, Ebina General Hospital.,Division of Hematology/Oncology, Department of Internal Medicine, Tokai University School of Medicine
| | - Hiroki Numata
- Department of Hematology, Ebina General Hospital.,Division of Hematology/Oncology, Department of Internal Medicine, Tokai University School of Medicine
| | - Masashi Miyaoka
- Department of Pathology, Tokai University School of Medicine
| | | | | | - Kiyoshi Ando
- Division of Hematology/Oncology, Department of Internal Medicine, Tokai University School of Medicine
| |
Collapse
|
27
|
Wang C, Zhou X, Li W, Li M, Tu T, Ba X, Wu Y, Huang Z, Fan G, Zhou G, Wu S, Zhao J, Zhang J, Chen J. Macrophage migration inhibitory factor promotes osteosarcoma growth and lung metastasis through activating the RAS/MAPK pathway. Cancer Lett 2017. [PMID: 28642171 DOI: 10.1016/j.canlet.2017.06.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Emerging evidence suggests that the tumour microenvironment plays a critical role in osteosarcoma (OS) development. Thus, cytokine immunotherapy could be a novel strategy for OS treatment. In this study, we explored the role of macrophage migration inhibitory factor (MIF), an important cytokine in OS progression, and investigated the anti-tumour effects of targeting MIF in OS. The results showed that MIF significantly increased in the tissue and serum samples of OS patients and was associated with tumour size, pulmonary metastasis and the survival rate of OS patients. We verified a positive correlation between MIF and p-ERK1/2 in OS patients. The in vitro results indicated that MIF could activate the RAS/MAPK pathway in a time- and dose-dependent manner, thereby promoting cell proliferation and migration. Furthermore, shRNA targeting MIF significantly inhibited tumour growth and lung metastasis in a mouse xenograft model and orthotopic model of OS. Additionally, inhibition of MIF significantly enhanced the sensitivity of OS cells to cisplatin and doxorubicin. Our findings suggest that immunotherapy targeting MIF to block the RAS/MAPK kinase cascade may represent a feasible and promising approach for OS treatment.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Department of Orthopaedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210023, PR China
| | - Xing Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Department of Orthopaedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210023, PR China; Clinical School of Nanjing, Second Military Medical University, Nanjing 210002, PR China
| | - Wentao Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Department of Orthopaedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210023, PR China
| | - Mingyue Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Department of Orthopaedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210023, PR China
| | - Tingyue Tu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Department of Orthopaedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210023, PR China
| | - Ximing Ba
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Department of Orthopaedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210023, PR China
| | - Yinyu Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Department of Orthopaedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210023, PR China
| | - Zhen Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Department of Orthopaedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210023, PR China
| | - Gentao Fan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Department of Orthopaedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210023, PR China; Clinical School of Nanjing, Second Military Medical University, Nanjing 210002, PR China
| | - Guangxin Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Department of Orthopaedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210023, PR China; Clinical School of Nanjing, Second Military Medical University, Nanjing 210002, PR China
| | - Sujia Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Department of Orthopaedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210023, PR China; Clinical School of Nanjing, Second Military Medical University, Nanjing 210002, PR China
| | - Jianning Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Department of Orthopaedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210023, PR China; Clinical School of Nanjing, Second Military Medical University, Nanjing 210002, PR China.
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Department of Orthopaedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210023, PR China.
| | - Jiangning Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Department of Orthopaedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
28
|
Fajer M, Meng Y, Roux B. The Activation of c-Src Tyrosine Kinase: Conformational Transition Pathway and Free Energy Landscape. J Phys Chem B 2017; 121:3352-3363. [PMID: 27715044 PMCID: PMC5398919 DOI: 10.1021/acs.jpcb.6b08409] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Tyrosine kinases are important cellular signaling allosteric enzymes that regulate cell growth, proliferation, metabolism, differentiation, and migration. Their activity must be tightly controlled, and malfunction can lead to a variety of diseases, particularly cancer. The nonreceptor tyrosine kinase c-Src, a prototypical model system and a representative member of the Src-family, functions as complex multidomain allosteric molecular switches comprising SH2 and SH3 domains modulating the activity of the catalytic domain. The broad picture of self-inhibition of c-Src via the SH2 and SH3 regulatory domains is well characterized from a structural point of view, but a detailed molecular mechanism understanding is nonetheless still lacking. Here, we use advanced computational methods based on all-atom molecular dynamics simulations with explicit solvent to advance our understanding of kinase activation. To elucidate the mechanism of regulation and self-inhibition, we have computed the pathway and the free energy landscapes for the "inactive-to-active" conformational transition of c-Src for different configurations of the SH2 and SH3 domains. Using the isolated c-Src catalytic domain as a baseline for comparison, it is observed that the SH2 and SH3 domains, depending upon their bound orientation, promote either the inactive or active state of the catalytic domain. The regulatory structural information from the SH2-SH3 tandem is allosterically transmitted via the N-terminal linker of the catalytic domain. Analysis of the conformational transition pathways also illustrates the importance of the conserved tryptophan 260 in activating c-Src, and reveals a series of concerted events during the activation process.
Collapse
Affiliation(s)
| | | | - Benoît Roux
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, 60637, USA
| |
Collapse
|
29
|
Kashima D, Kawade R, Nagamune T, Kawahara M. A Chemically Inducible Helper Module for Detecting Protein–Protein Interactions with Tunable Sensitivity Based on KIPPIS. Anal Chem 2017; 89:4824-4830. [DOI: 10.1021/acs.analchem.6b04063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Daiki Kashima
- Department of Chemistry and
Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Raiji Kawade
- Department of Chemistry and
Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Teruyuki Nagamune
- Department of Chemistry and
Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Masahiro Kawahara
- Department of Chemistry and
Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
30
|
Tatjewski M, Kierczak M, Plewczynski D. Predicting Post-Translational Modifications from Local Sequence Fragments Using Machine Learning Algorithms: Overview and Best Practices. Methods Mol Biol 2017; 1484:275-300. [PMID: 27787833 DOI: 10.1007/978-1-4939-6406-2_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Here, we present two perspectives on the task of predicting post translational modifications (PTMs) from local sequence fragments using machine learning algorithms. The first is the description of the fundamental steps required to construct a PTM predictor from the very beginning. These steps include data gathering, feature extraction, or machine-learning classifier selection. The second part of our work contains the detailed discussion of more advanced problems which are encountered in PTM prediction task. Probably the most challenging issues which we have covered here are: (1) how to address the training data class imbalance problem (we also present statistics describing the problem); (2) how to properly set up cross-validation folds with an approach which takes into account the homology of protein data records, to address this problem we present our folds-over-clusters algorithm; and (3) how to efficiently reach for new sources of learning features. Presented techniques and notes resulted from intense studies in the field, performed by our and other groups, and can be useful both for researchers beginning in the field of PTM prediction and for those who want to extend the repertoire of their research techniques.
Collapse
Affiliation(s)
- Marcin Tatjewski
- Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097, Warsaw, Poland
| | - Marcin Kierczak
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Dariusz Plewczynski
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, Warsaw, 02-097, Poland.
| |
Collapse
|
31
|
Baloch ZQ, Abbas SA, Bhatti H, Braver Y, Ali SK. Dasatinib-induced chylothorax in chronic myeloid leukemia. Proc AMIA Symp 2017; 30:71-73. [PMID: 28127140 PMCID: PMC5242121 DOI: 10.1080/08998280.2017.11929535] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Pulmonary adverse events are common abnormalities associated with the use of dasatinib in chronic myeloid leukemia. We present a case of a 69-year-old man who suddenly developed a rare chylothorax pulmonary adverse event following 10 months of dasatinib treatment.
Collapse
Affiliation(s)
- Zulfiqar Qutrio Baloch
- Department of Internal Medicine, Brandon Regional Hospital, Brandon, Florida (Baloch, Braver); R-Research, Hamilton, New Jersey (Abbas); and Departments of Pulmonary Critical Care (Bhatti) and Internal Medicine/Palliative Care (Ali), Orlando Veterans Affairs Medical Center, Orlando, Florida
| | - Shabber Agha Abbas
- Department of Internal Medicine, Brandon Regional Hospital, Brandon, Florida (Baloch, Braver); R-Research, Hamilton, New Jersey (Abbas); and Departments of Pulmonary Critical Care (Bhatti) and Internal Medicine/Palliative Care (Ali), Orlando Veterans Affairs Medical Center, Orlando, Florida
| | - Hammad Bhatti
- Department of Internal Medicine, Brandon Regional Hospital, Brandon, Florida (Baloch, Braver); R-Research, Hamilton, New Jersey (Abbas); and Departments of Pulmonary Critical Care (Bhatti) and Internal Medicine/Palliative Care (Ali), Orlando Veterans Affairs Medical Center, Orlando, Florida
| | - Yvonne Braver
- Department of Internal Medicine, Brandon Regional Hospital, Brandon, Florida (Baloch, Braver); R-Research, Hamilton, New Jersey (Abbas); and Departments of Pulmonary Critical Care (Bhatti) and Internal Medicine/Palliative Care (Ali), Orlando Veterans Affairs Medical Center, Orlando, Florida
| | - Sayed K Ali
- Department of Internal Medicine, Brandon Regional Hospital, Brandon, Florida (Baloch, Braver); R-Research, Hamilton, New Jersey (Abbas); and Departments of Pulmonary Critical Care (Bhatti) and Internal Medicine/Palliative Care (Ali), Orlando Veterans Affairs Medical Center, Orlando, Florida
| |
Collapse
|
32
|
Lue HW, Cole B, Rao SAM, Podolak J, Van Gaest A, King C, Eide CA, Wilmot B, Xue C, Spellman PT, Heiser LM, Tyner JW, Thomas GV. Src and STAT3 inhibitors synergize to promote tumor inhibition in renal cell carcinoma. Oncotarget 2016; 6:44675-87. [PMID: 26625308 PMCID: PMC4792584 DOI: 10.18632/oncotarget.5971] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/04/2015] [Indexed: 12/25/2022] Open
Abstract
The intracytoplasmic tyrosine kinase Src serves both as a conduit and a regulator for multiple processes required for the proliferation and survival cancer cells. In some cancers, Src engages with receptor tyrosine kinases to mediate downstream signaling and in other cancers, it regulates gene expression. Src therefore represents a viable oncologic target. However, clinical responses to Src inhibitors, such as dasatinib have been disappointing to date. We identified Stat3 signaling as a potential bypass mechanism that enables renal cell carcinoma (RCC) cells to escape dasatinib treatment. Combined Src-Stat3 inhibition using dasatinib and CYT387 (a JAK/STAT inhibitor) synergistically reduced cell proliferation and increased apoptosis in RCC cells. Moreover, dasatinib and CYT387 combine to suppress YAP1, a transcriptional co-activator that promotes cell proliferation, survival and organ size. Importantly, this combination was well tolerated, and caused marked tumor inhibition in RCC xenografts. These results suggest that combination therapy with inhibitors of Stat3 signaling may be a useful therapeutic approach to increase the efficacy of Src inhibitors.
Collapse
Affiliation(s)
- Hui-Wen Lue
- OHSU Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Brook Cole
- OHSU Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Soumya A M Rao
- OHSU Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Jennifer Podolak
- OHSU Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Ahna Van Gaest
- OHSU Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Carly King
- Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239, USA
| | - Christopher A Eide
- Hematology and Oncology, Oregon Health and Science University, Portland, OR 97239, USA.,Howard Hughes Medical Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Beth Wilmot
- Oregon Clinical and Translational Research Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Changhui Xue
- OHSU Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Paul T Spellman
- Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR 97239, USA
| | - Laura M Heiser
- Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239, USA
| | - Jeffrey W Tyner
- Hematology and Oncology, Oregon Health and Science University, Portland, OR 97239, USA.,Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | - George V Thomas
- OHSU Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA.,Pathology and Laboratory Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| |
Collapse
|
33
|
The molecular effect of metastasis suppressors on Src signaling and tumorigenesis: new therapeutic targets. Oncotarget 2016; 6:35522-41. [PMID: 26431493 PMCID: PMC4742122 DOI: 10.18632/oncotarget.5849] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/15/2015] [Indexed: 02/07/2023] Open
Abstract
A major problem for cancer patients is the metastasis of cancer cells from the primary tumor. This involves: (1) migration through the basement membrane; (2) dissemination via the circulatory system; and (3) invasion into a secondary site. Metastasis suppressors, by definition, inhibit metastasis at any step of the metastatic cascade. Notably, Src is a non-receptor, cytoplasmic, tyrosine kinase, which becomes aberrantly activated in many cancer-types following stimulation of plasma membrane receptors (e.g., receptor tyrosine kinases and integrins). There is evidence of a prominent role of Src in tumor progression-related events such as the epithelial–mesenchymal transition (EMT) and the development of metastasis. However, the precise molecular interactions of Src with metastasis suppressors remain unclear. Herein, we review known metastasis suppressors and summarize recent advances in understanding the mechanisms of how these proteins inhibit metastasis through modulation of Src. Particular emphasis is bestowed on the potent metastasis suppressor, N-myc downstream regulated gene 1 (NDRG1) and its interactions with the Src signaling cascade. Recent studies demonstrated a novel mechanism through which NDRG1 plays a significant role in regulating cancer cell migration by inhibiting Src activity. Moreover, we discuss the rationale for targeting metastasis suppressor genes as a sound therapeutic modality, and we review several examples from the literature where such strategies show promise. Collectively, this review summarizes the essential interactions of metastasis suppressors with Src and their effects on progression of cancer metastasis. Moreover, interesting unresolved issues regarding these proteins as well as their potential as therapeutic targets are also discussed.
Collapse
|
34
|
Gottlieb-Abraham E, Gutman O, Pai GM, Rubio I, Henis YI. The residue at position 5 of the N-terminal region of Src and Fyn modulates their myristoylation, palmitoylation, and membrane interactions. Mol Biol Cell 2016; 27:3926-3936. [PMID: 27733622 PMCID: PMC5170614 DOI: 10.1091/mbc.e16-08-0622] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/03/2016] [Accepted: 10/05/2016] [Indexed: 01/19/2023] Open
Abstract
Using biophysical methods in live cells and palmitoylation mutants of Src and Fyn, we show that palmitoylation stabilizes the interactions of SFKs with the plasma membrane. Moreover, we show that the amino acid at position 5 regulates the myristoylation and palmitoylation of these proteins, and thereby their targeting to raft domains. The interactions of Src family kinases (SFKs) with the plasma membrane are crucial for their activity. They depend on their fatty-acylated N-termini, containing N-myristate and either a polybasic cluster (in Src) or palmitoylation sites (e.g., Fyn). To investigate the roles of these moieties in SFK membrane association, we used fluorescence recovery after photobleaching beam-size analysis to study the membrane interactions of c-Src-GFP (green fluorescent protein) or Fyn-GFP fatty-acylation mutants. Our studies showed for the first time that the membrane association of Fyn is more stable than that of Src, an effect lost in a Fyn mutant lacking the palmitoylation sites. Unexpectedly, Src-S3C/S6C (containing cysteines at positions 3/6, which are palmitoylated in Fyn) exhibited fast cytoplasmic diffusion insensitive to palmitoylation inhibitors, suggesting defective fatty acylation. Further replacement of the charged Lys-5 by neutral Gln to resemble Fyn (Src-S3C/S6C/K5Q) restored Fyn-like membrane interactions, indicating that Lys-5 in the context of Src-S3C/S6C interferes with its myristoylation/palmitoylation. This was validated by direct myristoylation and palmitoylation studies, which indicated that the residue at position 5 regulates the membrane interactions of Src versus Fyn. Moreover, the palmitoylation levels correlated with targeting to detergent-resistant membranes (rafts) and to caveolin-1. Palmitoylation-dependent preferential containment of Fyn in rafts may contribute to its lower transformation potential.
Collapse
Affiliation(s)
- Efrat Gottlieb-Abraham
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Orit Gutman
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Govind M Pai
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, University Hospital, Jena 07745, Germany
| | - Ignacio Rubio
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, University Hospital, Jena 07745, Germany
| | - Yoav I Henis
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
35
|
Ota M, Gonja H, Koike R, Fukuchi S. Multiple-Localization and Hub Proteins. PLoS One 2016; 11:e0156455. [PMID: 27285823 PMCID: PMC4902230 DOI: 10.1371/journal.pone.0156455] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/13/2016] [Indexed: 12/11/2022] Open
Abstract
Protein-protein interactions are fundamental for all biological phenomena, and protein-protein interaction networks provide a global view of the interactions. The hub proteins, with many interaction partners, play vital roles in the networks. We investigated the subcellular localizations of proteins in the human network, and found that the ones localized in multiple subcellular compartments, especially the nucleus/cytoplasm proteins (NCP), the cytoplasm/cell membrane proteins (CMP), and the nucleus/cytoplasm/cell membrane proteins (NCMP), tend to be hubs. Examinations of keywords suggested that among NCP, those related to post-translational modifications and transcription functions are the major contributors to the large number of interactions. These types of proteins are characterized by a multi-domain architecture and intrinsic disorder. A survey of the typical hub proteins with prominent numbers of interaction partners in the type revealed that most are either transcription factors or co-regulators involved in signaling pathways. They translocate from the cytoplasm to the nucleus, triggered by the phosphorylation and/or ubiquitination of intrinsically disordered regions. Among CMP and NCMP, the contributors to the numerous interactions are related to either kinase or ubiquitin ligase activity. Many of them reside on the cytoplasmic side of the cell membrane, and act as the upstream regulators of signaling pathways. Overall, these hub proteins function to transfer external signals to the nucleus, through the cell membrane and the cytoplasm. Our analysis suggests that multiple-localization is a crucial concept to characterize groups of hub proteins and their biological functions in cellular information processing.
Collapse
Affiliation(s)
- Motonori Ota
- Graduate School of Information Sciences, Nagoya University, Nagoya, Japan
- * E-mail:
| | - Hideki Gonja
- Graduate School of Information Sciences, Nagoya University, Nagoya, Japan
| | - Ryotaro Koike
- Graduate School of Information Sciences, Nagoya University, Nagoya, Japan
| | - Satoshi Fukuchi
- Faculty of Engineering, Maebashi Institute of Technology, Maebashi, Japan
| |
Collapse
|
36
|
Sex-determining region Y-box3 (SOX3) functions as an oncogene in promoting epithelial ovarian cancer by targeting Src kinase. Tumour Biol 2016; 37:12263-12271. [DOI: 10.1007/s13277-016-5095-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/15/2016] [Indexed: 01/22/2023] Open
|
37
|
Bermejo M, López-Huertas MR, García-Pérez J, Climent N, Descours B, Ambrosioni J, Mateos E, Rodríguez-Mora S, Rus-Bercial L, Benkirane M, Miró JM, Plana M, Alcamí J, Coiras M. Dasatinib inhibits HIV-1 replication through the interference of SAMHD1 phosphorylation in CD4+ T cells. Biochem Pharmacol 2016; 106:30-45. [PMID: 26851491 DOI: 10.1016/j.bcp.2016.02.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/02/2016] [Indexed: 02/07/2023]
Abstract
Massive activation of infected CD4+ T cells during acute HIV-1 infection leads to reservoir seeding and T-cell destruction. During T-cell activation, the antiviral effect of the innate factor SAMHD1 is neutralized through phosphorylation at T592, allowing HIV-1 infection. Dasatinib, a tyrosine kinase inhibitor currently used for treating chronic myeloid leukemia, has been described to control HIV-1 replication through its negative effect on T-cell proliferation and viral entry. We demonstrate that Dasatinib can actually interfere with SAMHD1 phosphorylation in human peripheral blood lymphocytes, preserving its antiviral activity against HIV-1. Dasatinib prevented SAMHD1 phosphorylation in vitro and ex vivo, impairing HIV-1 reverse transcription and proviral integration. This was the major mechanism of action because the presence of Vpx, which degrades SAMHD1, in HIV-1 virions impeded the inhibitory effect of Dasatinib on HIV-1 replication. In fact, infection with VSV-pseudotyped HIV-1 virions and fusion of BlaM-Vpr-containing HIV-1 viruses with activated PBMCs in the presence of Dasatinib suggested that Dasatinib was not acting at fusion level. Finally, PBMCs from patients on chronic treatment with Dasatinib showed a lower level of SAMHD1 phosphorylation in response to activating stimuli and low susceptibility to HIV-1 infection ex vivo. Consequently, Dasatinib is a compound currently used in clinic that preserves the antiviral function of SAMHD1. Using Dasatinib as adjuvant of antiretroviral therapy during early primary HIV-1 infection would contribute to reduce viral replication and spread, prevent reservoir seeding, and preserve CD4 counts and CTL responses. These events would create a more favorable virologic and immunologic environment for future interventional studies aiming at HIV-1 eradication.
Collapse
MESH Headings
- Adult
- Anti-HIV Agents/pharmacology
- Antineoplastic Agents/pharmacology
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/enzymology
- CD4-Positive T-Lymphocytes/virology
- Cell Proliferation/drug effects
- Dasatinib/pharmacology
- Female
- Gene Expression Regulation
- HIV Infections/drug therapy
- HIV Infections/enzymology
- HIV Infections/genetics
- HIV Infections/virology
- HIV-1/drug effects
- HIV-1/genetics
- HIV-1/growth & development
- Host-Pathogen Interactions
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Lymphocyte Activation
- Male
- Monomeric GTP-Binding Proteins/antagonists & inhibitors
- Monomeric GTP-Binding Proteins/genetics
- Monomeric GTP-Binding Proteins/metabolism
- Phosphorylation/drug effects
- Protein Kinase Inhibitors/pharmacology
- SAM Domain and HD Domain-Containing Protein 1
- Signal Transduction
- Vesiculovirus/genetics
- Viral Fusion Proteins/genetics
- Viral Fusion Proteins/metabolism
- Virus Internalization/drug effects
- Virus Replication/drug effects
Collapse
Affiliation(s)
- Mercedes Bermejo
- AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - María Rosa López-Huertas
- AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Javier García-Pérez
- AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Núria Climent
- Retrovirology and Viral Immunopathology Laboratory, AIDS Research Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Benjamin Descours
- Laboratory of Molecular Virology, Institute of Human Genetics, Montpellier, France
| | - Juan Ambrosioni
- Infectious Diseases Service, AIDS Research Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Elena Mateos
- AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Sara Rodríguez-Mora
- AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Lucía Rus-Bercial
- AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Monsef Benkirane
- Laboratory of Molecular Virology, Institute of Human Genetics, Montpellier, France
| | - José M Miró
- Infectious Diseases Service, AIDS Research Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Montserrat Plana
- Retrovirology and Viral Immunopathology Laboratory, AIDS Research Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - José Alcamí
- AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Mayte Coiras
- AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
38
|
Tang X, Wu J, Ding CK, Lu M, Keenan MM, Lin CC, Lin CA, Wang CC, George D, Hsu DS, Chi JT. Cystine Deprivation Triggers Programmed Necrosis in VHL-Deficient Renal Cell Carcinomas. Cancer Res 2016; 76:1892-903. [PMID: 26833124 DOI: 10.1158/0008-5472.can-15-2328] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/14/2016] [Indexed: 12/27/2022]
Abstract
Oncogenic transformation may reprogram tumor metabolism and render cancer cells addicted to extracellular nutrients. Deprivation of these nutrients may therefore represent a therapeutic opportunity, but predicting which nutrients cancer cells become addicted remains difficult. Here, we performed a nutrigenetic screen to determine the phenotypes of isogenic pairs of clear cell renal cancer cells (ccRCC), with or without VHL, upon the deprivation of individual amino acids. We found that cystine deprivation triggered rapid programmed necrosis in VHL-deficient cell lines and primary ccRCC tumor cells, but not in VHL-restored counterparts. Blocking cystine uptake significantly delayed xenograft growth of ccRCC. Importantly, cystine deprivation triggered similar metabolic changes regardless of VHL status, suggesting that metabolic responses alone are not sufficient to explain the observed distinct fates of VHL-deficient and restored cells. Instead, we found that increased levels of TNFα associated with VHL loss forced VHL-deficient cells to rely on intact RIPK1 to inhibit apoptosis. However, the preexisting elevation in TNFα expression rendered VHL-deficient cells susceptible to necrosis triggered by cystine deprivation. We further determined that reciprocal amplification of the Src-p38 (MAPK14)-Noxa (PMAIP1) signaling and TNFα-RIP1/3 (RIPK1/RIPK3)-MLKL necrosis pathways potentiated cystine-deprived necrosis. Together, our findings reveal that cystine deprivation in VHL-deficient RCCs presents an attractive therapeutic opportunity that may bypass the apoptosis-evading mechanisms characteristic of drug-resistant tumor cells. Cancer Res; 76(7); 1892-903. ©2016 AACR.
Collapse
Affiliation(s)
- Xiaohu Tang
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina. Center for Genomic and Computational Biology Duke University, Durham, North Carolina
| | - Jianli Wu
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina. Center for Genomic and Computational Biology Duke University, Durham, North Carolina
| | - Chien-Kuang Ding
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina. Center for Genomic and Computational Biology Duke University, Durham, North Carolina
| | - Min Lu
- Center for Genomic and Computational Biology Duke University, Durham, North Carolina. Department of Medicine, Duke University, Durham, North Carolina
| | - Melissa M Keenan
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina. Center for Genomic and Computational Biology Duke University, Durham, North Carolina
| | - Chao-Chieh Lin
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina. Center for Genomic and Computational Biology Duke University, Durham, North Carolina
| | - Chih-An Lin
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina. Center for Genomic and Computational Biology Duke University, Durham, North Carolina
| | - Charles C Wang
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina. Center for Genomic and Computational Biology Duke University, Durham, North Carolina
| | - Daniel George
- Department of Medicine, Duke University, Durham, North Carolina
| | - David S Hsu
- Center for Genomic and Computational Biology Duke University, Durham, North Carolina. Department of Medicine, Duke University, Durham, North Carolina
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina. Center for Genomic and Computational Biology Duke University, Durham, North Carolina.
| |
Collapse
|
39
|
Chen H, Zeng Q, Yao C, Cai Z, Wei T, Huang Z, Su J. Src family tyrosine kinase inhibitors suppress Nav1.1 expression in cultured rat spiral ganglion neurons. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2016; 202:185-93. [PMID: 26790420 DOI: 10.1007/s00359-016-1066-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 12/22/2015] [Accepted: 01/01/2016] [Indexed: 11/25/2022]
Abstract
Src family kinases regulate neuronal voltage-gated Na(+) channels, which generate action potentials. The mechanisms of action, however, remain poorly understood. The aim of the present study was to further elucidate the effects of Src family kinases on Nav1.1 mRNA and protein expression in spiral ganglion neurons. Immunofluorescence staining techniques detected Nav1.1 expression in the spiral ganglion neurons. Additionally, quantitative PCR and western blot techniques were used to analyze Nav1.1 mRNA and protein expression, respectively, in spiral ganglion neurons following exposure to Src family kinase inhibitors PP2 (1 and 10 μM) and SU6656 (0.1 and 1 μM) for different lengths of time (6 and 24 h). In the spiral ganglion neurons, Nav1.1 protein expression was detected in the somas and axons. The Src family kinase inhibitors PP2 and SU6665 significantly decreased Nav1.1 mRNA and protein expression (p < 0.05), respectively, in the spiral ganglion neurons, and changes in expression were not dependent on time or dose (p > 0.05).
Collapse
Affiliation(s)
- Huiying Chen
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Qingjiao Zeng
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chen Yao
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zheng Cai
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Tingjia Wei
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhihui Huang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jiping Su
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
40
|
Pathak HB, Zhou Y, Sethi G, Hirst J, Schilder RJ, Golemis EA, Godwin AK. A Synthetic Lethality Screen Using a Focused siRNA Library to Identify Sensitizers to Dasatinib Therapy for the Treatment of Epithelial Ovarian Cancer. PLoS One 2015; 10:e0144126. [PMID: 26637171 PMCID: PMC4670180 DOI: 10.1371/journal.pone.0144126] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/15/2015] [Indexed: 02/07/2023] Open
Abstract
Molecular targeted therapies have been the focus of recent clinical trials for the treatment of patients with recurrent epithelial ovarian cancer (EOC). The majority have not fared well as monotherapies for improving survival of these patients. Poor bioavailability, lack of predictive biomarkers, and the presence of multiple survival pathways can all diminish the success of a targeted agent. Dasatinib is a tyrosine kinase inhibitor of the Src-family kinases (SFK) and in preclinical studies shown to have substantial activity in EOC. However, when evaluated in a phase 2 clinical trial for patients with recurrent or persistent EOC, it was found to have minimal activity. We hypothesized that synthetic lethality screens performed using a cogently designed siRNA library would identify second-site molecular targets that could synergize with SFK inhibition and improve dasatinib efficacy. Using a systematic approach, we performed primary siRNA screening using a library focused on 638 genes corresponding to a network centered on EGFR, HER2, and the SFK-scaffolding proteins BCAR1, NEDD9, and EFS to screen EOC cells in combination with dasatinib. We followed up with validation studies including deconvolution screening, quantitative PCR to confirm effective gene silencing, correlation of gene expression with dasatinib sensitivity, and assessment of the clinical relevance of hits using TCGA ovarian cancer data. A refined list of five candidates (CSNK2A1, DAG1, GRB2, PRKCE, and VAV1) was identified as showing the greatest potential for improving sensitivity to dasatinib in EOC. Of these, CSNK2A1, which codes for the catalytic alpha subunit of protein kinase CK2, was selected for additional evaluation. Synergistic activity of the clinically relevant inhibitor of CK2, CX-4945, with dasatinib in reducing cell proliferation and increasing apoptosis was observed across multiple EOC cell lines. This overall approach to improving drug efficacy can be applied to other targeted agents that have similarly shown poor clinical activity.
Collapse
Affiliation(s)
- Harsh B. Pathak
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- University of Kansas Cancer Center, Kansas City, Kansas, United States of America
- * E-mail:
| | - Yan Zhou
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Geetika Sethi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jeff Hirst
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Russell J. Schilder
- Department of Gynecologic Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Erica A. Golemis
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Andrew K. Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- University of Kansas Cancer Center, Kansas City, Kansas, United States of America
| |
Collapse
|
41
|
OHNISHI YUICHI, YASUI HIROKI, KAKUDO KENJI, NOZAKI MASAMI. Cetuximab-resistant oral squamous cell carcinoma cells become sensitive in anchorage-independent culture conditions through the activation of the EGFR/AKT pathway. Int J Oncol 2015; 47:2165-72. [DOI: 10.3892/ijo.2015.3215] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 09/26/2015] [Indexed: 11/05/2022] Open
|
42
|
Mello AA, Leal MF, Rey JA, Pinto GR, Lamarão LM, Montenegro RC, Alves APNN, Assumpção PP, Borges BDN, Smith MC, Burbano RR. Deregulated Expression of SRC, LYN and CKB Kinases by DNA Methylation and Its Potential Role in Gastric Cancer Invasiveness and Metastasis. PLoS One 2015; 10:e0140492. [PMID: 26460485 PMCID: PMC4604160 DOI: 10.1371/journal.pone.0140492] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/25/2015] [Indexed: 12/29/2022] Open
Abstract
Kinases are downstream modulators and effectors of several cellular signaling cascades and play key roles in the development of neoplastic disease. In this study, we aimed to evaluate SRC, LYN and CKB protein and mRNA expression, as well as their promoter methylation, in gastric cancer. We found elevated expression of SRC and LYN kinase mRNA and protein but decreased levels of CKB kinase, alterations that may have a role in the invasiveness and metastasis of gastric tumors. Expression of the three studied kinases was also associated with MYC oncogene expression, a possible biomarker for gastric cancer. To understand the mechanisms that regulate the expression of these genes, we evaluated the DNA promoter methylation of the three kinases. We found that reduced SRC and LYN methylation and increased CKB methylation was associated with gastric cancer. The reduced SRC and LYN methylation was associated with increased levels of mRNA and protein expression, suggesting that DNA methylation is involved in regulating the expression of these kinases. Conversely, reduced CKB methylation was observed in samples with reduced mRNA and protein expression, suggesting CKB expression was found to be only partly regulated by DNA methylation. Additionally, we found that alterations in the DNA methylation pattern of the three studied kinases were also associated with the gastric cancer onset, advanced gastric cancer, deeper tumor invasion and the presence of metastasis. Therefore, SRC, LYN and CKB expression or DNA methylation could be useful markers for predicting tumor progression and targeting in anti-cancer strategies.
Collapse
Affiliation(s)
- Adriano Azevedo Mello
- Centro de Ciências Biológicas e da Saúde, Universidade Federal de Campina Grande, Campina Grande, PB, Brazil
| | - Mariana Ferreira Leal
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, SP, Brazil
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
- * E-mail:
| | - Juan Antonio Rey
- Laboratorio de Oncogenética Molecular, Hospital Universitario La Paz, Madrid, Madrid, Spain
| | | | - Leticia Martins Lamarão
- Laboratório de Testes de Ácidos Nucleicos, Fundação Centro de Hemoterapia e Hematologia do Pará, Belém, PA, Brazil
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | | | | | - Paulo Pimentel Assumpção
- Núcleo de Pesquisa em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, PA, Brazil
| | - Barbara do Nascimento Borges
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
- Centro de Tecnologia Agropecuária, Instituto Socioambiental e dos Recursos Hídricos, Universidade Federal Rural da Amazônia, Belém, PA, Brazil
| | - Marília Cardoso Smith
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Rommel Rodriguez Burbano
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
- Núcleo de Pesquisa em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, PA, Brazil
| |
Collapse
|
43
|
Sirvent A, Urbach S, Roche S. Contribution of phosphoproteomics in understanding SRC signaling in normal and tumor cells. Proteomics 2015; 15:232-44. [PMID: 25403792 DOI: 10.1002/pmic.201400162] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/30/2014] [Accepted: 11/12/2014] [Indexed: 01/02/2023]
Abstract
The membrane-anchored, non-receptor tyrosine kinase (non-RTK) SRC is a critical regulator of signal transduction induced by a large variety of cell-surface receptors, including RTKs that bind to growth factors to control cell growth and migration. When deregulated, SRC shows strong oncogenic activity, probably because of its capacity to promote RTK-mediated downstream signaling even in the absence of extracellular stimuli. Accordingly, SRC is frequently deregulated in human cancer and is thought to play important roles during tumorigenesis. However, our knowledge on the molecular mechanism by which SRC controls signaling is incomplete due to the limited number of key substrates identified so far. Here, we review how phosphoproteomic methods have changed our understanding of the mechanisms underlying SRC signaling in normal and tumor cells and discuss how these novel findings can be used to improve therapeutic strategies aimed at targeting SRC signaling in human cancer.
Collapse
Affiliation(s)
- Audrey Sirvent
- CNRS UMR5237, University Montpellier 1 and 2, CRBM, Montpellier, France
| | | | | |
Collapse
|
44
|
Zhang Y, Sun M, Han Y, Zhai K, Tang Y, Qin X, Cao Z, Yu B, Kou J. The saponin DT-13 attenuates tumor necrosis factor-α-induced vascular inflammation associated with Src/NF-кB/MAPK pathway modulation. Int J Biol Sci 2015; 11:970-81. [PMID: 26157351 PMCID: PMC4495414 DOI: 10.7150/ijbs.11635] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/15/2015] [Indexed: 01/20/2023] Open
Abstract
This study aimed to explore the effect of DT-13 (25(R,S)-ruscogenin- 1-O- [β-d-glucopyranosyl- (1→2)][β-d-xylopyranosyl-(1→3)]-β -d- fucopyranoside) on tumor necrosis factor (TNF)-α-induced vascular inflammation and the potential molecular mechanisms. In vitro, DT-13 suppressed TNF-α-induced adhesion and migration of human umbilical vein endothelial cells (HUVECs) by inhibiting the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). DT-13 markedly suppressed NF-кB p65 phosphorylation, and when NF-кB p65 was over-expressed, the inhibitory effect of DT-13 on adhesion molecular decreased. DT-13 also suppressed TNF-α induced luciferase activities of ICAM-1 and VCAM-1 promoter containing NF-κB binding sites. Furthermore, DT-13 markedly suppressed p38 phosphorylation and Src degradation induced by TNF-α, whereas had no significant effect on ERK and JNK activation. In vivo, DT-13 at 4 mg/kg prevented vascular inflammation and the expression of adhesion molecules induced by TNF-α in mice. These findings suggest that DT-13 abrogates vascular inflammation by down-regulating adhesion molecules associated with modulating the NF-кB, p38MAPK, Src signaling pathways, and NF-κB binding site is at least one of the targets of DT-13. This study provides novel information regarding the mechanism by which DT-13 exerts its effects on vascular inflammation, which is important for the onset and progression of various diseases.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| | - Minhui Sun
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| | - Yuwei Han
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| | - Kefeng Zhai
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| | - Youmei Tang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| | - Xiaoying Qin
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| | - Zhengyu Cao
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| | - Junping Kou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| |
Collapse
|
45
|
Furcht CM, Buonato JM, Lazzara MJ. EGFR-activated Src family kinases maintain GAB1-SHP2 complexes distal from EGFR. Sci Signal 2015; 8:ra46. [DOI: 10.1126/scisignal.2005697] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
46
|
Abstract
Knowledge of the molecular events that contribute to prostate cancer progression has created opportunities to develop novel therapy strategies. It is now well established that c-Src, a non-receptor tyrosine kinase, regulates a complex signaling network that drives the development of castrate-resistance and bone metastases, events that signal the lethal phenotype of advanced disease. Preclinical studies have established a role for c-Src and Src Family Kinases (SFKs) in proliferation, angiogenesis, invasion and bone metabolism, thus implicating Src signaling in both epithelial and stromal mechanisms of disease progression. A number of small molecule inhibitors of SFK now exist, many of which have demonstrated efficacy in preclinical models and several that have been tested in patients with metastatic castrate-resistant prostate cancer. These agents have demonstrated provocative clinic activity, particularly in modulating the bone microenvironment in a therapeutically favorable manner. Here, we review the discovery and basic biology of c-Src and further discuss the role of SFK inhibitors in the treatment of advanced prostate cancer.
Collapse
|
47
|
Cruse G, Beaven MA, Music SC, Bradding P, Gilfillan AM, Metcalfe DD. The CD20 homologue MS4A4 directs trafficking of KIT toward clathrin-independent endocytosis pathways and thus regulates receptor signaling and recycling. Mol Biol Cell 2015; 26:1711-27. [PMID: 25717186 PMCID: PMC4436782 DOI: 10.1091/mbc.e14-07-1221] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 02/18/2015] [Indexed: 01/29/2023] Open
Abstract
MS4A4 traffics through endocytic recycling pathways and stabilizes surface KIT expression by regulating endocytosis and recycling. Silencing MS4A4 reduces KIT recruitment to lipid raft microdomains and PLCg1 signaling while promoting AKT signaling, cell migration, and proliferation. This study is the first to describe functions for human MS4A4. MS4A family members differentially regulate the cell cycle, and aberrant, or loss of, expression of MS4A family proteins has been observed in colon and lung cancer. However, the precise functions of MS4A family proteins and their mechanistic interactions remain unsolved. Here we report that MS4A4 facilitates trafficking of the receptor tyrosine kinase KIT through endocytic recycling rather than degradation pathways by a mechanism that involves recruitment of KIT to caveolin-1–enriched microdomains. Silencing of MS4A4 in human mast cells altered ligand-induced KIT endocytosis pathways and reduced receptor recycling to the cell surface, thus promoting KIT signaling in the endosomes while reducing that in the plasma membrane, as exemplified by Akt and PLCγ1 phosphorylation, respectively. The altered endocytic trafficking of KIT also resulted in an increase in SCF-induced mast cell proliferation and migration, which may reflect altered signaling in these cells. Our data reveal a novel function for MS4A family proteins in regulating trafficking and signaling, which could have implications in both proliferative and immunological diseases.
Collapse
Affiliation(s)
- Glenn Cruse
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Michael A Beaven
- Laboratory of Molecular Immunology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Stephen C Music
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Peter Bradding
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Glenfield Hospital, Leicester LE3 9QP, United Kingdom
| | - Alasdair M Gilfillan
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Dean D Metcalfe
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
48
|
Luo J, Zuo J, Wu J, Wan P, Kang D, Xiang C, Zhu H, Chen J. In vivo RNAi screen identifies candidate signaling genes required for collective cell migration in Drosophila ovary. SCIENCE CHINA-LIFE SCIENCES 2014; 58:379-89. [PMID: 25528253 DOI: 10.1007/s11427-014-4786-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 11/11/2014] [Indexed: 01/05/2023]
Abstract
Collective migration of loosely or closely associated cell groups is prevalent in animal development, physiological events, and cancer metastasis. However, our understanding of the mechanisms of collective cell migration is incomplete. Drosophila border cells provide a powerful in vivo genetic model to study collective migration and identify essential genes for this process. Using border cell-specific RNAi-silencing in Drosophila, we knocked down 360 conserved signaling transduction genes in adult flies to identify essential pathways and genes for border cell migration. We uncovered a plethora of signaling genes, a large proportion of which had not been reported for border cells, including Rack1 (Receptor of activated C kinase) and brk (brinker), mad (mother against dpp), and sax (saxophone), which encode three components of TGF-β signaling. The RNAi knock down phenotype was validated by clonal analysis of Rack1 mutants. Our data suggest that inhibition of Src activity by Rack1 may be important for border cell migration and cluster cohesion maintenance. Lastly, results from our screen not only would shed light on signaling pathways involved in collective migration during embryogenesis and organogenesis in general, but also could help our understanding for the functions of conserved human genes involved in cancer metastasis.
Collapse
Affiliation(s)
- Jun Luo
- Model Animal Research Center, and MOE Key Laboratory of Model Animals for Disease Study, Nanjing University, Nanjing, 210061, China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Puig-Oliveras A, Ballester M, Corominas J, Revilla M, Estellé J, Fernández AI, Ramayo-Caldas Y, Folch JM. A co-association network analysis of the genetic determination of pig conformation, growth and fatness. PLoS One 2014; 9:e114862. [PMID: 25503799 PMCID: PMC4263716 DOI: 10.1371/journal.pone.0114862] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 11/14/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Several QTLs have been identified for major economically relevant traits in livestock, such as growth and meat quality, revealing the complex genetic architecture of these traits. The use of network approaches considering the interactions of multiple molecules and traits provides useful insights into the molecular underpinnings of complex traits. Here, a network based methodology, named Association Weight Matrix, was applied to study gene interactions and pathways affecting pig conformation, growth and fatness traits. RESULTS The co-association network analysis underpinned three transcription factors, PPARγ, ELF1, and PRDM16 involved in mesoderm tissue differentiation. Fifty-four genes in the network belonged to growth-related ontologies and 46 of them were common with a similar study for growth in cattle supporting our results. The functional analysis uncovered the lipid metabolism and the corticotrophin and gonadotrophin release hormone pathways among the most important pathways influencing these traits. Our results suggest that the genes and pathways here identified are important determining either the total body weight of the animal and the fat content. For instance, a switch in the mesoderm tissue differentiation may determinate the age-related preferred pathways being in the puberty stage those related with the miogenic and osteogenic lineages; on the contrary, in the maturity stage cells may be more prone to the adipocyte fate. Hence, our results demonstrate that an integrative genomic co-association analysis is a powerful approach for identifying new connections and interactions among genes. CONCLUSIONS This work provides insights about pathways and key regulators which may be important determining the animal growth, conformation and body proportions and fatness traits. Molecular information concerning genes and pathways here described may be crucial for the improvement of genetic breeding programs applied to pork meat production.
Collapse
Affiliation(s)
- Anna Puig-Oliveras
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (CRAG), 08193, Bellaterra, Spain
| | - Maria Ballester
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (CRAG), 08193, Bellaterra, Spain
| | - Jordi Corominas
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (CRAG), 08193, Bellaterra, Spain
| | - Manuel Revilla
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (CRAG), 08193, Bellaterra, Spain
| | - Jordi Estellé
- Génétique Animale et Biologie Intégrative UMR1313 (GABI), Institut National de la Recherche Agronomique (INRA), 78350, Jouy-en-Josas, France
- Génétique Animale et Biologie Intégrative UMR1313 (GABI), AgroParisTech, 78350, Jouy-en-Josas, France
- Laboratoire de Radiobiologie et Etude du Génome (LREG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), 78350, Jouy-en-Josas, France
| | - Ana I. Fernández
- Departamento de Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040, Madrid, Spain
| | - Yuliaxis Ramayo-Caldas
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (CRAG), 08193, Bellaterra, Spain
- Génétique Animale et Biologie Intégrative UMR1313 (GABI), Institut National de la Recherche Agronomique (INRA), 78350, Jouy-en-Josas, France
- Génétique Animale et Biologie Intégrative UMR1313 (GABI), AgroParisTech, 78350, Jouy-en-Josas, France
- Laboratoire de Radiobiologie et Etude du Génome (LREG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), 78350, Jouy-en-Josas, France
| | - Josep M. Folch
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (CRAG), 08193, Bellaterra, Spain
| |
Collapse
|
50
|
Combination therapy with nilotinib for drug-sensitive and drug-resistant BCR-ABL-positive leukemia and other malignancies. Arch Toxicol 2014; 88:2233-42. [DOI: 10.1007/s00204-014-1385-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 10/08/2014] [Indexed: 11/26/2022]
|