1
|
Martins-Green M, Petreaca M, Wang L. Chemokines and Their Receptors Are Key Players in the Orchestra That Regulates Wound Healing. Adv Wound Care (New Rochelle) 2013; 2:327-347. [PMID: 24587971 DOI: 10.1089/wound.2012.0380] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Indexed: 12/13/2022] Open
Abstract
SIGNIFICANCE Normal wound healing progresses through a series of overlapping phases, all of which are coordinated and regulated by a variety of molecules, including chemokines. Because these regulatory molecules play roles during the various stages of healing, alterations in their presence or function can lead to dysregulation of the wound-healing process, potentially leading to the development of chronic, nonhealing wounds. RECENT ADVANCES A discovery that chemokines participate in a variety of disease conditions has propelled the study of these proteins to a level that potentially could lead to new avenues to treat disease. Their small size, exposed termini, and the fact that their only modifications are two disulfide bonds make them excellent targets for manipulation. In addition, because they bind to G-protein-coupled receptors (GPCRs), they are highly amenable to pharmacological modulation. CRITICAL ISSUES Chemokines are multifunctional, and in many situations, their functions are highly dependent on the microenvironment. Moreover, each specific chemokine can bind to several GPCRs to stimulate the function, and both can function as monomers, homodimers, heterodimers, and even oligomers. Activation of one receptor by any single chemokine can lead to desensitization of other chemokine receptors, or even other GPCRs in the same cell, with implications for how these proteins or their receptors could be used to manipulate function. FUTURE DIRECTIONS Investment in better understanding of the functions of chemokines and their receptors in a local context can reveal new ways for therapeutic intervention. Understanding how different chemokines can activate the same receptor and vice versa could identify new possibilities for drug development based on their heterotypic interactions.
Collapse
Affiliation(s)
- Manuela Martins-Green
- Department of Cell Biology and Neuroscience, University of California, Riverside, California
| | - Melissa Petreaca
- Department of Cell Biology and Neuroscience, University of California, Riverside, California
| | - Lei Wang
- Department of Cell Biology and Neuroscience, University of California, Riverside, California
| |
Collapse
|
2
|
Clearance of activated stellate cells for hepatic fibrosis regression: molecular basis and translational potential. Biomed Pharmacother 2012. [PMID: 23201010 DOI: 10.1016/j.biopha.2012.10.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hepatic fibrosis, characterized by abnormal accumulation of extracellular matrix (ECM), is a common pathological process of many chronic liver diseases. A growing number of studies have shown that the activation of hepatic stellate cells (HSCs) plays an important role in the pathogenesis of hepatic fibrosis. Inhibiting the activation of HSCs and accelerating the clearance of activated HSCs may be effective strategies for resolution of hepatic fibrosis. Therefore, understanding the underlying mechanisms of clearance of activated HSCs and the therapeutic implications is an active subject of research. Studies have shown that apoptosis, immune clearance, phenotype reversion and senescence are involved in clearance of activated HSCs. In this review, we will discuss the mechanisms of clearance of activated HSCs and their potential in resolution of hepatic fibrosis.
Collapse
|
3
|
Wang H, Haeger SM, Kloxin AM, Leinwand LA, Anseth KS. Redirecting valvular myofibroblasts into dormant fibroblasts through light-mediated reduction in substrate modulus. PLoS One 2012; 7:e39969. [PMID: 22808079 PMCID: PMC3396623 DOI: 10.1371/journal.pone.0039969] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 06/05/2012] [Indexed: 12/22/2022] Open
Abstract
Fibroblasts residing in connective tissues throughout the body are responsible for extracellular matrix (ECM) homeostasis and repair. In response to tissue damage, they activate to become myofibroblasts, which have organized contractile cytoskeletons and produce a myriad of proteins for ECM remodeling. However, persistence of myofibroblasts can lead to fibrosis with excessive collagen deposition and tissue stiffening. Thus, understanding which signals regulate de-activation of myofibroblasts during normal tissue repair is critical. Substrate modulus has recently been shown to regulate fibrogenic properties, proliferation and apoptosis of fibroblasts isolated from different organs. However, few studies track the cellular responses of fibroblasts to dynamic changes in the microenvironmental modulus. Here, we utilized a light-responsive hydrogel system to probe the fate of valvular myofibroblasts when the Young’s modulus of the substrate was reduced from ∼32 kPa, mimicking pre-calcified diseased tissue, to ∼7 kPa, mimicking healthy cardiac valve fibrosa. After softening the substrata, valvular myofibroblasts de-activated with decreases in α-smooth muscle actin (α-SMA) stress fibers and proliferation, indicating a dormant fibroblast state. Gene signatures of myofibroblasts (including α-SMA and connective tissue growth factor (CTGF)) were significantly down-regulated to fibroblast levels within 6 hours of in situ substrate elasticity reduction while a general fibroblast gene vimentin was not changed. Additionally, the de-activated fibroblasts were in a reversible state and could be re-activated to enter cell cycle by growth stimulation and to express fibrogenic genes, such as CTGF, collagen 1A1 and fibronectin 1, in response to TGF-β1. Our data suggest that lowering substrate modulus can serve as a cue to down-regulate the valvular myofibroblast phenotype resulting in a predominantly quiescent fibroblast population. These results provide insight in designing hydrogel substrates with physiologically relevant stiffness to dynamically redirect cell fate in vitro.
Collapse
Affiliation(s)
- Huan Wang
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
- Biofrontiers Institute, University of Colorado, Boulder, Colorado, United States of America
| | - Sarah M. Haeger
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado, United States of America
| | - April M. Kloxin
- Department of Chemical and Biomolecular Engineering and Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, United States of America
| | - Leslie A. Leinwand
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
- Biofrontiers Institute, University of Colorado, Boulder, Colorado, United States of America
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado, United States of America
- Howard Hughes Medical Institute, University of Colorado, Boulder, Colorado, United States of America
- Biofrontiers Institute, University of Colorado, Boulder, Colorado, United States of America
- * E-mail:
| |
Collapse
|
4
|
Itagaki K, Naito T, Iwakiri R, Haga M, Miura S, Saito Y, Owaki T, Kamiya S, Iyoda T, Yajima H, Iwashita S, Ejiri SI, Fukai F. Eukaryotic translation elongation factor 1A induces anoikis by triggering cell detachment. J Biol Chem 2012; 287:16037-46. [PMID: 22399298 DOI: 10.1074/jbc.m111.308122] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Anoikis, apoptosis because of loss of cell anchorage, is crucial for tissue homeostasis. Fibronectin not only provides a scaffold for cell anchorage but also harbors a cryptic antiadhesive site capable of inducing β1-integrin inactivation. In this study, this cryptic antiadhesive site is implicated in spontaneous induction of anoikis. Nontransformed fibroblasts (NIH3T3) adhering to a fibronectin substratum underwent anoikis during serum starvation culture. This anoikis was caused by proteolytic exposure of the cryptic antiadhesive site in fibronectin by matrix metalloproteinase. Eukaryotic elongation factor 1A (eEF1A) was identified as a membrane receptor for the exposed antiadhesive site. Serum starvation raised the membrane residence of eEF1A, and siRNA-based disruption of this increase rendered cells anoikis-resistant. By contrast, cells became more susceptible to anoikis in parallel with increased membrane residence of eEF1A by enforced expression. These results demonstrate that eEF1A acts as a membrane receptor for the cryptic antiadhesive site of fibronectin, which contributes to cell regulation, including anoikis, through negative regulation of cell anchorage.
Collapse
Affiliation(s)
- Keisuke Itagaki
- Department of Molecular Pathophysiology, Tokyo University of Science, Chiba 278-8510, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Kastanis GJ, Hernandez-Nazara Z, Nieto N, Rincón-Sanchez AR, Popratiloff A, Dominguez-Rosales JA, Lechuga CG, Rojkind M. The role of dystroglycan in PDGF-BB-dependent migration of activated hepatic stellate cells/myofibroblasts. Am J Physiol Gastrointest Liver Physiol 2011; 301:G464-74. [PMID: 21659621 PMCID: PMC3174534 DOI: 10.1152/ajpgi.00078.2011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatic stellate cells are embedded in the loose connective tissue matrix within the space of Disse. This extracellular matrix contains several basement membrane components including laminin, but its composition changes during liver injury because of the production of extracellular matrix components found in scar tissue. These changes in extracellular matrix composition and in cell-extracellular matrix interactions may play a key role in hepatic stellate cell transdifferentiation. In this communication we used early passages of mouse hepatic stellate cells (activated HSC/myofibroblasts) to study the platelet-derived growth factor BB (PDGF-BB)-dependent expression and regulation of β-dystroglycan and its role in activated HSC/myofibroblast migration. We used Northern and Western analysis to study dystroglycan expression and confocal microscopy to investigate changes in subcellular distribution of the protein. Activated HSC migration was investigated using an in vitro wound-healing assay. PDGF-BB induced significant changes in dystroglycan regulation and subcellular distribution of the protein. Whereas steady-state levels of dystroglycan mRNA remained constant, PDGF-BB increased dystroglycan transcription but shortened the t(1/2) by 50%. Moreover, PDGF-BB changed dystroglycan and α5-integrin cellular distribution. Cell migration experiments revealed that PDGF-BB-dependent migration of activated HSC/myofibroblasts was completely blocked by neutralizing antibodies to fibronectin, α5-integrin, laminin, and β-dystroglycan. Overall, these findings suggest that both laminin and fibronectin and their receptors play a key role in PDGF-BB-induced activated HSC migration.
Collapse
Affiliation(s)
| | - Zamira Hernandez-Nazara
- 2Department of Molecular Biology and Genomics, Universidad de Guadalajara, Guadalajara, Jalisco, México;
| | - Natalia Nieto
- 3Division of Liver Diseases, Mount Sinai School of Medicine, New York, New York;
| | - Ana Rosa Rincón-Sanchez
- 2Department of Molecular Biology and Genomics, Universidad de Guadalajara, Guadalajara, Jalisco, México;
| | - Anastas Popratiloff
- 4Center for Microscopy and Image Analysis, The George Washington University Medical Center, Washington, DC;
| | | | - Carmen G. Lechuga
- 5Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), Melchor Fernández Almagro 3, Madrid, Spain
| | | |
Collapse
|
6
|
An J, Zheng L, Xie S, Dun Z, Hao L, Yao D, Shih DQ, Zhang X. Down-regulation of focal adhesion kinase by short hairpin RNA increased apoptosis of rat hepatic stellate cells. APMIS 2011; 119:319-29. [PMID: 21569089 DOI: 10.1111/j.1600-0463.2011.02720.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Focal adhesion kinase (FAK) plays an essential role in the activation of hepatic stellate cells (HSC). The role of FAK on proliferation and apoptosis of fibronectin (FN)-stimulated HSC was investigated using short hairpin RNA (shRNA)-mediated gene silencing technology. FAK shRNA decreased the expressions of FAK, p-FAK (Tyr(397)), ERK(1), and p-ERK(1). FAK gene silencing also inhibited HSC proliferation by 11.08% at 12-h, 15.12% at 24-h, and 28.62% at 48-h post-transfection. Flow cytometric analysis (FACS) revealed that the apoptotic rate at 24 h was increased in the FAK shRNA plasmid group compared with the HK group (8.29 ± 0.79% vs 2.70 ± 0.31%, p < 0.01). TUNEL also confirmed the increase in the rate of apoptosis (19.00 ± 0.92% vs 7.63 ± 0.70%, p < 0.01), and studies showed that the caspase-3 expression was increased while the ratio of Bcl-2 to Bax was decreased. Together, these data show that FAK regulates HSC proliferation and induces the apoptosis of HSC via the caspase-3 and Bcl-2/Bax pathway.
Collapse
Affiliation(s)
- Junyan An
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Branford OA, Brown RA, McGrouther DA, Grobbelaar AO, Mudera V. Shear-aggregated fibronectin with anti-adhesive properties. J Tissue Eng Regen Med 2010; 5:20-31. [DOI: 10.1002/term.284] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Dun ZN, Zhang XL, An JY, Zheng LB, Barrett R, Xie SR. Specific shRNA targeting of FAK influenced collagen metabolism in rat hepatic stellate cells. World J Gastroenterol 2010; 16:4100-6. [PMID: 20731027 PMCID: PMC2928467 DOI: 10.3748/wjg.v16.i32.4100] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects and mechanism of disruption of focal adhesion kinase (FAK) expression on collagen metabolism in rat hepatic stellate cells (HSC).
METHODS: The plasmids expressing FAK short hairpin RNA (shRNA) were transfected into HSC-T6 cells, and the level of FAK expression was determined by both real-time quantitative polymerase chain reaction (Q-PCR) and Western blotting analysis. The production of type I collagen and type III collagen in FAK-disrupted cells was analyzed by real-time Q-PCR. The level of collagen metabolism proteins, including matrix metalloproteinases-13 (MMP-13) and tissue inhibitors of metalloproteinases-1 (TIMP-1) was also determined by both real-time Q-PCR and Western blotting analysis.
RESULTS: The transfection of FAK shRNA plasmids into HSC resulted in disrupted FAK expression. Compared with the HK group, the levels of type I collagen and type III collagen mRNA transcripts in FAK shRNA plasmid group were significantly decreased (0.69 ± 0.03 vs 1.96 ± 0.15, P = 0.000; 0.59 ± 0.07 vs 1.62 ± 0.12, P = 0.020). The production of TIMP-1 in this cell type was also significantly reduced at both mRNA and protein levels (0.49 ± 0.02 vs 1.72 ± 0.10, P = 0.005; 0.76 ± 0.08 vs 2.31 ± 0.24, P = 0.000). However, the expression of MMP-13 mRNA could be significantly up-regulated by the transfection of FAK shRNA plasmids into HSC (1.74 ± 0.20 vs 1.09 ± 0.09, P = 0.000).
CONCLUSION: These data support the hypothesis that shRNA-mediated disruption of FAK expression could attenuate extracellular matrix (ECM) synthesis and promote ECM degradation, making FAK a potential target for novel anti-fibrosis therapies.
Collapse
|
9
|
Cloning and characterization of a novel intracellular protein p48.2 that negatively regulates cell cycle progression. Int J Biochem Cell Biol 2009; 41:2240-50. [PMID: 19427400 DOI: 10.1016/j.biocel.2009.04.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Revised: 04/22/2009] [Accepted: 04/29/2009] [Indexed: 11/21/2022]
Abstract
Neurofibromatosis type 1 (NF1) microdeletion is a large genomic deletion that embraces at least 11 continuous genes at human chromosome 17q11.2. To date, most of these genes' functions still remain undefined. In this study, we report an unknown cytokine receptor like molecule (p48.2) that is frequently deleted in patients with type-1 and type-2 NF1 microdeletions in the neurofibromin locus. The cloned gene has 1317 base pair long that encodes a 438aa intracellular protein. The gene was subsequently named p48.2 based on its predicted molecular weight. A typical fibronectin type III (FNIII) domain was identified in p48.2 between Arg(176) and Pro(261) in which a palindromic Arg-Gly-Asp (RGD) repeat plus a putative Trp-Ser-X-Trp-Ser (WSXWS) motif were found at the domain's C-terminus. p48.2 mRNAs were abundant in many tumor cell lines and normal human tissues and up-regulated in some freshly isolated lung cancer and leukemia cells. Interestingly, over-expression of p48.2 in human embryo kidney 293T cells could significantly cause G0/G1 arrest and prevented S phase entry. In contrast, repressing endogenous p48.2 gene expression by specific siRNA markedly reduced G0/G1 population. Importantly, over-expression of p48.2 could significantly up-regulate rather than down-regulate cyclin D1 and cyclin D3 expressions. We further showed that the induction of cyclin D1 expression was directly due to the activation of signal transducers and activators of transcription 3 (STAT3), but was independent of RAS/mitogen-activated protein kinase (RAS/MAPK) signaling pathway. Thus, p48.2 may represent a novel type of intracellular protein functioning as a negative regulator at the G0/G1 phase.
Collapse
|
10
|
|
11
|
Miura S, Kamiya S, Saito Y, Wada S, Hayashi R, Taira J, Kodama H, Yajima H, Ueki M, Fukai F. Antiadhesive Sites Present in the Fibronectin Type III-Like Repeats of Human Plasma Fibronectin. Biol Pharm Bull 2007; 30:891-7. [PMID: 17473431 DOI: 10.1248/bpb.30.891] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have found that fibronectin (FN) has a functional cryptic site opposing cell adhesion to extracellular matrix (ECM): a synthetic FN peptide derived from the 14th FN type III-like (FN-III) repeat, termed peptide FNIII14, inhibits cell adhesion to the FN without binding to beta1 integrins. This antiadhesive activity of peptide FNIII14 depends on its C-terminal amino acid sequence YTIYVIAL. A 50-kDa membrane protein (p50) has been detected as a specific binding protein of peptide FNIII14. Here we showed that antiadhesive activity of peptide FNIII14 was depedent upon the presence of p50 on cell surfaces. Furthermore, we found that there exists a sequence, analogous to the YTIYVIAL, in the 10th FN-III repeat of the FN molecule and that a FN peptide containing this analogous sequence, termed peptide FNIII10, inhibited cell adhesion to the FN. Peptide FNIII10 appeared to share p50 with peptide FNIII14 in expressing the antiadhesive activity. As a physiological consequence of decreased adhesion, peptides FNIII10 and FNIII14 accelerated the anoikis-like apoptosis of normal fibroblasts by down-regulating Bcl-2 expression through blocking the FAK/PI3K/Akt signaling pathway. Thus, the YTIYVIAL-related sequences of the FN molecule may be involved in cell regulation by modulating negatively cell adhesion to the ECM, in which p50 probably serves as a membrane receptor.
Collapse
Affiliation(s)
- Shogo Miura
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Fuja TJ, Ostrem EM, Probst-Fuja MN, Titze IR. Differential cell adhesion to vocal fold extracellular matrix constituents. Matrix Biol 2006; 25:240-51. [PMID: 16531030 DOI: 10.1016/j.matbio.2006.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Revised: 01/10/2006] [Accepted: 01/10/2006] [Indexed: 11/28/2022]
Abstract
The human vocal folds are a complex layering of cells and extracellular matrix. Vocal fold extracellular matrix uniquely contributes to the biomechanical viscoelasticity required for human phonation. We investigated the adhesion of vocal fold stellate cells, a novel cell type first cultured by our laboratory, and fibroblasts to eight vocal fold extracellular matrix components: elastin, decorin, fibronectin, hyaluronic acid, laminin and collagen types I, III and IV. Our data demonstrate that these cells adhere differentially to said substrates at 5 to 120 min. Cells were treated with hyaluronidase and Y-27632, a p160ROCK-specific inhibitor, to test the role of pericellular hyaluronan and Rho-ROCK activation in early and mature adhesion. Reduced adhesion resulted; greater inhibition of fibroblast adhesion was observed. We modulated the fibronectin affinity exhibited by both cell types using Nimesulide, an inhibitor of fibronectin integrin receptors alpha5beta1 and alphavbeta3. Our results are important in understanding vocal fold pathologies, wound healing, scarring, and in developing an accurate organotypic model of the vocal folds.
Collapse
Affiliation(s)
- Tannin J Fuja
- National Center for Voice and Speech, Department of Speech Pathology and Audiology, The University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | |
Collapse
|
13
|
Wang LS, Chen YW, Li DG, Lu HM. Arg-gly-asp-mannose-6-phosphate inhibits activation and proliferation of hepatic stellate cells in vitro. World J Gastroenterol 2006; 12:1303-7. [PMID: 16534891 PMCID: PMC4124449 DOI: 10.3748/wjg.v12.i8.1303] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM: To investigate the effect of arg-gly-asp-mannose-6 phosphate (RGD-M6P) on the activation and proliferation of primary hepatic stellate cells in vitro.
METHODS: Hepatic stellate cells (HSCs) were isolated from rats by in situ collagenase perfusion of liver and 18% Nycodenz gradient centrifugation and cultured on uncoated plastic plates for 24 h with DMEM containing 10% fetal bovine serum (FBS/DMEM) before the culture medium was substituted with 2% FBS/DMEM for another 24 h. Then, HSCs were cultured in 2% FBS/DMEM with transforming growth factor β1, M6P, RGD, or RGD-M6P, respectively. Cell morphology was observed under inverted microscope, smooth muscle α-actin (α-SMA) was detected by immunocytochemistry, type III procollagen (PCIII) in supernatant was determined by radioimmunoassay, and the proliferation rate of HSCs was assessed by flow cytometry.
RESULTS: RGD-M6P significantly inhibited the morphological transformation and the α-SMA and PCIII expressions of HSCs in vitro and also dramatically prevented the proliferation of HSCs in vitro. Such effects were remarkably different from those of RGD or M6P.
CONCLUSION: The new compound, RGD-M6P, which has a dramatic effect on primary cultured HSCs in vitro, can inhibit the transformation of HSCs in culture caused by TGFβ1, suppresses the expression of PCIII and decreases proliferation rate of HSC. RGD-M6P can be applied as a selective drug carrier targeting at HSCs, which may be a new approach to the prevention and treatment of liver fibrosis.
Collapse
Affiliation(s)
- Lian-Sheng Wang
- Digestive Disease Laboratory, Xinhua Hospital, Shanghai Second Medical University, Shanghai 200092, China
| | | | | | | |
Collapse
|
14
|
Gao R, Brigstock DR. Activation of nuclear factor kappa B (NF-kappaB) by connective tissue growth factor (CCN2) is involved in sustaining the survival of primary rat hepatic stellate cells. Cell Commun Signal 2005; 3:14. [PMID: 16303051 PMCID: PMC1308830 DOI: 10.1186/1478-811x-3-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Accepted: 11/22/2005] [Indexed: 12/16/2022] Open
Abstract
Background/Aims Connective tissue growth factor (CCN2) is a matricellular protein that plays a role in hepatic stellate cell (HSC)-mediated fibrogenesis. The aim of this study was to investigate the regulation by CCN2 of cell survival pathways in primary HSC. Methods Primary HSC were obtained by in situ enzymatic perfusion of rat liver. NF-κB activation was assessed by immunoblotting for IκBα phosphorylation and degradation and by NF-κB p50 or p65 nuclear accumulation. NF-κB DNA-binding activity was determined by gel mobility shift assay while NF-κB response gene expression was evaluated using a luciferase reporter. Cell viability was assessed by Trypan blue staining or ATP luminescent assay while apoptosis was evaluated by caspase-3 activity. Results CCN2 induced IκBα phosphorylation and degradation as well as nuclear accumulation of NF-κB. Activated NF-κB comprised three dimers, p65/p65, p65/p50 and p50/p50, that individually bound to DNA-binding sites and subsequently triggered transcriptional activity. This was confirmed by showing that CCN2 promoted activity of a NF-κB luciferase reporter. CCN2 promoted survival of serum-starved HSC and protected the cells from death induced by blocking the NF-κB signaling pathway using Bay-11-7082, a specific inhibitor of IκBα phosphorylation. Conclusion CCN2 contributes to the survival of primary HSC through the NF-κB pathway.
Collapse
Affiliation(s)
- Runping Gao
- Center for Cell and Vascular Biology, Children's Research Institute, Columbus Ohio 43205 USA
- Department of Surgery, The Ohio State University, Columbus, Ohio 43212 USA
| | - David R Brigstock
- Center for Cell and Vascular Biology, Children's Research Institute, Columbus Ohio 43205 USA
- Department of Surgery, The Ohio State University, Columbus, Ohio 43212 USA
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio 43212 USA
| |
Collapse
|
15
|
N/A. N/A. Shijie Huaren Xiaohua Zazhi 2004; 12:1179-1183. [DOI: 10.11569/wcjd.v12.i5.1179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
16
|
Liu XJ, Yang L, Wu HB, Qiang O, Huang MH, Wang YP. Apoptosis of rat hepatic stellate cells induced by anti-focal adhesion kinase antibody. World J Gastroenterol 2002; 8:734-8. [PMID: 12174388 PMCID: PMC4656330 DOI: 10.3748/wjg.v8.i4.734] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the role of focal adhesion kinase (FAK) in the apoptosis in culture-activated rat hepatic stellate cells (HSCs) using a specific anti-FAK antibody.
METHODS: Rat HSCs were prepared from Wistar rats by in situ perfusion of collagenase and pronase and single-step density Nycodenze gradient. Culture-activated HSCs were serum-starved and treated with the anti-FAK antibodies for 24, 48 or 72 h. The apoptosis of HSC was detected by DNA-fragment assay, flow cytometry and caspase-3 activity determination. The expression of tissue inhibitor of metalloproteinase-1 (TIMP-1) mRNA was assessed by reverse transcription polymerase chain reaction (RT-PCR).
RESULTS: The experiment showed that anti-FAK antibodies induced apoptosis of culture-activated rat HSCs. This phenomenon displayed the classical features of apoptotic cell death (DNA fragmentation, cell cycle analysis) after treated with 30 mg·L-1 FAK antibody for 72 h, and accompanied by a significant increase of caspase-3 activity (1208 ± 76) vs (309 ± 28) nmol·min-1·g-1, t = 208.5, P < 0.05. Meanwhile, treatment with the FAK antibody in HSCs could markedly decrease the TIMP-1 mRNA expression (0.07 ± 0.01 vs 0.38 ± 0.03, t = 2.72, P < 0.05).
CONCLUSION: FAK plays an important role in the survival of HSCs and the specific anti-FAK antibody could induce the apoptosis in rat HSCs.
Collapse
Affiliation(s)
- Xiao-Jing Liu
- Laboratory of Department of Internal Medicine, West China Hospital, Sichuan University, 37 Wainan Guoxueshang, Chengdu 610041, Sichuan Province, China.
| | | | | | | | | | | |
Collapse
|
17
|
Zhang XL, Liu L, Jiang HQ. Salvia miltiorrhiza monomer IH764-3 induces hepatic stellate cell apoptosis via caspase-3 activation. World J Gastroenterol 2002; 8:515-9. [PMID: 12046082 PMCID: PMC4656433 DOI: 10.3748/wjg.v8.i3.515] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects of IH764-3 on HSC apoptosis, and the expression of caspase-3 protein in HSC apoptotic process.
METHODS: HSCs were cultured in medium with different IH764-3 doses (10 μg·mL-1, 20 μg·mL-1, 30 μg·mL-1, 40 μg·mL-1) and without IH764-3, and HSC proliferation was quantitatively measured by 3H-thymidine incorporation. The morphological changes of HSCs were observed with transmission electron microscope after exposure to the dose of 40 μg·mL-1 of IH764-3 for 48 hr. The apoptosis rates were detected by annexin V/PI and TdT-mediated dUTP nick end labeling (TUNEL). The expression of caspase-3 protein was determined by flow cytometry.
RESULTS: (1) HSC proliferation rates induced with different IH764-3 doses (10 μg·mL-1, 20 μg·mL-1, 30 μg·mL-1, 40 μg·mL-1) were significantly reduced compared with that of the control group (P < 0.01). (2) With the doses above, IH764-3 dose-dependently produced HSC apoptosis rates of 6.7% (9.4%), 9.3% (21.6%), 15.1% (27.2%) and 19.0% (28.4%) respectively, by annexin V and PI-labeled flow cytometry assay (or TUNEL), while it was only 2.3% (6.7%) in the control. (3) The expression of caspase-3 protein in IH764-3 groups was significantly higher than that of the control (P < 0.05).
CONCLUSION: Within the dose range used in present study, IH764-3 can inhibit HSC proliferation, as well as enhance HSC apoptosis. Furthermore, IH764-3 can significantly increase the caspase-3 protein expression.
Collapse
Affiliation(s)
- Xiao-Lan Zhang
- Department of Gastroenterology The Second Hospital of Hebei Medical University Shijiazhuang 050000 Hebei Province China
| | | | | |
Collapse
|
18
|
Kamiya S, Kato R, Wakabayashi M, Tohyama T, Enami I, Ueki M, Yajima H, Ishii T, Nakamura H, Katayama T, Takagi J, Fukai F. Fibronectin peptides derived from two distinct regions stimulate adipocyte differentiation by preventing fibronectin matrix assembly. Biochemistry 2002; 41:3270-7. [PMID: 11863466 DOI: 10.1021/bi015660a] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Here, we show that fibronectin (FN) peptides derived from two distinct regions promote the insulin-induced adipocyte differentiation of ST-13 cells by preventing FN fibrillogenesis. ST-13 cells formed numerous FN fibrils under nonadipogenic conditions, whereas this FN fibrillogenesis was suppressed by adipose induction with insulin. The insulin-induced adipocyte differentiation was promoted by an amino-terminal 24-kDa fragment of FN, accompanied by further suppression of FN fibrillogenesis. The 24 K fragment prevented FN matrix assembly by direct incorporation into the FN matrix. Like the 24 K fragment, a peptide from the 14th type III repeat, termed FNIII14, which suppressed the integrin alpha 5 beta 1-mediated adhesion of ST-13 cells to FN, accelerated the adipocyte differentiation by preventing FN fibrillogenesis without direct incorporation into the FN matrix. FNIII14 induced the conformation change of beta1 integrins of K562 cells from active to resting, as judged by FACS analysis using a monoclonal antibody AG89 directed to an active beta1 integrin-dependent epitope. Binding of a (125)I-labeled FN fragment containing the RGD cell adhesive site to ST-13 cell surface was dissociated by FNIII14, with a concomitant binding of FNIII14 itself to the cell surface. The affinity labeling of ST-13 cells using biotinylated FNIII14 showed that FNIII14 specifically bound to a nonintegrin membrane protein with M(r) of around 50 kDa. Thus, the results indicated that prevention of FN fibrillogenesis by the 24 K Fib 1 fragment and FNIII14 caused the promotion of adipocyte differentiation of ST-13 cells and that the former was due to the direct incorporation into the FN matrix and that the latter might be interpreted by negative regulation of FN receptor alpha 5 beta 1 activity.
Collapse
Affiliation(s)
- Sadahiro Kamiya
- Department of Patho-Physiology and Analytical Chemistry, Faculty of Pharmaceutical Sciences, Science University of Tokyo, 12 Ichigaya Funagawara-Machi, Shinjuku-Ku, Tokyo 162-0826, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|