1
|
Bohl JM, Hassan AR, Sharpe ZJ, Kola M, Shehu A, Beaudoin DL, Ichinose T. Pivotal roles of melanopsin containing retinal ganglion cells in pupillary light reflex in photopic conditions. Front Cell Neurosci 2025; 19:1547066. [PMID: 39990971 PMCID: PMC11842327 DOI: 10.3389/fncel.2025.1547066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/20/2025] [Indexed: 02/25/2025] Open
Abstract
The pupillary light reflex (PLR) is crucial for protecting the retina from excess light. The intrinsically photosensitive retinal ganglion cells (ipRGCs) in the retina are neurons that are critical to generating the PLR, receiving rod/cone photoreceptor signals and directly sensing light through melanopsin. Previous studies have investigated the roles of photoreceptors and ipRGCs in PLR using genetically-modified mouse models. Herein, we acutely ablated photoreceptors using N-nitroso-N-methylurea (MNU) to examine the roles of ipRGCs in the PLR. We conducted PLR and multiple electrode array (MEA) recordings evoked by three levels of light stimuli before and 5 days after MNU intraperitoneal (i.p..) injection using C57BL6/J wildtype (WT) mice. We also conducted these measurements using the rod & cone dysfunctional mice (Gnat1-/- & Cnga3-/-:dKO) to compare the results to published studies in which mutant mice were used to show the role of photoreceptors and ipRGCs in PLR. PLR pupil constriction increased as the light stimulus intensified in WT mice. In MNU mice, PLR was not induced by the low light stimulus, suggesting that photoreceptors induced the PLR at this light intensity. By contrast, the high light stimulus fully induced PLR, similar to the response in WT mice. In dKO mice, no PLR was evoked by the low-light stimulus and a slow-onset PLR was evoked by the high-light stimulus, consistent with previous reports. Ex vivo MEA recording in the MNU tissue revealed a population of ipRGCs with a fast onset and peak time, suggesting that they drove the fast PLR response. These results suggest that ipRGCs primarily contribute to the PLR at a high light intensity, which does not agree with the previous results shown by mutant mouse models. Our results indicate that the melanopsin response in ipRGCs generate fast and robust PLR when induced by high light.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tomomi Ichinose
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
2
|
Chen T, Xiong Y, Deng C, Hu C, Li M, Quan R, Yu X. NDRG2 alleviates photoreceptor apoptosis by regulating the STAT3/TIMP3/MMP pathway in mice with retinal degenerative disease. FEBS J 2024; 291:986-1007. [PMID: 38037211 DOI: 10.1111/febs.17021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/05/2023] [Accepted: 10/29/2023] [Indexed: 12/02/2023]
Abstract
Photoreceptor apoptosis is the main pathological feature of retinal degenerative diseases; however, the underlying molecular mechanism has not been elucidated. Recent studies have shown that N-myc downstream regulated gene 2 (NDRG2) exerts a neuroprotective effect on the brain and spinal cord. In addition, our previous studies have confirmed that NDRG2 is expressed in mouse retinal photoreceptors and counteracts N-methyl-N-nitrosourea (MNU)-induced apoptosis. However, the underlying molecular mechanism remains unclear. In this study, we observed that the expression of NDRG2 was not only significantly inhibited in photoreceptors after MNU treatment but also after hydrogen peroxide treatment, and photoreceptor apoptosis was alleviated or aggravated after overexpression or knockdown of NDRG2 in the 661W photoreceptor cell line, respectively. The apoptosis inhibitor Z-VAD-FMK rescued photoreceptor apoptosis induced by MNU after NDRG2 knockdown. Next, we screened and identified tissue inhibitor of metalloproteinases 3 (TIMP3) as the downstream molecule of NDRG2 in 661W cells by using quantitative real-time polymerase chain reaction. TIMP3 exerts a neuroprotective effect by inhibiting the expression of matrix metalloproteinases (MMPs). Subsequently, we found that signal transducer and activator of transcription 3 (STAT3) mediated the NDRG2-associated regulation of TIMP3. Finally, we overexpressed NDRG2 in mouse retinal tissues by intravitreally injecting an adeno-associated virus with mouse NDRG2 in vivo. Results showed that NDRG2 upregulated the expression of phospho-STAT3 (p-STAT3) and TIMP3, while suppressing MNU-induced photoreceptor apoptosis and MMP expression. Our findings revealed how NDRG2 regulates the STAT3/TIMP3/MMP pathway and uncovered the molecular mechanism underlying its neuroprotective effect on mouse retinal photoreceptors.
Collapse
Affiliation(s)
- Tao Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Institute of Molecular and Translational Medicine, Xi'an Jiaotong University, China
| | - Yecheng Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Institute of Molecular and Translational Medicine, Xi'an Jiaotong University, China
| | - Chunlei Deng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Institute of Molecular and Translational Medicine, Xi'an Jiaotong University, China
| | - Chengbiao Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Institute of Molecular and Translational Medicine, Xi'an Jiaotong University, China
| | - Mengxing Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Institute of Molecular and Translational Medicine, Xi'an Jiaotong University, China
| | - Rui Quan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Institute of Molecular and Translational Medicine, Xi'an Jiaotong University, China
| | - Xiaorui Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Institute of Molecular and Translational Medicine, Xi'an Jiaotong University, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, China
| |
Collapse
|
3
|
Takita Y, Sugano E, Kitabayashi K, Tabata K, Saito A, Yokoyama T, Onoguchi R, Fukuda T, Ozaki T, Bai L, Tomita H. Evaluation of Local Retinal Function in Light-Damaged Rats Using Multifocal Electroretinograms and Multifocal Visual Evoked Potentials. Int J Mol Sci 2023; 24:16433. [PMID: 38003623 PMCID: PMC10670973 DOI: 10.3390/ijms242216433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Electroretinograms (ERGs) are often used to evaluate retinal function. However, assessing local retinal function can be challenging; therefore, photopic and scotopic ERGs are used to record whole-retinal function. This study evaluated focal retinal function in rats exposed to continuous light using a multifocal ERG (mfERG) system. The rats were exposed to 1000 lux of fluorescent light for 24 h to induce photoreceptor degeneration. After light exposure, the rats were reared under cyclic light conditions (12 h: 5 lux, 12 h: dark). Photopic and multifocal ERGs and single-flash and multifocal visual evoked potentials (mfVEPs) were recorded 7 days after light exposure. Fourteen days following light exposure, paraffin-embedded sections were prepared from the eyes for histological evaluation. The ERG and VEP responses dramatically decreased after 24 h of light exposure, and retinal area-dependent decreases were observed in mfERGs and mfVEPs. Histological assessment revealed severe damage to the superior retina and less damage to the inferior retina. Considering the recorded visual angles of mfERGs and mfVEPs, the degenerated area shown on the histological examinations correlates well with the responses from multifocal recordings.
Collapse
Grants
- 21-Ⅱ4001 Terumo (Japan)
- 22H00579 Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan
- 21K18278 Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan
- 22K09760 Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan
- 21K09713 Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Hiroshi Tomita
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka 020-8551, Iwate, Japan; (Y.T.); (E.S.); (K.K.); (K.T.); (A.S.); (T.Y.); (R.O.); (T.F.); (T.O.); (L.B.)
| |
Collapse
|
4
|
SHIRAI M, NIINO N, MORI K, KAI K. Microarray-based gene expression analysis combined with laser capture microdissection is beneficial in investigating the modes of action of ocular toxicity. J Toxicol Pathol 2021; 35:171-182. [PMID: 35516843 PMCID: PMC9018402 DOI: 10.1293/tox.2021-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/25/2021] [Indexed: 11/19/2022] Open
Abstract
The retina consists of several layers, and drugs can affect the retina and choroid
separately. Therefore, investigating the target layers of toxicity can provide useful
information pertaining to its modes of action. Herein, we compared gene expression
profiles obtained via microarray analyses using samples of target layers collected via
laser capture microdissection and samples of the whole globe of the eye of rats treated
with N-methyl-N-nitrosourea. Pathway analyses suggested
changes in the different pathways between the laser capture microdissection samples and
the whole globe samples. Consistent with the histological distribution of glial cells,
upregulation of several inflammation-related pathways was noted only in the whole globe
samples. Individual gene expression analyses revealed several gene expression changes in
the laser capture microdissection samples, such as caspase- and glycolysis-related gene
expression changes, which is similar to previous reports regarding
N-methyl-N-nitrosourea-treated animals; however,
caspase- and glycolysis-related gene expressions did not change or changed unexpectedly in
the whole globe samples. Analyses of the laser capture microdissection samples revealed
new potential candidate genes involved in the modes of action of
N-methyl-N-nitrosourea-induced retinal toxicity.
Collectively, our results suggest that specific retinal layers, which may be targeted by
specific toxins, are beneficial in identifying genes responsible for drug-induced ocular
toxicity.
Collapse
Affiliation(s)
- Makoto SHIRAI
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-0081, Japan
| | - Noriyo NIINO
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-0081, Japan
| | - Kazuhiko MORI
- Daiichi Sankyo RD Novare Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Kiyonori KAI
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-0081, Japan
| |
Collapse
|
5
|
Maiese K. Nicotinamide as a Foundation for Treating Neurodegenerative Disease and Metabolic Disorders. Curr Neurovasc Res 2021; 18:134-149. [PMID: 33397266 PMCID: PMC8254823 DOI: 10.2174/1567202617999210104220334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023]
Abstract
Neurodegenerative disorders impact more than one billion individuals worldwide and are intimately tied to metabolic disease that can affect another nine hundred individuals throughout the globe. Nicotinamide is a critical agent that may offer fruitful prospects for neurodegenerative diseases and metabolic disorders, such as diabetes mellitus. Nicotinamide protects against multiple toxic environments that include reactive oxygen species exposure, anoxia, excitotoxicity, ethanolinduced neuronal injury, amyloid (Aß) toxicity, age-related vascular disease, mitochondrial dysfunction, insulin resistance, excess lactate production, and loss of glucose homeostasis with pancreatic β-cell dysfunction. However, nicotinamide offers cellular protection in a specific concentration range, with dosing outside of this range leading to detrimental effects. The underlying biological pathways of nicotinamide that involve the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), and mammalian forkhead transcription factors (FoxOs) may offer insight for the clinical translation of nicotinamide into a safe and efficacious therapy through the modulation of oxidative stress, apoptosis, and autophagy. Nicotinamide is a highly promising target for the development of innovative strategies for neurodegenerative disorders and metabolic disease, but the benefits of this foundation depend greatly on gaining a further understanding of nicotinamide's complex biology.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022
| |
Collapse
|
6
|
Chen HY, Kelley RA, Li T, Swaroop A. Primary cilia biogenesis and associated retinal ciliopathies. Semin Cell Dev Biol 2020; 110:70-88. [PMID: 32747192 PMCID: PMC7855621 DOI: 10.1016/j.semcdb.2020.07.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/14/2020] [Accepted: 07/18/2020] [Indexed: 12/19/2022]
Abstract
The primary cilium is a ubiquitous microtubule-based organelle that senses external environment and modulates diverse signaling pathways in different cell types and tissues. The cilium originates from the mother centriole through a complex set of cellular events requiring hundreds of distinct components. Aberrant ciliogenesis or ciliary transport leads to a broad spectrum of clinical entities with overlapping yet highly variable phenotypes, collectively called ciliopathies, which include sensory defects and syndromic disorders with multi-organ pathologies. For efficient light detection, photoreceptors in the retina elaborate a modified cilium known as the outer segment, which is packed with membranous discs enriched for components of the phototransduction machinery. Retinopathy phenotype involves dysfunction and/or degeneration of the light sensing photoreceptors and is highly penetrant in ciliopathies. This review will discuss primary cilia biogenesis and ciliopathies, with a focus on the retina, and the role of CP110-CEP290-CC2D2A network. We will also explore how recent technologies can advance our understanding of cilia biology and discuss new paradigms for developing potential therapies of retinal ciliopathies.
Collapse
Affiliation(s)
- Holly Y Chen
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, MD 20892, USA.
| | - Ryan A Kelley
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, MD 20892, USA
| | - Tiansen Li
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, MD 20892, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
7
|
Abstract
Metabolic disorders, such as diabetes mellitus (DM), are increasingly becoming significant risk factors for the health of the global population and consume substantial portions of the gross domestic product of all nations. Although conventional therapies that include early diagnosis, nutritional modification of diet, and pharmacological treatments may limit disease progression, tight serum glucose control cannot prevent the onset of future disease complications. With these concerns, novel strategies for the treatment of metabolic disorders that involve the vitamin nicotinamide, the mechanistic target of rapamycin (mTOR), mTOR Complex 1 (mTORC1), mTOR Complex 2 (mTORC2), AMP activated protein kinase (AMPK), and the cellular pathways of autophagy and apoptosis offer exceptional promise to provide new avenues of treatment. Oversight of these pathways can promote cellular energy homeostasis, maintain mitochondrial function, improve glucose utilization, and preserve pancreatic beta-cell function. Yet, the interplay among mTOR, AMPK, and autophagy pathways can be complex and affect desired clinical outcomes, necessitating further investigations to provide efficacious treatment strategies for metabolic dysfunction and DM.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022,
| |
Collapse
|
8
|
Maiese K. Nicotinamide: Oversight of Metabolic Dysfunction Through SIRT1, mTOR, and Clock Genes. Curr Neurovasc Res 2020; 17:765-783. [PMID: 33183203 PMCID: PMC7914159 DOI: 10.2174/1567202617999201111195232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022]
Abstract
Metabolic disorders that include diabetes mellitus present significant challenges for maintaining the welfare of the global population. Metabolic diseases impact all systems of the body and despite current therapies that offer some protection through tight serum glucose control, ultimately such treatments cannot block the progression of disability and death realized with metabolic disorders. As a result, novel therapeutic avenues are critical for further development to address these concerns. An innovative strategy involves the vitamin nicotinamide and the pathways associated with the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), the mechanistic target of rapamycin (mTOR), mTOR Complex 1 (mTORC1), mTOR Complex 2 (mTORC2), AMP activated protein kinase (AMPK), and clock genes. Nicotinamide maintains an intimate relationship with these pathways to oversee metabolic disease and improve glucose utilization, limit mitochondrial dysfunction, block oxidative stress, potentially function as antiviral therapy, and foster cellular survival through mechanisms involving autophagy. However, the pathways of nicotinamide, SIRT1, mTOR, AMPK, and clock genes are complex and involve feedback pathways as well as trophic factors such as erythropoietin that require a careful balance to ensure metabolic homeostasis. Future work is warranted to gain additional insight into these vital pathways that can oversee both normal metabolic physiology and metabolic disease.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022
| |
Collapse
|
9
|
N-Methyl- N-Nitrosourea-Induced Photoreceptor Degeneration Is Inhibited by Nicotinamide via the Blockade of Upstream Events before the Phosphorylation of Signalling Proteins. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3238719. [PMID: 31179317 PMCID: PMC6507250 DOI: 10.1155/2019/3238719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/09/2019] [Accepted: 04/15/2019] [Indexed: 01/12/2023]
Abstract
N-methyl-N-nitrosourea (MNU), a known carcinogen, is generally used in animal models to chemically induce photoreceptor degeneration. It has been reported that nicotinamide (NAM) exerts a protective effect on MNU-induced photoreceptor degeneration. We investigated the molecular mechanisms on MNU-induced photoreceptor degeneration. Intraperitoneal MNU injection (75 mg/kg) in rats induced selective photoreceptor degeneration in 7 days. NAM administration completely inhibited photoreceptor degeneration. Photoreceptor layer abnormality was observed within 6 hours after MNU injection, whereas it was restored in the NAM-treated retina, as detected by optical coherence tomography. One day following MNU administration, phosphorylation of the cell death-associated signalling proteins c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38) increased, while the apoptosis-related proteins, full-length poly(ADP-ribose) polymerase (PARP) and apoptosis-inducing factor (AIF), were depleted. These changes were not observed in the NAM-treated retinas. Cell survival signalling, such as extracellular signal-regulated kinase (ERK), Akt, and cAMP response element binding protein (CREB) phosphorylation, increased in the MNU- but not in the NAM-treated rat retinas. Increased phosphorylated ERK (p-ERK) levels were observed within 6 hours after MNU administration, suggestive of cell survival signalling activation. This did not occur in NAM-treated retinas. These results indicate that NAM regulates upstream cellular events prior to the activation of cell death-related signalling events, such as JNK and p38 phosphorylation.
Collapse
|
10
|
Hu CB, Sui BD, Wang BY, Li G, Hu CH, Zheng CX, Du FY, Zhu CH, Li HB, Feng Y, Jin Y, Yu XR. NDRG2 suppression as a molecular hallmark of photoreceptor-specific cell death in the mouse retina. Cell Death Discov 2018; 4:32. [PMID: 30245855 PMCID: PMC6135825 DOI: 10.1038/s41420-018-0101-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 08/23/2018] [Indexed: 02/07/2023] Open
Abstract
Photoreceptor cell death is recognized as the key pathogenesis of retinal degeneration, but the molecular basis underlying photoreceptor-specific cell loss in retinal damaging conditions is virtually unknown. The N-myc downstream regulated gene (NDRG) family has recently been reported to regulate cell viability, in particular NDRG1 has been uncovered expression in photoreceptor cells. Accordingly, we herein examined the potential roles of NDRGs in mediating photoreceptor-specific cell loss in retinal damages. By using mouse models of retinal degeneration and the 661 W photoreceptor cell line, we showed that photoreceptor cells are indeed highly sensitive to light exposure and the related oxidative stress, and that photoreceptor cells are even selectively diminished by phototoxins of the alkylating agent N-Methyl-N-nitrosourea (MNU). Unexpectedly, we discovered that of all the NDRG family members, NDRG2, but not the originally hypothesized NDRG1 or other NDRG subtypes, was selectively expressed and specifically responded to retinal damaging conditions in photoreceptor cells. Furthermore, functional experiments proved that NDRG2 was essential for photoreceptor cell viability, which could be attributed to NDRG2 control of the photo-oxidative stress, and that it was the suppression of NDRG2 which led to photoreceptor cell loss in damaging conditions. More importantly, NDRG2 preservation contributed to photoreceptor-specific cell maintenance and retinal protection both in vitro and in vivo. Our findings revealed a previously unrecognized role of NDRG2 in mediating photoreceptor cell homeostasis and established for the first time the molecular hallmark of photoreceptor-specific cell death as NDRG2 suppression, shedding light on improved understanding and therapy of retinal degeneration.
Collapse
Affiliation(s)
- Cheng-Biao Hu
- 1Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061 Xi'an, Shaanxi China.,2Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi Sheng China
| | - Bing-Dong Sui
- 3State Key Laboratory of Military Stomatology, Center for Tissue Engineering, Fourth Military Medical University, 710032 Xi'an, Shaanxi China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, 710032 Xi'an, Shaanxi China
| | - Bao-Ying Wang
- 1Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061 Xi'an, Shaanxi China.,2Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi Sheng China
| | - Gao Li
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, 710032 Xi'an, Shaanxi China.,5Department of Stomatology, The People's Hospital of Zhangqiu City, 250200 Zhangqiu, Shandong China
| | - Cheng-Hu Hu
- 3State Key Laboratory of Military Stomatology, Center for Tissue Engineering, Fourth Military Medical University, 710032 Xi'an, Shaanxi China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, 710032 Xi'an, Shaanxi China
| | - Chen-Xi Zheng
- 3State Key Laboratory of Military Stomatology, Center for Tissue Engineering, Fourth Military Medical University, 710032 Xi'an, Shaanxi China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, 710032 Xi'an, Shaanxi China
| | - Fang-Ying Du
- 1Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061 Xi'an, Shaanxi China.,2Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi Sheng China
| | - Chun-Hui Zhu
- 1Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061 Xi'an, Shaanxi China.,2Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi Sheng China
| | - Hong-Bo Li
- 1Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061 Xi'an, Shaanxi China.,2Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi Sheng China
| | - Yan Feng
- 1Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061 Xi'an, Shaanxi China.,2Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi Sheng China
| | - Yan Jin
- 3State Key Laboratory of Military Stomatology, Center for Tissue Engineering, Fourth Military Medical University, 710032 Xi'an, Shaanxi China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, 710032 Xi'an, Shaanxi China
| | - Xiao-Rui Yu
- 1Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061 Xi'an, Shaanxi China.,2Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi Sheng China
| |
Collapse
|
11
|
Wang B, Hu C, Yang X, Du F, Feng Y, Li H, Zhu C, Yu X. Inhibition of GSK-3β Activation Protects SD Rat Retina Against N-Methyl-N-Nitrosourea-Induced Degeneration by Modulating the Wnt/β-Catenin Signaling Pathway. J Mol Neurosci 2017; 63:233-242. [PMID: 28929374 DOI: 10.1007/s12031-017-0973-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/08/2017] [Indexed: 01/01/2023]
Abstract
Retinal degenerative diseases are characterized by photoreceptor cell loss. Photoreceptor cell loss leading to retinal degeneration can be induced by N-methyl-N-nitrosourea (MNU), which was widely used to mimic the pathology. However, the mechanism by which MNU induces photoreceptor cell loss is still largely unknown. The purpose of the present study was to investigate whether phosphorylation of glycogen synthase kinase-3β (p-GSK-3β) is a potent mediator of MNU-induced retinal degeneration and how p-GSK-3β affects the process. MNU-induced photoreceptor cell loss was evaluated in Sprague-Dawley (SD) rat retinas. GSK-3β and Akt expression levels did not change during MNU-induced retinal degeneration but the phosphorylation of GSK-3β and Akt was decreased by MNU treatment. Lithium chloride (LiCl), which increases p-GSK-3β level and active-β-catenin level, reversed retinal degeneration induced by MNU treatment. These results suggest that GSK-3β activation is closely related to photoreceptor cell loss and that the application of the GSK-3β inhibitor LiCl could activate Wnt/β-catenin signaling pathway and reduce photoreceptor cell loss induced by MNU. Our findings indicate that inhibition of GSK-3β activation may be a potential therapeutic target for retinal degeneration induced by photoreceptor cell loss.
Collapse
Affiliation(s)
- Baoying Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Chenghu Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Xiaobei Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Fangying Du
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yan Feng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Hongbo Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Chunhui Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xiaorui Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China. .,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, 710061, People's Republic of China.
| |
Collapse
|
12
|
Song SB, Jang SY, Kang HT, Wei B, Jeoun UW, Yoon GS, Hwang ES. Modulation of Mitochondrial Membrane Potential and ROS Generation by Nicotinamide in a Manner Independent of SIRT1 and Mitophagy. Mol Cells 2017; 40:503-514. [PMID: 28736426 PMCID: PMC5547220 DOI: 10.14348/molcells.2017.0081] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/15/2017] [Indexed: 12/31/2022] Open
Abstract
Nicotinamide (NAM) plays essential roles in physiology through facilitating NAD+ redox homeostasis. Importantly, at high doses, it protects cells under oxidative stresses, and has shown therapeutic effectiveness in a variety of disease conditions. In our previous studies, NAM lowered reactive oxygen species (ROS) levels and extended cellular life span in primary human cells. In the treated cells, levels of NAD+/NADH and SIRT1 activity increased, while mitochondrial content decreased through autophagy activation. The remaining mitochondria were marked with low superoxide levels and high membrane potentials (Δψm); we posited that the treatment of NAM induced an activation of mitophagy that is selective for depolarized mitochondria, which produce high levels of ROS. However, evidence for the selective mitophagy that is mediated by SIRT1 has never been provided. This study sought to explain the mechanisms by which NAM lowers ROS levels and increases Δψm. Our results showed that NAM and SIRT1 activation exert quite different effects on mitochondrial physiology. Furthermore, the changes in ROS and Δψm were not found to be mediated through autophagy or SIRT activation. Rather, NAM suppressed superoxide generation via a direct reduction of electron transport, and increased Δψm via suppression of mitochondrial permeability transition pore formation. Our results dissected the effects of cellular NAD+ redox modulation, and emphasized the importance of the NAD+/NADH ratio in the mitochondria as well as the cytosol in maintaining mitochondrial quality.
Collapse
Affiliation(s)
- Seon Beom Song
- Department of Life Science, University of Seoul, Seoul 02504,
Korea
| | - So-Young Jang
- Department of Life Science, University of Seoul, Seoul 02504,
Korea
| | - Hyun Tae Kang
- Department of Life Science, University of Seoul, Seoul 02504,
Korea
| | - Bie Wei
- Department of Life Science, University of Seoul, Seoul 02504,
Korea
| | - Un-woo Jeoun
- Department of Biomedical Science and Department of Biochemistry, Ajou University School of Medicine, Suwon 16499,
Korea
| | - Gye Soon Yoon
- Department of Biomedical Science and Department of Biochemistry, Ajou University School of Medicine, Suwon 16499,
Korea
| | - Eun Seong Hwang
- Department of Life Science, University of Seoul, Seoul 02504,
Korea
| |
Collapse
|
13
|
Koriyama Y, Sugitani K, Ogai K, Kato S. Heat shock protein 70 induction by valproic acid delays photoreceptor cell death by N-methyl-N-nitrosourea in mice. J Neurochem 2014; 130:707-19. [PMID: 24773621 DOI: 10.1111/jnc.12750] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 04/18/2014] [Accepted: 04/28/2014] [Indexed: 12/28/2022]
Abstract
Retinal degenerative diseases (RDs) are a group of inherited diseases characterized by the loss of photoreceptor cells. Selective photoreceptor loss can be induced in mice by an intraperitoneal injection of N-methyl-N-nitrosourea (MNU) and, because of its selectivity, this model is widely used to study the mechanism of RDs. Although it is known that calcium-calpain activation and lipid peroxidation are involved in the initiation of cell death, the precise mechanisms of this process remain unknown. Heat shock protein 70 (HSP70) has been shown to function as a chaperone molecule to protect cells against environmental and physiological stresses. In this study, we investigated the role of HSP70 on photoreceptor cell death in mice. HSP70 induction by valproic acid, a histone deacetylase inhibitor, attenuated the photoreceptor cell death by MNU through inhibition of apoptotic caspase signals. Furthermore, HSP70 itself was rapidly and calpain-dependently cleaved after MNU treatment. Therefore, HSP70 induction by valproic acid was dually effective against MNU-induced photoreceptor cell loss as a result of its anti-apoptotic actions and its ability to prevent HSP70 degradation. These findings might help lead us to a better understanding of the pathogenic mechanism of RDs. Retinal degenerative diseases are characterized by the loss of photoreceptor cells. We proposed the following cascade for N-methyl-N-nitrosourea (MNU)-induced photoreceptor cell death: MNU gives rise to cleavage of heat shock protein 70 (HSP70); HSP70 induction by valproic acid (VPA) is dually effective against MNU-induced photoreceptor cell loss because of its anti-apoptotic actions and its ability to prevent HSP70 degradation. We hope that the present study heralds a new era in developing therapeutic tools against retinal degenerative diseases.
Collapse
Affiliation(s)
- Yoshiki Koriyama
- Department of Molecular Neurobiology, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan; Graduate School and Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan
| | | | | | | |
Collapse
|
14
|
Maiese K, Chong ZZ, Shang YC, Hou J. Novel avenues of drug discovery and biomarkers for diabetes mellitus. J Clin Pharmacol 2011; 51:128-52. [PMID: 20220043 PMCID: PMC3033756 DOI: 10.1177/0091270010362904] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Globally, developed nations spend a significant amount of their resources on health care initiatives that poorly translate into increased population life expectancy. As an example, the United States devotes 16% of its gross domestic product to health care, the highest level in the world, but falls behind other nations that enjoy greater individual life expectancy. These observations point to the need for pioneering avenues of drug discovery to increase life span with controlled costs. In particular, innovative drug development for metabolic disorders such as diabetes mellitus becomes increasingly critical given that the number of diabetic people will increase exponentially over the next 20 years. This article discusses the elucidation and targeting of novel cellular pathways that are intimately tied to oxidative stress in diabetes mellitus for new treatment strategies. Pathways that involve wingless, β-nicotinamide adenine dinucleotide (NAD(+)) precursors, and cytokines govern complex biological pathways that determine both cell survival and longevity during diabetes mellitus and its complications. Furthermore, the role of these entities as biomarkers for disease can further enhance their utility irrespective of their treatment potential. Greater understanding of the intricacies of these unique cellular mechanisms will shape future drug discovery for diabetes mellitus to provide focused clinical care with limited or absent long-term complications.
Collapse
Affiliation(s)
- Kenneth Maiese
- Department of Neurology, 8C-1 UHC, Wayne State University School of Medicine, 4201 St. Antoine, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
15
|
Maiese K, Shang YC, Chong ZZ, Hou J. Diabetes mellitus: channeling care through cellular discovery. Curr Neurovasc Res 2010; 7:59-64. [PMID: 20158461 DOI: 10.2174/156720210790820217] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 12/29/2009] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus (DM) impacts a significant portion of the world's population and care for this disorder places an economic burden on the gross domestic product for any particular country. Furthermore, both Type 1 and Type 2 DM are becoming increasingly prevalent and there is increased incidence of impaired glucose tolerance in the young. The complications of DM are protean and can involve multiple systems throughout the body that are susceptible to the detrimental effects of oxidative stress and apoptotic cell injury. For these reasons, innovative strategies are necessary for the implementation of new treatments for DM that are generated through the further understanding of cellular pathways that govern the pathological consequences of DM. In particular, both the precursor for the coenzyme beta-nicotinamide adenine dinucleotide (NAD(+)), nicotinamide, and the growth factor erythropoietin offer novel platforms for drug discovery that involve cellular metabolic homeostasis and inflammatory cell control. Interestingly, these agents and their tightly associated pathways that consist of cell cycle regulation, protein kinase B, forkhead transcription factors, and Wnt signaling also function in a broader sense as biomarkers for disease onset and progression.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | | | |
Collapse
|
16
|
Somps CJ, Greene N, Render JA, Aleo MD, Fortner JH, Dykens JA, Phillips G. A current practice for predicting ocular toxicity of systemically delivered drugs. Cutan Ocul Toxicol 2009; 28:1-18. [PMID: 19514919 DOI: 10.1080/15569520802618585] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The ability to predict ocular side effects of systemically delivered drugs is an important issue for pharmaceutical companies. Although animal models involving standard clinical ophthalmic examinations and postmortem microscopic examinations of eyes are still used to identify ocular issues, these methods are being supplemented with additional in silico, in vitro, and in vivo techniques to identify potential safety issues and assess risk. The addition of these tests to a development plan for a potential new drug provides the opportunity to save time and money by detecting ocular issues earlier in the program. This review summarizes a current practice for minimizing the potential for systemically administered, new medicines to cause adverse effects in the eye.
Collapse
Affiliation(s)
- Chris J Somps
- Drug Safety Research & Development, Pfizer Global R & D, Groton, CT 06340, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Maiese K, Chong ZZ, Hou J, Shang YC. The vitamin nicotinamide: translating nutrition into clinical care. Molecules 2009; 14:3446-85. [PMID: 19783937 PMCID: PMC2756609 DOI: 10.3390/molecules14093446] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 09/08/2009] [Accepted: 09/08/2009] [Indexed: 12/13/2022] Open
Abstract
Nicotinamide, the amide form of vitamin B(3) (niacin), is changed to its mononucleotide compound with the enzyme nicotinic acide/nicotinamide adenylyltransferase, and participates in the cellular energy metabolism that directly impacts normal physiology. However, nicotinamide also influences oxidative stress and modulates multiple pathways tied to both cellular survival and death. During disorders that include immune system dysfunction, diabetes, and aging-related diseases, nicotinamide is a robust cytoprotectant that blocks cellular inflammatory cell activation, early apoptotic phosphatidylserine exposure, and late nuclear DNA degradation. Nicotinamide relies upon unique cellular pathways that involve forkhead transcription factors, sirtuins, protein kinase B (Akt), Bad, caspases, and poly (ADP-ribose) polymerase that may offer a fine line with determining cellular longevity, cell survival, and unwanted cancer progression. If one is cognizant of the these considerations, it becomes evident that nicotinamide holds great potential for multiple disease entities, but the development of new therapeutic strategies rests heavily upon the elucidation of the novel cellular pathways that nicotinamide closely governs.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | | | |
Collapse
|
18
|
Wan J, Zheng H, Chen ZL, Xiao HL, Shen ZJ, Zhou GM. Preferential regeneration of photoreceptor from Müller glia after retinal degeneration in adult rat. Vision Res 2008; 48:223-34. [DOI: 10.1016/j.visres.2007.11.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Revised: 11/01/2007] [Accepted: 11/04/2007] [Indexed: 11/17/2022]
|
19
|
Miki K, Uehara N, Shikata N, Matsumura M, Tsubura A. Poly (ADP-ribose) polymerase inhibitor 3-aminobenzamide rescues N-methyl-N-nitrosourea-induced photoreceptor cell apoptosis in Sprague-Dawley rats through preservation of nuclear factor-kappaB activity. Exp Eye Res 2006; 84:285-92. [PMID: 17137578 DOI: 10.1016/j.exer.2006.09.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 09/22/2006] [Accepted: 09/29/2006] [Indexed: 11/23/2022]
Abstract
The activation of poly (ADP-ribose) polymerase (PARP) plays a pivotal role in mediating N-methyl-N-nitrosourea (MNU)-induced photoreceptor cell apoptosis. We examined the retinoprotective effects of the PARP inhibitor 3-aminobenzamide (3-AB) against MNU-induced retinal damage in relation to dose and timing of prescription, and the involvement of the transcription factor nuclear factor (NF)-kappaB. Female Sprague-Dawley rats were intraperitoneally injected with 60 mg/kg MNU at 50 days of age, and were then immediately given a subcutaneous injection of 0, 1, 5, 10, 30 or 50 mg/kg of 3-AB, or were injected with 50 mg/kg 3-AB 12h before, concurrently, or 4, 6 or 12h after MNU. Rats were killed 3 and 7 days after MNU, and MNU-treated and 3-AB-injected retinas were compared with MNU-untreated control retinas or MNU-treated/3-AB-uninjected retinas. Apoptosis in photoreceptor cells was detected by performing formamide-induced DNA denaturation and staining with anti-single-stranded DNA antibody. Retinal morphologies were compared and evaluated morphometrically using the photoreceptor cell ratio and retinal damage ratio as indices to evaluate the efficacy of 3-AB. We examined expression of the phosphorylated form of NF-kappaB and IkappaBalpha (p-NF-kappaB and p-IkappaBalpha, respectively) in retinas of MNU-treated rats concurrently treated with or without 50mg/kg 3-AB, compared with MNU-untreated control retinas. 3-AB dose-dependently suppressed photoreceptor cell apoptosis: 50mg/kg 3-AB injected concurrently with MNU completely rescued photoreceptor cell damage; 30 mg/kg 3-AB significantly reduced photoreceptor cell damage; 10 mg/kg 3-AB tended to suppress photoreceptor cell damage; <or=5mg/kg 3-AB was ineffective. When 50mg/kg 3-AB was injected 12h before or >or=4h after MNU, it did not exert a retinoprotective effect. p-NF-kappaB levels of MNU-treated rat retinas were significantly lower than those of MNU-untreated control retinas, while 50 mg/kg 3-AB injected concurrently with MNU preserved the p-NF-kappaB levels; p-IkappaBalpha levels tended to decrease after MNU injection, compared with untreated control retinas, but the difference was not significant. Thus, 3-AB dose-dependently suppressed MNU-induced retinal damage, and 50mg/kg 3-AB injected concurrently with MNU completely rescued photoreceptor cell apoptosis via preservation of NF-kappaB activity.
Collapse
Affiliation(s)
- Katsuaki Miki
- Second Department of Pathology, Kansai Medical University, Moriguchi, Osaka 570-8506, Japan.
| | | | | | | | | |
Collapse
|
20
|
Girgis AS, Hosni HM, Barsoum FF. Novel synthesis of nicotinamide derivatives of cytotoxic properties. Bioorg Med Chem 2006; 14:4466-76. [PMID: 16524735 DOI: 10.1016/j.bmc.2006.02.031] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2005] [Revised: 02/15/2006] [Accepted: 02/15/2006] [Indexed: 11/19/2022]
Abstract
A variety of 2-substituted-4,6-diaryl-3-pyridinecarboxamides 5 were synthesized through aromatic nucleophilic substitution reaction of secondary amines with 2-bromo analogues 4. The latter were obtained via bromination of 2-cyano-3,5-diaryl-5-oxo-N-substituted pentamides 3 in glacial acetic acid. Moreover, pentamide derivatives 3 were prepared through base-catalyzed Michael addition of cyanacetanilides 2 with 1,3-diaryl-2-propen-1-ones 1. Otherwise, reaction of 2-bromo-3-pyridinecarboxamides 4 with primary aromatic amines in refluxing pyridine afforded the corresponding 2-(arylamino)-3-pyridinecarboxamides 6 besides the unexpected 2-unsubstituted amino analogues 7. Antitumor properties of the synthesized pyridinecarboxamides utilizing 59 different human tumor cell lines, representing leukemia, melanoma, and cancers of the lung, colon, brain, ovary, breast, prostate as well as kidney, were screened. Many of the tested compounds show considerable in vitro antitumor properties especially 5c and 7a, which reveal moderate activities against most of the used human tumor cell lines. It has also been achieved that, all the tested nicotinamide derivatives reveal promising antitumor properties against MDA-MB-231/ATCC (breast cancer).
Collapse
Affiliation(s)
- Adel S Girgis
- Pesticide Chemistry Department, National Research Centre, Dokki, Cairo, Egypt.
| | | | | |
Collapse
|
21
|
Uehara N, Miki K, Tsukamoto R, Matsuoka Y, Tsubura A. Nicotinamide blocks N-methyl-N-nitrosourea-induced photoreceptor cell apoptosis in rats through poly (ADP-ribose) polymerase activity and Jun N-terminal kinase/activator protein-1 pathway inhibition. Exp Eye Res 2005; 82:488-95. [PMID: 16168987 DOI: 10.1016/j.exer.2005.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 07/23/2005] [Accepted: 08/08/2005] [Indexed: 10/25/2022]
Abstract
Nicotinamide (NAM) blocks N-methyl-N-nitrosourea (MNU)-induced photoreceptor cell apoptosis in rats, though the underlying molecular mechanisms remain unclear. Activation of the nuclear enzyme poly (ADP-ribose) polymerase (PARP) in response to DNA damage plays a pivotal role in apoptosis. Thus, the role of NAM in the regulation of PARP and Jun N-terminal kinase (JNK)/activator protein-1 (AP-1) was investigated by Western blot analyses. During 7 days after the intraperitoneal injection of MNU (60 mg/kg), rat retinas exhibited DNA fragmentation characteristic of apoptosis and activation of PARP, phosphorylation of JNK and c-Jun, induction of AP-1 (c-Jun and c-Fos) and Bax, as well as photoreceptor cell loss. However, when NAM (1000 mg/kg, subcutaneously) was given immediately after MNU, it was found that PARP activation was diminished, the phosphorylation of JNK and c-Jun was suppressed, and the induction of c-Jun, c-Fos and Bax was suppressed. This resulted in the retinal structure being protected. Therefore, NAM blocked MNU-induced photoreceptor cell apoptosis by inhibiting both PARP activity and the JNK/AP-1 signalling pathway.
Collapse
Affiliation(s)
- Norihisa Uehara
- Department of Pathology II, Kansai Medical University, 10-15 Fumizono, Moriguchi, Osaka 570-8506, Japan.
| | | | | | | | | |
Collapse
|
22
|
Chong ZZ, Lin SH, Li F, Maiese K. The sirtuin inhibitor nicotinamide enhances neuronal cell survival during acute anoxic injury through AKT, BAD, PARP, and mitochondrial associated "anti-apoptotic" pathways. Curr Neurovasc Res 2005; 2:271-85. [PMID: 16181120 PMCID: PMC1986682 DOI: 10.2174/156720205774322584] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Understanding the role of nicotinamide (NIC) in different cell systems represents a significant challenge in several respects. Recently, NIC has been reported to have diverse roles during cell biology. In the absence of NIC, sirtuin protein activity is enhanced and pyrazinamidase/nicotinamidase 1 (PNC1) expression, an enzyme that deaminates NIC to convert NIC into nicotinic acid, is increased to lead to lifespan extension during calorie restriction, at least in yeast. Yet, NIC may be critical for cell survival as well as the modulation of inflammatory injury during both experimental models as well as in clinical studies. We therefore investigated some of the underlying signal transduction pathways that could be critical for the determination of the neuroprotective properties of NIC. We examined neuronal injury by trypan blue exclusion, DNA fragmentation, phosphatidylserine (PS) exposure, Akt1 phosphorylation, Bad phosphorylation, mitochondrial membrane potential, caspase activity, cleavage of poly(ADP-ribose) polymerase (PARP), and mitogen-activated protein kinases (MAPKs) phosphorylation. Application of NIC (12.5 mM) significantly increased neuronal survival from 38 -/+ 3% of anoxia treated alone to 68 +/- 3%, decreased DNA fragmentation and membrane PS exposure from 67 -/+ 4% and 61 -/+ 5% of anoxia treated alone to 30 +/- 4% and 26 +/- 4% respectively. We further demonstrate that NIC functions through Akt1 activation, Bad phosphorylation, and the downstream modulation of mitochrondrial membrane potential, cytochrome c release, caspase 1, 3, and 8 - like activities, and PARP integrity to prevent genomic DNA degradation and PS externalization during anoxia. Yet, NIC does not alter the activity of either the MAPKs p38 or JNK, suggesting that protection by NIC during anoxia is independent of the p38 and JNK pathways. Additional investigations targeted to elucidate the cellular pathways responsible for the ability of NIC to modulate both lifespan extension and cytoprotection may offer critical insight for the development of new therapies for nervous system disorders.
Collapse
Affiliation(s)
- Zhao-Zhong Chong
- Division of Cellular and Molecular Cerebal Ischemia, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
23
|
Williams AC, Cartwright LS, Ramsden DB. Parkinson's disease: the first common neurological disease due to auto-intoxication? QJM 2005; 98:215-26. [PMID: 15728403 DOI: 10.1093/qjmed/hci027] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease may be a disease of autointoxication. N-methylated pyridines (e.g. MPP+) are well-established dopaminergic toxins, and the xenobiotic enzyme nicotinamide N-methyltransferase (NNMT) can convert pyridines such as 4-phenylpyridine into MPP+, using S-adenosyl methionine (SAM) as the methyl donor. NNMT has recently been shown to be present in the human brain, a necessity for neurotoxicity, because charged compounds cannot cross the blood-brain barrier. Moreover, it is present in increased concentration in parkinsonian brain. This increase may be part genetic predisposition, and part induction, by excessive exposure to its substrates (particularly nicotinamide) or stress. Elevated enzymic activity would increase MPP+-like compounds such as N-methyl nicotinamide at the same time as decreasing intraneuronal nicotinamide, a neuroprotectant at several levels, creating multiple hits, because Complex 1 would be poisoned and be starved of its major substrate NADH. Developing xenobiotic enzyme inhibitors of NNMT for individuals, or dietary modification for the whole population, could be an important change in thinking on primary and secondary prevention.
Collapse
Affiliation(s)
- A C Williams
- Division of Neurosciences, University of Birmingham, Edgbaston, Birmingham.
| | | | | |
Collapse
|
24
|
Chong ZZ, Lin SH, Maiese K. The NAD+ precursor nicotinamide governs neuronal survival during oxidative stress through protein kinase B coupled to FOXO3a and mitochondrial membrane potential. J Cereb Blood Flow Metab 2004; 24:728-43. [PMID: 15241181 DOI: 10.1097/01.wcb.0000122746.72175.0e] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nicotinamide, a beta-nicotinamide adenine dinucleotide (NAD) precursor and an essential nutrient for cell growth and function, may offer critical insights into the specific cellular mechanisms that determine neuronal survival, since this agent significantly impacts upon both neuronal and vascular integrity in the central nervous system. The authors show that nicotinamide provides broad, but concentration-specific, protection against apoptotic genomic DNA fragmentation and membrane phosphatidylserine exposure during oxidative stress to secure cellular integrity and prevent phagocytic cellular demise. Activation of the protein kinase B (Akt1) pathway is a necessary requirement for nicotinamide protection, because transfection of primary hippocampal neurons with a plasmid encoding a kinase-deficient dominant-negative Akt1 as well as pharmacologic inhibition of phosphatidylinositol-3-kinase phosphorylation of Akt1 eliminates cytoprotection by nicotinamide. Nicotinamide fosters neuronal survival through a series of intimately associated pathways. At one level, nicotinamide directly modulates mitochondrial membrane potential and pore formation to prevent cytochrome c release and caspase-3-and 9-like activities through mechanisms that are independent of the apoptotic protease activating factor-1. At a second level, nicotinamide maintains an inhibitory phosphorylation of the forkhead transcription factor FOXO3a at the regulatory sites of Thr and Ser and governs a unique regulatory loop that prevents the degradation of phosphorylated FOXO3a by caspase-3. Their work elucidates some of the unique neuro-protective pathways used by the essential cellular nutrient nicotinamide that may direct future therapeutic approaches for neurodegenerative disorders.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Division of Cellular and Molecular Cerebral Ischemia, Center for Molecular Medicine and Genetics, Institute of Environmental Health Sciences, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
25
|
Moriguchi K, Yuri T, Yoshizawa K, Kiuchi K, Takada H, Inoue Y, Hada T, Matsumura M, Tsubura A. Dietary docosahexaenoic acid protects against N-methyl-N-nitrosourea-induced retinal degeneration in rats. Exp Eye Res 2003; 77:167-73. [PMID: 12873446 DOI: 10.1016/s0014-4835(03)00114-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The effect of dietary intake of specific types of fatty acids on retinal degeneration due to N-methyl-N-nitrosourea (MNU)-induced photoreceptor cell apoptosis was evaluated. Fifty-day-old female Sprague-Dawley rats were given a single intraperitoneal injection of 50 mg kg(-1) body weight of MNU, and were then switched to one of five different diets containing the following fatty acids at the following weight percentages: 10% linoleic acid (LA); 9.5% palmitic acid (PA) and 0.5% LA; 9.5% eicosapentaenoic acid (EPA) and 0.5% LA; 4.75% EPA, 4.75% docosahexaenoic acid (DHA) and 0.5% LA; or 9.5% DHA and 0.5% LA. When rats developed MNU-induced mammary tumors with a diameter of > or =1 cm, or at the termination of the experiment (20 weeks after MNU injection), retinal tissue samples were obtained and examined. Incidence and severity of retinal damage were compared by histologic examination. MNU-induced retinal degeneration was prevented in rats fed the diet containing 9.5% DHA (4.75% DHA was less effective), whereas it was accelerated in rats fed the 10% LA diet. Over the course of the 20-week experimental period, the fatty acid composition of serum reflected differences in dietary fatty acids. The present results indicate that a diet containing 9.5% DHA can counteract MNU retinotoxicity in the rat retina. DHA may play a role in protection against MNU-induced photoreceptor cell apoptosis in the rat retina.
Collapse
Affiliation(s)
- Kaei Moriguchi
- Department of Pathology II, Kansai Medical University, Moriguchi, Osaka 570-8506, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Maiese K, Chong ZZ. Nicotinamide: necessary nutrient emerges as a novel cytoprotectant for the brain. Trends Pharmacol Sci 2003; 24:228-32. [PMID: 12767721 DOI: 10.1016/s0165-6147(03)00078-6] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although usually identified as an essential cellular nutrient for cellular growth and maintenance, nicotinamide is under development as a novel cytoprotectant for acute and chronic neurodegenerative disorders. Here, we outline support for the premise that nicotinamide both prevents and reverses neuronal and vascular cell injury. Nicotinamide fosters DNA integrity and maintains phosphatidylserine membrane asymmetry to prevent cellular inflammation, cellular phagocytosis and vascular thrombosis. The downstream cellular and molecular cascades are considered vital for the cytoprotection offered by nicotinamide. These pathways encompass the modulation of Akt, the forkhead transcription factor FKHRL1, mitochondrial membrane potential, caspase activities and cellular energy metabolism, but remain independent of intracellular pH and mitogen-activated protein kinases. As both a therapeutic agent and an investigational tool, nicotinamide offers new therapeutic strategies for degenerative disorders of the CNS.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University, School of Medicine Detroit, St Antoine, MI 48201, USA.
| | | |
Collapse
|
27
|
Tsubura A, Yoshizawa K, Kiuchi K, Moriguchi K. N-Methyl-N-nitrosourea-induced Retinal Degeneration in Animals. Acta Histochem Cytochem 2003. [DOI: 10.1267/ahc.36.263] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Airo Tsubura
- Department of Pathology, Kansai Medical University
| | - Katsuhiko Yoshizawa
- Department of Pathology, Kansai Medical University
- Department of Toxicologic Pathology, Toxicology Research Laboratories, Fujisawa Pharmaceutical Co. Ltd
| | | | - Kaei Moriguchi
- Department of Pathology, Kansai Medical University
- Department of Ophthalmology, Kansai Medical University
| |
Collapse
|