1
|
Chen P, Ding N, Pan D, Chen X, Li S, Luo Y, Chen Z, Xu Y, Zhu X, Wang K, Zou W. PET imaging for the early evaluation of ocular inflammation in diabetic rats by using [ 18F]-DPA-714. Exp Eye Res 2024; 245:109986. [PMID: 38945519 DOI: 10.1016/j.exer.2024.109986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Ocular complications of diabetes mellitus (DM) are the leading cause of vision loss. Ocular inflammation often occurs in the early stage of DM; however, there are no proven quantitative methods to evaluate the inflammatory status of eyes in DM. The 18 kDa translocator protein (TSPO) is an evolutionarily conserved cholesterol binding protein localized in the outer mitochondrial membrane. It is a biomarker of activated microglia/macrophages; however, its role in ocular inflammation is unclear. In this study, fluorine-18-DPA-714 ([18F]-DPA-714) was evaluated as a specific TSPO probe by cell uptake, cell binding assays and micro positron emission tomography (microPET) imaging in both in vitro and in vivo models. Primary microglia/macrophages (PMs) extracted from the cornea, retina, choroid or sclera of neonatal rats with or without high glucose (50 mM) treatment were used as the in vitro model. Sprague-Dawley (SD) rats that received an intraperitoneal administration of streptozotocin (STZ, 60 mg/kg once) were used as the in vivo model. Increased cell uptake and high binding affinity of [18F]-DPA-714 were observed in primary PMs under hyperglycemic stress. These findings were consistent with cellular morphological changes, cell activation, and TSPO up-regulation. [18F]-DPA-714 PET imaging and biodistribution in the eyes of DM rats revealed that inflammation initiates in microglia/macrophages in the early stages (3 weeks and 6 weeks), corresponding with up-regulated TSPO levels. Thus, [18F]-DPA-714 microPET imaging may be an effective approach for the early evaluation of ocular inflammation in DM.
Collapse
Affiliation(s)
- Peng Chen
- Department of Ophthalmology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China; Department of Ophthalmology, Jintan Affiliated Hospital of Jiangsu University, Changzhou, Jiangsu, China
| | - Nannan Ding
- Department of Ophthalmology, Wuxi No.2 People's Hospital, Jiangnan University Medical Center (JUMC), Wuxi, Jiangsu, China; Department of Ophthalmology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China; Department of Ophthalmology, Affiliated Wuxi Clinical College of Nantong Medical University, Wuxi, Jiangsu, China
| | - Donghui Pan
- National Health Commission (NHC) Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuelian Chen
- Department of Ophthalmology, Affiliated Wuxi Clinical College of Nantong Medical University, Wuxi, Jiangsu, China; Department of Ophthalmology, PuNan Branch of Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - ShiYi Li
- Department of Ophthalmology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China; Department of Ophthalmology, Jingjiang People's Hospital Affiliated to Yangzhou University, Taizhou, Jiangsu, China
| | - Yidan Luo
- Department of Ophthalmology, Affiliated Wuxi Clinical College of Nantong Medical University, Wuxi, Jiangsu, China
| | - Ziqing Chen
- Department of Ophthalmology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Yuping Xu
- National Health Commission (NHC) Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xue Zhu
- National Health Commission (NHC) Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ke Wang
- National Health Commission (NHC) Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Wenjun Zou
- Department of Ophthalmology, Wuxi No.2 People's Hospital, Jiangnan University Medical Center (JUMC), Wuxi, Jiangsu, China; Department of Ophthalmology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China; Department of Ophthalmology, Affiliated Wuxi Clinical College of Nantong Medical University, Wuxi, Jiangsu, China.
| |
Collapse
|
2
|
Barwick SR, Xiao H, Wolff D, Wang J, Perry E, Marshall B, Smith SB. Sigma 1 receptor activation improves retinal structure and function in the Rho P23H/+ mouse model of autosomal dominant retinitis pigmentosa. Exp Eye Res 2023; 230:109462. [PMID: 37003581 PMCID: PMC10155485 DOI: 10.1016/j.exer.2023.109462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Retinitis pigmentosa (RP) is a group of devastating inherited retinal diseases that leads to visual impairment and oftentimes complete blindness. Currently no cure exists for RP thus research into prolonging vision is imperative. Sigma 1 receptor (Sig1R) is a promising small molecule target that has neuroprotective benefits in retinas of rapidly-degenerating mouse models. It is not clear whether Sig1R activation can provide similar neuroprotective benefits in more slowly-progressing RP models. Here, we examined Sig1R-mediated effects in the slowly-progressing RhoP23H/+ mouse, a model of autosomal dominant RP. We characterized the retinal degeneration of the RhoP23H/+ mouse over a 10 month period using three in vivo methods: Optomotor Response (OMR), Electroretinogram (ERG), and Spectral Domain-Optical Coherence Tomography (SD-OCT). A slow retinal degeneration was observed in both male and female RhoP23H/+ mice when compared to wild type. The OMR, which reflects visual acuity, showed a gradual decline through 10 months. Interestingly, female mice had more reduction in visual acuity than males. ERG assessment showed a gradual decline in scotopic and photopic responses in RhoP23H/+ mice. To investigate the neuroprotective benefits of Sig1R activation in the RhoP23H/+ mouse model, mutant mice were treated with a high-specificity Sig1R ligand (+)-pentazocine ((+)-PTZ) 3x/week at 0.5 mg/kg and examined using OMR, ERG, SD-OCT. A significant retention of visual function was observed in males and females at 10 months of age, with treated females retaining ∼50% greater visual acuity than non-treated mutant females. ERG revealed significant retention of scotopic and photopic b-wave amplitudes at 6 months in male and female RhoP23H/+ mice treated with (+)-PTZ. Further, in vivo analysis by SD-OCT revealed a significant retention of outer nuclear layer (ONL) thickness in male and female treated RhoP23H/+ mice. Histological studies showed significant retention of IS/OS length (∼50%), ONL thickness, and number of rows of photoreceptor cell nuclei at 6 months in (+)-PTZ-treated mutant mice. Interestingly, electron microscopy revealed preservation of OS discs in (+)-PTZ treated mutant mice compared to non-treated. Taken collectively, the in vivo and in vitro data provide the first evidence that targeting Sig1R can rescue visual function and structure in the RhoP23H/+ mouse. These results are promising and provide a framework for future studies to investigate Sig1R as a potential therapeutic target in retinal degenerative disease.
Collapse
Affiliation(s)
- Shannon R Barwick
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA; James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA.
| | - Haiyan Xiao
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA; James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
| | - David Wolff
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Jing Wang
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA; James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
| | - Elizabeth Perry
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Brendan Marshall
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Sylvia B Smith
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA; James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA; Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
3
|
Xu Z, Lei Y, Qin H, Zhang S, Li P, Yao K. Sigma-1 Receptor in Retina: Neuroprotective Effects and Potential Mechanisms. Int J Mol Sci 2022; 23:ijms23147572. [PMID: 35886921 PMCID: PMC9321618 DOI: 10.3390/ijms23147572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Retinal degenerative diseases are the major factors leading to severe visual impairment and even irreversible blindness worldwide. The therapeutic approach for retinal degenerative diseases is one extremely urgent and hot spot in science research. The sigma-1 receptor is a novel, multifunctional ligand-mediated molecular chaperone residing in endoplasmic reticulum (ER) membranes and the ER-associated mitochondrial membrane (ER-MAM); it is widely distributed in numerous organs and tissues of various species, providing protective effects on a variety of degenerative diseases. Over three decades, considerable research has manifested the neuroprotective function of sigma-1 receptor in the retina and has attempted to explore the molecular mechanism of action. In the present review, we will discuss neuroprotective effects of the sigma-1 receptor in retinal degenerative diseases, mainly in aspects of the following: the localization in different types of retinal neurons, the interactions of sigma-1 receptors with other molecules, the correlated signaling pathways, the influence of sigma-1 receptors to cellular functions, and the potential therapeutic effects on retinal degenerative diseases.
Collapse
|
4
|
Abstract
PURPOSE To investigate the relationship between expression level of vesicular monoamine transporter 2 (VMAT2) and myopia, as well as the feasibility of noninvasive myopia diagnosis through imaging VMAT2 in retina by using [18F]fluoropropyl-(+)-dihydrotetrabenazine ([18F]FP-(+)-DTBZ). PROCEDURES The right eyes of ten guinea pigs were deprived of vision to establish form-deprived (FD) myopia and the left eyes were untreated as the self-control eyes. The location and expression level of VMAT2 in the eyes were detected by micro-positron emission tomography (PET)/X-ray computed tomography (CT) imaging through using [18F]FP-(+)-DTBZ. Immunofluorescence staining and Western blot were used to confirm the location and expression level of VMAT2 in the eyes. The concentrations of dopamine (DA) and its metabolites including 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) were also investigated by high-performance liquid chromatography. RESULTS The right eyes deprived of vision were obviously myopic (- 3.17 ± 1.33 D) after procedure, while the left eyes were hyperopic (4.60 ± 0.83 D, P < 0.0001). The main expressions of VMAT2 in the eyes were located in retina. VMAT2 was significantly reduced in the myopic retina compared to the normal one from PET/CT results (P = 0.0008), which could also be verified by Western blots (P = 0.029). The concentrations of DA, DOPAC, and HVA in the FD eyes were all significantly less than those in the control eyes (P = 0.024, P = 0.018, P = 0.008). As a role of storing and releasing DA in vesicles, VMAT2 was demonstrated positively correlating with the amounts of DA (P = 0.030), DOPAC (P = 0.038), and HVA (P = 0.025) through Pearson's correlation coefficient test. CONCLUSIONS We demonstrate that [18F]FP-(+)-DTBZ can be used to noninvasively image VMAT2 in retina. The expression level of VMAT2 in retina may act as a new biomarker for myopia diagnosis. The decreasing of VMAT2 expression level may play an important role in the development of myopia through correspondingly reducing the amount of DA in retina.
Collapse
|
5
|
Smith SB, Wang J, Cui X, Mysona BA, Zhao J, Bollinger KE. Sigma 1 receptor: A novel therapeutic target in retinal disease. Prog Retin Eye Res 2018; 67:130-149. [PMID: 30075336 PMCID: PMC6557374 DOI: 10.1016/j.preteyeres.2018.07.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 02/08/2023]
Abstract
Retinal degenerative diseases are major causes of untreatable blindness worldwide and efficacious treatments for these diseases are sorely needed. A novel target for treatment of retinal disease is the transmembrane protein Sigma 1 Receptor (Sig1R). This enigmatic protein is an evolutionary isolate with no known homology to any other protein. Sig1R was originally thought to be an opioid receptor. That notion has been dispelled and more recent pharmacological and molecular studies suggest that it is a pluripotent modulator with a number of biological functions, many of which are relevant to retinal disease. This review provides an overview of the discovery of Sig1R and early pharmacologic studies that led to the cloning of the Sig1R gene and eventual elucidation of its crystal structure. Studies of Sig1R in the eye were not reported until the late 1990s, but since that time there has been increasing interest in the potential role of Sig1R as a target for retinal disease. Studies have focused on elucidating the mechanism(s) of Sig1R function in retina including calcium regulation, modulation of oxidative stress, ion channel regulation and molecular chaperone activity. Mechanistic studies have been performed in isolated retinal cells, such as Müller glial cells, microglial cells, optic nerve head astrocytes and retinal ganglion cells as well as in the intact retina. Several compelling studies have provided evidence of powerful in vivo neuroprotective effects against ganglion cell loss as well as photoreceptor cell loss. Also described are studies that have examined retinal structure/function in various models of retinal disease in which Sig1R is absent and reveal that these phenotypes are accelerated compared to retinas of animals that express Sig1R. The collective evidence from analysis of studies over the past 20 years is that Sig1R plays a key role in modulating retinal cellular stress and that it holds great promise as a target in retinal neurodegenerative disease.
Collapse
Affiliation(s)
- Sylvia B Smith
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA; The James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA; Department of Ophthalmology, Medical College of Georgia at Augusta University 30912, Augusta, GA, USA.
| | - Jing Wang
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA; The James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
| | - Xuezhi Cui
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA; The James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
| | - Barbara A Mysona
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA; The James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
| | - Jing Zhao
- The James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA; Department of Ophthalmology, Medical College of Georgia at Augusta University 30912, Augusta, GA, USA
| | - Kathryn E Bollinger
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA; The James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA; Department of Ophthalmology, Medical College of Georgia at Augusta University 30912, Augusta, GA, USA
| |
Collapse
|
6
|
Bucolo C, Marrazzo A, Ronsisvalle S, Ronsisvalle G, Cuzzocrea S, Mazzon E, Caputi A, Drago F. A novel adamantane derivative attenuates retinal ischemia-reperfusion damage in the rat retina through sigma1 receptors. Eur J Pharmacol 2006; 536:200-3. [PMID: 16580663 DOI: 10.1016/j.ejphar.2006.02.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Revised: 02/07/2006] [Accepted: 02/15/2006] [Indexed: 11/22/2022]
Abstract
The effects of a novel N-methyladamantan-1-amine derivative [(-)-MR22] with high sigma1 receptor affinity were investigated on retinal degeneration using a rat model of ischemia-reperfusion injury. The animals were anaesthetized and retinal ischemia was induced by elevating the intraocular pressure to 120 mm Hg for 45 min. The drug was injected intraperitoneally before the ischemic damage. Retinal biochemical changes, i.e. increase of lactate content and decrease of glucose and ATP were significantly inhibited by the new and selective sigma1 receptor ligand compared to the ischemic control group. The effect of (-)-MR22 was antagonized by pre-treatment with the sigma1 site antagonist. The protective effect of (-)-MR22 on ischemic retina was confirmed by the histological analysis. These findings suggest that (-)-MR22 serves as a retinal neuroprotective agent and acts as a sigma1 receptor agonist.
Collapse
Affiliation(s)
- Claudio Bucolo
- Department of Experimental and Clinical Pharmacology, School of Medicine, University of Catania, Catania, Viale A. Doria 6, I-95125 Catania, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Bucolo C, Drago F, Lin LR, Reddy VN. Sigma receptor ligands protect human retinal cells against oxidative stress. Neuroreport 2006; 17:287-91. [PMID: 16462599 DOI: 10.1097/01.wnr.0000199469.21734.e1] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This study was undertaken to investigate the role of sigma receptors during the oxidative damage on human retinal pigment epithelial cells, and to assess whether sigma receptor ligands enhance survival and protect DNA of cells challenged by oxidative stress. Pretreatment with PRE-084, a sigma1 receptor agonist, resulted in significant increased viability in a dose-related manner. DNA damage induced by oxidative insult was significantly lower with PRE-084. The effects of PRE-084 were antagonized by pretreatment with sigma1 receptor antagonists (NE-100 and BD1047), but interestingly were synergized by cotreatment with BD1047 that also presented an affinity for the sigma2 receptor. The results suggest that sigma1 receptors play an important role against retinal damage, even though sigma2 receptor involvement cannot be excluded.
Collapse
Affiliation(s)
- Claudio Bucolo
- Department of Experimental and Clinical Pharmacology, School of Medicine, University of Catania, Catania, Italy.
| | | | | | | |
Collapse
|
8
|
Wang WF, Ishiwata K, Kiyosawa M, Kawamura K, Oda K, Matsuno K, Kobayashi T, Mochizuki M. Investigation of the use of positron emission tomography for neuroreceptor imaging in rabbit eyes. Ophthalmic Res 2005; 36:255-63. [PMID: 15583431 DOI: 10.1159/000081205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To determine whether positron emission tomography (PET) can be used for imaging of neuroreceptors in eyes of rabbits. PET imaging of dopamine D(2) receptor, dopamine transporter, serotonin(1A) receptor and sigma(1) receptor in the eyes and brain was performed using corresponding positron-emitting ligands in baseline, pretreatment and displacement conditions. The 4 radioligands outlined the eyes and brain in the baseline. Pretreatment resulted in a slight reduction (26-28%) in the uptake in the anterior segments of eyes. The binding of each radioligand in the iris-ciliary body and retina was confirmed by ex vivo autoradiography. However, the PET signal in the eyes was unexpectedly higher than the autoradiography signal. The identification of radioligand-neuroreceptor binding by PET in the rabbit eyes is not specific enough.
Collapse
Affiliation(s)
- Wei-Fang Wang
- Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, Japan
| | | | | | | | | | | | | | | |
Collapse
|