1
|
Alder J, Kallman S, Palmieri A, Khadim F, Ayer JJ, Kumar S, Tsung K, Grinberg I, Thakker-Varia S. Neuropeptide orphanin FQ inhibits dendritic morphogenesis through activation of RhoA. Dev Neurobiol 2013; 73:769-84. [PMID: 23821558 DOI: 10.1002/dneu.22101] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 06/20/2013] [Accepted: 06/21/2013] [Indexed: 12/18/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) plays a facilitatory role in neuronal development and promotion of differentiation. Mechanisms that oppose BDNF's stimulatory effects create balance and regulate dendritic growth. However, these mechanisms have not been studied. We have focused our studies on the BDNF-induced neuropeptide OrphaninFQ/ Nociceptin (OFQ); while BDNF is known to enhance synaptic activity, OFQ has opposite effects on activity, learning, and memory. We have now examined whether OFQ provides a balance to the stimulatory effects of BDNF on neuronal differentiation in the hippocampus. Golgi staining in OFQ knockout (KO) mice revealed an increase in primary dendrite length as well as spine density, suggesting that endogenous OFQ inhibits dendritic morphology. We have also used cultured hippocampal neurons to demonstrate that exogenous OFQ has an inhibitory effect on dendritic growth and that the neuropeptide alters the response to BDNF when pre-administered. To determine if BDNF and OFQ act in a feedback loop, we inhibited the actions of the BDNF and OFQ receptors, TrkB and NOP using ANA-12 and NOP KO mice respectively but our data suggest that the two factors do not act in a negative feedback loop. We found that the inhibition of dendritic morphology induced by OFQ is via enhanced RhoA activity. Finally, we have evidence that RhoA activation is required for the inhibitory effects of OFQ on dendritic morphology. Our results reveal basic mechanisms by which neurons not only regulate the formation of proper dendritic growth during development but also control plasticity in the mature nervous system.
Collapse
Affiliation(s)
- Janet Alder
- Department of Neuroscience and Cell Biology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Maruyama J, Miller JM, Ulfendahl M. Glial cell line-derived neurotrophic factor and antioxidants preserve the electrical responsiveness of the spiral ganglion neurons after experimentally induced deafness. Neurobiol Dis 2007; 29:14-21. [PMID: 17870569 PMCID: PMC2680080 DOI: 10.1016/j.nbd.2007.07.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 07/03/2007] [Accepted: 07/24/2007] [Indexed: 10/23/2022] Open
Abstract
Cochlear implant surgery is currently the therapy of choice for profoundly deaf patients. However, the functionality of cochlear implants depends on the integrity of the auditory spiral ganglion neurons. This study assesses the combined efficacy of two classes of agents found effective in preventing degeneration of the auditory nerve following deafness, neurotrophic factors, and antioxidants. Guinea pigs were deafened and treated for 4 weeks with either local administration of GDNF or a combination of GDNF and systemic injections of the antioxidants ascorbic acid and Trolox. The density of surviving spiral ganglion cells was significantly enhanced and the thresholds for eliciting an electrically evoked brain stem response were significantly reduced in GDNF treated animals compared to deafened-untreated. The addition of antioxidants significantly enhanced the evoked responsiveness over that observed with GDNF alone. The results suggest multiple sites of intervention in the rescue of these cells from deafferentation-induced cell death.
Collapse
Affiliation(s)
- Jun Maruyama
- Center for Hearing and Communication Research and Department of Clinical Neuroscience, Karolinska Institutet
- Department of Otolaryngology, Ehime University School of Medicine, Matsuyama, Japan
| | - Josef M. Miller
- Center for Hearing and Communication Research and Department of Clinical Neuroscience, Karolinska Institutet
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, USA
| | - Mats Ulfendahl
- Center for Hearing and Communication Research and Department of Clinical Neuroscience, Karolinska Institutet
- Department of Otolaryngology, Karolinska University Hospital – Solna, Stockholm, Sweden
- Corresponding author. Address for correspondence: Mats Ulfendahl, PhD, Center for Hearing and Communication Research, Building M1, Karolinska University Hospital, Solna, SE-171 76 Stockholm, Sweden, Phone: +46 8 51776307 Fax: +46 8 301876,
| |
Collapse
|
3
|
Sokolowski BHA. Survey of inward ionic currents acquired by the cochleovestibular ganglion of the early-aged embryonic chick. J Neurosci Res 2006; 83:638-46. [PMID: 16447282 DOI: 10.1002/jnr.20769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The acquisition of ion channels is critical to the formation of neuronal pathways in the peripheral and central nervous systems. This study describes the different types of inward currents (Ii) recorded from the soma of isolated cochleovestibular ganglion (CVG) cells of the embryonic chicken, Gallus gallus. Cells were isolated for whole-cell tight-seal recording from embryonic day (ED) 3, an age when the CVG is a cell cluster, to ED 9, an age when the cochlear and vestibular ganglia (CG, VG) are distinct structures. Results show Na+ and Ca2+ currents (INa and ICa) are acquired by ED 3, although INa dominates with greater density levels that peak by ED 6-7 in VG neurons. In the CG, INa acquisition is slower, reaching peak values by ED 8-9. Isolation of ICa, using Ba2+ as the charge carrier, showed both transient (IBaT)- and sustained (IBaL)-type currents on ED 3. Unlike INa, IBa density varied with age and ganglion. Total IBa increased steadily, showing a decline only in CG cells on ED 8-9 as a result of a decrease in IBaT. IBaL density increased over time, reaching a maximum on ED 6-7 in VG cells, followed by a decline on ED 8-9. In comparison, IBaL in CG neurons, did not increase significantly beyond mean values measured on ED 5. The early onset of these currents and the variations in Ca2+ channel expression between the ganglia suggests that intracellular signals relevant to phenotypic differentiation begin within these early time frames.
Collapse
Affiliation(s)
- Bernd H A Sokolowski
- Department of Otolaryngology-HNS, University of South Florida, Tampa, Florida 33612, USA.
| |
Collapse
|
4
|
Sugimoto K, Shoji M, Yasujima M, Suda T, Yagihashi S. Peripheral nerve endoneurial microangiopathy and necrosis in rats with insulinoma. Acta Neuropathol 2004; 108:503-14. [PMID: 15365726 DOI: 10.1007/s00401-004-0915-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Revised: 07/19/2004] [Accepted: 07/26/2004] [Indexed: 10/26/2022]
Abstract
Peripheral nerve pathology related to chronic hyperinsulinemia and hypoglycemia has yet to be fully explored. Here we conducted a systematic quantitative analysis of morphological alterations in peripheral sensory and motor nerve fibers and endoneurial microvasculature in longstanding insulinoma-carrying rats (I-rats; n=12). Age-matched normal rats (n=6) served as controls. Over the 15-month observation period, two of I-rats developed paresis of the hind limbs when their blood glucose level fell below 1.7 mmol/l. These animals showed a massive myelinated fiber loss associated with active degeneration of residual myelinated fibers and multiple endoneurial microvascular occlusions at the sciatic nerve level. The rest of the non-paretic I-rats showed a decreased density of large myelinated fibers with axonal degeneration in the peroneal nerve and an increased density of small myelinated fibers with preserved morphology in the sural nerve. This was associated with endoneurial microangiopathic changes indicative of endoneurial ischemia/hypoxia in the sciatic and peroneal nerves, and an increase in endoneurial microvascular density in the sciatic and sural nerves. In conjunction with previous data, these findings suggest that the observed increase in endoneurial microvascular density may be a compensatory response to endoneurial ischemia/hypoxia induced by chronic hyperinsulinemia in I-rats without paresis. In conclusion, the present study showed characteristic morphological alterations in peripheral sensory and motor nerve fibers associated with microangiopathy indicative of endoneurial ischemia/hypoxia in the sciatic and peroneal nerves, and provides the first evidence for the occurrence of endoneurial necrosis in the sciatic nerve, to which the hind limb paresis can be ascribed in I-rats.
Collapse
Affiliation(s)
- Kazuhiro Sugimoto
- Department of Laboratory Medicine, Hirosaki University School of Medicine, 5 Zaifu-cho, 036-8562 Hirosaki, Japan.
| | | | | | | | | |
Collapse
|
5
|
Varela-Nieto I, Morales-Garcia JA, Vigil P, Diaz-Casares A, Gorospe I, Sánchez-Galiano S, Cañon S, Camarero G, Contreras J, Cediel R, Leon Y. Trophic effects of insulin-like growth factor-I (IGF-I) in the inner ear. Hear Res 2004; 196:19-25. [PMID: 15464297 DOI: 10.1016/j.heares.2003.12.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Accepted: 12/23/2003] [Indexed: 11/27/2022]
Abstract
Insulin-like growth factors (IGFs) have a pivotal role during nervous system development and in its functional maintenance. IGF-I and its high affinity receptor (IGF1R) are expressed in the developing inner ear and in the postnatal cochlear and vestibular ganglia. We recently showed that trophic support by IGF-I is essential for the early neurogenesis of the chick cochleovestibular ganglion (CVG). In the chicken embryo otic vesicle, IGF-I regulates developmental death dynamics by regulating the activity and/or levels of key intracellular molecules, including lipid and protein kinases such as ceramide kinase, Akt and Jun N-terminal kinase (JNK). Mice lacking IGF-I lose many auditory neurons and present increased auditory thresholds at early postnatal ages. Neuronal loss associated to IGF-I deficiency is caused by apoptosis of the auditory neurons, which presented abnormally increased levels of activated caspase-3. It is worth noting that in man, homozygous deletion of the IGF-1 gene causes sensory-neural deafness. IGF-I is thus necessary for normal development and maintenance of the inner ear. The trophic actions of IGF-I in the inner ear suggest that this factor may have therapeutic potential for the treatment of hearing loss.
Collapse
Affiliation(s)
- Isabel Varela-Nieto
- Instituto de Investigaciones Biomedicas Alberto Sols, Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de Madrid, "Alberto Sols", Arturo Duperier 4, 28029 Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Hanyu O, Yamatani K, Ikarashi T, Soda S, Maruyama S, Kamimura T, Kaneko S, Hirayama S, Suzuki K, Nakagawa O, Nawa H, Aizawa Y. Brain-derived neurotrophic factor modulates glucagon secretion from pancreatic alpha cells: its contribution to glucose metabolism. Diabetes Obes Metab 2003; 5:27-37. [PMID: 12542722 DOI: 10.1046/j.1463-1326.2003.00238.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AIM Brain-derived neurotrophic factor (BDNF) reduces plasma glucose levels in obese db/db diabetic mice and is speculated to produce its effects via the hypothalamus, the regulatory centre of satiety and the autonomic nervous system. The potential effect of BDNF directly on peripheral endocrine organs, however, remains to be clarified. Here we report the effects of BDNF on hormonal secretion from pancreatic islets of Langerhans using their isolated culture. METHODS AND RESULTS In an immunohistochemical study, mouse pancreatic alpha cells were stained specifically with the anti-TrkB (a specific receptor for BDNF) antibody. After 7 days culture of isolated islets of the normal mouse pancreas, 10 ng/ml BDNF decreased the secretion of glucagon per 6 h significantly less than that of the control (p = 0.016). In contrast, there were no significant changes in insulin secretion or glucagon and insulin contents in the islets cultured under the same conditions. In vivo administration of BDNF (10 mg/kg/day) to normal mice for 7 days significantly decreased their food consumption (p < 0.05). The fasting plasma glucose levels were decreased on day 7 compared with day 1 more significantly in BDNF-treated mice (p = 0.043) than in pair-fed control mice (p = 0.14). In newborn BDNF-knockout mice, fasting plasma glucose levels increased in the order of homozygote, heterozygote and wild type (p = 0.033). No apparent immunohistochemical abnormality was observed for pancreatic glucagon in the BDNF-knockout mice. CONCLUSION These data suggest that BDNF affects glucose metabolism not only with its anorectic effect but also with modulated glucagon secretion from pancreatic alpha cells.
Collapse
Affiliation(s)
- O Hanyu
- Division of Endocrinology and Metabolism, Department of Homeostatic Regulation, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Alsina B, Giraldez F, Varela-Nieto I. Growth Factors and Early Development of Otic Neurons: Interactions between Intrinsic and Extrinsic Signals. Curr Top Dev Biol 2003; 57:177-206. [PMID: 14674481 DOI: 10.1016/s0070-2153(03)57006-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Berta Alsina
- DCEXS-Universitat Pomepu Fabra, Dr Aiguader 80, 08003 Barcelona, Spain
| | | | | |
Collapse
|
8
|
Hossain WA, Brumwell CL, Morest DK. Sequential interactions of fibroblast growth factor-2, brain-derived neurotrophic factor, neurotrophin-3, and their receptors define critical periods in the development of cochlear ganglion cells. Exp Neurol 2002; 175:138-51. [PMID: 12009766 DOI: 10.1006/exnr.2002.7872] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We studied the interactions of neurotrophin-3 (NT3) with brain-derived neurotrophic factor (BDNF), fibroblast growth factor-2 (FGF-2), and their effects on tyrosine kinase C (TrkC) expression during cochlear ganglion development. Otocysts were explanted from white leghorn chicken embryos at stages when the neuronal precursors normally start to migrate. Cultures were fed with various combinations of NT3, BDNF, and FGF-2. NT3 appeared to have a greater effect on neurite outgrowth than on migration and was enhanced by BDNF. The results from in situ hybridization and immunostaining for TrkC receptor revealed up-regulation of the mRNA and protein by combining NT-3 and BDNF. NT-3 combined with FGF-2 produced down-regulation of receptor. Neutralizing antibody to NT3 had an inhibitory effect on neuronal development, suggesting that endogenous NT3 is normally active during the period examined. The findings suggest an interactive role of NT3 in early neuronal development. The trophic synergism of NT3 and BDNF may result from up-regulation of TrkC. This hypothesis is consistent with immunostaining in the embryonic basilar papilla, which localized TrkC to the initial axonal invasion sites. While the growth factors each produce particular trophic effects, the interactions of these factors define a critical sequence of developmental events based on modulation of receptor expression.
Collapse
Affiliation(s)
- W Amin Hossain
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030-3401, USA
| | | | | |
Collapse
|
9
|
Cid M, Bonilla J, Dumarçay S, Alfonso F, Martín-Lomas M. New Synthesis of 1-D-O-(2-Amino-2-deoxy-D-gluco- and -galactopyranosyl)-chiro-inositols. European J Org Chem 2002. [DOI: 10.1002/1099-0690(200203)2002:5<881::aid-ejoc881>3.0.co;2-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Sekiya T, Shimamura N, Hatayama T, Suzuki S. Cerebellopontine angle cisternal infusion of NGF, BDNF and NT-3: effects on cochlear neurons disconnected from central target, cochlear nucleus. An in vivo quantitative study. Acta Otolaryngol 2000; 120:473-9. [PMID: 10958397 DOI: 10.1080/000164800750045956] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Cochlear neurons need their synaptic contacts with both their peripheral (organ of Corti) and central (cochlear nucleus) targets for survival. We examined the in vivo effectiveness of the neurotrophins (NGF, BDNF and NT-3) on cochlear neuronal survival using our in vivo model, in which the central connection alone was selectively and quantitatively interrupted. The particular neurotrophins evaluated in the present study did not appear to have cochlear nerve rescue potential. However, the experimental model reported here can serve as a useful tool to investigate cochlear neuronal degeneration from the central side, which may lead to identification of effective mediators in the future.
Collapse
Affiliation(s)
- T Sekiya
- Department of Neurosurgery, Hirosaki University School of Medicine, Hirosaki, Japan.
| | | | | | | |
Collapse
|
11
|
Martín-Lomas M, Flores-Mosquera M, Khiar N. A New Preparative Synthesis of 1-D-6-O-(2-Amino-2-Deoxy-D-glycopyranosyl)-chiro-Inositol 1-Phosphate and 1,2-Cyclic Phosphate. European J Org Chem 2000. [DOI: 10.1002/(sici)1099-0690(200004)2000:8<1539::aid-ejoc1539>3.0.co;2-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Phase II studies of the glycine antagonist GV150526 in acute stroke : the North American experience. The North American Glycine Antagonist in Neuroprotection (GAIN) Investigators. Stroke 2000; 31:358-65. [PMID: 10657406 DOI: 10.1161/01.str.31.2.358] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE GV150526, a selective glycine site antagonist, reduces infarct volume in rats with focal cerebral ischemia. Safety and efficacy in humans with acute stroke are being investigated. We sought to further explore the safety, pharmacokinetics, and preliminary outcome of GV150526 treatment in patients with a clinical diagnosis of acute stroke. METHODS Two trials were conducted in North America. The North American Glycine Antagonist in Neuroprotection trial (GAIN 1) (GLYA2001; United States only) was designed as a sequential dose escalation study. GAIN 2 (GLYA2005; United States and Canada) was designed to further assess the safety of the highest dose tolerated in GAIN 1. Both trials were randomized (2:1), double-blind, and placebo controlled. Treatment was started within 12 hours of symptom onset; patients with both ischemic stroke and primary intracerebral hemorrhage were included in both trials. RESULTS The dose escalation study (GAIN 1) completed 3 dosing tiers. Enrollment was suspended before escalation to the fourth tier because of laboratory reports of transiently elevated bilirubin levels in a concurrent European study that employed the dose targeted for this tier. After review by an independent safety committee of the worldwide safety data, the second study (GAIN 2) commenced. One hundred nine patients were randomized and dosed with study drug, either an 800-mg loading dose followed by 200 mg every 12 hours for 3 days of GV150526 or placebo. The incidence of serious adverse events was similar in the drug and placebo groups. Mild irritation at the infusion site and symptoms suggestive of mild and reversible altered mentation were reported more frequently in the GV150526 group than in the placebo group. Hyperbilirubinemia was reported in 6% of GV150526-treated patients compared with 3% of placebo-treated patients. Outcome at 4 weeks after stroke was better in GV150526-treated patients, but the studies were not powered to show statistical significance, and the baseline neurological deficits in the GV150526-treated patients were less severe. CONCLUSIONS These preliminary studies suggest that GV150526 is well tolerated by patients with suspected acute stroke. Further pivotal studies testing the efficacy and safety of GV150526 in acute stroke are ongoing.
Collapse
|
13
|
Cochran SL, Stone JS, Bermingham-McDonogh O, Akers SR, Lefcort F, Rubel EW. Ontogenetic expression of trk neurotrophin receptors in the chick auditory system. J Comp Neurol 1999; 413:271-88. [PMID: 10524339 DOI: 10.1002/(sici)1096-9861(19991018)413:2<271::aid-cne8>3.0.co;2-l] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Neurotrophins and their cognate receptors are critical to normal nervous system development. Trk receptors are high-affinity receptors for nerve-growth factor (trkA), brain-derived neurotrophic factor and neurotrophin-4/5 (trkB), and neurotrophin-3 (trkC). We examine the expression of these three neurotrophin tyrosine kinase receptors in the chick auditory system throughout most of development. Trks were localized in the auditory brainstem, the cochlear ganglion, and the basilar papilla of chicks from embryonic (E) day 5 to E21, by using antibodies and standard immunocytochemical methods. TrkB mRNA was localized in brainstem nuclei by in situ hybridization. TrkB and trkC are highly expressed in the embryonic auditory brainstem, and their patterns of expression are both spatially and temporally dynamic. During early brainstem development, trkB and trkC are localized in the neuronal cell bodies and in the surrounding neuropil of nucleus magnocellularis (NM) and nucleus laminaris (NL). During later development, trkC is expressed in the cell bodies of NM and NL, whereas trkB is expressed in the nerve calyces surrounding NM neurons and in the ventral, but not the dorsal, dendrites of NL. In the periphery, trkB and trkC are located in the cochlear ganglion neurons and in peripheral fibers innervating the basilar papilla and synapsing at the base of hair cells. The protracted expression of trks seen in our materials is consistent with the hypothesis that the neurotrophins/tyrosine kinase receptors play one or several roles in the development of auditory circuitry. In particular, the polarized expression of trkB in NL is coincident with refinement of NM terminal arborizations on NL.
Collapse
Affiliation(s)
- S L Cochran
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology/Head and Neck Surgery, University of Washington, Seattle 98195-7923, USA
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Neurons of the cochlear ganglion are endowed with a set of voltage-gated ion channels that enable them to encode and transmit sound information from the cochlear receptors to the brain. The temporal expression pattern of the K+ currents in chick cochlear ganglion neurons during embryonic development was analyzed using whole-cell voltage clamp techniques. In acutely isolated neurons, slowly activating delayed rectifier K+ currents appear at embryonic day 7 (E7) and increase in amplitude during development. A fast activating, fast inactivating K+ current of the A type is first expressed at E10, increasing in amplitude thereafter. To investigate the possible role of neurotrophins in the induction of these K+ channels, neurons were grown in culture in the presence or absence of brain-derived neurotrophic factor (BDNF) or neurotrophin-3 (NT-3). Neurons isolated at E8 and grown in culture for 1 day exhibit a high expression of A-current, together with the outgrowth of neurites. A-currents are not seen in acutely dissociated neurons from age-matched embryos (E9) which lack neurites, cut off by the isolation procedure. This suggests a preferential neuritic location of the channels carrying the A-current. However, the level of expression of the K+ currents was independent of BDNF or NT-3 application. Similarly, neurons isolated at E10 and grown in culture for up to 4 days maintain the amplitude of the K+ currents independently of the presence of the neurotrophins. These results indicate that BDNF and NT-3 may not directly regulate the expression of K+ channels in chick cochlear ganglion neurons. The notable expression of the fast inactivating A-current suggests that it plays a significant role in the modulation of synaptic efficacy and the encoding of auditory stimuli.
Collapse
Affiliation(s)
- J F García-Díaz
- Department of Physiology, Boston University School of Medicine, MA 02118, USA.
| |
Collapse
|
15
|
Dyker AG, Lees KR. Safety and tolerability of GV150526 (a glycine site antagonist at the N-methyl-D-aspartate receptor) in patients with acute stroke. Stroke 1999; 30:986-92. [PMID: 10229732 DOI: 10.1161/01.str.30.5.986] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE GV150526 is a novel glycine site antagonist at the N-methyl-D-aspartate receptor complex. It is a potent neuroprotective agent in animal models of stroke, including permanent middle cerebral artery occlusion in the rat. Unlike antagonists at the glutamate ligand binding site, GV150526 appears to be free of hemodynamic and central nervous system adverse effects. The purpose of this study was to assess the safety, tolerability, and pharmacokinetics of loading and maintenance infusions of GV150526 in patients with acute stroke. METHODS This was a randomized, placebo-controlled, parallel-group, ascending-dose study conducted in 2 phases. In part A of the study, loading doses of 50, 100, 200, 400, or 800 mg were administered. In part B, the maximum loading dose from part A was followed by maintenance infusions (5 infusions at 12-hour intervals), aiming to maintain neuroprotective levels. Safety data were collected throughout. The study was not designed to test efficacy, but outcome data (Barthel Index and National Institutes of Health Stroke Scale) were collected. RESULTS Sixty-six patients were recruited to the study over 11 months; 18 patients received placebo. GV150526 was well tolerated by the 48 patients who received it. There was no excess of central nervous system or hemodynamic adverse events compared with placebo. Minor abnormalities in liver function tests were observed in association with the higher maintenance doses tested. Four of 7 patients receiving the 800-mg loading dose followed by 400 mg BID and 1 of 6 patients who received the 200-mg BID maintenance dose showed a small rise in bilirubin, and 3 patients had increases in transaminases; the mean values at 72 hours remained under twice the upper limit of normal. These changes were asymptomatic and resolved within 10 days. CONCLUSIONS GV150526 is an emerging neuroprotective agent, with no apparent significant central nervous system or hemodynamic effects. Dose-limiting effects appear to be restricted to mild transient and asymptomatic rises in bilirubin and/or transaminases, primarily observed at high maintenance doses, and there were no findings that should preclude further clinical development.
Collapse
Affiliation(s)
- A G Dyker
- Acute Stroke Unit, University Department of Medicine and Therapeutics, Western Infirmary, Glasgow, Scotland.
| | | |
Collapse
|
16
|
Hashino E, Dolnick RY, Cohan CS. Developing vestibular ganglion neurons switch trophic sensitivity from BDNF to GDNF after target innervation. JOURNAL OF NEUROBIOLOGY 1999; 38:414-27. [PMID: 10022582 DOI: 10.1002/(sici)1097-4695(19990215)38:3<414::aid-neu9>3.0.co;2-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recent evidence showing a distinctive cell loss in vestibular and cochlear ganglia of brain-derived neurotrophic factor (BDNF) versus neurotrophin-3 (NT-3) null mutant mice demonstrates that these neurotrophins play a critical role in inner ear development. In this study, biological functions of BDNF and NT-3 in the chick vestibular and cochlear ganglion development was assessed in vitro and compared to those of other neurotrophic factors. The embryonic day (E)8-12 vestibular ganglion neurons showed an extensive outgrowth in response to BDNF with less outgrowth to NT-3. In contrast, NT-3 had stronger neurotrophic effects on the E12 cochlear ganglion neurons compared to BDNF. These results support previous evidence that neurotrophins play important roles in the vestibular and cochlear ganglion neuron development. However, the responsiveness to the neurotrophins declined and became undetectable by E16. Unexpectedly, glial cell line-derived neurotrophic factor (GDNF) promoted neurite outgrowth from vestibular ganglia at E12-16, later than the stages at which BDNF had neurotrophic effects. The time of switching sensitivity of the vestibular ganglion neurons from BDNF to GDNF correlated with the time of completion of synaptogenesis on their peripheral and central targets. Furthermore, a factor released from E12 inner ears exerted neurotrophic effects on late-stage vestibular ganglion neurons that were not responsive to the E4 otocyst-derived factor. These results raise the possibility that the vestibular ganglion neurons become responsive to GDNF upon target innervation and that the changes in sensitivity are regulated by changes in available factors released from their peripheral targets, the inner ear epithelia.
Collapse
Affiliation(s)
- E Hashino
- Department of Anatomy and Cell Biology, State University of New York at Buffalo, 14214, USA
| | | | | |
Collapse
|
17
|
León Y, Sanz C, Giráldez F, Varela-Nieto I. Induction of cell growth by insulin and insulin-like growth factor-I is associated with Jun expression in the otic vesicle. J Comp Neurol 1998; 398:323-32. [PMID: 9714146 DOI: 10.1002/(sici)1096-9861(19980831)398:3<323::aid-cne2>3.0.co;2-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The present report investigates the cellular mechanisms involved in the regulation of cell proliferation by insulin and insulin-like growth factor-I (IGF-I) in the developing inner ear. The results show that insulin and IGF-I stimulate cell proliferation in the otic vesicle. This effect is associated with the induction of the expression of the nuclear proto-oncogene c-jun. The temporal profile of Jun expression coincided with the proliferative period of growth of the otic vesicle. IGF-I promoted the hydrolysis of a membrane glycosyl-phosphatidylinositol, which was characterised as the endogenous precursor for inositol phosphoglycan (IPG). Both purified IPG and a synthetic analogue, 6-O-(2-amino-2-deoxy-alpha-D-glucopyranosyl)-D-myoinositol-1,2-cyclic phosphate (C3), were able to mimic the effects of IGF-I on Jun expression. Anti-IPG antibodies blocked the effects of IGF-I, which were rescued by the addition of IPG or its analogue. These results suggest that the sequence involving the hydrolysis of membrane glycolipids and the expression of c-jun and c-fos proto-oncogenes is part of the mechanism that activates cell division in response to insulin and IGF-I during early organogenesis of the avian inner ear. The implications of these observations for otic development and regeneration are briefly discussed.
Collapse
Affiliation(s)
- Y León
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | | | |
Collapse
|
18
|
Costantini LC, Lin L, Isacson O. Medial fetal ventral mesencephalon: a preferred source for dopamine neuron grafts. Neuroreport 1997; 8:2253-7. [PMID: 9243621 DOI: 10.1097/00001756-199707070-00032] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Currently, fetal tissue transplantation into patients with Parkinson's disease utilizes the entire ventral mesencephalon (VM) as donor tissue. However, the resulting mixture of cell types contains a relatively low proportion of therapeutically relevant dopamine (DA) neurons. We show that differential dissection of a medial region of embryonic day 14 rat VM yields a significantly higher proportion of DA neurons (8-10%) than is found in lateral VM (2%) or whole VM (4-5%). Medial VM also contained a larger number of the specific subpopulation of DA neurons (aldehyde dehydrogenase-positive; AHD) that project to dorsolateral motor region of the striatum. Selective dissection of fetal medial VM selectively enriches DA neurons in cell preparations useful for transplantation in Parkinson's disease.
Collapse
Affiliation(s)
- L C Costantini
- Neuroregeneration Laboratory, Harvard Medical School, McLean Hospital, Belmont, MA 02178, USA
| | | | | |
Collapse
|