1
|
Patel M, Pham NTK, Ziegenhorn E, Pisano A, Deaton RJ, Kim S, Rajarathnam V, Schwend T. Unique and overlapping effects of triiodothyronine (T3) and thyroxine (T4) on sensory innervation of the chick cornea. Exp Eye Res 2020; 194:108007. [PMID: 32194064 DOI: 10.1016/j.exer.2020.108007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 02/01/2020] [Accepted: 03/15/2020] [Indexed: 12/28/2022]
Abstract
Multiple aspects of cornea development, including the innervation of the cornea by trigeminal axons, are sensitive to embryonic levels of thyroid hormone (TH). Although previous work showed that increased TH levels could enhance the rate of axonal extension within the cornea in a thyroxine (T4)-dependent manner, details underlying the stimulatory effect of TH on cornea innervation are unclear. Here, by examining the effects throughout all stages of cornea innervation of the two main THs, triiodothyronine (T3) and T4, we provide a more complete characterization of the stimulatory effects of TH on corneal nerves and begin to unravel the underlying molecular mechanisms. During development, trigeminal axons are initially repelled at the corneal periphery and encircle the cornea in a pericorneal nerve ring prior to advancing into the corneal stroma radially from all along the nerve ring. Overall, exogenous T3 led to pleiotropic effects throughout all stages of cornea innervation, whereas the effects of exogenous T4 was confined to timepoints following completion of the nerve ring. Specifically, exogenous T3 accelerated the formation of the pericorneal nerve ring. By utilizing in vitro neuronal explants studies we demonstrated that T3 acts as a trophic factor to directly stimulate trigeminal nerve growth. Further, exogenous T3 caused disorganized and precocious innervation of the cornea, accompanied by the downregulation of inhibitory Robo receptors that normally act to regulate the timing of nerve advancement into the Slit-expressing corneal tissues. Following nerve ring completion, the growth rate and branching behavior of nerves as they advanced into and through the cornea were found to be stimulated equally by T3 or T4. These stimulatory influences of T3/T4 over nerves likely arose as secondary consequences brought on by TH-mediated modulations to the corneal extracellular matrix. Specifically, we found that the levels of nerve-inhibitory keratan- and chondroitin-sulfate containing proteoglycans and associated sulfation enzymes were dramatically altered in the presence of exogenous T3 or T4. Altogether, these findings uncover new roles for TH on corneal development and shed insight into the mechanistic basis of both T3 and T4 on cornea innervation.
Collapse
Affiliation(s)
- Mansi Patel
- Department of Biology, Illinois Wesleyan University, Bloomington, IL, USA
| | - Ngan T K Pham
- Department of Biology, Illinois Wesleyan University, Bloomington, IL, USA
| | - Elise Ziegenhorn
- Department of Biology, Illinois Wesleyan University, Bloomington, IL, USA
| | - Alyssa Pisano
- Department of Biology, Illinois Wesleyan University, Bloomington, IL, USA
| | - Ryan J Deaton
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Shinho Kim
- Department of Biology, Illinois Wesleyan University, Bloomington, IL, USA
| | | | - Tyler Schwend
- Department of Biology, Illinois Wesleyan University, Bloomington, IL, USA.
| |
Collapse
|
2
|
Lopez J, Quan A, Budihardjo J, Xiang S, Wang H, Kiron Koshy, Cashman C, Lee WPA, Hoke A, Tuffaha S, Brandacher G. Growth Hormone Improves Nerve Regeneration, Muscle Re-innervation, and Functional Outcomes After Chronic Denervation Injury. Sci Rep 2019; 9:3117. [PMID: 30816300 PMCID: PMC6395714 DOI: 10.1038/s41598-019-39738-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 01/17/2019] [Indexed: 01/08/2023] Open
Abstract
This study investigates the efficacy of systemic growth hormone (GH) therapy in ameliorating the deleterious effects of chronic denervation (CD) injury on nerve regeneration and resulting motor function. Using a forelimb CD model, 4 groups of Lewis rats were examined (n = 8 per group): Group-1 (negative control) 8 weeks of median nerve CD followed by ulnar-to-median nerve transfer; Group-2 (experimental) 8 weeks of median nerve CD followed by ulnar-to-median nerve transfer and highly purified lyophilized pituitary porcine GH treatment (0.6 mg/day); Group-3 (positive control) immediate ulnar-to-median nerve transfer without CD; Group-4 (baseline) naïve controls. All animals underwent weekly grip strength testing and were sacrificed 14 weeks following nerve transfer for histomorphometric analysis of median nerve regeneration, flexor digitorum superficialis atrophy, and neuromuscular junction reinnervation. In comparison to untreated controls, GH-treated animals demonstrated enhanced median nerve regeneration as measured by axon density (p < 0.005), axon diameter (p < 0.0001), and myelin thickness (p < 0.0001); improved muscle re-innervation (27.9% vs 38.0% NMJs re-innervated; p < 0.02); reduced muscle atrophy (1146 ± 93.19 µm2 vs 865.2 ± 48.33 µm2; p < 0.02); and greater recovery of motor function (grip strength: p < 0.001). These findings support the hypothesis that GH-therapy enhances axonal regeneration and maintains chronically-denervated muscle to thereby promote motor re-innervation and functional recovery.
Collapse
Affiliation(s)
- Joseph Lopez
- Department of Plastic & Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amy Quan
- Department of Plastic & Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joshua Budihardjo
- Department of Plastic & Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sinan Xiang
- Department of Plastic & Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Howard Wang
- Department of Plastic & Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kiron Koshy
- Department of Plastic & Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - W P Andrew Lee
- Department of Plastic & Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ahmet Hoke
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Sami Tuffaha
- Department of Plastic & Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Gerald Brandacher
- Department of Plastic & Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Barakat-Walter I, Kraftsik R. Stimulating effect of thyroid hormones in peripheral nerve regeneration: research history and future direction toward clinical therapy. Neural Regen Res 2018; 13:599-608. [PMID: 29722302 PMCID: PMC5950660 DOI: 10.4103/1673-5374.230274] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Injury to peripheral nerves is often observed in the clinic and severe injuries may cause loss of motor and sensory functions. Despite extensive investigation, testing various surgical repair techniques and neurotrophic molecules, at present, a satisfactory method to ensuring successful recovery does not exist. For successful molecular therapy in nerve regeneration, it is essential to improve the intrinsic ability of neurons to survive and to increase the speed of axonal outgrowth. Also to induce Schwann cell phenotypical changes to prepare the local environment favorable for axonal regeneration and myelination. Therefore, any molecule that regulates gene expression of both neurons and Schwann cells could play a crucial role in peripheral nerve regeneration. Clinical and experimental studies have reported that thyroid hormones are essential for the normal development and function of the nervous system, so they could be candidates for nervous system regeneration. This review provides an overview of studies devoted to testing the effect of thyroid hormones on peripheral nerve regeneration. Also it emphasizes the importance of combining biodegradable tubes with local administration of triiodothyronine for future clinical therapy of human severe injured nerves. We highlight that the local and single administration of triiodothyronine within biodegradable nerve guide improves significantly the regeneration of severed peripheral nerves, and accelerates functional recovering. This technique provides a serious step towards future clinical application of triiodothyronine in human severe injured nerves. The possible regulatory mechanism by which triiodothyronine stimulates peripheral nerve regeneration is a rapid action on both axotomized neurons and Schwann cells.
Collapse
Affiliation(s)
- I Barakat-Walter
- Department of Fundamental Neurosciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - R Kraftsik
- Department of Fundamental Neurosciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
4
|
|
5
|
An Experimental Comparison of the Effects of Propolis, Curcumin, and Methylprednisolone on Crush Injuries of the Sciatic Nerve. Ann Plast Surg 2015; 74:684-92. [DOI: 10.1097/sap.0000000000000026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Bhumika S, Darras VM. Role of thyroid hormones in different aspects of nervous system regeneration in vertebrates. Gen Comp Endocrinol 2014; 203:86-94. [PMID: 24681191 DOI: 10.1016/j.ygcen.2014.03.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 03/08/2014] [Accepted: 03/11/2014] [Indexed: 12/19/2022]
Abstract
Spontaneous functional recovery from injury in the adult human nervous system is rare and trying to improve recovery remains a clinical challenge. Nervous system regeneration is a complicated sequence of events involving cell death or survival, cell proliferation, axon extension and remyelination, and finally reinnervation and functional recovery. Successful recovery depends on the cell-specific and time-dependent activation and repression of a wide variety of growth factors and guidance molecules. Thyroid hormones (THs), well known for their regulatory role in neurodevelopment, have recently emerged as important modulators of neuroregeneration. This review focuses on the endogenous changes in the proteins regulating TH availability and action in different cell types of the adult mammalian nervous system during regeneration as well as the impact of TH supplementation on the consecutive steps in this process. It also addresses possible differences in TH involvement between different vertebrate classes, early or late developmental stages and peripheral or central nervous system. The available data show that THs are able to stimulate many signaling pathways necessary for successful neurogeneration. They however also suggest that supplementation with T4 and/or T3 may have beneficial or detrimental influences depending on the dose and more importantly on the specific phase of the regeneration process.
Collapse
Affiliation(s)
- Stitipragyan Bhumika
- Laboratory of Comparative Endocrinology, Division Animal Physiology and Neurobiology, Biology Department, KU Leuven, B-3000 Leuven, Belgium
| | - Veerle M Darras
- Laboratory of Comparative Endocrinology, Division Animal Physiology and Neurobiology, Biology Department, KU Leuven, B-3000 Leuven, Belgium.
| |
Collapse
|
7
|
Mohammadi R, Amini K, Yousefi A, Abdollahi-Pirbazari M, Belbasi A, Abedi F. Functional Effects of Local Administration of Thyroid Hormone Combined With Chitosan Conduit After Sciatic Nerve Transection in Rats. J Oral Maxillofac Surg 2013; 71:1763-76. [DOI: 10.1016/j.joms.2013.03.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 03/12/2013] [Accepted: 03/12/2013] [Indexed: 01/21/2023]
|
8
|
Abstract
Peripheral nerve regeneration is a unique process in which cellular rather than tissue response is involved. Depending on the extent and proximity of the lesion and the age and type of the neuronal soma, the cell body may either initiate a reparative response or may die. Microsurgical intervention may alter the prognosis after a peripheral nerve injury but to a certain extent. By altering the biochemical microenvironment of the neuron, we can increase the proportion of neurons that survive the injury and initiate the reparative response.
Thyroid hormone critically regulates tissue growth and differentiation and plays a
crucial role during organ development. Furthermore, recent research has provided
new insight into thyroid hormone cellular action. Thyroid hormone regulates stress
response intracellular signaling and targets molecules important for cytoskeletal
stability and cell integrity. Changes in thyroid hormone signaling occur in nerve and
other tissues, with important physiological consequences. The interest in thyroid
hormone in the context of nerve regeneration has recently been revived.
Collapse
|
9
|
Gu X, Ding F, Yang Y, Liu J. Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration. Prog Neurobiol 2010; 93:204-30. [PMID: 21130136 DOI: 10.1016/j.pneurobio.2010.11.002] [Citation(s) in RCA: 419] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 11/02/2010] [Accepted: 11/23/2010] [Indexed: 01/01/2023]
Abstract
Surgical repair of severe peripheral nerve injuries represents not only a pressing medical need, but also a great clinical challenge. Autologous nerve grafting remains a golden standard for bridging an extended gap in transected nerves. The formidable limitations related to this approach, however, have evoked the development of tissue engineered nerve grafts as a promising alternative to autologous nerve grafts. A tissue engineered nerve graft is typically constructed through a combination of a neural scaffold and a variety of cellular and molecular components. The initial and basic structure of the neural scaffold that serves to provide mechanical guidance and optimal environment for nerve regeneration was a single hollow nerve guidance conduit. Later there have been several improvements to the basic structure, especially introduction of physical fillers into the lumen of a hollow nerve guidance conduit. Up to now, a diverse array of biomaterials, either of natural or of synthetic origin, together with well-defined fabrication techniques, has been employed to prepare neural scaffolds with different structures and properties. Meanwhile different types of support cells and/or growth factors have been incorporated into the neural scaffold, producing unique biochemical effects on nerve regeneration and function restoration. This review attempts to summarize different nerve grafts used for peripheral nerve repair, to highlight various basic components of tissue engineered nerve grafts in terms of their structures, features, and nerve regeneration-promoting actions, and finally to discuss current clinical applications and future perspectives of tissue engineered nerve grafts.
Collapse
Affiliation(s)
- Xiaosong Gu
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, JS 226001, PR China.
| | | | | | | |
Collapse
|
10
|
Zhang C, Zhang P, Wang Y, Yu K, Kou Y, Jiang B. Early spatiotemporal progress of myelinated nerve fiber regenerating through biological chitin conduit after injury. ACTA ACUST UNITED AC 2010; 38:103-8. [PMID: 20205611 DOI: 10.3109/10731191003634836] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chitin conduits to bridge nerve injuries with a small gap (2 mm) give us a biological window in which the peripheral nerve regeneration process can be observed. In this study, the regeneration process was observed on different intervals postoperatively. Histological analysis revealed that the early regeneration process occurred in three phase: degeneration and matrix phase, axonal and Schwann migration phase, myelination and maturation phase. Schwann cells grew into the lumen from both the proximal and distal nerve segments. Axonal regrowth progressed at an average rate of 1.4 mm/d. Regenerating axonal fibers were myelinated by Schwann cells from both sides of the conduit.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Trauma and Orthopeadics, People's Hospital, Peking University, Beijing, P.R. China
| | | | | | | | | | | |
Collapse
|
11
|
Panaite PA, Barakat-Walter I. Thyroid hormone enhances transected axonal regeneration and muscle reinnervation following rat sciatic nerve injury. J Neurosci Res 2010; 88:1751-63. [PMID: 20127814 DOI: 10.1002/jnr.22344] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Improvement of nerve regeneration and functional recovery following nerve injury is a challenging problem in clinical research. We have already shown that following rat sciatic nerve transection, the local administration of triiodothyronine (T3) significantly increased the number and the myelination of regenerated axons. Functional recovery is a sum of the number of regenerated axons and reinnervation of denervated peripheral targets. In the present study, we investigated whether the increased number of regenerated axons by T3-treatment is linked to improved reinnervation of hind limb muscles. After transection of rat sciatic nerves, silicone or biodegradable nerve guides were implanted and filled with either T3 or phosphate buffer solution (PBS). Neuromuscular junctions (NMJs) were analyzed on gastrocnemius and plantar muscle sections stained with rhodamine alpha-bungarotoxin and neurofilament antibody. Four weeks after surgery, most end-plates (EPs) of operated limbs were still denervated and no effect of T3 on muscle reinnervation was detected at this stage of nerve repair. In contrast, after 14 weeks of nerve regeneration, T3 clearly enhanced the reinnervation of gastrocnemius and plantar EPs, demonstrated by significantly higher recovery of size and shape complexity of reinnervated EPs and also by increased acetylcholine receptor (AChRs) density on post synaptic membranes compared to PBS-treated EPs. The stimulating effect of T3 on EP reinnervation is confirmed by a higher index of compound muscle action potentials recorded in gastrocnemius muscles. In conclusion, our results provide for the first time strong evidence that T3 enhances the restoration of NMJ structure and improves synaptic transmission.
Collapse
|
12
|
Bessede T, Alsaid B, Ferretti L, Pierre M, Bernabé J, Giuliano F, Karam I, Benoît G, Droupy S. Effect of a Local Delivery of Triiodothyronine (T3) Within Neuroregenerative Guide on Recovery of Erectile Function in a Rat-Model of Cavernous Nerve Injury. J Sex Med 2010; 7:1798-806. [DOI: 10.1111/j.1743-6109.2010.01706.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
13
|
Papakostas I, Mourouzis I, Mourouzis K, Macheras G, Boviatsis E, Pantos C. Functional effects of local thyroid hormone administration after sciatic nerve injury in rats. Microsurgery 2009; 29:35-41. [DOI: 10.1002/micr.20546] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
14
|
Delaloye S, Kraftsik R, Kuntzer T, Barakat-Walter I. Does the physical disector method provide an accurate estimation of sensory neuron number in rat dorsal root ganglia? J Neurosci Methods 2008; 176:290-7. [PMID: 18824026 DOI: 10.1016/j.jneumeth.2008.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 08/28/2008] [Accepted: 09/01/2008] [Indexed: 11/24/2022]
Abstract
The physical disector is a method of choice for estimating unbiased neuron numbers; nevertheless, calibration is needed to evaluate each counting method. The validity of this method can be assessed by comparing the estimated cell number with the true number determined by a direct counting method in serial sections. We reconstructed a 1/5 of rat lumbar dorsal root ganglia taken from two experimental conditions. From each ganglion, images of 200 adjacent semi-thin sections were used to reconstruct a volumetric dataset (stack of voxels). On these stacks the number of sensory neurons was estimated and counted respectively by physical disector and direct counting methods. Also, using the coordinates of nuclei from the direct counting, we simulate, by a Matlab program, disector pairs separated by increasing distances in a ganglion model. The comparison between the results of these approaches clearly demonstrates that the physical disector method provides a valid and reliable estimate of the number of sensory neurons only when the distance between the consecutive disector pairs is 60 microm or smaller. In these conditions the size of error between the results of physical disector and direct counting does not exceed 6%. In contrast when the distance between two pairs is larger than 60 microm (70-200 microm) the size of error increases rapidly to 27%. We conclude that the physical dissector method provides a reliable estimate of the number of rat sensory neurons only when the separating distance between the consecutive dissector pairs is no larger than 60 microm.
Collapse
Affiliation(s)
- Sibylle Delaloye
- Laboratory of Neurology Research, University Hospital of Lausanne, 1011 Lausanne, Switzerland
| | | | | | | |
Collapse
|
15
|
Vleggeert-Lankamp CLAM. The role of evaluation methods in the assessment of peripheral nerve regeneration through synthetic conduits: a systematic review. J Neurosurg 2007; 107:1168-89. [DOI: 10.3171/jns-07/12/1168] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
A number of evaluation methods that are currently used to compare peripheral nerve regeneration with alternative repair methods and to judge the outcome of a new paradigm were hypothesized to lack resolving power. This would too often lead to the conclusion that the outcome of a new paradigm could not be discerned from the outcome of the current gold standard, the autograft. As a consequence, the new paradigm would incorrectly be judged as successful.
Methods
An overview of the methods that were used to evaluate peripheral nerve regeneration after grafting of the rat sciatic nerve was prepared. All articles that were published between January 1975 and December 2004 and concerned grafting of the rat sciatic nerve (minimum graft length 5 mm) and in which the experimental method was compared with an untreated or another grafted nerve were included. The author scored the presence of statistically significant differences between paradigms.
Results
Evaluation of nerve fiber count, nerve fiber density, N-ratio, nerve histological success ratio, compound muscle action potential, muscle weight, and muscle tetanic force are methods that were demonstrated to have resolving power.
Conclusions
A number of evaluation methods are not suitable to demonstrate a significant difference between experimental paradigms in peripheral nerve regeneration. It is preferable to apply a combination of evaluation methods with resolving power to evaluate nerve regeneration properly.
Collapse
|
16
|
Abstract
Whereas the central nervous system (CNS) usually cannot regenerate, peripheral nerves regenerate spontaneously after injury because of a permissive environment and activation of the intrinsic growth capacity of neurons. Functional regeneration requires axon regrowth and remyelination of the regenerated axons by Schwann cells. Multiple factors including neurotrophic factors, extracellular matrix (ECM) proteins, and hormones participate in Schwann cell dedifferentiation, proliferation, and remyelination. We describe the current understanding of peripheral axon regeneration and focus on the molecules and potential mechanisms involved in remyelination.
Collapse
Affiliation(s)
- Zu-Lin Chen
- Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY 10021, USA.
| | | | | |
Collapse
|
17
|
Pfister LA, Papaloïzos M, Merkle HP, Gander B. Nerve conduits and growth factor delivery in peripheral nerve repair. J Peripher Nerv Syst 2007; 12:65-82. [PMID: 17565531 DOI: 10.1111/j.1529-8027.2007.00125.x] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peripheral nerves possess the capacity of self-regeneration after traumatic injury. Transected peripheral nerves can be bridged by direct surgical coaptation of the two nerve stumps or by interposing autografts or biological (veins) or synthetic nerve conduits (NC). NC are tubular structures that guide the regenerating axons to the distal nerve stump. Early synthetic NC have primarily been made of silicone because of the relative flexibility and biocompatibility of this material and because medical-grade silicone tubes were readily available in various dimensions. Nowadays, NC are preferably made of biodegradable materials such as collagen, aliphatic polyesters, or polyurethanes. Although NC assist in guiding regenerating nerves, satisfactory functional restoration of severed nerves may further require exogenous growth factors. Therefore, authors have proposed NC with integrated delivery systems for growth factors or growth factor-producing cells. This article reviews the most important designs of NC with integrated delivery systems for localized release of growth factors. The various systems discussed comprise NC with growth factors being released from various types of matrices, from transplanted cells (Schwann cells or mesenchymal stem cells), or through genetic modification of cells naturally present at the site of injured tissue. Acellular delivery systems for growth factors include the NC wall itself, biodegradable microspheres seeded onto the internal surface of the NC wall, or matrices that are filled into the lumen of the NC and immobilize the growth factors through physical-chemical interactions or specific ligand-receptor interactions. A very promising and elegant system appears to be longitudinally aligned fibers inserted in the lumen of a NC that deliver the growth factors and provide additional guidance for Schwann cells and axons. This review also attempts to appreciate the most promising approaches and emphasize the importance of growth factor delivery kinetics.
Collapse
Affiliation(s)
- Lukas A Pfister
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
18
|
Barakat-Walter I, Kraftsik R, Krafsik R, Schenker M, Kuntzer T. Thyroid Hormone in Biodegradable Nerve Guides Stimulates Sciatic Nerve Regeneration: A Potential Therapeutic Approach for Human Peripheral Nerve Injuries. J Neurotrauma 2007; 24:567-77. [PMID: 17402861 DOI: 10.1089/neu.2006.0104] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
It has been already demonstrated that thyroid hormone (T3) is one of the most important stimulating factors in peripheral nerve regeneration. We have recently shown that local administration of T3 in silicon tubes at the level of the transected rat sciatic nerve enhanced axonal regeneration and improved functional recovery. Silicon, however, cannot be used in humans because it causes a chronic inflammatory reaction. Therefore, in order to provide future clinical applications of thyroid hormone in human peripheral nerve lesions, we carried out comparative studies on the regeneration of transected rat sciatic nerve bridged either by biodegradable P(DLLA-(-CL) or by silicon nerve guides, both guides filled with either T3 or phosphate buffer. Our macroscopic observation revealed that 85% of the biodegradable guides allowed the expected regeneration of the transected sciatic nerve. The morphological, morphometric and electrophysiological analysis showed that T3 in biodegradable guides induces a significant increase in the number of myelinated regenerated axons (6862 +/- 1831 in control vs. 11799 +/- 1163 in T3-treated). Also, T3 skewed the diameter of myelinated axons toward larger values than in controls. Moreover, T3 increases the compound muscle action potential amplitude of the flexor and extensor muscles of the treated rats. This T3 stimulation in biodegradable guides was equally well to that obtained by using silicone guides. In conclusion, the administration of T3 in biodegradable guides significantly improves sciatic nerve regeneration, confirming the feasibility of our technique to provide a serious step towards future clinical application of T3 in human peripheral nerve injuries.
Collapse
|
19
|
|
20
|
Voria I, Hauser J, Axis A, Schenker M, Bichet S, Kuntzer T, Grenningloh G, Barakat-Walter I. Improved sciatic nerve regeneration by local thyroid hormone treatment in adult rat is accompanied by increased expression of SCG10. Exp Neurol 2005; 197:258-67. [PMID: 16289052 DOI: 10.1016/j.expneurol.2005.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Revised: 09/05/2005] [Accepted: 10/03/2005] [Indexed: 11/30/2022]
Abstract
Thyroid hormone plays an important role in regulating the development and regeneration of the nervous system. Our previous work showed that local administration of triiodothyronine (T3) at the level of transected rat sciatic nerve increased the number and diameter of regenerated axons, but the mechanism underlying the improved regeneration is still unclear. Here, we have investigated the effect of T3 on the expression of SCG10, a regulator of microtubule dynamics in growth cones. After transection of adult rat sciatic nerves, silicone tubes were implanted and filled with T3 or phosphate-buffered solution. At various time points following surgery, the expression of SCG10 protein and mRNA was analyzed. Semi-quantitative Western blot analysis revealed that sciatic nerve transection induced a more than 20-fold upregulation of SCG10 protein in proximal nerve segments at 1 day post-lesion, while at this time point, SCG10 mRNA in dorsal root ganglion neurons was not increased yet. The increase in SCG10 protein and mRNA could be observed over 30 days. Local T3 treatment significantly enhanced the increase in SCG10 protein levels about two-fold in the different segments of transected nerve during the regeneration period. Also SCG10 mRNA levels in lumbar ganglia were enhanced. Immunohistochemical analysis showed that T3 treatment not only increased the number of SCG10 positive axons but also the intensity of their staining. These results suggest that SCG10 is involved in the regulation of regeneration. The stimulating effect of T3 on SCG10 expression could provide a mechanism by which T3 enhances peripheral nerve regeneration.
Collapse
Affiliation(s)
- I Voria
- Departement de Biologie Cellulaire et de Morphologie, University of Lausanne, 1005 Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Courtin F, Zrouri H, Lamirand A, Li WW, Mercier G, Schumacher M, Goascogne CL, Pierre M. Thyroid hormone deiodinases in the central and peripheral nervous system. Thyroid 2005; 15:931-42. [PMID: 16131335 DOI: 10.1089/thy.2005.15.931] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Thyroid hormones play a critical role in development and functioning of the nervous system. Deiodinases (type 2 [D2] and type 3 [D3]) contribute to the control of thyroid hormone action in the nervous system by regulating the local concentrations of triiodothyronine (T(3)), the main active thyroid hormone. Most brain T(3) is indeed locally formed by deiodination of thyroxine (T(4)). This reaction is catalyzed by D2 expressed in astrocytes throughout the brain and in tanycytes in the mediobasal hypothalamus. D3, which inactivates both T(4) and T(3), is mainly expressed in neurons also throughout the brain, with high expression in hippocampus and pyriform cortex. The regulation of deiodinases by many factors in addition to the thyroid hormones indicate that their role is not limited to mitigate the fluctuations in plasma T(4) and T(3). In contrast to the brain, deiodinases are not expressed in the adult peripheral nerve. Nerve lesions induce D2 in peripheral nerve sheaths and D3 in the endoneurial compartment containing Schwann cells. On the basis of available data summarized in this review, D2 and D3 clearly contribute to determine T(3) concentrations depending on the area of the nervous system, the state of development, and the pathophysiologic conditions.
Collapse
|
22
|
Oble DA, Burton L, Maxwell K, Hassard T, Nathaniel EJH. A comparison of thyroxine- and polyamine-mediated enhancement of rat facial nerve regeneration. Exp Neurol 2004; 189:105-11. [PMID: 15296840 DOI: 10.1016/j.expneurol.2004.05.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2004] [Revised: 05/07/2004] [Accepted: 05/17/2004] [Indexed: 11/18/2022]
Abstract
Thyroid hormones and spermidine, a motor neuron trophic polyamine (PA), have been shown to enhance peripheral motor nerve regeneration; however, the mechanism by which these treatment modalities exert their effect is unknown. Similarities in treatment outcome suggest that these molecules may be working via a common mechanism. Such an explanation is plausible since thyroid hormone is a potent inducer of ornithine decarboxylase (ODC), which is the rate-limiting enzyme involved in polyamine synthesis. This study was designed to morphologically evaluate the effects of exogenous thyroxine and spermidine on the regeneration of the rat facial nerve. Myelinated fiber density, axonal size, and degree of myelination were assayed by light and electron microscopy 21 days following facial nerve crush. Strikingly, the two treatment modalities had identical effects on all parameters tested. Each significantly enhanced the density of myelinated axons in regenerating nerves relative to the vehicle control. In addition, relative to the control treatment, both thyroxine and spermidine significantly increased the cross-sectional area of regenerating axons (P < 0.05). Interestingly, neither of the drug treatments had any effect on remyelination at the position where this parameter was analyzed. The concurrent administration of both thyroxine and spermidine did not synergistically enhance motor neuron regeneration. These data support the hypothesis that thyroxine and spermidine enhance neural regeneration by a common mechanism.
Collapse
Affiliation(s)
- Darryl A Oble
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0W3.
| | | | | | | | | |
Collapse
|
23
|
Sarliève LL, Rodríguez-Peña A, Langley K. Expression of thyroid hormone receptor isoforms in the oligodendrocyte lineage. Neurochem Res 2004; 29:903-22. [PMID: 15139289 DOI: 10.1023/b:nere.0000021235.83952.9a] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Thyroid hormone (T3) regulates brain development and function and in particular ensures normal myelination. Animal models and in vitro systems have been employed to demonstrate the effects of T3, which acts via nuclear hormone receptors. T3 receptors (TRs) are transcription factors that activate or suppress target gene expression, such as myelin basic protein (MBP), in a hormone-dependent or -independent fashion. Two distinct genes, TR alpha and TR beta, encode several receptor isoforms with specific functions. This overview summarizes current knowledge on the cellular expression and the role of these isoforms and also examines the action of T3 on oligodendrocyte lineage cell types at defined developmental stages. Re-expression of TRs and also that of other transcription factors in oligodendrocytes may constitute some of the metabolic changes required for succesfull remyelination in the adult central nervous system after demyelinating lesions.
Collapse
Affiliation(s)
- Louis L Sarliève
- ER2072 du CNRS, Faculté de Médecine, Institut de Chimie Biologique, 11 rue Humann, 67085, Strasbourg, France.
| | | | | |
Collapse
|
24
|
Scherman P, Kanje M, Dahlin LB. Local Effects on Triiodothyronine-Treated Polyglactin Sutures on Regeneration across Peripheral Nerve Defects. ACTA ACUST UNITED AC 2004; 10:455-64. [PMID: 15165462 DOI: 10.1089/107632704323061816] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have previously described a new and simple method for nerve repair in which continuous longitudinal polyglactin sutures alone are used to bridge limited nerve defects in rats. Here we examined whether such sutures could be used to deliver a growth-promoting substance, triiodothyronine (T(3)), and enhance regeneration of the rat sciatic nerve. Sutures were pretreated in highly concentrated solutions of T(3) for 24 h. In vitro measurements showed that such sutures released T(3) with an initial rapid phase followed by a slow-release phase lasting at least 3 weeks. Bilateral sciatic nerve defects (7 mm) in rats were bridged by either T(3)- or saline-incubated sutures. Immunocytochemistry for Schwann cells and axons at 2 weeks showed no differences in Schwann cell distribution or axonal outgrowth length. Morphometric analysis 4 and 12 weeks after the repair revealed a slight but significant (p < 0.05) increase in the mean myelin area in T(3)-treated nerves. No differences were seen in the number of axons or return of force in the gastrocnemius muscle at 12 weeks. The results show that sutures can be used both for the bridging of defects in peripheral nerves and for the delivery of a growth-promoting substance to regenerating nerve structures.
Collapse
Affiliation(s)
- Peter Scherman
- Department of Hand Surgery, Malmö University Hospital, Malmö, Sweden.
| | | | | |
Collapse
|
25
|
Hara Y, Shiga T, Abe I, Tsujino A, Ichimura H, Okado N, Ochiai N. P0 mRNA expression increases during gradual nerve elongation in adult rats. Exp Neurol 2003; 184:428-35. [PMID: 14637112 DOI: 10.1016/s0014-4886(03)00259-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Leg lengthening with nerve elongation is a common clinical treatment. We investigated morphological and molecular changes in peripheral nerves associated with femoral lengthening using animal models. Sciatic nerves of 13 week old male Wistar rats (n = 35) were elongated indirectly by leg lengthening for 14 days at 1 mm/day. At 3, 7, 14, 21, and 35 days following initiation of elongation, sciatic nerves on the elongated side and contralateral (control) side were excised at the midpoint of the femur. Internodal length was increased by 17%. Light and electron microscopic observation of transverse sections at 14 days showed elongated nerves appearing similar to control nerves with no degenerating axons and normal myelin thickness. We next examined changes of mRNA expression of a major myelin glycoprotein, P0, in elongated nerves using a quantitative reverse transcription-polymerase chain reaction and in situ hybridization. P0 mRNA expression in elongated nerves was increased during the first 3 weeks, with expression reaching 160% of control nerve expression at 14 days. Results of in situ hybridization were confirmatory. We concluded that myelin synthesis occurred during gradual nerve elongation. In adulthood, Schwann cells retain ability to synthesize myelin in response to nerve stretching.
Collapse
Affiliation(s)
- Yuki Hara
- Department of Orthopaedic Surgery, Institute of Clinical Medicine, University of Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | | | |
Collapse
|
26
|
Schenker M, Kraftsik R, Glauser L, Kuntzer T, Bogousslavsky J, Barakat-Walter I. Thyroid hormone reduces the loss of axotomized sensory neurons in dorsal root ganglia after sciatic nerve transection in adult rat. Exp Neurol 2003; 184:225-36. [PMID: 14637094 DOI: 10.1016/s0014-4886(03)00255-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We have shown that a local administration of thyroid hormones (T3) at the level of transected rat sciatic nerve induced a significant increase in the number of regenerated axons. To address the question of whether local administration of T3 rescues the axotomized sensory neurons from death, in the present study we estimated the total number of surviving neurons per dorsal root ganglion (DRG) in three experimental group animals. Forty-five days following rat sciatic nerve transection, the lumbar (L4 and L5) DRG were removed from PBS-control, T3-treated as well as from unoperated rats, and serial sections (1 microm) were cut. The physical dissector method was used to estimate the total number of sensory neurons in the DRGs. Our results revealed that in PBS-control rats transection of sciatic nerve leads to a significant (P < 0.001) decrease in the mean number of sensory neurons (8743.8 +/- 748.6) compared with the number of neurons in nontransected ganglion (mean 13,293.7 +/- 1368.4). However, administration of T3 immediately after sciatic nerve transection rescues a great number of axotomized neurons so that their mean neuron number (12,045.8 +/- 929.8) is not significantly different from the mean number of neurons in the nontransected ganglion. In addition, the volume of ganglia showed a similar tendency. These results suggest that T3 rescues a high number of axotomized sensory neurons from death and allows these cells to grow new axons. We believe that the relative preservation of neurons is important in considering future therapeutic approaches of human peripheral nerve lesion and sensory neuropathy.
Collapse
Affiliation(s)
- Michel Schenker
- Institute of Cell Biology and Morphology (IBCM), Medical School, University Hospital of Lausanne, 1011-, Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
27
|
Schenker M, Riederer BM, Kuntzer T, Barakat-Walter I. Thyroid hormones stimulate expression and modification of cytoskeletal protein during rat sciatic nerve regeneration. Brain Res 2002; 957:259-70. [PMID: 12445968 DOI: 10.1016/s0006-8993(02)03607-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peripheral neurons can regenerate after axotomy; in this process, the role of cytoskeletal proteins is important because they contribute to formation and reorganization, growth, transport, stability and plasticity of axons. In the present study, we examined the effects of thyroid hormones (T3) on the expression of major cytoskeletal proteins during sciatic nerve regeneration. At various times after sciatic nerve transection and T3 local administration, segments of operated nerves from T3-treated rats and control rats were examined by Western blotting for the presence of neurofilament, tubulin and vimentin. Our results revealed that, during the first week after surgery, T3 treatment did not significantly alter the level of NF subunits and tubulin in the different segments of operated nerves compared to control nerves. Two or 4 weeks after operation, the concentration of NF-H and NF-M isoforms was clearly increased by T3 treatment. Moreover, under T3-treatment, NF proteins appeared more rapidly in the distal segment of operated nerves. Likewise, the levels of betaIII, and of acetylated and tyrosinated tubulin isotypes, were also up-regulated by T3-treatment during regeneration. However, only the tyrosinated tubulin form appeared earlier in the distal nerve segments. At this stage of regeneration, T3 had no effect on the level of vimentin expression. In conclusion, thyroid hormone improves and accelerates peripheral nerve regeneration and exerts a positive effect on cytoskeletal protein expression and transport involved in axonal regeneration. These results help us to understand partially the mechanism by which thyroid hormones enhance peripheral nerve regeneration. The stimulating effect of T3 on peripheral nerve regeneration may have considerable therapeutic potential.
Collapse
Affiliation(s)
- Michel Schenker
- Institute of Cell Biology and Morphology (IBCM), Medical School, Lausanne, Switzerland
| | | | | | | |
Collapse
|
28
|
Abstract
1. In addition to its role in cellular metabolic activity, thyroid hormone (TH) is critically involved in growth, development, and function of the central nervous system. In the brain, as in other structures, TH is described to exert its major action by the binding of L-3,5,3'-triiodothyronine (T3), considered as the bioactive form of the hormone, to nuclear thyroid hormone receptors (TR) that function as ligand-dependent transcription factors. 2. The transcription of numerous brain genes was indeed shown to be positively or negatively regulated by TH, turning these TR-mediated effects one explanation for the physiological effects of TH. In this context, the knowledge from TR-knockout studies provides some surprising results, since neonatal hypothyroidism is associated to more significant abnormalities than is TR deficiency. Some (nonexclusive) hypotheses include a permissive effect of TH, allowing derepression of unliganded-TR effects and non-TR-mediated effects of the hormone, further emphasizing the importance of a controlled accessibility of neural cells to TH. 3. On the other hand, T3 was demonstrated to directly act not only on neuronal but also on glial cells proliferation and differentiation, contributing to the harmonious development of the brain. Interestingly, in addition to these direct actions on neuronal and glial cells, several lines of evidence, notably developped in our laboratory, point out the role of thyroid hormone in neuronal-glial interactions.
Collapse
Affiliation(s)
- Sandra König
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-590, Rio de Janeiro, Brazil
| | | |
Collapse
|
29
|
Castañeda F, Kinne RKH. Omental graft improves functional recovery of transected peripheral nerve. Muscle Nerve 2002; 26:527-32. [PMID: 12362419 DOI: 10.1002/mus.10229] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The omentum has several properties that are advantageous for neuronal sprouting and direction. We have therefore analyzed functional recovery following transection of rat sciatic nerve using omental graft to bridge the nerve defect. In group 1, a 25-30-mm nerve defect was produced and bridged with omental graft, whereas in group 2, an end-to-end repair was performed. The sciatic function index (SFI) was assessed at 2-week intervals until 8 weeks after surgery. Functional recovery was faster in group 1 than in group 2. After 8 weeks, SFI was improved significantly from -100% to -45% (+/- -4%) in group 1 (P < 0.001) compared to -72% +/- -2% in group 2 (n = 10). Histologically, the omental graft contained more newly developed nerve fibers and less scar tissue than the end-to-end repair. Thus, omental graft appears to improve directional growth of regenerating axon sprouts and may be a means of treating peripheral nerve injury.
Collapse
Affiliation(s)
- Francisco Castañeda
- Max-Planck-Institut für Molekulare Physiologie, Abteilung Epithelphysiologie, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.
| | | |
Collapse
|
30
|
Li WW, Le Goascogne C, Schumacher M, Pierre M, Courtin F. Type 2 deiodinase in the peripheral nervous system: induction in the sciatic nerve after injury. Neuroscience 2002; 107:507-18. [PMID: 11719005 DOI: 10.1016/s0306-4522(01)00362-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thyroid hormones are essential for the development and function of the brain and also for the maturation and repair of the peripheral nervous system. In the brain, most of the 3,5,3'-triiodothyronine is locally produced by 5'-deiodination of thyroxine catalyzed by the type 2 deiodinase. The absence of any information about thyroid hormone metabolism in the peripheral nervous system prompted us to study the expression of type 2 deiodinase (mRNA and activity) in the peripheral nervous system. Expression of type 2 deiodinase mRNA was very low in the sciatic nerve of rats until day 5 after birth, then increased from day 10 to 35-45 and gradually decreased afterwards, down to the low basal levels observed in the adult. A lesion of the sciatic nerve in the adult induced an increase in type 2 deiodinase mRNA and activity. After a cryolesion, the stimulation was observed as early as 4 h and mRNA levels increased until 24-48 h, then gradually declined down to basal levels around 28 days, when regeneration and functional recovery were completed. After a permanent transection, up-regulation of type 2 deiodinase persisted in both proximal and distal segments until the end of the experiment (28 days). Transection and cryolesion were also followed by increased type 2 deiodinase mRNA expression in the ipsilateral L4/L6 dorsal root ganglia within 24 h. Both mRNA and activity were found in the peripheral nerve sheaths but not in the internal compartment of the intact or injured nerve. Cultured fibroblasts from the sciatic nerve expressed type 2 deiodinase 4 h after stimulation by 10 microM forskolin, whereas purified Schwann cells did not. The present study provides evidence that the peripheral nervous system has its own system responsible for the local production of 3,5,3'-triiodothyronine, which may play a key role during the regeneration process.
Collapse
Affiliation(s)
- W W Li
- INSERM U. 488, 80, rue du Général Leclerc, 94276 Cedex, Le Kremlin-Bicêtre, France
| | | | | | | | | |
Collapse
|
31
|
Giardino L, Giuliani A, Bettelli C, Calzà L. Thyroid hormone and retinoids affect motoneuron phenotype and reaction after axotomy in the spinal cord of adult rats. Brain Res 2002; 925:122-32. [PMID: 11792360 DOI: 10.1016/s0006-8993(01)03266-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Motoneuron phenotype in the spinal cord is regulated by an intrinsic genetic program, extrinsic environmental signals and target-derived molecules. Axonal lesions trigger a phenotype switch to foster repair phenomena and axonal re-growth. We have investigated the influence of the long-term treatment with thyroid hormone and all trans retinol palmitate (RA) on motoneuron phenotype and spinal cord reaction to axotomy in adult male rats. Neurochemical markers, investigated by in situ hybridization and immunocytochemistry, included choline acetyltransferase (ChAT), calcitonin gene-related peptide (CGRP) and neurotrophin low affinity receptor p75. Treatment was administered for 56 days and then mid-thigh sciatic axotomy was performed on a number of animals from each experimental groups; the rats were examined 9 days after surgery. The results indicate that: (1) Number and size of ChAT-immunoreactive neurons in the lumbar tract of the spinal cord was reduced in hypothyroid compared to control rats, whereas steady-state level of ChAT mRNA in labelled motoneurons failed to be modified by hypo and hyperthyroidism, but was increased by RA administration; (2) none of the administered treatments did alter CGRP mRNA level, whereas all of them influenced the axotomy-induced changes of motoneuron phenotype; (3) in hyperthyroid rats ChAT mRNA level of lumbar motoneurons not reduced homolateral to lesion while the number of ChAT-IR profiles was pronouncedly reduced; (4) up-regulation of p75 induced by peripheral nerve lesion was reduced in RA-treated rats. These data indicate that the motoneuron phenotype is regulated by transcription factors, which also play a role in phenotype switch regulation after axotomy.
Collapse
Affiliation(s)
- Luciana Giardino
- Department of Veterinary Morphophysiology and Animal Production (DIMORFIPA), University of Bologna, Bologna, Italy
| | | | | | | |
Collapse
|
32
|
Li WW, Le Goascogne C, Ramaugé M, Schumacher M, Pierre M, Courtin F. Induction of type 3 iodothyronine deiodinase by nerve injury in the rat peripheral nervous system. Endocrinology 2001; 142:5190-7. [PMID: 11713214 DOI: 10.1210/endo.142.12.8532] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thyroid hormones are essential for the development and repair of the peripheral nervous system. The type 2 deiodinase, which is responsible for the activation of T(4) into T(3), is induced in injured sciatic nerve. To obtain information on the type 3 deiodinase (D3) responsible for the degradation of thyroid hormones, we looked for its expression (mRNA and activity) in the sciatic nerve after injury. D3 was undetectable in the intact sciatic nerve of adult rats, but was rapidly and highly increased in the distal and proximal segments after nerve lesion. After cryolesion, D3 up-regulation disappeared after 3 d in the proximal segment, whereas it was sustained for 10 d in the distal segment, then declined to reach basal levels after 28 d, when functional recovery was completed. After a transsection preventing the nerve regeneration, up-regulation of D3 persisted up to 28 d at high levels in the distal segment. D3 was expressed in peripheral connective sheaths and in the internal endoneural compartment. D3 mRNA was inducible by 12-O-tetradecanoylphorbol-13-acetate in cultured fibroblasts or Schwann cells. In conclusion, induction of D3 in the peripheral nervous system after injury may play an important role during the regeneration process by adjusting intracellular T(3) levels.
Collapse
Affiliation(s)
- W W Li
- INSERM, U-488, 94276 Le Kremlin-Bicêtre, France
| | | | | | | | | | | |
Collapse
|
33
|
Gomes FC, Lima FR, Trentin AG, Moura Neto V. Thyroid hormone role in nervous system morphogenesis. PROGRESS IN BRAIN RESEARCH 2001; 132:41-50. [PMID: 11545007 DOI: 10.1016/s0079-6123(01)32064-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- F C Gomes
- Instituto de Ciências Biomédicas, Departamento de Anatomia, Universidade Federal do Rio de Janeiro, 21949-590 Rio de Janeiro, RJ, Brazil
| | | | | | | |
Collapse
|
34
|
Mercier G, Turque N, Schumacher M. Rapid effects of triiodothyronine on immediate-early gene expression in Schwann cells. Glia 2001; 35:81-9. [PMID: 11460264 DOI: 10.1002/glia.1073] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the peripheral nervous system, triiodothyronine (T3) plays an important role in the development and regeneration of nerve fibers and in myelin formation. However, the target genes of T3 in peripheral nerves remain to be identified. We investigated whether T3 activated genes of transcription factors in Schwann cells. Expression of egr-1 (krox-24), egr-2 (krox-20), egr-3, c-jun, junB, c-fos, fosB, fra-1, fra-2, and CREB genes was analyzed by reverse transcription-polymerase chain reaction (RT-PCR) in Schwann cells isolated from neonatal rat sciatic nerves and in the cell lines MSC-80 (mouse Schwann cells), NIH-3T3 (mouse fibroblasts), and CHO (Chinese hamster ovary cells). Some of these transcription factors have been shown to be involved in Schwann cell differentiation. T3 triggered a rapid (15-30 min), transient (1-2-h) and strong (6- to 15-fold) stimulation of Egr-1, Egr-2, Egr-3, Jun B, c-Fos, and Fos B mRNA expression in Schwann cells. In contrast, expression of c-Jun, Fra-1, Fra-2, and CREB mRNA was not affected by T3. The stimulatory effects of T3 could be abolished by adding actinomycin D. T3 triggered the same pattern of gene stimulation in the mouse Schwann cell line MSC80, but not in the NIH-3T3 and CHO cell lines. Serum activated all the genes that responded to T3 and in addition fra-1 and fra-2, but not c-jun and CREB. Immunoblotting showed that the increase in Egr-1 and c-Fos mRNA levels was accompanied by an increase in the corresponding proteins. In addition, shifts of the protein bands indicated a posttranslational modification of the two proteins. These effects of T3 are likely to be mediated by the intracellular T3 receptor, as the D-isomer RT3 and T0, which do not bind to T3 receptors, proved ineffective. The present data suggested that T3 may regulate Schwann cell functions and differentiation by transiently activating the expression of specific transcription factors.
Collapse
Affiliation(s)
- G Mercier
- U488 INSERM, Kremlin-Bicêtre, France.
| | | | | |
Collapse
|
35
|
Hoffer JA, Kallesøe K. Nerve cuffs for nerve repair and regeneration. PROGRESS IN BRAIN RESEARCH 2001; 128:121-34. [PMID: 11105674 DOI: 10.1016/s0079-6123(00)28012-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- J A Hoffer
- School of Kinesiology, Simon Fraser University, Burnaby, BC, Canada.
| | | |
Collapse
|
36
|
Heijke GC, Klopper PJ, Baljet B, Van Doorn IB, Dutrieux RP. Method for morphometric analysis of axons in experimental peripheral nerve reconstruction. Microsurgery 2001; 20:225-32. [PMID: 11015719 DOI: 10.1002/1098-2752(2000)20:5<225::aid-micr3>3.0.co;2-s] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A new method for morphometric analysis of axons in experimental peripheral nerve reconstruction is presented. Twelve adult female rabbits were used. In nine animals the saphenous nerve was transected and stitched epineurially. Three animals functioned as control. After 3, 6, and 12 months, the nerves were harvested, fixed in Kryofix and embedded in Histowax. Transverse sections of 6 microm were cut, immunohistochemically stained for NF 90, and counterstained by Sirius Red. Quantification of nerve fibers in cross sections was performed by using a confocal laser scanning microscope (CLSM), and the images were stored digitally. Data analyzing was performed by the Optimas program (5.2). Calculations were done with Microsoft Excel. The total number of axons, the mean axon diameter and the percentage axon area/fascicle area were evaluated statistically. This method for morphologic analysis provides automatically complete registration of axons and so different methods of experimental nerve reconstruction can be compared in a fast and reliable way.
Collapse
Affiliation(s)
- G C Heijke
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
37
|
Fines GA, Plohman J, Eales JG. Effect of experimental 3,5,3'-triiodothyronine hyperthyroidism on thyroid hormone deiodination in brain regions and liver of rainbow trout, Oncorhynchus mykiss. CAN J ZOOL 1999. [DOI: 10.1139/z99-100] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We studied the effect of 3,5,3'-triiodothyronine (T3) hyperthyroidism, induced by 12 ppm T3 in food for 10 days, on the low-Km activities of thyroxine (T4) outer-ring deiodination (ORD) to form T3, T4 inner-ring deiodination (IRD) to form 3,3',5'-triiodothyronine (reverse T3 (rT3)), T3ORD to form 3,5-diiodothyronine (3,5-T2), and T3IRD to form 3,3'-diiodothyronine (3,3'-T2) in six brain regions and in liver of immature rainbow trout (Oncorhynchus mykiss) at 12°C. Throughout the brain, T4ORD activity of control trout was uniformly low and T3ORD activity was negligible. T4IRD and T3IRD activities were about 5-fold and 50-fold greater, respectively, than T4ORD activity and were higher in the optic lobes, hypothalamus, and telencephalon/olfactory bulbs than in the medulla or cerebellum. T3 treatment doubled the plasma T3 level with no change in plasma T4 level and reduced T4ORD and T4IRD activities in all brain regions but did not alter T3IRD activity or the negligible T3ORD activity. Relative to controls, T3 treatment reduced liver T4ORD activity 6-fold, increased T4IRD activity 8-fold, and increased T3IRD activity 12-fold. We conclude that (i) there are regional differences in trout brain T4IRD and T3IRD activities but not in T4ORD activity, indicating spatial variation in brain T4 and T3 catabolism, (ii) in response to a mild T3 challenge the brain deiodination pathways do not undergo the same autoregulatory adjustments as those in liver, and (iii) a T3 challenge reduces brain T4IRD activity with no change in T3IRD activity, which suggests that the two IRDs may be controlled by separate deiodinases.
Collapse
|
38
|
Abstract
After peripheral nerve injury in adult mammals, reestablishment of functional connections depends on several parameters including neurotrophic factors, the extracellular matrix, and hormones. However, little is known about the contribution of hormones to peripheral nerve regeneration. Thyroid hormones, which are required for the development and maturation of the central nervous system, are also important for the development of peripheral nerves. The action of triiodothyronine (T3) on responsive cells is mediated through nuclear thyroid hormone receptors (TRs) which modulate the expression of specific genes in target cells. Thus, to study the effect of T3, it is first necessary to know whether the target tissues possess TRs. The fact that sciatic nerve cells possess functional TRs suggests that these cells can respond to T3 and, as a consequence, that thyroid hormone may be involved in peripheral nerve regeneration. The silicone nerve guide model provides an excellent system to study the action of local administration of T3. Evidence from such studies demonstrate that animals treated locally with T3 at the level of transection have more complete regeneration of sciatic nerve and better functional recovery. Among the possible regulatory mechanisms by which T3 enhances peripheral nerve regeneration is rapid action on both axotomized neurons and Schwann cells which, in turn, produce a lasting and stimulatory effect on peripheral nerve regeneration. It is probable that T3 up- or down-regulates gene expression of one or more growth factors, extracellular matrix, or cell adhesion molecules, all of which stimulate peripheral nerve regeneration. This could explain the greater effect of T3 on nerve regeneration compared with the effect of any one growth factor or adhesion molecule.
Collapse
Affiliation(s)
- I Barakat-Walter
- Institute of Cell Biology and Morphology, Medical School, University Hospital of Lausanne, CHUV, Rue du Bugnon 46, 1011 Lausanne, Switzerland
| |
Collapse
|