1
|
The state of the art in stem cell biology and regenerative medicine: the end of the beginning. Pediatr Res 2018; 83:191-204. [PMID: 29019974 DOI: 10.1038/pr.2017.258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 10/02/2017] [Indexed: 12/11/2022]
Abstract
With translational stem cell biology and Regenerative Medicine (the field to which the former gave rise) now over a quarter century old, it is time to take stock of where we have been and where we are going. This editorial overview, which serves as an introduction to this special issue of Pediatric Research dedicated to these fields, reinforces the notion that stem cells are ultimately intrinsic parts of developmental biology, for which Pediatrics represents the clinical face. Although stem cells provide the cellular basis for a great deal of only recently recognized plasticity programmed into the developing and postdevelopmental organism, and although there is enormous promise in harnessing this plasticity for therapeutic advantage, their successful use rests on a deep understanding of their developmental imperatives and the developmental programs in which they engage. The potential uses of stems are ranked and discussed in the order of most readily achievable to those requiring extensively more work. Although that order may not be what was contemplated at the field's birth, we nevertheless retain an optimism for the ultimate positive impact of exploiting this fundamental biology for the well-being of children.
Collapse
|
2
|
Castellanos DA, Tsoulfas P, Frydel BR, Gajavelli S, Bes JC, Sagen J. TrkC Overexpression Enhances Survival and Migration of Neural Stem Cell Transplants in the Rat Spinal Cord. Cell Transplant 2017. [DOI: 10.3727/096020198389942] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Although CNS axons have the capacity to regenerate after spinal cord injury when provided with a permissive substrate, the lack of appropriate synaptic target sites for regenerating fibers may limit restoration of spinal circuitry. Studies in our laboratory are focused on utilizing neural stem cells to provide new synaptic target sites for regenerating spinal axons following injury. As an initial step, rat neural precursor cells genetically engineered to overexpress the tyrosine kinase C (trkC) neurotrophin receptor were transplanted into the intact rat spinal cord to evaluate their survival and differentiation. Cells were either pretreated in vitro prior to transplantation with trkC ligand neurotrophin-3 (NT-3) to initiate differentiation or exposed to NT-3 in vivo following transplantation via gelfoam or Oxycel©. Both treatments enhanced survival of trkC-overexpressing stem cells to nearly 100%, in comparison with approximately 30–50% when either NT-3 or trkC was omitted. In addition, increased migration of trkC-overexpressing cells throughout the spinal gray matter was noted, particularly following in vivo NT-3 exposure. The combined trkC expression and NT-3 treatment appeared to reduce astrocytic differentiation of transplanted neural precursors. Decreased cavitation and increased β-tubulin fibers were noted in the vicinity of transplanted cells, although the majority of transplanted cells appeared to remain in an undifferentiated state. These findings suggest that genetically engineered neural stem cells in combination with neurotrophin treatment may be a useful addition to strategies for repair of spinal neurocircuitry following injury.
Collapse
Affiliation(s)
- Daniel A. Castellanos
- The Miami Project to Cure Paralysis, University of Miami School of Medicine, Miami, FL 33136
| | - Pantelis Tsoulfas
- The Miami Project to Cure Paralysis, University of Miami School of Medicine, Miami, FL 33136
| | - Beata R. Frydel
- The Miami Project to Cure Paralysis, University of Miami School of Medicine, Miami, FL 33136
| | - Shyam Gajavelli
- The Miami Project to Cure Paralysis, University of Miami School of Medicine, Miami, FL 33136
| | - Jean-Claude Bes
- The Miami Project to Cure Paralysis, University of Miami School of Medicine, Miami, FL 33136
| | - Jacqueline Sagen
- The Miami Project to Cure Paralysis, University of Miami School of Medicine, Miami, FL 33136
| |
Collapse
|
3
|
Ryu MY, Lee MA, Ahn YH, Kim KS, Yoon SH, Snyder EY, Cho KG, Kim SU. Brain Transplantation of Neural Stem Cells Cotransduced with Tyrosine Hydroxylase and GTP Cyclohydrolase 1 in Parkinsonian Rats. Cell Transplant 2017; 14:193-202. [PMID: 15929554 DOI: 10.3727/000000005783983133] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Neural stem cells (NSCs) of the central nervous system (CNS) recently have attracted a great deal of interest not only because of their importance in basic research on neural development, but also in terms of their therapeutic potential in neurological diseases, such as Parkinson's disease (PD). To examine if genetically modified NSCs are a suitable source for the cell and gene therapy of PD, an immortalized mouse NSC line, C17.2, was transduced with tyrosine hydroxylase (TH) gene and with GTP cyclohydrolase 1 (GTPCH1) gene, which are important enzymes in dopamine biosynthesis. The expression of TH in transduced C17.2-THGC cells was confirmed by RT-PCR, Western blot analysis, and immunocytochemistry, and expression of GTPCH1 by RT-PCR. The level of L-DOPA released by C17.2-THGC cells, as determined by HPLC assay, was 3793 pmol/106 cells, which is 760-fold higher than that produced by C17.2-TH cells, indicating that GTPCH1 expression is important for L-DOPA production by transduced C17.2 cells. Following the implantation of C17.2-THGcC NSCs into the striata of parkinsonian rats, a marked improvement in amphetamine-induced turning behavior was observed in parkinsonian rats grafted with C17.2-THGC cells but not in the control rats grafted with C17.2 cells. These results indicate that genetically modified NSCs grafted into the brain of the parkinsonian rats are capable of survival, migration, and neuronal differentiation. Collectively, these results suggest that NSCs have great potential as a source of cells for cell therapy and an effective vehicle for therapeutic gene transfer in Parkinson's disease.
Collapse
Affiliation(s)
- M Y Ryu
- Department of Neurosurgery, Ajou University School of Medicine, Suwon, Korea
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Blits B, Boer GJ, Verhaagen J. Pharmacological, Cell, and Gene Therapy Strategies to Promote Spinal Cord Regeneration. Cell Transplant 2017. [DOI: 10.3727/000000002783985521] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this review, recent studies using pharmacological treatment, cell transplantation, and gene therapy to promote regeneration of the injured spinal cord in animal models will be summarized. Pharmacological and cell transplantation treatments generally revealed some degree of effect on the regeneration of the injured ascending and descending tracts, but further improvements to achieve a more significant functional recovery are necessary. The use of gene therapy to promote repair of the injured nervous system is a relatively new concept. It is based on the development of methods for delivering therapeutic genes to neurons, glia cells, or nonneural cells. Direct in vivo gene transfer or gene transfer in combination with (neuro)transplantation (ex vivo gene transfer) appeared powerful strategies to promote neuronal survival and axonal regrowth following traumatic injury to the central nervous system. Recent advances in understanding the cellular and molecular mechanisms that govern neuronal survival and neurite outgrowth have enabled the design of experiments aimed at viral vector-mediated transfer of genes encoding neurotrophic factors, growth-associated proteins, cell adhesion molecules, and antiapoptotic genes. Central to the success of these approaches was the development of efficient, nontoxic vectors for gene delivery and the acquirement of the appropriate (genetically modified) cells for neurotransplantation. Direct gene transfer in the nervous system was first achieved with herpes viral and E1-deleted adenoviral vectors. Both vector systems are problematic in that these vectors elicit immunogenic and cytotoxic responses. Adeno-associated viral vectors and lentiviral vectors constitute improved gene delivery systems and are beginning to be applied in neuroregeneration research of the spinal cord. Ex vivo approaches were initially based on the implantation of genetically modified fibroblasts. More recently, transduced Schwann cells, genetically modified pieces of peripheral nerve, and olfactory ensheathing glia have been used as implants into the injured spinal cord.
Collapse
Affiliation(s)
- Bas Blits
- Graduate School Neurosciences Amsterdam, Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ Amsterdam-ZO, The Netherlands
| | - Gerard J. Boer
- Graduate School Neurosciences Amsterdam, Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ Amsterdam-ZO, The Netherlands
| | - Joost Verhaagen
- Graduate School Neurosciences Amsterdam, Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ Amsterdam-ZO, The Netherlands
| |
Collapse
|
5
|
Zhang S, Kartha S, Lee J, Winkelstein BA. Techniques for Multiscale Neuronal Regulation via Therapeutic Materials and Drug Design. ACS Biomater Sci Eng 2017; 3:2744-2760. [DOI: 10.1021/acsbiomaterials.7b00012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sijia Zhang
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich
Hall, Philadelphia, Pennsylvania 19104, United States
| | - Sonia Kartha
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich
Hall, Philadelphia, Pennsylvania 19104, United States
| | - Jasmine Lee
- Department of Physics and Astronomy, University of Pennsylvania, 209 S. 33rd Street, David Rittenhouse Laboratory, Philadelphia, Pennsylvania 19104, United States
| | - Beth A. Winkelstein
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich
Hall, Philadelphia, Pennsylvania 19104, United States
- Department
of Neurosurgery, University of Pennsylvania, Stemmler Hall, 3450 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
6
|
Abstract
Spinal cord injury (SCI) is a devastating condition with loss of motor and sensory functions below the injury level. Cell based therapies are experimented in pre-clinical studies around the world. Neural stem cells are located intra-cranially in subventricular zone and hippocampus which are highly invasive sources. The olfactory epithelium is a neurogenic tissue where neurogenesis takes place throughout the adult life by a population of stem/progenitor cells. Easily accessible olfactory neuroepithelial stem/progenitor cells are an attractive cell source for transplantation in SCI. Globose basal cells (GBCs) were isolated from rat olfactory epithelium, characterized by flow cytometry and immunohistochemically. These cells were further studied for neurosphere formation and neuronal induction. T10 laminectomy was done to create drop-weight SCI in rats. On the 9th day following SCI, 5 × 105 cells were transplanted into injured rat spinal cord. The outcome of transplantation was assessed by the Basso, Beattie and Bresnahan (BBB) locomotor rating scale, motor evoked potential and histological observation. GBCs expressed neural stem cell markers nestin, SOX2, NCAM and also mesenchymal stem cell markers (CD29, CD54, CD90, CD73, CD105). These cells formed neurosphere, a culture characteristics of NSCs and on induction, differentiated cells expressed neuronal markers βIII tubulin, microtubule-associated protein 2, neuronal nuclei, and neurofilament. GBCs transplanted rats exhibited hindlimb motor recovery as confirmed by BBB score and gastrocnemius muscle electromyography amplitude was increased compared to controls. Green fluorescent protein labelled GBCs survived around the injury epicenter and differentiated into βIII tubulin-immunoreactive neuron-like cells. GBCs could be an alternative to NSCs from an accessible source for autologous neurotransplantation after SCI without ethical issues.
Collapse
Affiliation(s)
- Durai Murugan Muniswami
- Department of Physical Medicine & Rehabilitation, Christian Medical College, Vellore, Tamil Nadu, India
| | | | - George Tharion
- Department of Physical Medicine & Rehabilitation, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
7
|
Xiong LL, Chen ZW, Wang TH. Nerve growth factor promotes in vitro proliferation of neural stem cells from tree shrews. Neural Regen Res 2016; 11:591-6. [PMID: 27212919 PMCID: PMC4870915 DOI: 10.4103/1673-5374.180743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Neural stem cells promote neuronal regeneration and repair of brain tissue after injury, but have limited resources and proliferative ability in vivo. We hypothesized that nerve growth factor would promote in vitro proliferation of neural stem cells derived from the tree shrews, a primate-like mammal that has been proposed as an alternative to primates in biomedical translational research. We cultured neural stem cells from the hippocampus of tree shrews at embryonic day 38, and added nerve growth factor (100 μg/L) to the culture medium. Neural stem cells from the hippocampus of tree shrews cultured without nerve growth factor were used as controls. After 3 days, fluorescence microscopy after DAPI and nestin staining revealed that the number of neurospheres and DAPI/nestin-positive cells was markedly greater in the nerve growth factor-treated cells than in control cells. These findings demonstrate that nerve growth factor promotes the proliferation of neural stem cells derived from tree shrews.
Collapse
Affiliation(s)
- Liu-Lin Xiong
- Department of Anesthesiology, Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhi-Wei Chen
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China; Key Laboratory of National Physical Fitness and Altitude Training Adaptation in Yunnan Province; Institute of Physical Education, Yunnan Normal University, Kunming, Yunnan Province, China
| | - Ting-Hua Wang
- Department of Anesthesiology, Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China; Key Laboratory of National Physical Fitness and Altitude Training Adaptation in Yunnan Province; Institute of Physical Education, Yunnan Normal University, Kunming, Yunnan Province, China
| |
Collapse
|
8
|
Bianco J, De Berdt P, Deumens R, des Rieux A. Taking a bite out of spinal cord injury: do dental stem cells have the teeth for it? Cell Mol Life Sci 2016; 73:1413-37. [PMID: 26768693 PMCID: PMC11108394 DOI: 10.1007/s00018-015-2126-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/16/2015] [Accepted: 12/22/2015] [Indexed: 12/15/2022]
Abstract
Dental stem cells are an emerging star on a stage that is already quite populated. Recently, there has been a lot of hype concerning these cells in dental therapies, especially in regenerative endodontics. It is fitting that most research is concentrated on dental regeneration, although other uses for these cells need to be explored in more detail. Being a true mesenchymal stem cell, their capacities could also prove beneficial in areas outside their natural environment. One such field is the central nervous system, and in particular, repairing the injured spinal cord. One of the most formidable challenges in regenerative medicine is to restore function to the injured spinal cord, and as yet, a cure for paralysis remains to be discovered. A variety of approaches have already been tested, with graft-based strategies utilising cells harbouring appropriate properties for neural regeneration showing encouraging results. Here we present a review focusing on properties of dental stem cells that endorse their use in regenerative medicine, with particular emphasis on repairing the damaged spinal cord.
Collapse
Affiliation(s)
- John Bianco
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, Avenue Mounier, 73, B1 73.12, 1200, Brussels, Belgium.
- Integrated Center for Cell Therapy and Regenerative Medicine, International Clinical Research Center (FNUSA-ICRC), St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic.
| | - Pauline De Berdt
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, Avenue Mounier, 73, B1 73.12, 1200, Brussels, Belgium
| | - Ronald Deumens
- Institute of Neuroscience, Université catholique de Louvain, Avenue Hippocrate B1.54.10, 1200, Brussels, Belgium
| | - Anne des Rieux
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, Avenue Mounier, 73, B1 73.12, 1200, Brussels, Belgium
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348, Louvain-La-Neuve, Belgium
| |
Collapse
|
9
|
Goganau I, Blesch A. Gene Therapy for Spinal Cord Injury. Transl Neurosci 2016. [DOI: 10.1007/978-1-4899-7654-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
10
|
Autologous bone marrow mononuclear cells intrathecal transplantation in chronic stroke. Stroke Res Treat 2014; 2014:234095. [PMID: 25126443 PMCID: PMC4121152 DOI: 10.1155/2014/234095] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/17/2014] [Accepted: 06/22/2014] [Indexed: 01/01/2023] Open
Abstract
Cell therapy is being widely explored in the management of stroke and has demonstrated great potential. It has been shown to assist in the remodeling of the central nervous system by inducing neurorestorative effect through the process of angiogenesis, neurogenesis, and reduction of glial scar formation. In this study, the effect of intrathecal administration of autologous bone marrow mononuclear cells (BMMNCs) is analyzed on the recovery process of patients with chronic stroke. 24 patients diagnosed with chronic stroke were administered cell therapy, followed by multidisciplinary neurorehabilitation. They were assessed on functional independence measure (FIM) objectively, along with assessment of standing and walking balance, ambulation, and hand functions. Out of 24 patients, 12 improved in ambulation, 10 in hand functions, 6 in standing balance, and 9 in walking balance. Further factor analysis was done. Patients of the younger groups showed higher percentage of improvement in all the areas. Patients who underwent cell therapy within 2 years after the stroke showed better changes. Ischemic type of stroke had better recovery than the hemorrhagic stroke. This study demonstrates the potential of autologous BMMNCs intrathecal transplantation in improving the prognosis of functional recovery in chronic stage of stroke. Further clinical trials are recommended. This trial is registered with NCT02065778.
Collapse
|
11
|
Medalha CC, Jin Y, Yamagami T, Haas C, Fischer I. Transplanting neural progenitors into a complete transection model of spinal cord injury. J Neurosci Res 2014; 92:607-18. [PMID: 24452691 DOI: 10.1002/jnr.23340] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/18/2013] [Accepted: 10/29/2013] [Indexed: 11/11/2022]
Abstract
Neural progenitor cell (NPC) transplantation is a promising therapeutic strategy for spinal cord injury (SCI) because of the potential for cell replacement and restoration of connectivity. Our previous studies have shown that transplants of NPC, composed of neuron- and glia-restricted progenitors derived from the embryonic spinal cord, survived well in partial lesion models and generated graft-derived neurons, which could be used to form a functional relay. We have now examined the properties of a similar NPC transplant using a complete transection model in juvenile and adult rats. We found poor survival of grafted cells despite using a variety of lesion methods, matrices, and delays of transplantation. If, instead of cultured progenitor cells, the transplants were composed of segmental or dissociated segments of fetal spinal cord (FSC) derived from similar-staged embryos, grafted cells survived and integrated well with host tissue in juvenile and adult rats. FSC transplants differentiated into neurons and glial cells, including astrocytes and oligodendrocytes. Graft-derived neurons expressed glutaminergic and GABAergic markers. Grafted cells also migrated and extended processes into host tissue. Analysis of axon growth from the host spinal cord showed serotonin-positive fibers and biotinylated dextran amine-traced propriospinal axons growing into the transplants. These results suggest that in treating severe SCI, such as complete transection, NPC grafting faces major challenges related to cell survival and formation of a functional relay. Lessons learned from the efficacy of FSC transplants could be used to develop a therapeutic strategy based on neural progenitor cells for severe SCI.
Collapse
Affiliation(s)
- Carla Christina Medalha
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania; Department of Biosciences, Federal University of São Paulo, Santos-São Paulo, Brazil
| | | | | | | | | |
Collapse
|
12
|
Oliveira SLB, Pillat MM, Cheffer A, Lameu C, Schwindt TT, Ulrich H. Functions of neurotrophins and growth factors in neurogenesis and brain repair. Cytometry A 2012; 83:76-89. [PMID: 23044513 DOI: 10.1002/cyto.a.22161] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Revised: 07/23/2012] [Accepted: 07/31/2012] [Indexed: 12/21/2022]
Abstract
The identification and isolation of multipotent neural stem and progenitor cells in the brain, giving rise to neurons, astrocytes, and oligodendrocytes initiated many studies in order to understand basic mechanisms of endogenous neurogenesis and repair mechanisms of the nervous system and to develop novel therapeutic strategies for cellular regeneration therapies in brain disease. A previous review (Trujillo et al., Cytometry A 2009;75:38-53) focused on the importance of extrinsic factors, especially neurotransmitters, for directing migration and neurogenesis in the developing and adult brain. Here, we extend our review discussing the effects of the principal growth and neurotrophic factors as well as their intracellular signal transduction on neurogenesis, fate determination and neuroprotective mechanisms. Many of these mechanisms have been elucidated by in vitro studies for which neural stem cells were isolated, grown as neurospheres, induced to neural differentiation under desired experimental conditions, and analyzed for embryonic, progenitor, and neural marker expression by flow and imaging cytometry techniques. The better understanding of neural stem cells proliferation and differentiation is crucial for any therapeutic intervention aiming at neural stem cell transplantation and recruitment of endogenous repair mechanisms.
Collapse
Affiliation(s)
- Sophia L B Oliveira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
13
|
Lu HX, Hao ZM, Jiao Q, Xie WL, Zhang JF, Lu YF, Cai M, Wang YY, Yang ZQ, Parker T, Liu Y. Neurotrophin-3 gene transduction of mouse neural stem cells promotes proliferation and neuronal differentiation in organotypic hippocampal slice cultures. Med Sci Monit 2012; 17:BR305-311. [PMID: 22037732 PMCID: PMC3539508 DOI: 10.12659/msm.882039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The transplantation of neural stem cells (NSCs) has been accepted as a promising therapeutic strategy for central nervous system disorders. However, the beneficial effect of NSC transplantation upon functional recovery is limited due to the unfavorable microenvironment (niche) at the site of trauma or degenerative disease in the brain. Combination of transplantation of NSCs with neurotrophins may overcome the hurdles of impaired cell survival and neuronal differentiation. MATERIAL/METHODS In the current study, the neurotrophin-3 (NT-3) gene was transduced into cultured mouse embryonic cortical NSCs via an AAV vector (NSC-NT-3). The effect of NT-3 over-expression on cell proliferation and differentiation in NSCs was observed by immunohistochemistry, cell culture and organotypic hippocampal slice cultures.<br /> RESULTS The characteristics of self-renewal and multiple differentiation of NSCs were well-preserved. Cells in the NSC-NT-3 group proliferated faster and differentiated into more β-tubulin III-positive neurons compared to the control group in vitro. Furthermore, cells in the NSC-NT-3 group survived in a significantly higher percentage and undertook neuronal differentiation preferably in organotypic hippocampal slice cultures. CONCLUSIONS Our results suggest that the transduction of NT-3 into NSCs could effectively promote NSCs survival, proliferation, and neuronal differentiation in vitro without change of the stemness of NSCs. This work also offers evidence to better understand the safety and efficiency of combined treatment with NT-3 and NSCs for the central nervous system disorders.
Collapse
Affiliation(s)
- Hai-xia Lu
- Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Education Ministry, Xi'an Jiaotong University College of Medicine, Xi'an, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lee KB, Choi JH, Byun K, Chung KH, Ahn JH, Jeong GB, Hwang IK, Kim S, Won MH, Lee B. Recovery of CNS pathway innervating the sciatic nerve following transplantation of human neural stem cells in rat spinal cord injury. Cell Mol Neurobiol 2012; 32:149-57. [PMID: 21833549 DOI: 10.1007/s10571-011-9745-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 07/27/2011] [Indexed: 01/17/2023]
Abstract
Stem cell research has been attained a greater attention in most fields of medicine due to its potential for many incurable diseases through replacing or helping the regeneration of damaged cells or tissues. Here, we demonstrated the functional recovery and structural connection of the central nervous system pathway innervating the sciatic nerve after total transection of the spinal cord followed by the transplantation of human neural stem cells (hNSC) in the injured rat spinal cord site. The limb function of hNSC-treated group recovered dramatically compared with that in the sham group by Basso-Beattie-Bresnahan (BBB) scores. Transplanted hNSC differentiated into astrocytes and neurons in the injured site. In addition, immunohistochemistry for growth-associated protein 43 showed axonal regeneration in the injured spinal cord site. The pseudorabies viral-Ba (PRV-Ba) tracing method revealed that transplanted hNSC and their differentiated neurons showed positive labeling after sciatic nerve injection. In addition, the PRV-Ba labeling was also observed in several nuclei in the brain innervating the sciatic nerve. This result implies that the rat CNS motor pathway could be reconstructed by hNSC transplantation, and it may contribute to the functional recovery of the limb.
Collapse
Affiliation(s)
- Kwang-Bok Lee
- Department of Orthopedic Surgery, Chonbuk National University Medical School, Jeonju, 560-762, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Gene therapy, neurotrophic factors and spinal cord regeneration. HANDBOOK OF CLINICAL NEUROLOGY 2012; 109:563-74. [PMID: 23098737 DOI: 10.1016/b978-0-444-52137-8.00035-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significant advances have been made in understanding the mechanisms that limit axon regeneration in the adult mammalian central nervous system and in addressing some of the obstacles for axon growth. Despite this progress numerous challenges remain to achieve regeneration of a large number of axons sufficient to mediate functional improvement. Given the complexity of injury-induced changes in axon, cell body, and parenchyma surrounding a spinal cord lesion, it seems likely that multiple factors both intrinsic and extrinsic to injured neurons have to be addressed to augment axon regeneration and useful reorganization of spared circuitry. Neurotrophic factors have been shown to be one potent means to increase the number and range of regenerating axons, to guide regenerating axons across a lesion site, and to augment regenerative cell body responses to injury. In this chapter we will review the potential and current limitations of neurotrophic factors and gene therapy, in combination with cellular transplants, for axon regeneration and sprouting in the injured spinal cord.
Collapse
|
16
|
Franz S, Weidner N, Blesch A. Gene therapy approaches to enhancing plasticity and regeneration after spinal cord injury. Exp Neurol 2011; 235:62-9. [PMID: 21281633 DOI: 10.1016/j.expneurol.2011.01.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 01/17/2011] [Accepted: 01/24/2011] [Indexed: 01/09/2023]
Abstract
During the past decades, new insights into mechanisms that limit plasticity and functional recovery after spinal cord injury have spurred the development of novel approaches to enhance axonal regeneration and rearrangement of spared circuitry. Gene therapy may provide one means to address mechanisms that underlie the insufficient regenerative response of injured neurons and can also be used to identify factors important for axonal growth. Several genetic approaches aimed to modulate the environment of injured axons, for example by localized expression of growth factors, to enhance axonal sprouting and regeneration and to guide regenerating axons towards their target have been described. In addition, genetic modification of injured neurons via intraparenchymal injection, or via retrograde transport of viral vectors has been used to manipulate the intrinsic growth capacity of injured neurons. In this review we will summarize some of the progress and limitations of cell transplantation and gene therapy to enhance axonal bridging and regeneration across a lesion site, and to maximize the function, collateral sprouting and connectivity of spared axonal systems.
Collapse
Affiliation(s)
- Steffen Franz
- Spinal Cord Injury Center, Heidelberg University Hospital, Germany
| | | | | |
Collapse
|
17
|
Kaner T, Karadag T, Cirak B, Erken HA, Karabulut A, Kiroglu Y, Akkaya S, Acar F, Coskun E, Genc O, Colakoglu N. The effects of human umbilical cord blood transplantation in rats with experimentally induced spinal cord injury. J Neurosurg Spine 2010; 13:543-51. [PMID: 20887153 DOI: 10.3171/2010.4.spine09685] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Even though there have been many efforts to recover neuronal dysfunction following spinal cord injuries, there are limitations to the treatment of these injuries. The purpose of this laboratory investigation was to determine the clinical and neurophysiological effects of human umbilical cord blood (HUCB) transplantation in a rat hemisection model of spinal cord injury. METHODS In this study, experimental hemisection of the thoracic spinal cord was performed in rats. The rats were divided into 4 groups (6 rats in each group). One group of rats (Group 1) underwent thoracic laminectomy only. Rats in Group 2 underwent laminectomy and right hemisection of the thoracic spinal cord. Rats in Group 3 underwent right hemisection and implantation of freshly obtained HUCB on Day 0 postinjury. Rats in Group 4 underwent hemisection and implantation of freshly obtained HUCB on Day 4 postinjury. Clinical evaluations of rat motor function included the following: neurological examination, Rotarod performance, and inclined plane tests. Rats also underwent reflex evaluation. RESULTS The neurological examinations revealed that the frequency of plegic rats was 70.8% at the beginning of the study across all 4 groups; this value decreased to 20.8% by the end of the study. The percentage of rats with a normal examination increased from 25% to 50%. The results of Rotarod performance and 8-week inclined plane performance tests showed statistical significance (p < 0.05) in an overall group comparison across all time points. At the end of the 8 weeks, a statistically significant difference was found in the inclined plane test results between rats in Groups 1 and 2. There were no statistically significant differences between Groups 1, 3, and 4 (p < 0.05). When the reflex responses of the hemisectioned sides were compared, statistically significant differences were detected between groups (p < 0.05). All groups were significantly different with regard to the right-side reflex response score (p < 0.05). Spinal cord preparations of rats in all groups were examined for histopathological changes. CONCLUSIONS Human umbilical cord blood is stem cell rich and easily available, and it carries less risk of inducing a graft-versus-host reaction in the recipient. Human umbilical cord blood serum is also noted to contain stem cell–promoting factors, which is why cell isolation was not used in this study. Freshly obtained cord blood was also used because storage of cord blood has been reported to have some negative effects on stem cells. Transplantation of freshly obtained HUCB into the hemisectioned spinal cord experimental model demonstrated clinical and neurophysiological improvement.
Collapse
Affiliation(s)
- Tuncay Kaner
- Department of Neurosurgery, Pendik State Hospital, Istanbul, Turkey
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Feasibility, Safety, and Efficacy of Directly Transplanting Autologous Adult Bone Marrow Stem Cells in Patients With Chronic Traumatic Dorsal Cord Injury. ACTA ACUST UNITED AC 2010. [DOI: 10.1097/wnq.0b013e3181dce9f2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Yang Z, Duan H, Mo L, Qiao H, Li X. The effect of the dosage of NT-3/chitosan carriers on the proliferation and differentiation of neural stem cells. Biomaterials 2010; 31:4846-54. [PMID: 20346501 DOI: 10.1016/j.biomaterials.2010.02.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 02/06/2010] [Indexed: 12/16/2022]
Abstract
This study aimed to determine the optimal dosage range of NT-3 in the soluble form or loaded with chitosan carriers by using NT-3/chitosan carriers to support the survival and proliferation of neural stem cells (NSCs) and induce them to differentiate into desired phenotypes. NSCs were co-cultured with chitosan carriers loaded with different doses of NT-3. As the control, NSCs were cultured in the defined medium, into which were added different doses of NT-3 in the soluble form every day. The ELISA kit was used to study the NT-3 releasing kinetics, which showed that, in the initial co-culture stage from 1 h to 14 weeks, the chitosan carriers loaded with different doses of NT-3 released NT-3 stably and constantly. The 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay was conducted to measure the cell viability, and the immunocytochemical methods were adopted to quantitatively analyze the phenotypes differentiating from the NSCs. Compared to the 100 ng NT-3 daily addition group (1400 ng over 14 days), the 25 ng, 50 ng and 200 ng NT-3 daily addition group showed dramatically shorter processes length and much lower differentiation percentage from NSCs into neurons. By contrast, the NT-3 (25 ng)-chitosan carriers group had not only higher cell viability, but also similar processes length and differentiation percentage from NSCs into neurons to the 100 ng NT-3 daily addition group. The method developed in this study significantly reduced the NT-3 amount required to support the survival, proliferation and differentiation of NSCs in vitro. Meanwhile, the chitosan carriers used here provided an ideal 3-dimensional scaffold for the adhesion, migration, proliferation and differentiation of NSC and the differentiated cells. Therefore, this method may open a new field for the large-scaled culture and amplification of NSCs in vitro to replace the lost neural cells, meanwhile lower the consumption of neurotrophic factors in the cell transplantation therapy of brain and spinal injury.
Collapse
Affiliation(s)
- Zhaoyang Yang
- The School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | | | | | | | | |
Collapse
|
20
|
Xu XM, Onifer SM. Transplantation-mediated strategies to promote axonal regeneration following spinal cord injury. Respir Physiol Neurobiol 2009; 169:171-82. [PMID: 19665611 PMCID: PMC2800078 DOI: 10.1016/j.resp.2009.07.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 07/16/2009] [Accepted: 07/20/2009] [Indexed: 12/19/2022]
Abstract
Devastating central nervous system injuries and diseases continue to occur in spite of the tremendous efforts of various prevention programs. The enormity and annual escalation of healthcare costs due to them require that therapeutic strategies be responsibly developed. The dysfunctions that occur after injury and disease are primarily due to neurotransmission damage. The last two decades of both experimental and clinical research have demonstrated that neural and non-neural tissue and cell transplantation is a viable option for ameliorating dysfunctions to markedly improve quality of life. Moreover, significant progress has been made with tissue and cell transplantation in studies of pathophysiology, plasticity, sprouting, regeneration, and functional recovery. This article will review information about the ability and potential, particularly for traumatic spinal cord injury, that neural and non-neural tissue and cell transplantation has to replace lost neurons and glia, to reconstruct damaged neural circuitry, and to restore neurotransmitters, hormones, neurotrophic factors, and neurotransmission. Donor tissues and cells to be discussed include peripheral nerve, fetal spinal cord and brain, central and peripheral nervous systems' glia, stem cells, those that have been genetically engineered, and non-neural ones. Combinatorial approaches and clinical research are also reviewed.
Collapse
Affiliation(s)
- Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, United States.
| | | |
Collapse
|
21
|
Comolli N, Neuhuber B, Fischer I, Lowman A. In vitro analysis of PNIPAAm-PEG, a novel, injectable scaffold for spinal cord repair. Acta Biomater 2009; 5:1046-55. [PMID: 19054721 PMCID: PMC2844850 DOI: 10.1016/j.actbio.2008.10.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 09/30/2008] [Accepted: 10/08/2008] [Indexed: 11/20/2022]
Abstract
Nervous tissue engineering in combination with other therapeutic strategies is an emerging trend for the treatment of different CNS disorders and injuries. We propose to use poly(N-isopropylacrylamide)-co-poly(ethylene glycol) (PNIPAAm-PEG) as a minimally invasive, injectable scaffold platform for the repair of spinal cord injury (SCI). The scaffold allows cell attachment, and provides mechanical support and a sustained release of neurotrophins. In order to use PNIPAAm-PEG as an injectable scaffold for treatment of SCI, it must maintain its mass and volume over time in physiological conditions. To provide mechanical support at the injury site, it is also critical that the engineered scaffold matches the compressive modulus of the native neuronal tissue. This study focused on studying the ability of the scaffold to release bioactive neurotrophins and matching the material properties to those of the native neuronal tissue. We found that the release of both BDNF and NT-3 was sustained for up to 4 weeks, with a minimal burst exhibited for both neurotrophins. The bioactivity of the released NT-3 and BDNF was confirmed after 4 weeks. In addition, our results show that the PNIPAAm-PEG scaffold can be designed to match the desired mechanical properties of the native neuronal tissue, with a compressive modulus in the 3-5 kPa range. The scaffold was also compatible with bone marrow stromal cells, allowing their survival and attachment for up to 31 days. These results indicate that PNIPAAm-PEG is a promising multifunctional scaffold for the treatment of SCI.
Collapse
Affiliation(s)
- Noelle Comolli
- Department of Chemical & Biological Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
22
|
Yang CR, Yu RK. Intracerebral transplantation of neural stem cells combined with trehalose ingestion alleviates pathology in a mouse model of Huntington's disease. J Neurosci Res 2009; 87:26-33. [PMID: 18683244 DOI: 10.1002/jnr.21817] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The present investigation examined the neuroprotective benefits for combined trehalose administration with C17.2 neural stem cell transplantation in a transgenic mouse model of Huntington's disease (HD), R6/2. C17.2 neural stem cells have the potential of differentiating into a neuronal phenotype in vitro and have been shown to be effective in the treatment of a variety of lysosomal lipid storage disorders in the nervous system. In this study, we transplanted these cells into the lateral ventricle of R6/2 transgenic mice in order to examine the efficacy of using these cells for correcting the accumulated polyglutamine storage materials in HD. To improve efficacy, animals were fed with a diet rich in trehalose, which has been shown to be beneficial to retard aggregate formation. The combined treatment strategy not only decreased ubiquitin-positive aggregation in striatum, alleviated polyglutamine aggregation formation, and reduced striatal volume, but also extended life span in the R6/2 animal model. Behavioral evaluation showed that the combination treatment improved motor function. Statistical analysis revealed that the combination treatment was more effective than treatment with trehalose alone on the basis of the above biochemical and behavioral criteria. This study provides a strong a basis for further developing an effective therapeutic strategy for HD.
Collapse
Affiliation(s)
- Chia-Ron Yang
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | |
Collapse
|
23
|
Abstract
Animal models of neurodegenerative disease are excellent tools for studying pathogenesis and therapies including cellular transplantation. In this chapter, we describe different models of Huntington's disease and Parkinson's disease, stereotactic surgery (used in creation of lesion models and transplantation) and finally transplantation studies in these models.
Collapse
|
24
|
Boyce VS, Lemay MA. Modularity of endpoint force patterns evoked using intraspinal microstimulation in treadmill trained and/or neurotrophin-treated chronic spinal cats. J Neurophysiol 2008; 101:1309-20. [PMID: 19118106 DOI: 10.1152/jn.00034.2008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic spinal cats with neurotrophin-secreting fibroblasts (NTF) transplants recover locomotor function. To ascertain possible mechanisms, intraspinal microstimulation was used to examine the lumbar spinal cord motor output of four groups of chronic spinal cats: untrained cats with unmodified-fibroblasts graft (Op-control) or NTF graft and locomotor-trained cats with unmodified-fibroblasts graft (Trained) or NTF graft (Combination). Forces generated via intraspinal microstimulation at different hindlimb positions were recorded and interpolated, generating representations of force patterns at the paw. Electromyographs (EMGs) of hindlimb muscles, medial gastrocnemius, tibialis anterior, vastus lateralis, and biceps femoris posterior, were also collected to examine relationships between activated muscles and force pattern types. The same four force pattern types obtained in spinal-intact cats were found in chronic spinal cats. Proportions of force patterns in spinal cats differed significantly from those in intact cats, but no significant differences in proportions were observed among individual spinal groups (Op-control, NTF, Trained, and Combination). However, the proportions of force patterns differed significantly between trained (Trained and Combination) and untrained groups (Op-control and NTF). Thus the frequency of expression of some response types was modified by injury and to a lesser extent by training. Force pattern laminar distribution differed in spinal cats compared with intact, with more responses obtained dorsally (0-1,000 microm) and fewer ventrally (3,200-5,200 microm). EMG analysis demonstrated that muscle activity highly predicted some force pattern types and was independent of hindlimb position. We conclude that spinal motor output modularity is preserved after injury.
Collapse
Affiliation(s)
- Vanessa S Boyce
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia PA 19129, USA
| | | |
Collapse
|
25
|
Lu H, Li M, Song T, Qian Y, Xiao X, Chen X, Zhang P, Feng X, Parker T, Liu Y. Retrovirus delivered neurotrophin-3 promotes survival, proliferation and neuronal differentiation of human fetal neural stem cells in vitro. Brain Res Bull 2008; 77:158-64. [PMID: 19875351 DOI: 10.1016/j.brainresbull.2008.02.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 02/10/2008] [Accepted: 02/18/2008] [Indexed: 12/21/2022]
Abstract
Poor survival and insufficient neuronal differentiation are the main obstacles to neural stem cell (NSC) transplantation therapy. Genetic modification of NSCs with neurotrophins is considered a promising approach to overcome these difficulties. In this study, the effects on survival, proliferation and neuronal differentiation of human fetal NSCs (hfNSCs) were observed after infection by a neurotrophin-3 (NT-3) recombinant retrovirus. The hfNSCs, from 12-week human fetal brains formed neurospheres, expressed the stem cell marker nestin and differentiated into the three main cell types of the nervous system. NT-3 recombinant retrovirus (Retro-NT-3) infected hfNSCs efficiently expressed NT-3 gene for at least 8 weeks, presented an accelerated proliferation, and therefore produced an increased number of neurospheres and after differentiation in vitro, contained a higher percentage of neuronal cells. Eight weeks after infection, 37.9+/-4.2% of hfNSCs in the Retro-NT-3 infection group expressed the neuronal marker, this was significantly higher than the control and mock infection groups. NT-3 transduced hfNSCs also displayed longer protruding neurites compared with other groups. Combined these results demonstrate that NT-3 modification promote the survival/proliferation, neuronal differentiation and growth of neurites of hfNSCs in vitro. This study proposes recombinant retrovirus mediated NT-3 modification may provide a promising means to resolve the poor survival and insufficient neuronal differentiation of NSCs.
Collapse
Affiliation(s)
- Haixia Lu
- Institute of Neurobiology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Taupin P. Potential of neural stem cells for the treatment of brain tumors. Clin Med Oncol 2008; 2:451-4. [PMID: 21892316 PMCID: PMC3161643 DOI: 10.4137/cmo.s747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Neural stem cells (NSCs) are self-renewing multipotent cells that generate the main phenotypes of the nervous system, neurons, astrocytes and oligodendrocytes. As such they hold the promise to treat a broad range of neurological diseases and injuries. Neural progenitor and stem cells have been isolated and characterized in vitro, from adult, fetal and post-mortem tissues, providing sources of material for cellular therapy. However, NSCs are still elusive cells and remain to be unequivocally identified and characterized, limiting their potential use for therapy. Neural progenitor and stem cells, isolated and cultured in vitro, can be genetically modified and when transplanted migrate to tumor sites in the brain. These intrinsic properties of neural progenitor and stem cells provide tremendous potential to bolster the translation of NSC research to therapy. It is proposed to combine gene therapy and cellular therapy to treat brain cancers. Hence, neural progenitor and stem cells provide new opportunities for the treatment of brain cancers.
Collapse
Affiliation(s)
- P Taupin
- Fighting Blindness Vision Research Institute
| |
Collapse
|
27
|
Webber DJ, Bradbury EJ, McMahon SB, Minger SL. Transplanted neural progenitor cells survive and differentiate but achieve limited functional recovery in the lesioned adult rat spinal cord. Regen Med 2007; 2:929-45. [DOI: 10.2217/17460751.2.6.929] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Endogenous repair after injury in the adult CNS is limited by a number of factors including cellular loss, inflammation, cavitation and glial scarring. Spinal cord neural progenitor cells (SCNPCs) may provide a valuable cellular source for promoting repair following spinal cord injury. SCNPCs are multipotent, can be expanded in vitro, have the capacity to differentiate into CNS cell lineages and are capable of long-term survival following transplantation. Aims & Method: To determine the extent to which SCNPCs may contribute to spinal cord repair SCNPCs isolated from rat fetal spinal cord were expanded ex vivo and transplanted into the adult rat spinal cord after a dorsal column crush lesion. Results: The survival and distribution of transplanted cells were examined at 24 h, 1, 2 and 6 weeks after injury. Transplanted cells were identified at all time points, located mainly at the lesion perimeter, indicating good post-transplant cell survival. Furthermore, SCNPCs maintained their ability to differentiate in vivo, with approximately 40% differentiating into cells with a glial morphology, whilst 8% displayed a neural morphology. Transplanted animals were also assessed on a number of behavioral tasks measuring sensorimotor and proprioceptive function to determine the extent to which SCNPC transplants might attenuate lesion-induced functional deficits. SCNPCs failed to promote significant functional recovery, with a small improvement observed in only one of the four tasks employed, primarily related to improvements in sensory function. Tracing of the corticospinal tract and ascending dorsal column pathway revealed no regeneration of the axons beyond the lesion site. Conclusions: These data indicate that, although transplanted SCNPCs show good survival in the spinal cord injury environment, combination with other treatment strategies is likely to be required for these cells to fully exert their therapeutic potential.
Collapse
Affiliation(s)
- Daniel J Webber
- University of Cambridge, Centre for Brain Repair, Forvie Site, Robinson Way, Cambridge, CB2 2PY, UK
- King’s College London, Neurorestoration Group, Wolfson Centre for Age Related Disease, Guy’s Campus, London, SE1 1UL, UK
- King’s College London, Stem Cell Biology Laboratory, Wolfson Centre, Guy’s Campus, London, SE1 1UL, UK
| | - Elizabeth J Bradbury
- King’s College London, Neurorestoration Group, Wolfson Centre for Age Related Disease, Guy’s Campus, London, SE1 1UL, UK
| | - Stephen B McMahon
- King’s College London, Neurorestoration Group, Wolfson Centre for Age Related Disease, Guy’s Campus, London, SE1 1UL, UK
| | - Stephen L Minger
- King’s College London, Stem Cell Biology Laboratory, Wolfson Centre, Guy’s Campus, London, SE1 1UL, UK
| |
Collapse
|
28
|
Abstract
Neural stem and progenitor cells have great potential for the treatment of neurological disorders. However, many obstacles remain to translate this field to the patient's bedside, including rationales for using neural stem cells in individual neurological disorders; the challenges of neural stem cell biology; and the caveats of current strategies of isolation and culturing neural precursors. Addressing these challenges is critical for the translation of neural stem cell biology to the clinic. Recent work using neural stem cells has yielded novel biologic concepts such as the importance of the reciprocal interaction between neural stem cells and the neurodegenerative environment. The prospect of using transplants of neural stem cells and progenitors to treat neurological diseases requires a better understanding of the molecular mechanisms of both neural stem cell behavior in experimental models and the intrinsic repair capacity of the injured brain.
Collapse
Affiliation(s)
- Jaime Imitola
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
29
|
Zhang L, Gu S, Zhao C, Wen T. Combined treatment of neurotrophin-3 gene and neural stem cells is propitious to functional recovery after spinal cord injury. Cell Transplant 2007; 16:475-81. [PMID: 17708337 DOI: 10.3727/000000007783464902] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We present an insight of the effects of combination therapy with neurotrophin-3 and neural stem cell on functional recovery after spinal cord injury (SCI). Total RNA was extracted from neural stem cell line C17.2 and reversed transcribed into cDNA. Neurotrophin-3 (NT-3) gene was amplified by PCR and subcloned into plasmid to construct an expression vector pNT-3. A positive clone containing pNT-3, named SHN2, was obtained and used for transplantation. Thirty adult mice received mechanical injury at the T8 vertebra level. Cell survival, NT-3 gene expression, and functional recovery were observed through X-Gal staining, RT-PCR, and open field locomotion, respectively. The results show that NT-3 gene comprising 777 bp nucleotides was cloned and a more than twofold expression was detected when transfected into neural stem cell line C17.2. Quantitative analysis of cellular density revealed a significant increase in SHN2 compared to the control cells (p < 0.01). Thirty days after transplantation, SHN2 showed significant increase near the lesion site. Furthermore, the functional recovery indicated an active effect by detecting Basso-Beattie-Bresnahan (BBB) locomotor rating scale (p < 0.01). In conclusion, combined treatment of neural stem cells and NT-3 gene can facilitate functional recovery. It offers an effective approach to treat SCI.
Collapse
Affiliation(s)
- Luyi Zhang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | | | | | | |
Collapse
|
30
|
Teixeira AI, Duckworth JK, Hermanson O. Getting the right stuff: controlling neural stem cell state and fate in vivo and in vitro with biomaterials. Cell Res 2007; 17:56-61. [PMID: 17211445 DOI: 10.1038/sj.cr.7310141] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Stem cell therapy holds great promises in medical treatment by, e.g., replacing lost cells, re-constitute healthy cell populations and also in the use of stem cells as vehicles for factor and gene delivery. Embryonic stem cells have rightfully attracted a large interest due to their proven capacity of differentiating into any cell type in the embryo in vivo. Tissue-specific stem cells are however already in use in medical practice, and recently the first systematic medical trials involving human neural stem cell (NSC) therapy have been launched. There are yet many obstacles to overcome and procedures to improve. To ensure progress in the medical use of stem cells increased basic knowledge of the molecular mechanisms that govern stem cell characteristics is necessary. Here we provide a review of the literature on NSCs in various aspects of cell therapy, with the main focus on the potential of using biomaterials to control NSC characteristics, differentiation, and delivery. We summarize results from studies on the characteristics of endogenous and transplanted NSCs in rodent models of neurological and cancer diseases, and highlight recent advancements in polymer compatibility and applicability in regulating NSC state and fate. We suggest that the development of specially designed polymers, such as hydrogels, is a crucial issue to improve the outcome of stem cell therapy in the central nervous system.
Collapse
Affiliation(s)
- Ana I Teixeira
- Center of Excellence in Developmental Biology, Organic Bioelectronics (OBOE), Department of Neuroscience, Karolinska Institutet, SE17177 Stockholm, Sweden.
| | | | | |
Collapse
|
31
|
SHAH KHALID. NEURAL STEM CELLS AND ARMED DERIVATIVES: FATE AND THERAPEUTIC POTENTIAL IN THE BRAIN. ACTA ACUST UNITED AC 2007. [DOI: 10.1142/s1568558607000071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Lee HJ, Kim KS, Kim EJ, Choi HB, Lee KH, Park IH, Ko Y, Jeong SW, Kim SU. Brain transplantation of immortalized human neural stem cells promotes functional recovery in mouse intracerebral hemorrhage stroke model. Stem Cells 2007; 25:1204-12. [PMID: 17218400 DOI: 10.1634/stemcells.2006-0409] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We have generated stable, immortalized cell lines of human NSCs from primary human fetal telencephalon cultures via a retroviral vector encoding v-myc. HB1.F3, one of the human NSC lines, expresses a normal human karyotype of 46, XX, and nestin, a cell type-specific marker for NSCs. F3 has the ability to proliferate continuously and differentiate into cells of neuronal and glial lineage. The HB1.F3 human NSC line was used for cell therapy in a mouse model of intracerebral hemorrhage (ICH) stroke. Experimental ICH was induced in adult mice by intrastriatal administration of bacterial collagenase; 1 week after surgery, the rats were randomly divided into two groups so as to receive intracerebrally either human NSCs labeled with beta-galactosidase (n = 31) or phosphate-buffered saline (PBS) (n = 30). Transplanted NSCs were detected by 5-bromo-4-chloro-3-indolyl-beta-d-galactoside histochemistry or double labeling with beta-galactosidase (beta-gal) and mitogen-activated protein (MAP)2, neurofilaments (both for neurons), or glial fibrillary acidic protein (GFAP) (for astrocytes). Behavior of the animals was evaluated for period up to 8 weeks using modified Rotarod tests and a limb placing test. Transplanted human NSCs were identified in the perihematomal areas and differentiated into neurons (beta-gal/MAP2(+) and beta-gal/NF(+)) or astrocytes (beta-gal/GFAP(+)). The NSC-transplanted group showed markedly improved functional performance on the Rotarod test and limb placing after 2-8 weeks compared with the control PBS group (p < .001). These results indicate that the stable immortalized human NSCs are a valuable source of cells for cell replacement and gene transfer for the treatment of ICH and other human neurological disorders. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Hong J Lee
- Division of Neurology, Department of Medicine, University of British Columbia Hospital, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Taylor L, Jones L, Tuszynski MH, Blesch A. Neurotrophin-3 gradients established by lentiviral gene delivery promote short-distance axonal bridging beyond cellular grafts in the injured spinal cord. J Neurosci 2006; 26:9713-21. [PMID: 16988042 PMCID: PMC6674461 DOI: 10.1523/jneurosci.0734-06.2006] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neurotrophic factor delivery to sites of spinal cord injury (SCI) promotes axon growth into but not beyond lesion sites. We tested the hypothesis that sustained growth factor gradients beyond regions of SCI will promote significant axonal bridging into and beyond lesions. Adult rats underwent C3 lesions to transect ascending dorsal column sensory axons, and autologous bone marrow stromal cells were grafted into the lesion to provide a cellular bridge for growth into the injured region. Concurrently, lentiviral vectors expressing neurotrophin-3 (NT-3) or green fluorescent protein (GFP) (controls) were injected into the host cord rostral to the lesion to promote axon extension beyond the graft/lesion. Four weeks later, NT-3 gradients beyond the lesion were detectable by ELISA in animals that received NT-3-expressing lentiviral vectors, with highest average NT-3 levels located near the rostral vector injection site. Significantly more ascending sensory axons extended into tissue rostral to the lesion site in animals injected with NT-3 vectors compared with GFP vectors, but only if the zone of NT-3 vector transduction extended continuously from the injection site to the graft; any "gap" in NT-3 expression from the graft to rostral tissue resulted in axon bridging failure. Despite axon bridging beyond the lesion, regenerating axons did not continue to grow over very long distances, even in the presence of a continuing growth factor gradient beyond the lesion. These findings indicate that a localized and continuous gradient of NT-3 can achieve axonal bridging beyond the glial scar, but growth for longer distances is not sustainable simply with a trophic stimulus.
Collapse
Affiliation(s)
- Laura Taylor
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, and
| | - Leonard Jones
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, and
| | - Mark H. Tuszynski
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, and
- Veterans Administration Medical Center, San Diego, California 92165
| | - Armin Blesch
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, and
| |
Collapse
|
34
|
Watson DJ, Walton RM, Magnitsky SG, Bulte JWM, Poptani H, Wolfe JH. Structure-specific patterns of neural stem cell engraftment after transplantation in the adult mouse brain. Hum Gene Ther 2006; 17:693-704. [PMID: 16839269 DOI: 10.1089/hum.2006.17.693] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Transplantation of neural stem cells (NSCs) may be useful for delivering exogenous gene products to the diseased CNS. When NSCs are transplanted into the developing mouse brain, they can migrate extensively and differentiate into cells appropriate to the sites of engraftment, in response to the normal signals directing endogenous cells to their appropriate fates. Much of the prior work on NSC migration in the adult brain has examined directed migration within or toward focal areas of injury such as ischemia, brain tumors, or 6-hydroxydopamine (6-OHDA) lesions. However, treatment of many genetic disorders that affect the CNS will require widespread dissemination of the donor cells in the postnatal brain, because the lesions are typically distributed globally. We therefore tested the ability of NSCs to migrate in the unlesioned adult mouse brain after stereotaxic transplantation into several structures including the cortex and hippocampus. NSC engraftment was monitored in live animals by magnetic resonance imaging (MRI) after superparamagnetic iron oxide (SPIO) labeling of cells. Histological studies demonstrated that the cells engrafted in significantly different patterns within different regions of the brain. In the cerebral cortex, donor cells migrated in all directions from the injection site. The cells maintained an immature phenotype and cortical migration was enhanced by trypsin treatment of the cells, indicating a role for cell surface proteins. In the hippocampus, overall cell survival and migration were lower but there was evidence of neuronal differentiation. In the thalamus, the transplanted cells remained in a consolidated mass at the site of injection. These variations in pattern of engraftment should be taken into account when designing treatment approaches in nonlesion models of neurologic disease.
Collapse
Affiliation(s)
- Deborah J Watson
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | | | | | | | | | | |
Collapse
|
35
|
Di Giovanni S. Regeneration following spinal cord injury, from experimental models to humans: where are we? Expert Opin Ther Targets 2006; 10:363-76. [PMID: 16706677 DOI: 10.1517/14728222.10.3.363] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Regeneration in the adult CNS following injury is extremely limited. Traumatic spinal cord injury causes a permanent neurological deficit followed by a very limited recovery due to failed regeneration attempts. In fact, it is now clear that the spinal cord intrinsically has the potential to regenerate, but cellular loss and the presence of an inhibitory environment strongly limit tissue regeneration and functional recovery. The molecular mechanisms responsible for failed regeneration are starting to be unveiled. This gain in knowledge led to the design of therapeutic strategies aimed to limit the tissue scar, to enhance the proregeneration versus the inhibitory environment, and to replace tissue loss, including the use of stem cells. They have been very successful in several animal models, although results are still controversial in humans. Nonetheless, novel experimental approaches hold great promise for use in humans.
Collapse
Affiliation(s)
- Simone Di Giovanni
- Laboratory for NeuroRegeneration and Repair, University of Tuebingen, Hertie-Institute for Clinical Brain Research, D-72076 Tuebingen, Germany.
| |
Collapse
|
36
|
Abdellatif AA, Pelt JL, Benton RL, Howard RM, Tsoulfas P, Ping P, Xu XM, Whittemore SR. Gene delivery to the spinal cord: comparison between lentiviral, adenoviral, and retroviral vector delivery systems. J Neurosci Res 2006; 84:553-67. [PMID: 16786574 PMCID: PMC2862356 DOI: 10.1002/jnr.20968] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Viral gene delivery for spinal cord injury (SCI) is a promising approach for enhancing axonal regeneration and neuroprotection. An understanding of spatio-temporal transgene expression in the spinal cord is essential for future studies of SCI therapies. Commonly, intracellular marker proteins (e.g., EGFP) were used as indicators of transgene levels after viral delivery, which may not accurately reflect levels of secreted transgene. This study examined transgene expression using ELISA after viral delivery of D15A, a neurotrophin with BDNF and NT-3 activities, at 1, 2, and 4weeks after in vivo and ex vivo delivery using lentiviral, adenoviral, and retroviral vectors. Further, the inflammatory responses and viral infection patterns after in vivo delivery were examined. Lentiviral vectors had the most stable pattern of gene expression, with D15A levels of 536 +/- 38 and 363 +/- 47 pg/mg protein seen at 4 weeks after the in vivo and ex vivo delivery, respectively. Our results show that protein levels downregulate disproportionately to levels of EGFP after adenoviral vectors both in vivo and ex vivo. D15A dropped from initial levels of 422 +/- 87 to 153 +/- 18 pg/mg protein at 4 weeks after in vivo administration. Similarly, ex vivo retrovirus-mediated transgene expression exhibited rapid downregulation by 2 weeks post-grafting. Compared to adenoviral infection, macrophage activation was attenuated after lentiviral infection. These results suggest that lentiviral vectors are most suitable in situations where stable long-term transgene expression is needed. Retroviral ex vivo delivery is optional when transient expression within targeted spinal tissue is desired, with adenoviral vectors in between.
Collapse
Affiliation(s)
- Ahmed A. Abdellatif
- Department of Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, Louisville, Kentucky
- Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, Kentucky
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville
| | - Jennifer L. Pelt
- Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, Kentucky
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville
| | - Richard L. Benton
- Department of Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, Louisville, Kentucky
- Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, Kentucky
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville
| | - Russell M. Howard
- Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, Kentucky
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville
| | - Pantelis Tsoulfas
- The Miami Project and Department of Neurological Surgery, University of Miami, School of Medicine, Miami, Florida
| | - Peipei Ping
- Department of Medicine, University of Louisville, School of Medicine, Louisville, Kentucky
| | - Xiao-Ming Xu
- Department of Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, Louisville, Kentucky
- Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, Kentucky
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville
| | - Scott R. Whittemore
- Department of Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, Louisville, Kentucky
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville
| |
Collapse
|
37
|
Watson DJ, Walton RM, Magnitsky SG, Bulte JW, Poptani H, Wolfe JH. Structure-Specific Patterns of Neural Stem Cell Engraftment After Transplantation in the Adult Mouse Brain. Hum Gene Ther 2006. [DOI: 10.1089/hum.2006.17.ft-220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
38
|
Fernandez E, Mannino S, Tufo T, Pallini R, Lauretti L, Albanese A, Denaro L. The adult “paraplegic” rat: treatment with cell graftings. ACTA ACUST UNITED AC 2006; 65:223-37. [PMID: 16488239 DOI: 10.1016/j.surneu.2005.06.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Accepted: 06/15/2005] [Indexed: 11/27/2022]
Abstract
Spinal cord injury often results in irreversible and permanent neurologic deficits below the lesion level. Nowadays, treatment is limited to drugs and/or physiotherapy aimed at compensating disability. New experimental studies focus on the transplantation of cells capable of surviving, regenerating tissue, recovering functions and/or improving symptoms. A review of such type of studies on spinal cord reconstruction published between 1991 and 2004 is presented. In the latter years, cell transplantation appeared as the most promising approach in spinal cord regeneration research. To date, this promise has not been maintained, despite the appearance of new attractive cell populations for grafting, such as neural stem cells. The demonstration that stem cells exist in the adult brain and that they can be isolated and expanded in vitro offers the possibility to test such interesting cells in the paraplegic rat. Some neurotrophic factors can facilitate axonal regeneration and neuronal survival. Therefore, the development of strategies, such as implanting neural stem cells engineered to secrete neurotrophic factors directly in the lesion site, could be important to promote regeneration in the injured spinal cord. Despite all the strategies used till now, the problem of the paraplegic rat remains. Only the solution of such problem will authorize studies in higher mammals and, finally, the clinical application in human patients. The paraplegic adult rat with a T8 spinal cord transection should be considered the standard experimental model to be used in spinal cord reconstruction studies. Function and anatomic results are undisputed only after spinal cord transection.
Collapse
Affiliation(s)
- Eduardo Fernandez
- Department of Neurosurgery, Center of Research on Regeneration in the Nervous System, Catholic University School of Medicine, 00168 Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
39
|
Shy ME. Therapeutic strategies for the inherited neuropathies. Neuromolecular Med 2006; 8:255-78. [PMID: 16775380 DOI: 10.1385/nmm:8:1-2:255] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Revised: 11/21/2005] [Accepted: 11/30/2005] [Indexed: 11/11/2022]
Abstract
More than 30 genetic causes have been identified for the inherited neuropathies collectively referred to as Charcot-Marie-Tooth (CMT) disease. Previous therapies for CMT were limited to traditional approaches such as rehabilitation medicine, ambulation aids, and pain management. Identification of the genes causing CMT has led to improved genetic counseling and assistance in family planning. Identification of these genes is beginning to delineate common molecular pathways in multiple forms of CMT that can be exploited in future molecular therapies. Scientifically based clinical trials for CMT are currently being implemented. Techniques of gene therapy are advancing to the point that they may become feasible options for patients with CMT and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Michael E Shy
- Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit MI 48201, USA.
| |
Collapse
|
40
|
Desouches C, Alluin O, Mutaftschiev N, Dousset E, Magalon G, Boucraut J, Feron F, Decherchi P. La réparation nerveuse périphérique : 30 siècles de recherche. Rev Neurol (Paris) 2005; 161:1045-59. [PMID: 16288170 DOI: 10.1016/s0035-3787(05)85172-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Nerve injury compromises sensory and motor functions. Techniques of peripheral nerve repair are based on our knowledge regarding regeneration. Microsurgical techniques introduced in the late 1950s and widely developed for the past 20 years have improved repairs. However, functional recovery following a peripheral mixed nerve injury is still incomplete. STATE OF ART Good motor and sensory function after nerve injury depends on the reinnervation of the motor end plates and sensory receptors. Nerve regeneration does not begin if the cell body has not survived the initial injury or if it is unable to initiate regeneration. The regenerated axons must reach and reinnervate the appropriate target end-organs in a timely fashion. Recovery of motor function requires a critical number of motor axons reinnervating the muscle fibers. Sensory recovery is possible if the delay in reinnervation is short. Many additional factors influence the success of nerve repair or reconstruction. The timing of the repair, the level of injury, the extent of the zone of injury, the technical skill of the surgeon, and the method of repair and reconstruction contribute to the functional outcome after nerve injury. CONCLUSION This review presents the recent advances in understanding of neural regeneration and their application to the management of primary repairs and nerve gaps.
Collapse
Affiliation(s)
- C Desouches
- Service de Chirurgie de la Main, Chirurgie Plastique et Réparatrice des Membres, Assistance Publique, Hôpitaux de Marseille, Hôpital de la Conception, Marseille
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Mi R, Luo Y, Cai J, Limke TL, Rao MS, Höke A. Immortalized neural stem cells differ from nonimmortalized cortical neurospheres and cerebellar granule cell progenitors. Exp Neurol 2005; 194:301-19. [PMID: 16022860 DOI: 10.1016/j.expneurol.2004.07.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2004] [Revised: 07/18/2004] [Accepted: 07/23/2004] [Indexed: 11/25/2022]
Abstract
Pluripotent neural stem cells (NSCs) have been used as replacement cells in a variety of neurological disease models. Among the many different NSCs that have been used to date, most robust results have been obtained with the immortalized neural stem cell line (C17.2) isolated from postnatal cerebellum. However, it is unclear if other NSCs isolated from different brain regions are similar in their potency as replacement therapies. To assess the properties of NSC-like C17.2 cells, we compared the properties of these cells with those reported for other NSC populations identified by a variety of different investigators using biological assays, microarray analysis, RT-PCR, and immunocytochemistry. We show that C17.2 cells differ significantly from other NSCs and cerebellar granule cell precursors, from which they were derived. In particular, they secrete additional growth factors and cytokines, express markers that distinguish them from other progenitor populations, and do not maintain karyotypic stability. Our results provide a caution on extrapolating results from C17.2 to other nonimmortalized stem cell populations and provide an explanation for some of the dramatic effects that are seen with C17.2 transplants but not with other cells. We suggest that, while C17.2 cells can illustrate many fundamental aspects of neural biology and are useful in their own right, their unique properties cannot be generalized.
Collapse
Affiliation(s)
- Ruifa Mi
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21287, USA
| | | | | | | | | | | |
Collapse
|
42
|
Abnormal spontaneous potentials in distal muscles in animal models of spinal cord injury. Muscle Nerve 2005; 31:46-51. [PMID: 15508125 DOI: 10.1002/mus.20229] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Spontaneous potentials in skeletal muscle distal to human spinal cord injury (SCI) have been reported in the literature. Two animal models of SCI were studied for the presence of similar potentials. Six rats and two cats with surgical transections of the thoracic spinal cord were followed for 4-6 weeks with serial electromyography. As a control for the effects of anesthesia and serial testing, three intact rats were anesthetized and tested weekly for 4 weeks. In rats with spinal cord transection, spontaneous potentials emerged 4-7 days after surgery and persisted for the duration of the study (28-32 days). Spontaneous potentials were absent in controls at all timepoints. In cats, spontaneous potentials were observed 8 days postinjury and gradually diminished, starting at 2 weeks. Spontaneous potentials therefore occur after SCI in animals as well as in humans. The utilization of animal models will facilitate the understanding of alterations that occur distal to spinal cord lesions and affect the function of lower motor neurons, leading to peripheral denervation after SCI.
Collapse
|
43
|
Lladó J, Haenggeli C, Maragakis NJ, Snyder EY, Rothstein JD. Neural stem cells protect against glutamate-induced excitotoxicity and promote survival of injured motor neurons through the secretion of neurotrophic factors. Mol Cell Neurosci 2005; 27:322-31. [PMID: 15519246 DOI: 10.1016/j.mcn.2004.07.010] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2003] [Revised: 05/21/2004] [Accepted: 07/27/2004] [Indexed: 12/12/2022] Open
Abstract
Besides their capacity to give rise to neurons and/or glia, neural stem cells (NSCs) appear to inherently secrete neurotrophic factors beneficial to injured neurons. To test this potential, we have implanted NSCs onto or adjacent to spinal cord cultures. When NSCs were placed adjacent to the spinal cord sections, motor neuron axons grew toward the NSCs. Furthermore, conditioned medium from NSCs cultures was also able to induce similar axonal outgrowth, suggesting that these NSCs secrete soluble factors that have tropic and/or trophic properties. ELISA revealed that the NSCs secrete glial cell-line-derived factor (GDNF) and nerve growth factor (NGF). Interestingly, preincubation of the conditioned medium with GDNF-blocking antibodies abolished axonal outgrowth. We also showed that NSCs can protect spinal cord cultures from experimentally induced excitotoxic damage. The neuroprotective potential of NSCs was further confirmed in vivo by their ability to protect against motor neuron cell death.
Collapse
Affiliation(s)
- Jerònia Lladó
- Department of Neurology and Neuroscience, Johns Hopkins University, Baltimore, MD 21287, USA
| | | | | | | | | |
Collapse
|
44
|
Maragakis NJ, Rao MS, Llado J, Wong V, Xue H, Pardo A, Herring J, Kerr D, Coccia C, Rothstein JD. Glial restricted precursors protect against chronic glutamate neurotoxicity of motor neurons in vitro. Glia 2005; 50:145-59. [PMID: 15657939 DOI: 10.1002/glia.20161] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We have examined the expression of glutamate transporters in primary and immortalized glial precursors (GRIPs). We subsequently transduced these cells with the GLT1 glutamate transporter and examined the ability of these cells to protect motor neurons in an organotypic spinal cord culture. We show that glial restricted precursors and GRIP-derived astrocytes predominantly express glutamate transporters GLAST and GLT1. Oligodendrocyte differentiation of GRIPs results in downregulation of all glutamate transporter subtypes. Having identified these precursor cells as potential vectors for delivering glutamate transporters to regions of interest, we engineered a line of GRIPS that overexpress the glutamate transporter GLT1. These cells (G3 cells) have a nearly fourfold increase in glutamate transporter expression and at least a twofold increase in the V(max) for glutamate transport. To assess whether G3 seeding can protect motor neurons from chronic glutamate neurotoxicity, G3s were seeded onto rat organotypic spinal cord cultures. These cultures have previously been used extensively to understand pathways involved in chronic glutamate neurotoxicity of motor neurons. After G3 seeding, cells integrated into the culture slice and resulted in levels of glutamate transport sufficient to enhance total glutamate uptake. To test whether neuroprotection was related to glutamate transporter overexpression, we isolated GRIPS from the GLT1 null mouse to serve as controls. The seeding of G3s resulted in a reduction of motor neuron cell death. Hence, we believe that these cells may potentially play a role in cell-based neuroprotection from glutamate excitotoxicity.
Collapse
Affiliation(s)
- Nicholas J Maragakis
- Department of Neurology and Neuroscience, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Schouten JW, Fulp CT, Royo NC, Saatman KE, Watson DJ, Snyder EY, Trojanowski JQ, Prockop DJ, Maas AIR, McIntosh TK. A Review and Rationale for the Use of Cellular Transplantation as a Therapeutic Strategy for Traumatic Brain Injury. J Neurotrauma 2004; 21:1501-38. [PMID: 15684646 DOI: 10.1089/neu.2004.21.1501] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Experimental research during the past decade has greatly increased our understanding of the pathophysiology of traumatic brain injury (TBI) and allowed us to develop neuroprotective pharmacological therapies. Encouraging results of experimental pharmacological interventions, however, have not been translated into successful clinical trials, to date. Traumatic brain injury is now believed to be a progressive degenerative disease characterized by cell loss. The limited capacity for self-repair of the brain suggests that functional recovery following TBI is likely to require cellular transplantation of exogenous cells to replace those lost to trauma. Recent advances in central nervous system transplantation techniques involve technical and experimental refinements and the analysis of the feasibility and efficacy of transplantation of a range of stem cells, progenitor cells and postmitotic cells. Cellular transplantation has begun to be evaluated in several models of experimental TBI, with promising results. The following is a compendium of these new and exciting studies, including a critical discussion of the rationale and caveats associated with cellular transplantation techniques in experimental TBI research. Further refinements in future research are likely to improve results from transplantation-based treatments for TBI.
Collapse
Affiliation(s)
- Joost W Schouten
- Traumatic Brain Injury Laboratory, Department of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Bottai D, Fiocco R, Gelain F, Defilippis L, Galli R, Gritti A, Vescovi LA. Neural stem cells in the adult nervous system. ACTA ACUST UNITED AC 2004; 12:655-70. [PMID: 14977475 DOI: 10.1089/15258160360732687] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The concept of the immutability of the nervous tissue has recently been replaced with the new idea that a continuous neurogenic turnover does occur in some limited areas of the central nervous system (CNS). At least two neurogenic regions of the adult mammalian CNS are involved in this process: the subventricular zone of the forebrain and the dentate gyrus of the hippocampus, which are considered to be a reservoir of new neural cells. Neural stem cells (NSCs) are multipotential progenitors that have self-renewal capability. While in vivo endogenous NSCs seem able to produce almost exclusively neurons, a single NSC in vitro is competent to generate neurons, astrocytes, and oligodendrocytes. NSCs lack a specific morphology and unambiguous surface markers that could allow their identification. For this reason, one of the major difficulties in identifying stem cells is that they are defined in terms of their functional capabilities, the determination of which might alter the cells' nature. The purpose of this review is to describe the characteristics of the NSCs of the adult mammalian CNS, their potentiality in terms of proliferation and differentiation capabilities, as well as their stability in long-term culture, all attributes that make them a good tool for tissue replacement therapies.
Collapse
Affiliation(s)
- Daniele Bottai
- Stem Cell Research Institute, DIBIT, Fondazione Centro San Raffaele del Monte Tabor, 20132 Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
47
|
Imitola J, Park KI, Teng YD, Nisim S, Lachyankar M, Ourednik J, Mueller FJ, Yiou R, Atala A, Sidman RL, Tuszynski M, Khoury SJ, Snyder EY. Stem cells: cross-talk and developmental programs. Philos Trans R Soc Lond B Biol Sci 2004; 359:823-37. [PMID: 15293810 PMCID: PMC1693371 DOI: 10.1098/rstb.2004.1474] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The thesis advanced in this essay is that stem cells-particularly those in the nervous system-are components in a series of inborn 'programs' that not only ensure normal development, but persist throughout life so as to maintain homeostasis in the face of perturbations-both small and great. These programs encode what has come to be called 'plasticity'. The stem cell is one of the repositories of this plasticity. This review examines the evidence that interaction between the neural stem cell (as a prototypical somatic stem cell) and the developing or injured brain is a dynamic, complex, ongoing reciprocal set of interactions where both entities are constantly in flux. We suggest that this interaction can be viewed almost from a 'systems biology' vantage point. We further advance the notion that clones of exogenous stem cells in transplantation paradigms may not only be viewed for their therapeutic potential, but also as biological tools for 'interrogating' the normal or abnormal central nervous system environment, indicating what salient cues (among the many present) are actually guiding the expression of these 'programs'; in other words, using the stem cell as a 'reporter cell'. Based on this type of analysis, we suggest some of the relevant molecular pathways responsible for this 'cross-talk' which, in turn, lead to proliferation, migration, cell genesis, trophic support, protection, guidance, detoxification, rescue, etc. This type of developmental insight, we propose, is required for the development of therapeutic strategies for neurodegenerative disease and other nervous system afflictions in humans. Understanding the relevant molecular pathways of stem cell repair phenotype should be a priority, in our view, for the entire stem cell field.
Collapse
Affiliation(s)
- Jaime Imitola
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, MA4 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Snyder EY, Daley GQ, Goodell M. Taking stock and planning for the next decade: realistic prospects for stem cell therapies for the nervous system. J Neurosci Res 2004; 76:157-68. [PMID: 15048913 DOI: 10.1002/jnr.20033] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In thinking about the practical application of stem cell biology to clinical situations--particularly for the central nervous system (CNS)-it is instructive to remember that the neural stem cell (NSC) field--as a prototype for somatic stem cells in general-emerged as the unanticipated byproduct of investigations by developmental neurobiologists into fundamental aspects of neural determination, commitment, and plasticity. Stem cell behavior is ultimately an expression of developmental principles, an alluring vestige from the more plastic and generative stages of organogenesis. In attempting to apply stem cell biology therapeutically, it is instructive always to bear in mind what role the stem cell plays in development and to what cues it was "designed" to respond in trying to understand the "logic" behind its behavior (both what investigators want to see and what investigators do not want to see). Furthermore, in transplantation paradigms, the interaction between engrafted NSCs and recipient host is a dynamic, complex, ongoing reciprocal interaction where both entities are constantly in flux. In this review, we propose a "roadmap" to the clinic, with a particular emphasis on flagging the "potholes" and "speed bumps" through which we must navigate. Despite the admonitions to be circumspect, we also suggest disease processes that may be within the grasp of proven stem cell properties and might be approachable in the relatively near future.
Collapse
Affiliation(s)
- Evan Y Snyder
- The Burnham Institute, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
49
|
Gangemi RMR, Perera M, Corte G. Regulatory genes controlling cell fate choice in embryonic and adult neural stem cells. J Neurochem 2004; 89:286-306. [PMID: 15056273 DOI: 10.1046/j.1471-4159.2004.02310.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neural stem cells are the most immature progenitor cells in the nervous system and are defined by their ability to self-renew by symmetric division as well as to give rise to more mature progenitors of all neural lineages by asymmetric division (multipotentiality). The interest in neural stem cells has been growing in the past few years following the demonstration of their presence also in the adult nervous system of several mammals, including humans. This observation implies that the brain, once thought to be entirely post-mitotic, must have at least a limited capacity for self-renewal. This raises the possibility that the adult nervous system may still have the necessary plasticity to undergo repair of inborn defects and acquired injuries, if ways can be found to exploit the potential of neural stem cells (either endogenous or derived from other sources) to replace damaged or defective cells. A full understanding of the molecular mechanisms regulating generation and maintenance of neural stem cells, their choice between different differentiation programmes and their migration properties is essential if these cells are to be used for therapeutic applications. Here, we summarize what is currently known of the genes and the signalling pathways involved in these mechanisms.
Collapse
|
50
|
Boockvar JA, Kapitonov D, Kapoor G, Schouten J, Counelis GJ, Bogler O, Snyder EY, McIntosh TK, O'Rourke DM. Constitutive EGFR signaling confers a motile phenotype to neural stem cells. Mol Cell Neurosci 2004; 24:1116-30. [PMID: 14697673 DOI: 10.1016/j.mcn.2003.09.011] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) has been shown to play an important role in brain development, including stem and precursor cell survival, proliferation, differentiation, and migration. To further examine the temporal and spatial requirements of erbB signals in uncommitted neural stem cells (NSCs), we expressed the ligand-independent EGF receptor, EGFRvIII, in C17.2 NSCs. These NSCs are known to migrate and to evince a tropic response to neurodegenerative environments in vivo but for which an underlying mechanism remains unclear. We show that enhanced erbB signaling via constitutive kinase activity of EGFRvIII in NSCs sustains an immature phenotype and enhances NSC migration.
Collapse
Affiliation(s)
- John A Boockvar
- Department of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|