1
|
Lo CL, Choudhury SR, Irudayaraj J, Zhou FC. Epigenetic Editing of Ascl1 Gene in Neural Stem Cells by Optogenetics. Sci Rep 2017; 7:42047. [PMID: 28181538 PMCID: PMC5299429 DOI: 10.1038/srep42047] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 01/09/2017] [Indexed: 11/09/2022] Open
Abstract
Enzymes involved in epigenetic processes such as methyltransferases or demethylases are becoming highly utilized for their persistent DNA or histone modifying efficacy. Herein, we have developed an optogenetic toolbox fused to the catalytic domain (CD) of DNA-methyltransferase3A (DNMT3A-CD) or Ten-Eleven Dioxygenase-1 (TET1-CD) for loci-specific alteration of the methylation state at the promoter of Ascl1 (Mash1), a candidate proneuron gene. Optogenetical protein pairs, CRY2 linked to DNMT3A-CD or TET1-CD and CIB1 fused to a Transcription Activator-Like Element (TALE) locating an Ascl1 promoter region, were designed for site specific epigenetic editing. A differentially methylated region at the Ascl1 promoter, isolated from murine dorsal root ganglion (hypermethylated) and striated cells (hypomethylated), was targeted with these optogenetic-epigenetic constructs. Optimized blue-light illumination triggered the co-localization of TALE constructs with DNMT3A-CD or TET1-CD fusion proteins at the targeted site of the Ascl1 promoter. We found that this spatiotemporal association of the fusion proteins selectively alters the methylation state and also regulates gene activity. This proof of concept developed herein holds immense promise for the ability to regulate gene activity via epigenetic modulation with spatiotemporal precision.
Collapse
Affiliation(s)
- Chiao-Ling Lo
- Department of Anatomy &Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Samrat Roy Choudhury
- Bindley Bioscience Center, Department of Agricultural &Biological Engineering, Purdue University, West Lafayette, IN, USA
| | - Joseph Irudayaraj
- Bindley Bioscience Center, Department of Agricultural &Biological Engineering, Purdue University, West Lafayette, IN, USA
| | - Feng C Zhou
- Department of Anatomy &Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA.,Stark Institute of Neuroscience Research, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
2
|
Hölsken A, Stache C, Schlaffer SM, Flitsch J, Fahlbusch R, Buchfelder M, Buslei R. Adamantinomatous craniopharyngiomas express tumor stem cell markers in cells with activated Wnt signaling: further evidence for the existence of a tumor stem cell niche? Pituitary 2014; 17:546-56. [PMID: 24356780 DOI: 10.1007/s11102-013-0543-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Early disease onset, clinical manifestation, histomorphology, and increased tendency to relapse distinguish the adamantinomatous craniopharyngioma (adaCP) from the more favorable papillary variant (papCP). A molecular hallmark of adaCP is the activated Wnt signaling pathway indicated by nuclear β-catenin accumulation in a subset of tumor cells. A mouse model recently illustrated that these cells are the driving force in tumorigenesis of adaCP. This observation and the peculiar growth pattern points to the existence of a specific tumor stem cell (TSC) population in human CP. MATERIALS AND METHODS To prove this hypothesis, the TSC markers CD133 (Prominin1) and CD44 were examined in papCP (n = 8) and adaCP (n = 25) on mRNA level using quantitative real time PCR of total tumor RNA. Furthermore, we investigated protein expression performing immunohistochemical analyses of formalin-fixed paraffin embedded tumor samples. RESULTS PapCP revealed a homogenous CD44 expression pattern predominantly at the cell membrane, whereas CD133 labeling was hardly detectable. In adaCP, on the other hand all markers were consistently and predominantly co-expressed in nuclear β-catenin accumulating cell clusters, which was confirmed by double immunofluorescence staining. Overall expression of CD44 was significantly decreased in adaCP versus papCP, whereas CD133 showed significantly higher protein and mRNA levels in adaCP. CONCLUSIONS Our results indicate tumor stem cell-like characteristics of β-catenin accumulating cell clusters in adaCP, which may represent a tumor stem cell niche and might contribute to tumor recurrence. The potential impact of these special cell groups in regard to future CP management, including postoperative follow-up and additional treatment remains to be explored.
Collapse
Affiliation(s)
- Annett Hölsken
- Department of Neuropathology, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany,
| | | | | | | | | | | | | |
Collapse
|
3
|
PKC-dependent ERK phosphorylation is essential for P2X7 receptor-mediated neuronal differentiation of neural progenitor cells. Cell Death Dis 2013; 4:e751. [PMID: 23907465 PMCID: PMC3763436 DOI: 10.1038/cddis.2013.274] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/19/2013] [Accepted: 06/21/2013] [Indexed: 01/01/2023]
Abstract
Purinergic receptors have been shown to be involved in neuronal development, but the functions of specific subtypes of P2 receptors during neuronal development remain elusive. In this study we investigate the distribution of P2X7 receptors (P2X7Rs) in the embryonic rat brain using in situ hybridization. At E15.5, P2X7R mRNA was observed in the ventricular zone and subventricular zone, and colocalized with nestin, indicating that P2X7R might be expressed in neural progenitor cells (NPCs). P2X7R mRNA was also detected in the subgranular zone and dentate gyrus of the E18.5 and P4 brain. To investigate the roles of P2X7R and elucidate its mechanism, we established NPC cultures from the E15.5 rat brain. Stimulation of P2X7Rs induced Ca2+ influx, inhibited proliferation, altered cell cycle progression and enhanced the expression of neuronal markers, such as TUJ1 and MAP2. Similarly, knockdown of P2X7R by shRNA nearly abolished the agonist-stimulated increases in intracellular Ca2+ concentration and the expression of TUJ1 and NeuN. Furthermore, stimulation of P2X7R induced activation of ERK1/2, which was inhibited by the removal of extracellular Ca2+ and treatment with blockers for P2X7R and PKC activity. Stimulation of P2X7R also induced translocation of PKCα and PKCγ, but not of PKCβ, whereas knockdown of either PKCα or PKCγ inhibited ERK1/2 activation. Inhibition of PKC or p-ERK1/2 also caused a decrease in the number of TUJ1-positive cells and a concomitant increase in the number of GFAP-positive cells. Taken together, the activation of P2X7R in NPCs induced neuronal differentiation through a PKC-ERK1/2 signaling pathway.
Collapse
|
4
|
Zhou FC, Balaraman Y, Teng M, Liu Y, Singh RP, Nephew KP. Alcohol alters DNA methylation patterns and inhibits neural stem cell differentiation. Alcohol Clin Exp Res 2011; 35:735-46. [PMID: 21223309 DOI: 10.1111/j.1530-0277.2010.01391.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Potential epigenetic mechanisms underlying fetal alcohol syndrome (FAS) include alcohol-induced alterations of methyl metabolism, resulting in aberrant patterns of DNA methylation and gene expression during development. Having previously demonstrated an essential role for epigenetics in neural stem cell (NSC) development and that inhibiting DNA methylation prevents NSC differentiation, here we investigated the effect of alcohol exposure on genome-wide DNA methylation patterns and NSC differentiation. METHODS Neural stem cells in culture were treated with or without a 6-hour 88 mM ("binge-like") alcohol exposure and examined at 48 hours, for migration, growth, and genome-wide DNA methylation. The DNA methylation was examined using DNA-methylation immunoprecipitation followed by microarray analysis. Further validation was performed using Independent Sequenom analysis. RESULTS Neural stem cell differentiated in 24 to 48 hours with migration, neuronal expression, and morphological transformation. Alcohol exposure retarded the migration, neuronal formation, and growth processes of NSC, similar to treatment with the methylation inhibitor 5-aza-cytidine. When NSC departed from the quiescent state, a genome-wide diversification of DNA methylation was observed-that is, many moderately methylated genes altered methylation levels and became hyper- and hypomethylated. Alcohol prevented many genes from such diversification, including genes related to neural development, neuronal receptors, and olfaction, while retarding differentiation. Validation of specific genes by Sequenom analysis demonstrated that alcohol exposure prevented methylation of specific genes associated with neural development [cut-like 2 (cutl2), insulin-like growth factor 1 (Igf1), epidermal growth factor-containing fibulin-like extracellular matrix protein 1 (Efemp1), and SRY-box-containing gene 7 (Sox 7)]; eye development, lens intrinsic membrane protein 2 (Lim 2); the epigenetic mark Smarca2 (SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 2); and developmental disorder [DiGeorge syndrome critical region gene 2 (Dgcr2)]. Specific sites altered by DNA methylation also correlated with transcription factor binding sites known to be critical for regulating neural development. CONCLUSION The data indicate that alcohol prevents normal DNA methylation programming of key neural stem cell genes and retards NSC differentiation. Thus, the role of DNA methylation in FAS warrants further investigation.
Collapse
Affiliation(s)
- Feng C Zhou
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS 508, Indianapolis, Indiana 46202, USA.
| | | | | | | | | | | |
Collapse
|
5
|
Scanga VI, Goraltchouk A, Nussaiba N, Shoichet MS, Morshead CM. Biomaterials for neural-tissue engineering — Chitosan supports the survival, migration, and differentiation of adult-derived neural stem and progenitor cells. CAN J CHEM 2010. [DOI: 10.1139/v09-171] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Neural precursor cells (NPCs or stem and progenitor cells) are promising in transplantation strategies to treat an injury to the central nervous system, such as a spinal cord injury (SCI), because of their ability to differentiate into neurons and glia. Transplantation studies to date have met with limited success for a number of reasons, including poor cell survival. One way to encourage cell survival in injured tissue is to provide the cells with a scaffold to enhance their survival, their integration, and potentially their differentiation into appropriate cell types. Towards this end, four amine-functionalized hydrogels were screened in vitro for adult murine NPC viability, migration, and differentiation: chitosan, poly(oligoethylene oxide dimethacrylate-co-2-amino ethyl methacrylate), blends of poly(oligoethylene oxide dimethacrylate-co-2-amino ethyl methacrylate), and poly(vinyl alcohol), and poly(glycerol dimethacrylate-co-2-amino ethyl methacrylate). The greatest cell viability was found on chitosan at all times examined, Chitosan had the greatest surface amine content and the lowest equilibrium water content, which likely contributed to the greater NPC viability observed over three weeks in culture. Only chitosan supported survival of multipotent stem cells and the differentiation of the progenitors into neurons, astrocytes, and oligodendrocytes. Plating intact NPC colonies revealed greater cell migration on chitosan relative to the other hydrogels. Importantly, long term cultures on chitosan showed no significant difference in total cell counts over time, suggesting no net cell growth. Together, these findings reveal chitosan as a promising material for the delivery of adult NPC cell-based therapies.
Collapse
Affiliation(s)
- Vanessa I. Scanga
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Department of Chemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Alex Goraltchouk
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Department of Chemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Nasser Nussaiba
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Department of Chemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Molly S. Shoichet
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Department of Chemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Cindi M. Morshead
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Department of Chemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
6
|
D'Angelo RC, Wicha MS. Stem cells in normal development and cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 95:113-58. [PMID: 21075331 DOI: 10.1016/b978-0-12-385071-3.00006-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this chapter we provide an overview of stem cells in normal tissues as well as in many different types of cancers. All tissues in the body are derived from organ-specific stem cells that retain the ability to self-renew and differentiate into specific cell types. The cancer stem cell hypothesis suggests that tumors arise from cell populations with dysregulated self-renewal. This may be tissue stem cells or more differentiated cells that acquire self-renewal capabilities. In addition, we outline some useful assays for purification and isolation of cancer stem cells including the dye exclusion side population assay, flow cytometry sorting techniques for identification of putative cancer stem cell markers, tumorspheres assay, aldehyde dehydrogenase activity assay, PKH, and other membrane staining used to label the cancer stem cells, as well as in vivo xenograft transplantation assays. We also examine some of the cell signaling pathways that regulate stem cell self-renewal including the Notch, Hedgehog, HER2/PI3K/Akt/PTEN, and p53 pathways. We also review information demonstrating the involvement of the microenvironment or stem cell niche and its effects on the growth and maintenance of cancer stem cells. Finally, we highlight the therapeutic implications of targeting stem cells by inhibiting these pathways for the treatment and prevention of cancer.
Collapse
Affiliation(s)
- Rosemarie Chirco D'Angelo
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
7
|
Yang ES, Wang H, Jiang G, Nowsheen S, Fu A, Hallahan DE, Xia F. Lithium-mediated protection of hippocampal cells involves enhancement of DNA-PK-dependent repair in mice. J Clin Invest 2009; 119:1124-35. [PMID: 19425167 DOI: 10.1172/jci34051] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Long-term neurological deficiencies resulting from hippocampal cytotoxicity induced by cranial irradiation (IR) present a challenge in the treatment of primary and metastatic brain cancers, especially in children. Previously, we showed that lithium protected hippocampal neurons from IR-induced apoptosis and improved neurocognitive function in treated mice. Here, we demonstrate accelerated repair of IR-induced chromosomal double-strand breaks (DSBs) in lithium-treated neurons. Lithium treatment not only increased IR-induced DNA-dependent protein kinase (DNA-PK) threonine 2609 foci, a surrogate marker for activated nonhomologous end-joining (NHEJ) repair, but also enhanced double-strand DNA end-rejoining activity in hippocampal neurons. The increased NHEJ repair coincided with reduced numbers of IR-induced gamma-H2AX foci, well-characterized in situ markers of DSBs. These findings were confirmed in vivo in irradiated mice. Consistent with a role of NHEJ repair in lithium-mediated neuroprotection, attenuation of IR-induced apoptosis of hippocampal neurons by lithium was dramatically abrogated when DNA-PK function was abolished genetically in SCID mice or inhibited biochemically by the DNA-PK inhibitor IC86621. Importantly, none of these findings were evident in glioma cancer cells. These results support our hypothesis that lithium protects hippocampal neurons by promoting the NHEJ repair-mediated DNA repair pathway and warrant future investigation of lithium-mediated neuroprotection during cranial IR, especially in the pediatric population.
Collapse
Affiliation(s)
- Eddy S Yang
- Department of Radiation Oncology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Setting the conditions for efficient, robust and reproducible generation of functionally active neurons from adult subventricular zone-derived neural stem cells. Cell Death Differ 2008; 15:1847-56. [PMID: 19011641 DOI: 10.1038/cdd.2008.118] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Although new culture conditions enable homogeneous and long-term propagation of radial glia-like neural stem (NS) cells in monolayer and serum-free conditions, the efficiency of the conversion of NS cells into terminally differentiated, functionally mature neurons is relatively limited and poorly characterized. We demonstrate that NS cells derived from adult mouse subventricular zone robustly develop properties of mature neurons when exposed to an optimized neuronal differentiation protocol. A high degree of cell viability was preserved. At 22 days in vitro, most cells (65%) were microtubule-associated protein 2(+) and coexpressed gamma-aminobutyric acid (GABA), GAD67, calbindin and parvalbumin. Nearly all neurons exhibited sodium, potassium and calcium currents, and 70% of them fired action potentials. These neurons expressed functional GABA(A) receptors, whereas activable kainate, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and N-methyl-D-aspartic acid receptors were present in approximately 80, 30 and 2% of cells, respectively. Antigenic and functional properties were efficiently and reliably reproduced across experiments and cell passages (up to 68). This is the first report showing a consistent and reproducible generation of large amounts of neurons from long-term passaged adult neural stem cells. Remarkably, the neuronal progeny carries a defined set of antigenic, biochemical and functional characteristics that make this system suitable for studies of NS cell biology as well as for genetic and chemical screenings.
Collapse
|
9
|
Rojas-Mayorquín AE, Torres-Ruíz NM, Ortuño-Sahagún D, Gudiño-Cabrera G. Microarray analysis of striatal embryonic stem cells induced to differentiate by ensheathing cell conditioned media. Dev Dyn 2008; 237:979-94. [DOI: 10.1002/dvdy.21489] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
10
|
|
11
|
Brännvall K, Bergman K, Wallenquist U, Svahn S, Bowden T, Hilborn J, Forsberg-Nilsson K. Enhanced neuronal differentiation in a three-dimensional collagen-hyaluronan matrix. J Neurosci Res 2007; 85:2138-46. [PMID: 17520747 DOI: 10.1002/jnr.21358] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Efficient 3D cell systems for neuronal induction are needed for future use in tissue regeneration. In this study, we have characterized the ability of neural stem/progenitor cells (NS/PC) to survive, proliferate, and differentiate in a collagen type I-hyaluronan scaffold. Embryonic, postnatal, and adult NS/PC were seeded in the present 3D scaffold and cultured in medium containing epidermal growth factor and fibroblast growth factor-2, a condition that stimulates NS/PC proliferation. Progenitor cells from the embryonic brain had the highest proliferation rate, and adult cells the lowest, indicating a difference in mitogenic responsiveness. NS/PC from postnatal stages down-regulated nestin expression more rapidly than both embryonic and adult NS/PC, indicating a faster differentiation process. After 6 days of differentiation in the 3D scaffold, NS/PC from the postnatal brain had generated up to 70% neurons, compared with 14% in 2D. NS/PC from other ages gave rise to approximately the same proportion of neurons in 3D as in 2D (9-26% depending on the source for NS/PC). In the postnatal NS/PC cultures, the majority of betaIII-tubulin-positive cells expressed glutamate, gamma-aminobutyric acid, and synapsin I after 11 days of differentiation, indicating differentiation to mature neurons. Here we report that postnatal NS/PC survive, proliferate, and efficiently form synapsin I-positive neurons in a biocompatible hydrogel.
Collapse
Affiliation(s)
- K Brännvall
- Department of Medical Biochemistry and Microbiology, Uppsala University Biomedical Center, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
12
|
Conti L, Reitano E, Cattaneo E. Neural stem cell systems: diversities and properties after transplantation in animal models of diseases. Brain Pathol 2006; 16:143-54. [PMID: 16768755 PMCID: PMC8095762 DOI: 10.1111/j.1750-3639.2006.00009.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Currently available effective treatments of the diseased or damaged central nervous system (CNS) are restricted to a limited pharmacological relief of symptoms or those given to avoid further damage. Therefore the search is on for treatments that can restore function in the CNS. During recent years replacement of damaged neurons by cell transplantation is being enthusiastically explored as a potential treatment for many neurodegenerative diseases, stroke and traumatic brain injury. Several references in both scientific journals and popular newspapers concerning different types of cultured stem cells, potentially exploitable to treat pathological conditions of the brain, raise important questions pertinent to the fundamental and realistic differences between grafts of primary neural cells and the transplantation of in vitro expanded neural stem cells (NSCs). Our aim is to review the available information on the grafting of different NSC types into the adult rodent brain, focusing on critical aspects for the development of clinical therapies to replace damaged neurons.
Collapse
Affiliation(s)
- Luciano Conti
- Department of Pharmacological Sciences and Center of Excellence on Neurodegenerative Diseases, University of Milano, Milano, Italy
| | - Erika Reitano
- Department of Pharmacological Sciences and Center of Excellence on Neurodegenerative Diseases, University of Milano, Milano, Italy
| | - Elena Cattaneo
- Department of Pharmacological Sciences and Center of Excellence on Neurodegenerative Diseases, University of Milano, Milano, Italy
| |
Collapse
|
13
|
Staropoli JF, Abeliovich A. The ubiquitin-proteasome pathway is necessary for maintenance of the postmitotic status of neurons. J Mol Neurosci 2005; 27:175-83. [PMID: 16186628 DOI: 10.1385/jmn:27:2:175] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2005] [Accepted: 02/27/2005] [Indexed: 11/11/2022]
Abstract
The ubiquitin-proteasome pathway (UPP) has been implicated in the regulation of a number of key cellular processes in mammalian cells, including the cell cycle and apoptosis. Furthermore, defects in the UPP have been implicated in neurodegenerative disorders such as Parkinson's disease (PD), as mutations in the ubiquitin ligase Parkin underlie a familial form of parkinsonism and ubiquitinated inclusions are a defining hallmark of PD pathology. To functionally dissect molecular components of the UPP in postmitotic neurons, we used RNA interference to knock down genes that encode genetically characterized components of the UPP. Here, we show that knockdown of two such components, the ubiquitin ligase scaffolding protein Cullin-1 (Cul-1) and the proteasome-associated deubiquitinating protein Pad-1, lead to cell cycle reactivation and apoptosis in subsets of postmitotic neurons. Furthermore, knockdown of Cul-1 appears to specifically affect the dopaminergic population. These data support the hypothesis that the UPP normally functions to regulate cell-cycle reentry in postmitotic neurons and further implicate this pathway in dopamine neuron degeneration.
Collapse
Affiliation(s)
- John F Staropoli
- Department of Pathology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | | |
Collapse
|
14
|
Wennersten A, Meier X, Holmin S, Wahlberg L, Mathiesen T. Proliferation, migration, and differentiation of human neural stem/progenitor cells after transplantation into a rat model of traumatic brain injury. J Neurosurg 2004; 100:88-96. [PMID: 14743917 DOI: 10.3171/jns.2004.100.1.0088] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object. Cultures containing human neural stem and progenitor cells (neurospheres) have the capacity to proliferate and differentiate into the major phenotypes of the adult brain. These properties make them candidates for therapeutic transplantation in cases of neurological diseases that involve cell loss. In this study, long-term cultured and cryopreserved cells were transplanted into the traumatically injured rat brain to evaluate the potential for human neural stem/progenitor cells to survive and differentiate following traumatic injury.
Methods. Neural stem/progenitor cell cultures were established from 10-week-old human forebrain. Immunosuppressed adult rats received a unilateral parietal cortical contusion injury, which was delivered using the weight-drop method. Immediately following the injury, these animals received transplants of neural stem/progenitor cells, which were placed close to the site of injury. Two or 6 weeks after the procedure, these animals were killed and their brains were examined by immunohistochemical analysis.
At both 2 and 6 weeks postoperatively, the transplanted human cells were found in the perilesional zone, hippocampus, corpus callosum, and ipsilateral subependymal zone of the rats. Compared with the 2-week time point, an increased number of HuN-positive cells was observed at 6 weeks. In addition, at 6 weeks post—injury/transplantation, the cells were noted to cross the midline to the contralateral corpus callosum and into the contralateral cortex. Double labeling demonstrated neuronal and astrocytic, but not oligodendrocytic differentiation. Moreover, the cortex appeared to provide an environment that was less hospitable to neuronal differentiation than the hippocampus.
Conclusions. This study shows that expandable human neural stem/progenitor cells survive transplantation, and migrate, differentiate, and proliferate in the injured brain. These cells could potentially be developed for transplantation therapy in cases of traumatic brain injury.
Collapse
Affiliation(s)
- André Wennersten
- Department of Clinical Neuroscience, Section of Neurosurgery, Karolinska Hospital, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
15
|
Schumm MA, Castellanos DA, Frydel BR, Sagen J. Improved neural progenitor cell survival when cografted with chromaffin cells in the rat striatum. Exp Neurol 2004; 185:133-42. [PMID: 14697324 DOI: 10.1016/j.expneurol.2003.09.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Transplantation of stem and neural progenitor cells hold great promise in the repair of neuronal tissue lost due to injury or disease. However, survival following transplantation to the adult CNS has been poor, likely due to a lack of neurotrophic factors, such as basic fibroblast growth factor (FGF-2), that are used to maintain and expand these cells in culture. Chromaffin cells produce several neurotrophic agents, including FGF-2, which may aid in both neuroprotection following injury and progenitor cell proliferation and survival. In addition, increased CNS catecholamines have been shown to improve functional recovery following insult. Thus, cotransplants of neural progenitor cells and chromaffin cells may be a useful clinical strategy. To address this, the survival of rat cortical progenitors transplanted to the adult rat striatum with and without bovine chromaffin cell cografts was assessed. Progenitors obtained from E14 embryos were prelabeled with bromodeoxyuridine (BrdU) before transplantation to enable later identification. Transplants were made both unilaterally and bilaterally, where animals received a monograft (progenitor cells alone) on one side and a cograft (progenitors + chromaffin cells) on the other. Histological results after 7, 17, and 30 days posttransplant revealed greatly improved survival of BrdU-labeled cells in the cografts and also less infiltration of presumptive immune cells. In addition, perivascular cuffing was seen in the monografts. In vitro progenitor cohorts stained positive for nestin, GFAP, and beta-tubulin III, but in vivo very few cells were found that were double labeled with BrdU and one of these markers. Thus, in contrast to in vitro findings, chromaffin cells did not enhance differentiation of progenitors in vivo during the 30 days posttransplantation. The results of these studies suggest that chromaffin cells may provide neurotrophic support to enhance survival, but not differentiation, of cortical progenitor grafts in the adult CNS.
Collapse
Affiliation(s)
- Michael A Schumm
- The Miami Project to Cure Paralysis, University of Miami School of Medicine, Miami, FL 33136, USA
| | | | | | | |
Collapse
|
16
|
Schumm MA, Castellanos DA, Frydel BR, Sagen J. Direct cell-cell contact required for neurotrophic effect of chromaffin cells on neural progenitor cells. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 146:1-13. [PMID: 14643006 DOI: 10.1016/j.devbrainres.2003.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Previous studies showed that neural progenitor cultures could be maintained without exogenously added FGF-2 when co-cultured with chromaffin cells. In addition, progenitor cells displayed dramatically increased neuronal differentiation in the presence of chromaffin cells. These findings suggested an approach to improved neural progenitor transplant outcomes using co-transplantation or administration of chromaffin cell-derived factors. The aim of this study was to determine whether the observed survival and differentiation effects were due to diffusible factors or required direct cell-cell contact (DC). Rat neural progenitors were cultured under six different conditions: (1) Standard N2 media with FGF-2; (2) N2 without FGF-2; (3) N2 with FGF+conditioned media (CM) from chromaffin cultures; (4) N2 without FGF-2+CM; (5) Transwells (TW), progenitor+chromaffin cells grown together but separated by a membrane allowing movement of diffusible agents but preventing direct contact; (6) direct contact co-cultures of progenitors and chromaffin cells. Cultures were evaluated for survival, proliferation, and differentiation. Cultures with FGF-2 proliferated and formed floating neurospheres while those grown in N2 without FGF-2 failed to thrive. Those grown either with CM or in transwells showed significantly improved survival. Survival was comparable to the exogenous FGF groups when progenitors were allowed direct contact with chromaffin cells. Proliferation was low in all cultures except those receiving exogenous FGF-2. Direct contact co-cultures exhibited a marked increase in beta-tubulin III+ processes compared to all other groups, indicating differentiation towards a neuronal phenotype. The results of this study suggest that diffusible agents produced by chromaffin cells can sustain viable progenitor cells in vitro even in the absence of added FGF-2 but that the effects on progenitor cell neuronal differentiation require direct cell-cell contact.
Collapse
Affiliation(s)
- Michael A Schumm
- The Miami Project to Cure Paralysis, School of Medicine, University of Miami, Lois Pope Life Center, 1095 NW 14th Terrace (R-48), Miami, FL 33136, USA
| | | | | | | |
Collapse
|
17
|
Meng XL, Shen JS, Ohashi T, Maeda H, Kim SU, Eto Y. Brain transplantation of genetically engineered human neural stem cells globally corrects brain lesions in the mucopolysaccharidosis type VII mouse. J Neurosci Res 2003; 74:266-77. [PMID: 14515356 DOI: 10.1002/jnr.10764] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the present study, we investigated the feasibility of using human neural stem cells (NSCs) in the treatment of diffuse central nervous system (CNS) alterations in a murine model of mucopolysaccharidosis VII (MPS VII), a lysosomal storage disease caused by a genetic defect in the beta-glucuronidase gene. An immortalized NSC line derived from human fetal telencephalon was genetically engineered to overexpress beta-glucuronidase and transplanted into the cerebral ventricles of neonatal MPS VII mouse. Transplanted human NSCs were found to integrate and migrate in the host brain and to produce large amount of beta-glucuronidase. Brain contents of the substrates of beta-glucuronidase were reduced to nearly normal levels, and widespread clearing of lysosomal storage was observed in the MPS VII mouse brain at 25 days posttransplantation. The number of engrafted cells decreased markedly after the transplantation, and it appears that the major cause of the cell death was not the immune response of the host but apoptotic cell death of grafted human NSCs. Results showed that human NSCs would serve as a useful gene transfer vehicle for the treatment of diffuse CNS lesions in human lysosomal storage diseases and are potentially applicable in the treatment of patients suffering from neurological disorders.
Collapse
Affiliation(s)
- Xing-Li Meng
- Department of Gene Therapy, Institute of DNA Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Besides neuronal transmission, serotonin (5-HT) also acts as a trophic signal during the development of the central nervous and neural crest systems. In this study, we report that in addition to trophic effect, 5-HT increases the proliferation of fetal heart cells. We showed for the first time that the cultured heart cells, express serotonin transporter (5-HTT), which confirmed the previously observed accumulation of 5-HT in developing heart. The influence of 5-HT on developing heart cells is studied throughout the dosage. We found that 5-HT concentration at physiological level, 4 microM, permits an optimal proliferation of heart cells as indicated by the number of 5-bromo-deoxyuridine immunoreactive (BrdU-im) cells and myosin heavy chain immunoreactive cells (MF20-im); fluctuation towards either concentrations reduce the proliferation. We hypothesized that 5-HTT plays a role in the heart development. Our study indicated that the blockade of 5-HT uptake by paroxetine decreased the number of BrdU-im cells and MF20-im cells. These data indicate a role of 5-HT and 5-HTT on heart development. Abnormal 5-HT level or misuse of 5-HT uptake blocker may alter the heart development.
Collapse
Affiliation(s)
- Youssef Sari
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, MS508, Indianapolis, IN 46202, USA
| | | |
Collapse
|
19
|
Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, Wicha MS. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 2003; 17:1253-70. [PMID: 12756227 PMCID: PMC196056 DOI: 10.1101/gad.1061803] [Citation(s) in RCA: 1886] [Impact Index Per Article: 89.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Although the existence of mammary stem cells has been suggested by serial transplantation studies in mice, their identification has been hindered by the lack of specific surface markers, and by the absence of suitable in vitro assays for testing stem cell properties: self-renewal and ability to generate differentiated progeny. We have developed an in vitro cultivation system that allows for propagation of human mammary epithelial cells (HMECs) in an undifferentiated state, based on their ability to proliferate in suspension, as nonadherent mammospheres. We demonstrate that nonadherent mammospheres are enriched in early progenitor/stem cells and able to differentiate along all three mammary epithelial lineages and to clonally generate complex functional structures in reconstituted 3D culture systems. Gene expression analysis of cells isolated from nonadherent mammospheres revealed overlapping genetic programs with other stem and progenitor cells and identified new markers that may be useful in the identification of mammary stem cells. The isolation and characterization of these stem cells should help elucidate the molecular pathways that govern normal mammary development and carcinogenesis.
Collapse
Affiliation(s)
- Gabriela Dontu
- Department of Internal Medicine, Hematology-Oncology, Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
El-Khodor BF, Oo TF, Kholodilov N, Burke RE. Ectopic expression of cell cycle markers in models of induced programmed cell death in dopamine neurons of the rat substantia nigra pars compacta. Exp Neurol 2003; 179:17-27. [PMID: 12504864 DOI: 10.1006/exnr.2002.8047] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is increasing evidence that proteins normally involved in the cell cycle can regulate neuronal programmed cell death (PCD). However, it remains unknown whether cell cycle markers are expressed in normal, postmitotic, postmigratory neurons undergoing PCD in vivo. We have previously shown that natural cell death occurs postnatally in dopamine neurons of the substantia nigra pars compacta (SNpc). PCD can be induced postnatally in these neurons either by intrastriatal injection of the neurotoxin 6-hydroxydopamine (6-OHDA) or by medial forebrain bundle (MFB) axotomy. At the time of induction of death in these models, these neurons are long postmitotic and postmigratory. We have studied three cell cycle markers in these models: 5-bromo-2'-deoxyuridine (BrdU) incorporation (a marker of S phase), cdc2 protein expression (a marker of G2 phase), and expression of MPM2 (a marker of M phase), an epitope phosphorylated by cdc2. We report here that postmitotic dopaminergic neurons undergoing PCD in the SNpc following 6-OHDA and axotomy lesions incorporate BrdU and overexpress cdc2, but do not express MPM2. This is the first in vivo evidence that postmitotic dopamine neurons of the SNpc undergoing apoptosis express markers for S phase and G2 phase. These results raise the possibility that cell cycle regulatory proteins may play a role in the demise of dopaminergic neurons in Parkinson's disease, in which PCD has been postulated to play a role.
Collapse
Affiliation(s)
- Bassem F El-Khodor
- Department of Neurology, The College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
21
|
Lobo MVT, Alonso FJM, Redondo C, López-Toledano MA, Caso E, Herranz AS, Paíno CL, Reimers D, Bazán E. Cellular characterization of epidermal growth factor-expanded free-floating neurospheres. J Histochem Cytochem 2003; 51:89-103. [PMID: 12502758 DOI: 10.1177/002215540305100111] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Neural stem cells proliferate in liquid culture as cell clusters (neurospheres). This study was undertaken to characterize the epidermal growth factor (EGF)-expanded free-floating neurospheres derived from rat fetal striatum. We examined the ultrastructural and antigenic characteristics of these spheres. They consisted of two cell types, electron-dense and electron-lucent cells. Lucent cells were immunopositive to actin, vimentin, and nestin, whereas dense cells were immunopositive to actin, weakly positive to vimentin, and nestin-negative. Neurospheres contained healthy, apoptotic, and necrotic cells. Healthy cells were attached to each other by adherens junctions. They showed many pseudopodia and occasionally a single cilium. Sphere cells showed phagocytic capability because healthy cells phagocytosed the cell debris derived from dead cells in a particular process that involves the engulfment of dying cells by cell processes from healthy cells. Sphere cells showed a cytoplasmic and a nuclear pool of fibroblast growth factor (FGF) receptors. They expressed E- and N-cadherin, alpha- and beta-catenin, EGF receptor, and a specific subset of FGF receptors. Because sphere cells expressed this factor in the absence of exogenous FGF-2, we propose that they are able to synthesize FGF-2.
Collapse
Affiliation(s)
- Maria V T Lobo
- Departamento de Investigación, Hospital Ramón y Cajal, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Schumm MA, Castellanos DA, Frydel BR, Sagen J. Enhanced viability and neuronal differentiation of neural progenitors by chromaffin cell co-culture. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2002; 137:115-25. [PMID: 12220703 DOI: 10.1016/s0165-3806(02)00415-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The transplantation of neural stem cells and progenitors has potential in restoring lost cellular populations following central nervous system (CNS) injury or disease, but survival and neuronal differentiation in the adult CNS may be insufficient in the absence of exogenous trophic support. Adrenal medullary chromaffin cells produce a trophic cocktail including basic fibroblast growth factor (FGF-2) and neurotrophins. The aim of this study was to evaluate whether chromaffin cells can provide a supportive microenvironment for neural progenitor cells. In order to assess this, the growth and differentiation of neural progenitor cell cultures from embryonic rat cortex were compared in standard FGF-2-supplemented neural progenitor growth media, in standard media but lacking FGF-2, or in media lacking FGF-2 but co-cultured with bovine chromaffin cells. Using bromodeoxyuridine (BrdU)-prelabeling, findings indicated poor survival of progenitor cultures in the absence of FGF-2. In contrast, the addition of chromaffin cells in co-culture appeared to 'rescue' the progenitor cultures and resulted in robust neurospheres containing numerous BrdU-labeled cells interspersed with and closely apposed to chromaffin cells. As indicated by H3 labeling, cells in co-cultures continued to proliferate, but at a substantially reduced rate compared with standard FGF-2 supplemented growth media. The co-cultures contained more beta-tubulin III-positive processes than parallel cultures maintained in FGF-2-supplemented media and these cells displayed a more mature phenotype with numerous varicosities and complex processes. These findings indicate that chromaffin cells can provide a supportive environment for the survival and neuronal differentiation of neural progenitor cells and suggest that their addition may be useful as a sustained source of trophic support to improve outcomes of neural stem cell transplantation.
Collapse
Affiliation(s)
- Michael A Schumm
- The Miami Project to Cure Paralysis, University of Miami School of Medicine, Lois Pope Life Center, 1095 NW 14th Terrace (R-48), Miami, FL 33136, USA
| | | | | | | |
Collapse
|
23
|
Hugnot JP, Pilcher H, Rashid-Doubell F, Sinden J, Price J. Regulation of glial differentiation of MHP36 neural multipotent cell line. Neuroreport 2001; 12:2237-41. [PMID: 11447341 DOI: 10.1097/00001756-200107200-00038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
MHP36 is a nestin bFGF-dependent cell line isolated from embryonic hippocampus using a thermolabile form of SV40 T antigen. When grafted in ischemic hippocampus MHP36 cells differentiate and alleviate the cognitive deficit associated with the lesion. We report here in vitro features of MHP36 cells. First, we found that T Ag expression was not necessary for MHP36 growth as cells cultured at the nonpermissive temperature carry on proliferating at a normal rate, Second, we observed that part of MHP36 cells spontaneously differentiate into astrocytes when bFGF is removed at39 degrees C. This differentiation was increased 4-fold by leukemia inhibitory factor. Third, we found that the majority of cells spontaneously expressed oligodendrocytic markers (CNPase, A2B5, GalC) when cultured at low density.
Collapse
Affiliation(s)
- J P Hugnot
- Institute of Psychiatry, Denmark Hill, SE5 8AF, London
| | | | | | | | | |
Collapse
|
24
|
Jiang W, Gu W, Brännström T, Rosqvist R, Wester P. Cortical neurogenesis in adult rats after transient middle cerebral artery occlusion. Stroke 2001; 32:1201-7. [PMID: 11340234 DOI: 10.1161/01.str.32.5.1201] [Citation(s) in RCA: 190] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE This study explored the possible occurrence of newly generated nerve cells in the ischemic cortex of adult rats after middle cerebral artery occlusion and reperfusion. METHODS Nine- to 10-week-old male Wistar rats were subjected to 2 hours of middle cerebral artery occlusion by the monofilament method. Rats received repeated intraperitoneal injections of the cell proliferation-specific marker 5-bromodeoxyuridine (BrdU) after stroke induction. Brain sections were processed for immunohistochemistry with an avidin-biotin complex-alkaline phosphatase and/or -peroxidase method. Brain sections processed with double-immunofluorescent staining were further scanned by confocal microscopy. RESULTS Interspersed among the predominantly newly formed glial cells, some cells were double labeled by BrdU and 1 of the neuron-specific markers, Map-2, beta-tubulin III, and Neu N, at 30 and 60 days after stroke onset. These cells were randomly distributed throughout cortical layers II through VI, occurring with highest density in the ischemic boundary zone. Three-dimensional confocal analyses of BrdU and the neuron-specific marker Neu N confirmed their colocalization within the same cortical cells. CONCLUSIONS This study suggests that new neurons can be generated in the cerebral cortex of adult rats after transient focal cerebral ischemia. Cortical neurogenesis may be a potential pathway for brain repair after stroke.
Collapse
Affiliation(s)
- W Jiang
- Departments of Public Health and Clinical Medicine, Medicine, Umeå Stroke Center,Umeå University (Sweden)
| | | | | | | | | |
Collapse
|