1
|
Wang Z, Cui Y, Wen L, Yu H, Feng J, Yuan W, He X. Dietary Restriction against Parkinson's Disease: What We Know So Far. Nutrients 2022; 14:nu14194108. [PMID: 36235760 PMCID: PMC9571011 DOI: 10.3390/nu14194108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Dietary restriction (DR) is defined as a moderate reduction in food intake while avoiding malnutrition. The beneficial effects of DR are being increasingly acknowledged in aging and in a series of age-related neurodegenerative disorders, for example, Parkinson's disease (PD). To date, the pathogenesis of PD remains elusive and there is no cure for it in spite of intensive research over decades. In this review, we summarize the current knowledge on the efficacy of DR on PD, focusing on the underlying mechanisms involving general metabolism, neuroendocrinolgy, neuroinflammation, gut microbiome, and so on. We anticipate that this review will provide future perspectives for PD prevention and treatment.
Collapse
Affiliation(s)
- Zhonglei Wang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yueran Cui
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Lulu Wen
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Haiyang Yu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Wei Yuan
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang 110001, China
- Correspondence: (W.Y.); (X.H.); Tel.: +86-024-8328-3360 (W.Y.); +86-024-96615-28111 (X.H.)
| | - Xin He
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
- Correspondence: (W.Y.); (X.H.); Tel.: +86-024-8328-3360 (W.Y.); +86-024-96615-28111 (X.H.)
| |
Collapse
|
2
|
Fasting in mood disorders and its potential therapeutic aspects -narrative review. CURRENT PROBLEMS OF PSYCHIATRY 2022. [DOI: 10.2478/cpp-2022-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Introduction: Fasting is defined as a period of voluntary abstinence from eating food for religious, therapeutic or political reasons, which is associated with a reduction in the supply of sources (kilocalories) to the body. There are different types of fasting, including short, long or intermittent fasting. It has been shown that the use of different types of fasting can influence the occurrence of mood disorders. The aim of this review was to search for the relationship between the use of fasting and mood disorders and its potential use as a therapeutic method.
Material and method: The available literature was reviewed by searching the PubMed and Google Scholar databases using the following keywords: fasting, intermittent fasting, mood disorders, depression, Ramadan, for studies listed from database inception to November 2021.
Results: A review of the collected scientific articles indicates that the dietary restrictions, including both daily restriction of caloric consumption and the use of intermittent fasting (IF), has potentially numerous health benefits in the co-treatment of mental diseases. However, due to conflicting results, further clinical trials in mentally ill people should be conducted. It is worth remembering that among patients with mental illnesses there are somatically ill. IF in these people may require additional nutritional modifications or discontinuation of therapy.
Conclusions: Dietary restriction and fasting are promising methods in co-therapy of mood disorders treatment. However, implementing therapy needs earlier individual evaluation of their benefits and risk, the same as patient’s feasibility of implementing this type of intervention.
Collapse
|
3
|
Zhao Y, Jia M, Chen W, Liu Z. The neuroprotective effects of intermittent fasting on brain aging and neurodegenerative diseases via regulating mitochondrial function. Free Radic Biol Med 2022; 182:206-218. [PMID: 35218914 DOI: 10.1016/j.freeradbiomed.2022.02.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/29/2022] [Accepted: 02/21/2022] [Indexed: 12/11/2022]
Abstract
Intermittent fasting (IF) has been studied for its effects on lifespan and the prevention or delay of age-related diseases upon the regulation of metabolic pathways. Mitochondria participate in key metabolic pathways and play important roles in maintaining intracellular signaling networks that modulate various cellular functions. Mitochondrial dysfunction has been described as an early feature of brain aging and neurodegeneration. Although IF has been shown to prevent brain aging and neurodegeneration, the mechanism is still unclear. This review focuses on the mechanisms by which IF improves mitochondrial function, which plays a central role in brain aging and neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. The cellular and molecular mechanisms of IF in brain aging and neurodegeneration involve activation of adaptive cellular stress responses and signaling- and transcriptional pathways, thereby enhancing mitochondrial function, by promoting energy metabolism and reducing oxidant production.
Collapse
Affiliation(s)
- Yihang Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Mengzhen Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Weixuan Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhigang Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China; German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.
| |
Collapse
|
4
|
Tesic V, Ciric J, Jovanovic Macura I, Zogovic N, Milanovic D, Kanazir S, Perovic M. Corticosterone and Glucocorticoid Receptor in the Cortex of Rats during Aging-The Effects of Long-Term Food Restriction. Nutrients 2021; 13:nu13124526. [PMID: 34960078 PMCID: PMC8703853 DOI: 10.3390/nu13124526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Numerous beneficial effects of food restriction on aging and age-related pathologies are well documented. It is also well-established that both short- and long-term food restriction regimens induce elevated circulating levels of glucocorticoids, stress-induced hormones produced by adrenal glands that can also exert deleterious effects on the brain. In the present study, we examined the effect of long-term food restriction on the glucocorticoid hormone/glucocorticoid receptor (GR) system in the cortex during aging, in 18- and 24-month-old rats. Corticosterone level was increased in the cortex of aged ad libitum-fed rats. Food restriction induced its further increase, accompanied with an increase in the level of 11β-hydroxysteroid dehydrogenase type 1. However, alterations in the level of GR phosphorylated at Ser232 were not detected in animals on food restriction, in line with unaltered CDK5 level, the decrease of Hsp90, and an increase in a negative regulator of GR function, FKBP51. Moreover, our data revealed that reduced food intake prevented age-related increase in the levels of NFκB, gfap, and bax, confirming its anti-inflammatory and anti-apoptotic effects. Along with an increase in the levels of c-fos, our study provides additional evidences that food restriction affects cortical responsiveness to glucocorticoids during aging.
Collapse
Affiliation(s)
- Vesna Tesic
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11060 Belgrade, Serbia; (V.T.); (J.C.); (I.J.M.); (D.M.); (M.P.)
| | - Jelena Ciric
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11060 Belgrade, Serbia; (V.T.); (J.C.); (I.J.M.); (D.M.); (M.P.)
| | - Irena Jovanovic Macura
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11060 Belgrade, Serbia; (V.T.); (J.C.); (I.J.M.); (D.M.); (M.P.)
| | - Nevena Zogovic
- Department of Neurophysiology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11060 Belgrade, Serbia;
| | - Desanka Milanovic
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11060 Belgrade, Serbia; (V.T.); (J.C.); (I.J.M.); (D.M.); (M.P.)
| | - Selma Kanazir
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11060 Belgrade, Serbia; (V.T.); (J.C.); (I.J.M.); (D.M.); (M.P.)
- Correspondence:
| | - Milka Perovic
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11060 Belgrade, Serbia; (V.T.); (J.C.); (I.J.M.); (D.M.); (M.P.)
| |
Collapse
|
5
|
|
6
|
Diabesity and mood disorders: Multiple links through the microbiota-gut-brain axis. Mol Aspects Med 2018; 66:80-93. [PMID: 30513310 DOI: 10.1016/j.mam.2018.11.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/30/2018] [Accepted: 11/30/2018] [Indexed: 02/07/2023]
Abstract
The global prevalence of diabesity is on the rise, and the clinical, social and economic health burden arising from this epidemic is aggravated by a significant co-morbidity of diabesity with neuropsychiatric disease, particularly depression. Importantly, not only is the prevalence of mood disorders elevated in patients with type 2 diabetes, depressed patients are also more prone to develop diabetes. This reciprocal relationship calls for a molecular and systemic analysis of diabesity-brain interactions to guide preventive and therapeutic strategies. The analysis we are presenting in this review is modelled on the microbiota-gut-brain axis, which provides the brain with information from the gut not only via the nervous system, but also via a continuous stream of microbial, endocrine, metabolic and immune messages. This communication network offers important clues as to how obesity and diabetes could target the brain to provoke neuropsychiatric disease. There is emerging evidence that the gut microbiota is orchestrating a multiplicity of bodily functions that are intimately related to the immune, metabolic and nervous systems and that gut dysbiosis spoils the homeostasis between these systems. In our article we highlight two groups of molecular links that seem to have a significant bearing on the impact of diabesity on the brain. On the one hand, we focus on microbiota-related metabolites such as short-chain fatty acids, tryptophan metabolites, immune stimulants and endocannabinoids that are likely to play a mediator role. On the other hand, we discuss signalling molecules that operate primarily in the brain, specifically neuropeptide Y, brain-derived neurotrophic factor and γ-amino butyric acid, that are disturbed by microbial factors, obesity and diabetes and are relevant to mental illness. Finally, we address the usefulness of diet-related interventions to suspend the deleterious relationship between diabesity and mood disorders.
Collapse
|
7
|
Cornelius JM, Perreau G, Bishop VR, Krause JS, Smith R, Hahn TP, Meddle SL. Social information changes stress hormone receptor expression in the songbird brain. Horm Behav 2018; 97:31-38. [PMID: 29030109 PMCID: PMC5780353 DOI: 10.1016/j.yhbeh.2017.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/22/2017] [Accepted: 10/03/2017] [Indexed: 11/06/2022]
Abstract
Social information is used by many vertebrate taxa to inform decision-making, including resource-mediated movements, yet the mechanisms whereby social information is integrated physiologically to affect such decisions remain unknown. Social information is known to influence the physiological response to food reduction in captive songbirds. Red crossbills (Loxia curvirostra) that were food reduced for several days showed significant elevations in circulating corticosterone (a "stress" hormone often responsive to food limitation) only if their neighbors were similarly food restricted. Physiological responses to glucocorticoid hormones are enacted through two receptors that may be expressed differentially in target tissues. Therefore, we investigated the influence of social information on the expression of the mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) mRNA in captive red crossbill brains. Although the role of MR and GR in the response to social information may be highly complex, we specifically predicted social information from food-restricted individuals would reduce MR and GR expression in two brain regions known to regulate hypothalamic-pituitary-adrenal (HPA) activity - given that reduced receptor expression may lessen the efficacy of negative feedback and release inhibitory tone on the HPA. Our results support these predictions - offering one potential mechanism whereby social cues could increase or sustain HPA-activity during stress. The data further suggest different mechanisms by which metabolic stress versus social information influence HPA activity and behavioral outcomes.
Collapse
Affiliation(s)
- Jamie M Cornelius
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, USA.
| | - Gillian Perreau
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, UK
| | - Valerie R Bishop
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, UK.
| | - Jesse S Krause
- Animal Behavior Graduate Group, Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, USA.
| | - Rachael Smith
- Animal Behavior Graduate Group, Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, USA.
| | - Thomas P Hahn
- Animal Behavior Graduate Group, Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, USA.
| | - Simone L Meddle
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, UK.
| |
Collapse
|
8
|
Mattson MP, Longo VD, Harvie M. Impact of intermittent fasting on health and disease processes. Ageing Res Rev 2017; 39:46-58. [PMID: 27810402 DOI: 10.1016/j.arr.2016.10.005] [Citation(s) in RCA: 662] [Impact Index Per Article: 82.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 12/22/2022]
Abstract
Humans in modern societies typically consume food at least three times daily, while laboratory animals are fed ad libitum. Overconsumption of food with such eating patterns often leads to metabolic morbidities (insulin resistance, excessive accumulation of visceral fat, etc.), particularly when associated with a sedentary lifestyle. Because animals, including humans, evolved in environments where food was relatively scarce, they developed numerous adaptations that enabled them to function at a high level, both physically and cognitively, when in a food-deprived/fasted state. Intermittent fasting (IF) encompasses eating patterns in which individuals go extended time periods (e.g., 16-48h) with little or no energy intake, with intervening periods of normal food intake, on a recurring basis. We use the term periodic fasting (PF) to refer to IF with periods of fasting or fasting mimicking diets lasting from 2 to as many as 21 or more days. In laboratory rats and mice IF and PF have profound beneficial effects on many different indices of health and, importantly, can counteract disease processes and improve functional outcome in experimental models of a wide range of age-related disorders including diabetes, cardiovascular disease, cancers and neurological disorders such as Alzheimer's disease Parkinson's disease and stroke. Studies of IF (e.g., 60% energy restriction on 2days per week or every other day), PF (e.g., a 5day diet providing 750-1100kcal) and time-restricted feeding (TRF; limiting the daily period of food intake to 8h or less) in normal and overweight human subjects have demonstrated efficacy for weight loss and improvements in multiple health indicators including insulin resistance and reductions in risk factors for cardiovascular disease. The cellular and molecular mechanisms by which IF improves health and counteracts disease processes involve activation of adaptive cellular stress response signaling pathways that enhance mitochondrial health, DNA repair and autophagy. PF also promotes stem cell-based regeneration as well as long-lasting metabolic effects. Randomized controlled clinical trials of IF versus PF and isoenergetic continuous energy restriction in human subjects will be required to establish the efficacy of IF in improving general health, and preventing and managing major diseases of aging.
Collapse
|
9
|
Suchiang K, Sharma R. Age-dependent modulation of fasting and long-term dietary restriction on acetylcholinesterase in non-neuronal tissues of mice. Mol Cell Biochem 2016; 419:135-45. [PMID: 27379505 DOI: 10.1007/s11010-016-2757-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/21/2016] [Indexed: 12/18/2022]
Abstract
Dietary restriction (DR) without malnutrition is a robust intervention that extends lifespan and slows the onset of nervous system deficit and age-related diseases in diverse organisms. Acetylcholinesterase (AChE), a thoroughly studied enzyme better known for hydrolyzing acetylcholine (ACh) in neuronal tissues, has recently been linked with multiple unrelated biological functions in different non-neuronal tissues. In the present study, the activity and protein expression level of AChE in liver, heart, and kidney of young (1 month), adult (6 month), and aged (18 month) mice were investigated. We also studied age- and tissue-specific changes in AChE activity and protein expression level after the mice were subjected to 24-h fasting and long-term DR. Our results showed that AChE activity and protein expression in kidney and heart of aged mice decreased significantly in comparison with young mice. On the contrary, long-term DR decreases the AChE activity and the protein expression level in all tissues irrespective of ages studied. We summarized that changes in AChE with age in different tissues studied reflects its different roles at different phases of an organism's life. Conversely, the cumulative modulation manifested in the form of lowering AChE by long-term DR may prevent the futile synthesis and accumulation of unwanted AChE besides the added compensatory benefit of enhanced ACh availability needed during the period of starvation. This, in turn, may help in preventing the declining homeostatic roles of this important neurotransmitter in different tissues.
Collapse
Affiliation(s)
- Kitlangki Suchiang
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, 605 014, India.
| | - Ramesh Sharma
- Department of Biochemistry, North-Eastern Hill University, Shillong, Meghalaya, 793 022, India
| |
Collapse
|
10
|
Vasconcelos AR, Cabral-Costa JV, Mazucanti CH, Scavone C, Kawamoto EM. The Role of Steroid Hormones in the Modulation of Neuroinflammation by Dietary Interventions. Front Endocrinol (Lausanne) 2016; 7:9. [PMID: 26869995 PMCID: PMC4740355 DOI: 10.3389/fendo.2016.00009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/21/2016] [Indexed: 12/20/2022] Open
Abstract
Steroid hormones, such as sex hormones and glucocorticoids, have been demonstrated to play a role in different cellular processes in the central nervous system, ranging from neurodevelopment to neurodegeneration. Environmental factors, such as calorie intake or fasting frequency, may also impact on such processes, indicating the importance of external factors in the development and preservation of a healthy brain. The hypothalamic-pituitary-adrenal axis and glucocorticoid activity play a role in neurodegenerative processes, including in disorders such as in Alzheimer's and Parkinson's diseases. Sex hormones have also been shown to modulate cognitive functioning. Inflammation is a common feature in neurodegenerative disorders, and sex hormones/glucocorticoids can act to regulate inflammatory processes. Intermittent fasting can protect the brain against cognitive decline that is induced by an inflammatory stimulus. On the other hand, obesity increases susceptibility to inflammation, while metabolic syndromes, such as diabetes, are associated with neurodegeneration. Consequently, given that gonadal and/or adrenal steroids may significantly impact the pathophysiology of neurodegeneration, via their effect on inflammatory processes, this review focuses on how environmental factors, such as calorie intake and intermittent fasting, acting through their modulation of steroid hormones, impact on inflammation that contributes to cognitive and neurodegenerative processes.
Collapse
Affiliation(s)
- Andrea Rodrigues Vasconcelos
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - João Victor Cabral-Costa
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Caio Henrique Mazucanti
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Cristoforo Scavone
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Elisa Mitiko Kawamoto
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
- *Correspondence: Elisa Mitiko Kawamoto,
| |
Collapse
|
11
|
What is the effect of fasting on the lifespan of neurons? Ageing Res Rev 2015; 24:160-5. [PMID: 26264849 DOI: 10.1016/j.arr.2015.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 07/17/2015] [Accepted: 07/30/2015] [Indexed: 12/14/2022]
Abstract
Medical advancements have increased life expectancy but have consequently increased the incidence of age-related disease. Fasting or dietary restriction (DR) can help prevent these via anti-ageing effects; however, these effects in neurons are less well characterized. Here, a series of animal and human studies of the effects of DR on the structural and functional integrity of neurons and the underlying mechanisms are analyzed. DR improves the integrity of animal neurons via a wide range of possible mechanisms including changes in metabolism, oxidative damage, stress responses, growth factors, and gene expression. These mechanisms are extensively interlinked and point to an optimum range of calorie intake, above calorie deprivation and below burdensome calorie excess. Human studies also suggest that DR improves neuron integrity; however, due to ethical and methodological limitations, the most conclusive data on DR hinge upon on-going life-long monkey experiments. Rather than developing pharmacological mimetics of DR, our focus should be on educating the public about DR in order to minimize age-related disease.
Collapse
|
12
|
Tesic V, Perovic M, Lazic D, Kojic S, Smiljanic K, Ruzdijic S, Rakic L, Kanazir S. Long-term intermittent feeding restores impaired GR signaling in the hippocampus of aged rat. J Steroid Biochem Mol Biol 2015; 149:43-52. [PMID: 25616002 DOI: 10.1016/j.jsbmb.2015.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 01/15/2015] [Accepted: 01/19/2015] [Indexed: 11/22/2022]
Abstract
Diminished glucocorticoid signaling is associated with an age-related decline in hippocampal functioning. In this study we demonstrate the effect of intermittent, every other day (EOD) feeding on the glucocorticoid hormone/glucocorticoid receptor (GR) system in the hippocampus of middle-aged (18-month-old) and aged (24-month-old) Wistar rats. In aged ad libitum-fed rats, a decrease in the level of total GR and GR phosphorylated at Ser(232) (pGR) was detected. Conversely, aged rats subjected to EOD feeding, starting from 6 months of age, showed an increase in GR and pGR levels and a higher content of hippocampal corticosterone. Furthermore, prominent nuclear staining of pGR was observed in CA1 pyramidal and DG granule neurons of aged EOD-fed rats. These changes were accompanied by increased Sgk-1 and decreased GFAP transcription, pointing to upregulated transcriptional activity of GR. EOD feeding also induced an increase in the expression of the mineralocorticoid receptor. Our results reveal that intermittent feeding restores impaired GR signaling in the hippocampus of aged animals by inducing rather than by stabilizing GR signaling during aging.
Collapse
Affiliation(s)
- Vesna Tesic
- Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Milka Perovic
- Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Divna Lazic
- Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Snezana Kojic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Kosara Smiljanic
- Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Sabera Ruzdijic
- Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | | | - Selma Kanazir
- Institute for Biological Research, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
13
|
Michalsen A, Kuhlmann MK, Lüdtke R, Bäcker M, Langhorst J, Dobos GJ. Prolonged fasting in patients with chronic pain syndromes leads to late mood-enhancement not related to weight loss and fasting-induced leptin depletion. Nutr Neurosci 2013; 9:195-200. [PMID: 17263085 DOI: 10.1080/10284150600929656] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Periods of fasting are practiced worldwide on a cultural/religious background, and related mood-enhancing effects are postulated. We aimed to assess the effect of fasting on mood and to explore the interaction with neuroendocrine activation and leptin depletion in a controlled explorative study on consecutive inpatients (BMI < 35 kg/m2) of a nutritional ward. 36 subjects (38.9 +/- 7.0 years; 29 female, BMI 26.7 +/- 4.1 kg/m2) participated in an 8-day modified fast (300 kcal/day), 19 patients (38.1 +/- 5.9 years; 18 female, 23.5 +/- 4.1 kg/m2) received a mild low calorie diet. Measurements included daily ratings of mood (VAS), weight and levels of leptin and cortisol at four time-points of the 2-week study period. Weight loss was 4.8 +/- 1.2 and 1.6 +/- 0.9 kg in fasters and controls, respectively. Fasters showed a more pronounced decrease of leptin (58% vs. 20%; P < 0.001) and a 17% increase of cortisol levels (P < 0.001). Mood ratings increased significantly in the late phase of fasting (P < 0.01) but were not related to weight-loss, leptin-depletion or cortisol increase. Our findings suggest that fasting induces specific mood-enhancement. The physiological mediator appears to be neither leptin nor cortisol, the role of other mechanisms has to be further studied.
Collapse
Affiliation(s)
- Andreas Michalsen
- Department of Internal Medicine V, University Duisburg-Essen, Kliniken Essen-Mitte, Am Deimelsberg 34 a, 45276 Essen, Germany.
| | | | | | | | | | | |
Collapse
|
14
|
Schilling TM, Ferreira de Sá DS, Westerhausen R, Strelzyk F, Larra MF, Hallschmid M, Savaskan E, Oitzl MS, Busch HP, Naumann E, Schächinger H. Intranasal insulin increases regional cerebral blood flow in the insular cortex in men independently of cortisol manipulation. Hum Brain Mapp 2013; 35:1944-56. [PMID: 23907764 DOI: 10.1002/hbm.22304] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 02/22/2013] [Accepted: 03/18/2013] [Indexed: 01/09/2023] Open
Abstract
Insulin and cortisol play a key role in the regulation of energy homeostasis, appetite, and satiety. Little is known about the action and interaction of both hormones in brain structures controlling food intake and the processing of neurovisceral signals from the gastrointestinal tract. In this study, we assessed the impact of single and combined application of insulin and cortisol on resting regional cerebral blood flow (rCBF) in the insular cortex. After standardized periods of food restriction, 48 male volunteers were randomly assigned to receive either 40 IU intranasal insulin, 30 mg oral cortisol, both, or neither (placebo). Continuous arterial spin labeling (CASL) sequences were acquired before and after pharmacological treatment. We observed a bilateral, locally distinct rCBF increase after insulin administration in the insular cortex and the putamen. Insulin effects on rCBF were present regardless of whether participants had received cortisol or not. Our results indicate that insulin, but not cortisol, affects blood flow in human brain structures involved in the regulation of eating behavior.
Collapse
Affiliation(s)
- Thomas M Schilling
- Institute of Psychobiology, Division of Clinical Psychophysiology, University of Trier, Trier, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Rothman SM, Mattson MP. Activity-dependent, stress-responsive BDNF signaling and the quest for optimal brain health and resilience throughout the lifespan. Neuroscience 2013; 239:228-40. [PMID: 23079624 PMCID: PMC3629379 DOI: 10.1016/j.neuroscience.2012.10.014] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/24/2012] [Accepted: 10/05/2012] [Indexed: 12/31/2022]
Abstract
During development of the nervous system, the formation of connections (synapses) between neurons is dependent upon electrical activity in those neurons, and neurotrophic factors produced by target cells play a pivotal role in such activity-dependent sculpting of the neural networks. A similar interplay between neurotransmitter and neurotrophic factor signaling pathways mediates adaptive responses of neural networks to environmental demands in adult mammals, with the excitatory neurotransmitter glutamate and brain-derived neurotrophic factor (BDNF) being particularly prominent regulators of synaptic plasticity throughout the central nervous system. Optimal brain health throughout the lifespan is promoted by intermittent challenges such as exercise, cognitive stimulation and dietary energy restriction, that subject neurons to activity-related metabolic stress. At the molecular level, such challenges to neurons result in the production of proteins involved in neurogenesis, learning and memory and neuronal survival; examples include proteins that regulate mitochondrial biogenesis, protein quality control, and resistance of cells to oxidative, metabolic and proteotoxic stress. BDNF signaling mediates up-regulation of several such proteins including the protein chaperone GRP-78, antioxidant enzymes, the cell survival protein Bcl-2, and the DNA repair enzyme APE1. Insufficient exposure to such challenges, genetic factors may conspire to impair BDNF production and/or signaling resulting in the vulnerability of the brain to injury and neurodegenerative disorders including Alzheimer's, Parkinson's and Huntington's diseases. Further, BDNF signaling is negatively regulated by glucocorticoids. Glucocorticoids impair synaptic plasticity in the brain by negatively regulating spine density, neurogenesis and long-term potentiation, effects that are potentially linked to glucocorticoid regulation of BDNF. Findings suggest that BDNF signaling in specific brain regions mediates some of the beneficial effects of exercise and energy restriction on peripheral energy metabolism and the cardiovascular system. Collectively, the findings described in this article suggest the possibility of developing prescriptions for optimal brain health based on activity-dependent BDNF signaling.
Collapse
Affiliation(s)
- S M Rothman
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA.
| | | |
Collapse
|
16
|
Qui G, Spangler E, Wan R, Miller M, Mattson M, So KF, de Cabo R, Zou S, Ingram D. Neuroprotection provided by dietary restriction in rats is further enhanced by reducing glucocortocoids. Neurobiol Aging 2012; 33:2398-410. [PMID: 22226488 PMCID: PMC3374050 DOI: 10.1016/j.neurobiolaging.2011.11.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 10/21/2011] [Accepted: 11/20/2011] [Indexed: 12/24/2022]
Abstract
Glucocorticoids (GC)--corticosterone (CORT) in rodents and cortisol in primates--are stress-induced hormones secreted by adrenal glands that interact with the hypothalamic pituitary axis. High levels of cortisol in humans are observed in neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD), as well as in diabetes, post-traumatic stress syndrome, and major depression. Experimental models of diabetes in rats and mice have demonstrated that reduction of CORT reduces learning and memory deficits and attenuates loss of neuronal viability and plasticity. In contrast to the negative associations of elevated GC levels, CORT is moderately elevated in dietary restriction (DR) paradigms which are associated with many healthy anti-aging effects including neuroprotection. We demonstrate here in rats that ablating CORT by adrenalectomy (ADX) with replenishment to relatively low levels (30% below that of controls) prior to the onset of a DR regimen (ADX-DR) followed by central administration of the neurotoxin, kainic acid (KA), significantly attenuates learning deficits in a 14-unit T-maze task. The performance of the ADX-DR KA group did not differ from a control group (CON) that did not receive KA and was fed ad libitum (AL). By contrast, the sham-operated DR (SHAM-DR KA) group, SHAM-AL KA group, and ADX-AL KA group demonstrated poorer learning behavior in this task compared to the CON group. Stereological analysis revealed equivalent DR-induced neuroprotection in the SH-DR KA and ADX-DR KA groups, as measured by cell loss in the CA2/CA3 region of the hippocampus, while substantial cell loss was observed in SH-AL and ADX-AL rats. A separate set of experiments was conducted with similar dietary and surgical treatment conditions but without KA administration to examine markers of neurotrophic activity, brain-derived neurotrophic factor (BDNF), transcriptions factors (pCREB), and chaperone proteins (HSP-70). Under these conditions, we noted elevations in both BDNF and pCREB in ADX DR rats compared to the other groups; whereas, HSP-70, was equivalently elevated in ADX-DR and SH-DR groups and was higher than observed in both SH-AL and ADX-AL groups. These results support findings that DR protects hippocampal neurons against KA-induced cellular insult. However, this neuroprotective effect was further enhanced in rats with a lower-than control level of CORT resulting from ADX and maintained by exogenous CORT supplementation. Our results then suggest that DR-induced physiological elevation of GC may have negative functional consequences to DR-induced beneficial effects. These negative effects, however, can be compensated by other DR-produced cellular and molecular protective mechanisms.
Collapse
Affiliation(s)
| | - Edward Spangler
- Laboratory of Experimental Gerontology, Gerontology Research Center, National Institute on Aging, Baltimore, MD 21043
| | - Ruiqian Wan
- Laboratory of Neurosciences, Gerontology Research Center, National Institute on Aging, Baltimore, MD 210434
| | | | - Mark Mattson
- Laboratory of Neurosciences, Gerontology Research Center, National Institute on Aging, Baltimore, MD 210434
| | - Kwi-fok So
- Department of Anatomy, Li Ka Shing Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, PR China
| | - Rafael de Cabo
- Laboratory of Experimental Gerontology, Gerontology Research Center, National Institute on Aging, Baltimore, MD 21043
| | - Sige Zou
- Laboratory of Experimental Gerontology, Gerontology Research Center, National Institute on Aging, Baltimore, MD 21043
| | - Donald Ingram
- Correspondence should be sent to Donald K. Ingram at the Nutritional Neuroscience and Aging Laboratory, Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808.
| |
Collapse
|
17
|
Suchiang K, Sharma R. Dietary restriction regulates brain acetylcholinesterase in female mice as a function of age. Biogerontology 2011; 12:581-9. [PMID: 21870149 DOI: 10.1007/s10522-011-9356-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 08/18/2011] [Indexed: 01/06/2023]
Abstract
In the present study, the normal endogenous activity level of acetylcholinesterase (AChE) was investigated in cerebral hemispheres and cerebellum of female mice as a function of age. The effects of 24-h fasting and refeeding, and dietary restriction (DR) on AChE activity and its protein expression patterns were also investigated in young (1-month) and old (18-month) mice. Our results show that the activity (U/mg protein) and level of AChE protein in the cerebral hemispheres of young mice is decreased significantly on 24-h fasting which reverses back on refeeding. On the other hand, DR produces an accumulative effect; thereby it decreases the activity of this enzyme in the cerebral hemispheres of both the young and old mice and the degree of reduction is of different magnitude, dictated in an age- and brain region-specific manner. Our findings suggest that DR regulates the activity of this enzyme which may be useful in related neurodegenerative disease conditions.
Collapse
Affiliation(s)
- Kitlangki Suchiang
- Department of Biochemistry, North-Eastern Hill University, Shillong, Meghalaya, India
| | | |
Collapse
|
18
|
De Santis C, Jerry DR. Differential tissue-regulation of myostatin genes in the teleost fish Lates calcarifer in response to fasting. Evidence for functional differentiation. Mol Cell Endocrinol 2011; 335:158-65. [PMID: 21241767 DOI: 10.1016/j.mce.2011.01.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Revised: 01/06/2011] [Accepted: 01/10/2011] [Indexed: 10/18/2022]
Abstract
Gene or genome duplication is a fundamental evolutionary mechanism leading towards the origin of new genes, or gene functions. Myostatin (MSTN) is a negative regulator of muscle growth that in teleost fish, as a result of genome duplication, is present in double copy. This study provides evidence of differentiation of MSTN paralogs in fish by comparatively exploring their tissue-regulation in the Asian sea bass (Lates calcarifer) when subjected to fasting stress. Results showed differential regulation as well as specific tissue-responses in the muscle, liver, gill and brain of L. calcarifer after nutritional deprivation. In particular, the LcMstn-1 expression increased in liver (∼4 fold) and muscle (∼3 fold) and diminished in brain (∼0.5 fold) and gill (∼0.5 fold) while that of LcMstn-2 remained stable in brain and muscle and was up regulated in gill (∼2.5 fold) and liver (∼2 fold). Differential regulation of Mstn paralogs was supported by in silico analyses of regulatory motifs that revealed, at least in the immediate region upstream the genes, a differentiation between Mstn-1 and Mstn-2. The Mstn-1 in particular showed a significantly higher conservation of regulatory sites among teleost species compared to its paralog indicating that this gene might have a highly conserved function in the taxon.
Collapse
Affiliation(s)
- C De Santis
- Aquaculture Genetics Research Program, School of Marine and Tropical Biology, James Cook University, Townsville, 4811, Queensland, Australia.
| | | |
Collapse
|
19
|
Stranahan AM, Mattson MP. Bidirectional metabolic regulation of neurocognitive function. Neurobiol Learn Mem 2011; 96:507-16. [PMID: 21236352 DOI: 10.1016/j.nlm.2011.01.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 01/04/2011] [Indexed: 12/16/2022]
Abstract
The efficiency of somatic energy metabolism is correlated with cognitive change over the lifespan. This relationship is bidirectional, with improved overall fitness associated with enhanced synaptic function and neuroprotection, and synaptic endangerment occurring in the context of impaired energy metabolism. In this review, we discuss recent advancements in the fields of exercise, dietary energy intake and diabetes, as they relate to neuronal function in the hippocampus. Because hippocampal neurons have energy requirements that are relatively higher than those of other brain regions, they are uniquely poised to benefit from exercise, and to be harmed by diabetes. We view exercise and dietary energy restriction as being associated with enhanced hippocampal plasticity at one end of a continuum, with obesity and diabetes accompanied by cognitive impairment at the other end of the continuum. Understanding the mechanisms for this continuum may yield novel therapeutic targets for the prevention and treatment of cognitive decline following aging, disease, or injury.
Collapse
Affiliation(s)
- Alexis M Stranahan
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA.
| | | |
Collapse
|
20
|
Wei S, Xia D, Li L, Xiao J, Bao J, Parvizi N, Zhao R. Breed-specific expression of hippocampal 11β-hydroxysteroid dehydrogenases and glucocorticoid receptors in Erhualian and Pietrain pigs exhibiting distinct stress coping characteristics. Livest Sci 2010. [DOI: 10.1016/j.livsci.2010.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
21
|
Ranhotra HS. Up-regulation of orphan nuclear estrogen-related receptor alpha expression during long-term caloric restriction in mice. Mol Cell Biochem 2009; 332:59-65. [PMID: 19504233 DOI: 10.1007/s11010-009-0174-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2009] [Accepted: 05/21/2009] [Indexed: 01/19/2023]
Abstract
The estrogen-related receptor alpha (ERRalpha) is an orphan receptor belonging to the nuclear receptor superfamily that regulates a number of target genes encoding enzymes that participate in various metabolic pathways involved in maintaining energy balance in animals. In this study, whether long-term caloric restriction (alternate days of fasting for 3 months) in mice modulates the expression of ERRalpha in various tissues was investigated. Western blot analyses showed positive immunoreactive ERRalpha protein (53 kDa) band in various mice tissue extracts, though at varying levels. Heart, kidney, and skeletal muscles expressed significant levels of ERRalpha, with a comparatively lower level detected in the intestine, brain, and liver. Cardiac ERRalpha expression was the highest, with the least detected in the liver. Caloric restricted mice exhibited a significant increase in ERRalpha level in the heart (5.45-fold), kidney (3.70-fold), skeletal muscle (3.0-fold), small intestine (2.72-fold), and liver (2.44-fold) extracts as compared to ad libitum fed. However, caloric restriction could not evoke any detectable receptor level change in the brain. Notably, the highest ERRalpha up-regulation was detected in the heart. This up-regulation in ERRalpha level especially in highly oxidative tissues such as heart, kidney, small intestine, and skeletal muscle of caloric restricted mice may be helpful in modulating ERRalpha responsive genes that participates in maintaining energy balance. This may potentially strengthen the metabolic and biochemical adaptation in such tissues, which is necessary for animal survival under long-term caloric restriction.
Collapse
Affiliation(s)
- Harmit S Ranhotra
- Department of Biochemistry, St. Edmund's College, Shillong, 793 003, India.
| |
Collapse
|
22
|
Rothman SM, Mattson MP. Adverse stress, hippocampal networks, and Alzheimer's disease. Neuromolecular Med 2009; 12:56-70. [PMID: 19943124 DOI: 10.1007/s12017-009-8107-9] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 11/06/2009] [Indexed: 12/13/2022]
Abstract
Recent clinical data have implicated chronic adverse stress as a potential risk factor in the development of Alzheimer's disease (AD) and data also suggest that normal, physiological stress responses may be impaired in AD. It is possible that pathology associated with AD causes aberrant responses to chronic stress, due to potential alterations in the hypothalamic-pituitary-adrenal (HPA) axis. Recent study in rodent models of AD suggests that chronic adverse stress exacerbates the cognitive deficits and hippocampal pathology that are present in the AD brain. This review summarizes recent findings obtained in experimental AD models regarding the influence of chronic adverse stress on the underlying cellular and molecular disease processes including the potential role of glucocorticoids. Emerging findings suggest that both AD and chronic adverse stress affect hippocampal neural networks in a similar fashion. We describe alterations in hippocampal plasticity, which occur in both chronic stress and AD including dendritic remodeling, neurogenesis, and long-term potentiation. Finally, we outline potential roles for oxidative stress and neurotrophic factor signaling as the key determinants of the impact of chronic stress on the plasticity of neural networks and AD pathogenesis.
Collapse
Affiliation(s)
- Sarah M Rothman
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA.
| | | |
Collapse
|
23
|
Parinejad N, Keshavarzi S, Movahedin M, Raza M. Behavioral and histological assessment of the effect of intermittent feeding in the pilocarpine model of temporal lobe epilepsy. Epilepsy Res 2009; 86:54-65. [PMID: 19505798 DOI: 10.1016/j.eplepsyres.2009.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2008] [Revised: 04/26/2009] [Accepted: 05/01/2009] [Indexed: 01/17/2023]
Abstract
Temporal lobe epilepsy (TLE) is the most resistant type of epilepsy. Currently available drugs for epilepsy are not antiepileptogenic. A novel treatment for epilepsy would be to block or reverse the process of epileptogenesis. We used intermittent feeding (IF) regimen of the dietary restriction (DR) to study its effect on epileptogenesis and neuroprotection in the pilocarpine model of TLE in rats. The effect of IF regimen on the induction of status epilepticus (SE), the duration of latent period, and the frequency, duration, severity and the time of occurrence of Spontaneous Recurrent Seizures (SRS) were investigated. We also studied the effect of IF regimen on hippocampal neurons against the excitotoxic damage of prolonged SE (about 4h) induced by pilocarpine. The animals (Wistar, male, 200-250g) were divided into four main groups: AL-AL (ad libitum diet throughout), AL-IF (PfS) [IF post-first seizure], AL-IF (PSE) [IF post-SE] and IF-IF (IF diet throughout), and two AL and IF control groups. SE was induced by pilocarpine (350mg/kg, i.p.) and with diazepam (6mg/kg, i.p.) injected after 3h, the behavioral signs of SE terminated at about 4h (AL animals, n=29, 260.43+/-8.74min; IF animals, n=19, 224.32+/-20.73min). Behavioral monitoring was carried out by 24h video recording for 3 weeks after the first SRS. Rat brains were then prepared for histological study with Nissl stain and cell counting was done in CA1, CA2 and CA3 regions of the hippocampus. The results show that the animals on IF diet had significantly less SE induction and significantly longer duration of latent period (the period of epileptogenesis) was seen in IF-IF group compared to the AL-AL group. The severity of SRS was significantly more in AL-IF (PfS) compared to the AL-IF (PSE) group. These results indicate that IF diet can make rats resistant to the induction of SE and can prolong the process of epileptogenesis. The results of the histological study show that the number of pyramidal neurons was statistically less in CA1, CA2 and CA3 of the hippocampus in the experimental groups compared to the control groups. However, IF regimen could not protect the hippocampal neurons against the excitotoxic injury caused by a prolonged SE. We conclude that IF regimen can significantly influence various behavioral characteristics of pilocarpine model of TLE. Further studies can elaborate the exact mechanisms as well as its possible role in the treatment of human TLE.
Collapse
Affiliation(s)
- Neda Parinejad
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran
| | | | | | | |
Collapse
|
24
|
Armentero M, Levandis G, Bramanti P, Nappi G, Blandini F. Dietary restriction does not prevent nigrostriatal degeneration in the 6-hydroxydopamine model of Parkinson's disease. Exp Neurol 2008; 212:548-51. [DOI: 10.1016/j.expneurol.2008.04.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 03/21/2008] [Accepted: 04/01/2008] [Indexed: 12/26/2022]
|
25
|
Levay EA, Govic A, Penman J, Paolini AG, Kent S. Effects of adult-onset calorie restriction on anxiety-like behavior in rats. Physiol Behav 2007; 92:889-96. [PMID: 17673267 DOI: 10.1016/j.physbeh.2007.06.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 05/25/2007] [Accepted: 06/25/2007] [Indexed: 11/20/2022]
Abstract
Calorie restriction (CR) has consistently been shown to increase lifespan and ameliorate disease outcomes. Its effects on behavior are less clear, although anxiolytic-like effects have been observed. Rats were subjected to 1 of 4 dietary regimens: control, CR25%, CR50% and, an acute episode of CR and tested in 3 tests of anxiety: the open field test, the elevated plus maze, and the modified open field test. In the open field test, the CR25% and CR50% groups made more central zone entries than the control and Acute groups, which was primarily due to differences in the initial 5 min of the test. Moreover, both CR groups engaged in greater exploration of the central zone than the control group in the initial 5 min of the test. The Acute group also exhibited significantly longer latencies to leave the central zone at test onset than the control and CR50% group. In the elevated plus maze, the Acute group also displayed longer latencies to open arm entry as compared to the control and CR50% group and showed a lower ratio of open to total arm entries compared to all other groups. There were no effects of CR on any variable of the modified open field test. Possible neurochemical mechanisms underlying the anxiolytic-like effect of CR are discussed.
Collapse
Affiliation(s)
- Elizabeth A Levay
- School of Psychological Science, La Trobe University, Bundoora, VIC 3086, Australia
| | | | | | | | | |
Collapse
|
26
|
Effects of chronic adult dietary restriction on spatial learning in the aged F344 x BN hybrid F1 rat. Physiol Behav 2007; 93:560-9. [PMID: 18035382 DOI: 10.1016/j.physbeh.2007.10.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 09/09/2007] [Accepted: 10/23/2007] [Indexed: 11/29/2022]
Abstract
Dietary restriction (DR) has been shown to increase life span and reduce disease incidence across a variety of species. Recent research suggests that chronic adult DR may also alter age-related cognitive decline. The purpose of this study was twofold: (1) to examine the potential deficits in spatial learning ability in the aged F344 x BN hybrid F1 rat with specific attention to the contributory effects of motoric impairments and (2) to determine the influence of chronic adult DR on any such impairments. The Morris water maze (MWM) task was employed with a 1.8 m diameter tank, 10 cm2 escape platform, 28 degrees C water, and an automated collapsing central starting platform. Spatial learning impairments in the aged rats were evident on all dependent measures during training and the probe test. Motoric function, as reflected in measures of strength and locomotion demonstrated profound age-related performance impairments that were attenuated by chronic adult DR. The present data also replicate previous reports, indicating that DR attenuates the age-related impairments of performance in the MWM as indexed by the latency measure in acquisition, but critically was dissociated from any DR effect on measures of preference and, more critically, accuracy in the probe test. Collectively, the most parsimonious interpretation of DR effects on MWM performance would appear to be the preservation of motoric, and not cognitive, function.
Collapse
|
27
|
Goyary D, Sharma R. Late onset of dietary restriction reverses age-related decline of malate-aspartate shuttle enzymes in the liver and kidney of mice. Biogerontology 2007; 9:11-8. [PMID: 17932783 DOI: 10.1007/s10522-007-9112-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Accepted: 10/02/2007] [Indexed: 12/21/2022]
Abstract
Dietary restriction (DR) influences several physiological processes, retards the incidences and severity of various age-related diseases and extends lifespan of various animal species. The effect of DR on the activities of malate-aspartate shuttle enzymes, viz. cytosolic and mitochondrial aspartate aminotransferase (c- and m-AsAT) and malate dehydrogenase (c- and m-MDH) was investigated in the liver and kidney of adult (5-months) and old (21-months) male mice. The results show that the activity (U/mg protein) of both c- and m-MDH and AsAT is decreased significantly in the liver and kidney of old mice compared to adult ones. However, DR in old mice reverses significantly the enzyme activities to a level closer to adult animals. Polyacrylamide gel electrophoresis (PAGE) and specific staining of c-AsAT, one of the selected isoenzymes of the shuttle, showed a similar pattern of activity expression as observed by activity measurements in both the tissues studied. Slot blot analysis of c-AsAT confirmed the lower protein content of this isoenzyme in old mice compared to adult ones and a higher level in old-dietary restricted mice. Thus, our results suggest that the late onset of DR in older mice reverses decline in malate-aspartate shuttle enzymes and that it may allow a better metabolic regulation in older animals.
Collapse
Affiliation(s)
- Danswrang Goyary
- Department of Biochemistry, North Eastern Hill University, Shillong, India
| | | |
Collapse
|
28
|
Abstract
Deciphering the secret of successful aging depends on understanding the patterns and biological underpinnings of cognitive and behavioral changes throughout adulthood. That task is inseparable from comprehending the workings of the brain, the physical substrate of behavior. In this review, we summarize the extant literature on age-related differences and changes in brain structure, including postmortem and noninvasive magnetic resonance imaging (MRI) studies. Among the latter, we survey the evidence from volumetry, diffusion-tensor imaging, and evaluations of white matter hyperintensities (WMH). Further, we review the attempts to elucidate the mechanisms of age-related structural changes by measuring metabolic markers of aging through magnetic resonance spectroscopy (MRS). We discuss the putative links between the pattern of brain aging and the pattern of cognitive decline and stability. We then present examples of activities and conditions (hypertension, hormone deficiency, aerobic fitness) that may influence the course of normal aging in a positive or negative fashion. Lastly, we speculate on several proposed mechanisms of differential brain aging, including neurotransmitter systems, stress and corticosteroids, microvascular changes, calcium homeostasis, and demyelination.
Collapse
Affiliation(s)
- Naftali Raz
- Department of Psychology and Institute of Gerontology, Wayne State University, 87 East Ferry St., 226 Knapp Building, Detroit, MI 48202, USA.
| | | |
Collapse
|
29
|
Martin B, Mattson MP, Maudsley S. Caloric restriction and intermittent fasting: two potential diets for successful brain aging. Ageing Res Rev 2006; 5:332-53. [PMID: 16899414 PMCID: PMC2622429 DOI: 10.1016/j.arr.2006.04.002] [Citation(s) in RCA: 257] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Revised: 04/21/2006] [Accepted: 04/21/2006] [Indexed: 12/14/2022]
Abstract
The vulnerability of the nervous system to advancing age is all too often manifest in neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. In this review article we describe evidence suggesting that two dietary interventions, caloric restriction (CR) and intermittent fasting (IF), can prolong the health-span of the nervous system by impinging upon fundamental metabolic and cellular signaling pathways that regulate life-span. CR and IF affect energy and oxygen radical metabolism, and cellular stress response systems, in ways that protect neurons against genetic and environmental factors to which they would otherwise succumb during aging. There are multiple interactive pathways and molecular mechanisms by which CR and IF benefit neurons including those involving insulin-like signaling, FoxO transcription factors, sirtuins and peroxisome proliferator-activated receptors. These pathways stimulate the production of protein chaperones, neurotrophic factors and antioxidant enzymes, all of which help cells cope with stress and resist disease. A better understanding of the impact of CR and IF on the aging nervous system will likely lead to novel approaches for preventing and treating neurodegenerative disorders.
Collapse
Affiliation(s)
- Bronwen Martin
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | | | |
Collapse
|
30
|
Lee J, Kim SJ, Son TG, Chan SL, Mattson MP. Interferon-gamma is up-regulated in the hippocampus in response to intermittent fasting and protects hippocampal neurons against excitotoxicity. J Neurosci Res 2006; 83:1552-7. [PMID: 16521127 DOI: 10.1002/jnr.20831] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dietary restriction (DR) increases the life span of many different organisms, and recent findings have demonstrated neuroprotective effects of DR in rodent and nonhuman primate models of neurodegenerative disorders. The neuroprotective mechanism of action of DR is unknown, but it may result from a mild cellular stress response involving increased production of neurotrophic factors. Because several different cytokines are known to be up-regulated in brain cells in response to stress, we determined whether DR affected cytokine expression in the rat brain. Levels of expression of interferon-gamma (IFN-gamma) and its receptor were significantly increased in the hippocampus of rats that had been maintained on an intermittent fasting DR regimen compared with rats on the ad libitum control diet. Pretreatment of embryonic rat hippocampal cell cultures with IFN-gamma protected neurons against glutamate-induced death. IFN-gamma-mediated neuroprotection was associated with an enhanced recovery of intracellular Ca(2+) concentrations following exposure to glutamate. Our data show that intermittent fasting DR stimulates IFN-gamma-mediated neuroprotective signaling in the hippocampus, suggesting a role for this cytokine in the previously reported ability of DR to protect neurons in animal models of severe epileptic seizures, stroke, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Jaewon Lee
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Longevity Life Science and Technology Institutes, Pusan National University, Gumjeong-gu, Busan, Korea.
| | | | | | | | | |
Collapse
|
31
|
Sharma R, Dutta D. Age-Dependent Decrease in Renal Glucocorticoid Receptor Function Is Reversed by Dietary Restriction in Mice. Ann N Y Acad Sci 2006; 1067:129-41. [PMID: 16803978 DOI: 10.1196/annals.1354.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The effects of age and dietary restriction (alternate days of feeding for 3 months) on the concentration, activation, and DNase I digestion of nuclear-bound glucocorticoid receptors (GRs) in the kidney of male mice at two different ages (5 months as adult and 20 months as old) were investigated. A significant decrease (30%) in the concentration of renal GRs was observed in older ad libitum (AL)-fed mice as compared to the adult mice. Dietary restriction (DR) of older mice significantly increased (28%) the level of GRs as compared to the AL-fed control animals. The affinity of the receptor for the hormone remained the same for both AL- and DR-fed animals at both ages. Scatchard and slot blot analyses of the data confirmed the decreased level of renal GRs in older mice compared to the adult mice as well as an increased level of receptor in older DR mice. Activation studies of GRs by both salt and heat indicated a decreased (15-20%) activation of renal GRs in older animals compared to the adult mice in the AL-fed group. It was further observed that DR significantly enhanced (30%) the degree of both salt- and heat-dependent activation of GRs in older animals compared to the AL-fed animals of the age-matched group. DNase I digestion and extraction of nuclear-bound GR complexes showed a lower degree (26%) of extraction in older AL-fed animals compared to the adult animals. However, DR did not alter the pattern of digestibility of bound GR complexes. These above findings indicate that DR could reverse the decrease of GR function in older animals and may provide better adaptability of kidney in water and electrolyte balance.
Collapse
Affiliation(s)
- Ramesh Sharma
- Department of Biochemistry, North Eastern Hill University, Shillong, India.
| | | |
Collapse
|
32
|
Vaynman S, Ying Z, Wu A, Gomez-Pinilla F. Coupling energy metabolism with a mechanism to support brain-derived neurotrophic factor-mediated synaptic plasticity. Neuroscience 2006; 139:1221-34. [PMID: 16580138 DOI: 10.1016/j.neuroscience.2006.01.062] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 01/19/2006] [Accepted: 01/26/2006] [Indexed: 10/24/2022]
Abstract
Synaptic plasticity and behaviors are likely dependent on the capacity of neurons to meet the energy demands imposed by neuronal activity. We used physical activity, a paradigm intrinsically associated with energy consumption/expenditure and cognitive enhancement, to study how energy metabolism interacts with the substrates for neuroplasticity. We found that in an area critical for learning and memory, the hippocampus, exercise modified aspects of energy metabolism by decreasing oxidative stress and increasing the levels of cytochrome c oxidase-II, a specific component of mitochondrial machinery. We infused 1,25-dihydroxyvitamin D3, a modulator of energy metabolism, directly into the hippocampus during 3 days of voluntary wheel running and measured its effects on brain-derived neurotrophic factor-mediated synaptic plasticity. Brain-derived neurotrophic factor is a central player for the effects of exercise on synaptic and cognitive plasticity. We found that 25-dihydroxyvitamin D3 decreased exercise-induced brain-derived neurotrophic factor but had no significant effect on neurotrophin-3 levels, thereby suggesting a level of specificity for brain-derived neurotrophic factor in the hippocampus. 25-Dihydroxyvitamin D3 injection also abolished the effects of exercise on the consummate end-products of brain-derived neurotrophic factor action, i.e. cyclic AMP response element-binding protein and synapsin I, and modulated phosphorylated calmodulin protein kinase II, a signal transduction cascade downstream to brain-derived neurotrophic factor action that is important for learning and memory. We also found that exercise significantly increased the expression of the mitochondrial uncoupling protein 2, an energy-balancing factor concerned with ATP production and free radical management. Our results reveal a fundamental mechanism by which key elements of energy metabolism may modulate the substrates of hippocampal synaptic plasticity.
Collapse
Affiliation(s)
- S Vaynman
- Department of Physiological Science, UCLA, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
33
|
McCarty MF. Down-regulation of microglial activation may represent a practical strategy for combating neurodegenerative disorders. Med Hypotheses 2006; 67:251-69. [PMID: 16513287 DOI: 10.1016/j.mehy.2006.01.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Accepted: 01/02/2006] [Indexed: 01/03/2023]
Abstract
Chronic neurodegenerative disorders are characterized by activation of microglia in the affected neural pathways. Peroxynitrite, prostanoids, and cytokines generated by these microglia can potentiate the excitotoxicity that contributes to neuronal death and dysfunction in these disorders--both by direct effects on neurons, and by impairing the capacity of astrocytes to sequester and metabolize glutamate. This suggests a vicious cycle in which the death of neurons leads to microglial activation, which in turn potentiates neuronal damage. If this model is correct, measures which down-regulate microglial activation may have a favorable effect on the induction and progression of neurodegenerative disease, independent of the particular trigger or target involved in a given disorder. Consistent with this possibility, the antibiotic minocycline, which inhibits microglial activation, shows broad utility in rodent models of neurodegeneration. Other agents which may have potential in this regard include PPARgamma agonists, genistein, vitamin D, COX-2 inhibitors, statins (and possibly policosanol), caffeine, cannabinoids, and sesamin; some of these agents could also be expected to be directly protective to neurons threatened with excitotoxicity. To achieve optimal clinical outcomes, regimens which down-regulate microglial activation could be used in conjunction with complementary measures which address other aspects of excitotoxicity.
Collapse
Affiliation(s)
- Mark F McCarty
- Natural Alternatives International, 1185 Linda Vista Dr., San Marcos, CA 92078, USA.
| |
Collapse
|
34
|
Mattson MP, Maudsley S, Martin B. A neural signaling triumvirate that influences ageing and age-related disease: insulin/IGF-1, BDNF and serotonin. Ageing Res Rev 2004; 3:445-64. [PMID: 15541711 DOI: 10.1016/j.arr.2004.08.001] [Citation(s) in RCA: 216] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Accepted: 08/06/2004] [Indexed: 12/24/2022]
Abstract
The ageing process and its associated diseases all involve perturbed energy metabolism, oxidative damage, and an impaired ability of the organism and its cells to cope with adversity. We propose that some specific signaling pathways in the brain may be important determinants of health during ageing. Among such specific signaling modalities are those activated in neurons by insulin-like growth factors (IGFs), brain-derived neurotrophic factor (BDNF) and serotonin. This triumvirate may be particularly important because of their cooperative influence on energy metabolism, food intake, stress responses and cardiovascular function. The health benefits to the periphery and central nervous system of dietary restriction and exercise may be mediated by this triumvirate of signals in the brain. At the molecular level, BDNF, serotonin and IGFs can all stimulate the production of proteins involved in cellular stress adaptation, growth and repair, neurogenesis, learning and memory and cell survival. The importance of this triumvirate is emphasized when it is seen that their general roles in energy metabolism, stress adaptation and disease resistance are conserved among diverse organisms consistent with important roles in the ageing process.
Collapse
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, USA.
| | | | | |
Collapse
|
35
|
Adlard PA, Cotman CW. Voluntary exercise protects against stress-induced decreases in brain-derived neurotrophic factor protein expression. Neuroscience 2004; 124:985-92. [PMID: 15026138 DOI: 10.1016/j.neuroscience.2003.12.039] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2003] [Indexed: 11/22/2022]
Abstract
Exercise is increasingly recognized as an intervention that can reduce CNS dysfunctions such as cognitive decline, depression and stress. Previously we have demonstrated that brain-derived neurotrophic factor (BDNF) is increased in the hippocampus following exercise. In this study we tested the hypothesis that exercise can counteract a reduction in hippocampal BDNF protein caused by acute immobilization stress. Since BDNF expression is suppressed by corticosterone (CORT), circulating CORT levels were also monitored. In animals subjected to 2 h immobilization stress, CORT was elevated immediately following, and at 1 h after the cessation of stress, but remained unchanged from baseline up to 24 h post-stress. The stress protocol resulted in a reduction in BDNF protein at 5 and 10 h post-stress that returned to baseline at 24 h. To determine if exercise could prevent this stress-induced reduction in BDNF protein, animals were given voluntary access to running wheels for 3 weeks prior to the stress. Stressed animals, in the absence of exercise, again demonstrated an initial elevation in CORT (at 0 h) and a subsequent decrease in hippocampal BDNF at the 10 h time point. Exercising animals, both non-stressed and stressed, demonstrated circulating CORT and hippocampal BDNF protein levels that were significantly elevated above control values at both time points examined (0 and 10 h post-stress). Thus, the persistently high CORT levels in exercised animals did not affect the induction of BDNF with exercise, and the effect of immobilization stress on BDNF protein was overcome. To examine the role of CORT in the stress-related regulation of BDNF protein, experiments were carried out in adrenalectomized (ADX) animals. BDNF protein was not downregulated as a result of immobilization stress in ADX animals, while there continued to be an exercise-induced upregulation of BDNF. This study demonstrates that CORT modulates stress-related alterations in BDNF protein. Further, exercise can override the negative effects of stress and high levels of CORT on BDNF protein. Voluntary physical activity may, therefore, represent a simple non-pharmacological tool for the maintenance of neurotrophin levels in the brain.
Collapse
Affiliation(s)
- P A Adlard
- Institute for Brain Aging and Dementia, 1113 Gillespie N.R.F., University of California, Irvine, Irvine, CA 92697-4540, USA.
| | | |
Collapse
|
36
|
Contestabile A, Ciani E, Contestabile A. Dietary restriction differentially protects from neurodegeneration in animal models of excitotoxicity. Brain Res 2004; 1002:162-6. [PMID: 14988047 DOI: 10.1016/j.brainres.2004.01.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2004] [Indexed: 11/23/2022]
Abstract
Reduced caloric intake obtained through long-term dietary restriction has been found beneficial in some animal models of neurodegeneration. We report here that rats maintained under dietary restriction from the second to the eighth month of age are fully protected towards degeneration of GABAergic neurons in the hippocampus and the olfactory-entorhinal cortex caused by systemic administration of the convulsant toxin, kainic acid. However, in a different model of excitotoxic neurodegeneration, injection of ibotenic acid in the forebrain magnocellular basal nucleus, the decrease of a cholinergic marker in the target areas of the cortex was only partially protected by dietary restriction. Thus, in different experimental models neurodegeneration can be differentially rescued by dietary restriction. Analysis of alterations in the expression of relevant genes in different experimental conditions, could help in better understanding these differences.
Collapse
|
37
|
Mattson MP, Duan W, Guo Z. Meal size and frequency affect neuronal plasticity and vulnerability to disease: cellular and molecular mechanisms. J Neurochem 2003; 84:417-31. [PMID: 12558961 DOI: 10.1046/j.1471-4159.2003.01586.x] [Citation(s) in RCA: 218] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although all cells in the body require energy to survive and function properly, excessive calorie intake over long time periods can compromise cell function and promote disorders such as cardiovascular disease, type-2 diabetes and cancers. Accordingly, dietary restriction (DR; either caloric restriction or intermittent fasting, with maintained vitamin and mineral intake) can extend lifespan and can increase disease resistance. Recent studies have shown that DR can have profound effects on brain function and vulnerability to injury and disease. DR can protect neurons against degeneration in animal models of Alzheimer's, Parkinson's and Huntington's diseases and stroke. Moreover, DR can stimulate the production of new neurons from stem cells (neurogenesis) and can enhance synaptic plasticity, which may increase the ability of the brain to resist aging and restore function following injury. Interestingly, increasing the time interval between meals can have beneficial effects on the brain and overall health of mice that are independent of cumulative calorie intake. The beneficial effects of DR, particularly those of intermittent fasting, appear to be the result of a cellular stress response that stimulates the production of proteins that enhance neuronal plasticity and resistance to oxidative and metabolic insults; they include neurotrophic factors such as brain-derived neurotrophic factor (BDNF), protein chaperones such as heat-shock proteins, and mitochondrial uncoupling proteins. Some beneficial effects of DR can be achieved by administering hormones that suppress appetite (leptin and ciliary neurotrophic factor) or by supplementing the diet with 2-deoxy-d-glucose, which may act as a calorie restriction mimetic. The profound influences of the quantity and timing of food intake on neuronal function and vulnerability to disease have revealed novel molecular and cellular mechanisms whereby diet affects the nervous system, and are leading to novel preventative and therapeutic approaches for neurodegenerative disorders.
Collapse
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging, Gerontology Research Center, Baltimore, Maryland 21224, USA
| | | | | |
Collapse
|
38
|
Cellular and molecular mechanisms whereby dietary restriction extends healthspan: a beneficial type of stress. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1566-3124(03)14005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
39
|
Mattson MP, Chan SL, Duan W. Modification of brain aging and neurodegenerative disorders by genes, diet, and behavior. Physiol Rev 2002; 82:637-72. [PMID: 12087131 DOI: 10.1152/physrev.00004.2002] [Citation(s) in RCA: 285] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Multiple molecular, cellular, structural, and functional changes occur in the brain during aging. Neural cells may respond to these changes adaptively, or they may succumb to neurodegenerative cascades that result in disorders such as Alzheimer's and Parkinson's diseases. Multiple mechanisms are employed to maintain the integrity of nerve cell circuits and to facilitate responses to environmental demands and promote recovery of function after injury. The mechanisms include production of neurotrophic factors and cytokines, expression of various cell survival-promoting proteins (e.g., protein chaperones, antioxidant enzymes, Bcl-2 and inhibitor of apoptosis proteins), preservation of genomic integrity by telomerase and DNA repair proteins, and mobilization of neural stem cells to replace damaged neurons and glia. The aging process challenges such neuroprotective and neurorestorative mechanisms. Genetic and environmental factors superimposed upon the aging process can determine whether brain aging is successful or unsuccessful. Mutations in genes that cause inherited forms of Alzheimer's disease (amyloid precursor protein and presenilins), Parkinson's disease (alpha-synuclein and Parkin), and trinucleotide repeat disorders (huntingtin, androgen receptor, ataxin, and others) overwhelm endogenous neuroprotective mechanisms; other genes, such as those encoding apolipoprotein E(4), have more subtle effects on brain aging. On the other hand, neuroprotective mechanisms can be bolstered by dietary (caloric restriction and folate and antioxidant supplementation) and behavioral (intellectual and physical activities) modifications. At the cellular and molecular levels, successful brain aging can be facilitated by activating a hormesis response in which neurons increase production of neurotrophic factors and stress proteins. Neural stem cells that reside in the adult brain are also responsive to environmental demands and appear capable of replacing lost or dysfunctional neurons and glial cells, perhaps even in the aging brain. The recent application of modern methods of molecular and cellular biology to the problem of brain aging is revealing a remarkable capacity within brain cells for adaptation to aging and resistance to disease.
Collapse
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Gerontology Research Center, Baltimore, Maryland 21224, USA.
| | | | | |
Collapse
|
40
|
Nichols NR, Zieba M, Bye N. Do glucocorticoids contribute to brain aging? BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2001; 37:273-86. [PMID: 11744092 DOI: 10.1016/s0165-0173(01)00131-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The hippocampus, an area with abundant glucocorticoid receptors, continues to be the focus of research on effects of glucocorticoids on the aging brain. Based on recent studies, the primary structural change found during aging is synaptic loss, rather than neuronal loss. High levels of glucocorticoids are associated with synaptic loss in the hippocampus, hippocampal atrophy, and cognitive decline during aging in some individuals. However, increasing levels of glucocorticoid are not always found since early experiences can alter sensitivity to negative feedback and the level of activation of the hypothalamic-pituitary-adrenal axis in aged individuals. New ways in which glucocorticoids may contribute to brain aging are discussed, including decreased responses to glucocorticoids possibly as a result of decreased glucocorticoid receptors and also altered regulation of neuronal turnover in the dentate gyrus. Decreased responsiveness of glial fibrillary acidic protein to glucocorticoids during aging could facilitate reactive gliosis and loss of synapses by altering neuron-astrocyte interactions. Neuronal turnover is regulated by glucocorticoids in the dentate gyrus where ongoing neurogenesis may be important for hippocampal-based memory formation in adulthood. Although the age-related decline in neurogenesis can be reversed by removal of adrenal steroids, the death of dentate granule neurons is also greatly increased by this treatment. Recent studies show age-related resistance to induced apoptosis and neurogenesis in the dentate gyrus following adrenalectomy, which is associated with increased expression of transforming growth factor-beta1. Therefore, the contribution of glucocorticoids to brain aging depends on the physiological and cellular context and some of these effects are reversible.
Collapse
Affiliation(s)
- N R Nichols
- Department of Physiology, Monash University, PO Box 13F, 3800, Victoria, Australia.
| | | | | |
Collapse
|
41
|
Pedersen WA, McCullers D, Culmsee C, Haughey NJ, Herman JP, Mattson MP. Corticotropin-releasing hormone protects neurons against insults relevant to the pathogenesis of Alzheimer's disease. Neurobiol Dis 2001; 8:492-503. [PMID: 11442356 DOI: 10.1006/nbdi.2001.0395] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We previously reported that mice over-expressing the human amyloid precursor protein gene with the double Swedish mutation of familial Alzheimer's disease (mtAPP), which exhibit progressive deposition of amyloid beta-peptide in hippocampal and cortical brain regions, have an impaired ability to maintain a sustained glucocorticoid response to stress. Corticotropin releasing hormone (CRH), which initiates neuroendocrine responses to stress by activating the hypothalamic-pituitary-adrenal (HPA) axis, is expressed in brain regions prone to degeneration in Alzheimer's disease. We therefore tested the hypothesis that CRH can modify neuronal vulnerability to amyloid beta-peptide toxicity. In primary neuronal culture, CRH was protective against cell death caused by an amyloid-beta peptide, an effect that was blocked by a CRH receptor antagonist and by an inhibitor of cyclic AMP-dependent protein kinase. The increased resistance of CRH-treated neurons to amyloid toxicity was associated with stabilization of cellular calcium homeostasis. Moreover, CRH protected neurons against death caused by lipid peroxidation and the excitotoxic neurotransmitter glutamate. The level of mRNA encoding CRH was unchanged in mtAPP mouse brain, whereas the levels of mRNAs encoding glucocorticoid and mineralocorticoid receptors were subtly altered. Our results suggest that disturbances in HPA axis function can occur independently of alterations in CRH mRNA levels in Alzheimer's disease brain and further suggest an additional role for CRH in protecting neurons against cell death.
Collapse
Affiliation(s)
- W A Pedersen
- Laboratory of Neurosciences, National Institute on Aging Gerontology Research Center, Baltimore, Maryland 21224, USA
| | | | | | | | | | | |
Collapse
|