1
|
Turan Yücel N, Kandemir Ü, Üçel Uİ, Demir Özkay Ü, Can ÖD. Catecholaminergic and Cholinergic Systems Mediate Beneficial Effect of Vortioxetine on Diabetes-Induced Neuropathic Pain. Biomedicines 2023; 11:biomedicines11041137. [PMID: 37189755 DOI: 10.3390/biomedicines11041137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
The therapeutic potential of vortioxetine on mechanical hyperalgesia/allodynia was investigated in rats with streptozotocin-induced diabetes, and its possible mechanism of action was elucidated in this study. The obtained findings demonstrated that subacute vortioxetine treatment (5 and 10 mg/kg for 2 weeks) increased the reduced paw-withdrawal thresholds of diabetic rats both in the Randall-Selitto and Dynamic plantar tests. Moreover, the falling latencies of animals did not change in the Rota-rod assessments. These results suggest that vortioxetine administration significantly improved diabetes-induced hyperalgesia and allodynia responses in the rats without affecting their motor coordination. The vortioxetine (5 mg/kg)-induced antihyperalgesic and antiallodynic effects were reversed by AMPT, yohimbine, ICI 118,551, sulpiride and atropine pre-treatments, suggesting the involvement of the catecholaminergic system, α2- and β2-adrenoceptors, D2/3 dopaminergic receptors and cholinergic muscarinic receptors in the exhibited pharmacological activity, respectively. Moreover, the data from the immunohistochemical studies indicated that the inhibition of c-Fos overexpression in dorsal horn neurons also mediates the beneficial effect of this drug. Vortioxetine induced no difference in plasma glucose levels in diabetic rats. If clinical studies confirm these findings, the concomitant beneficial effect of vortioxetine on mood disorders and its neutral activity profile on glycemic control may make it an alternative drug for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Nazlı Turan Yücel
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Ümmühan Kandemir
- Vocational School of Health Services, Bilecik Şeyh Edebali University, 11230 Bilecik, Turkey
| | - Umut İrfan Üçel
- Vocational School of Health Services, Bayburt University, 69000 Bayburt, Turkey
| | - Ümide Demir Özkay
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Özgür Devrim Can
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| |
Collapse
|
2
|
Antinociceptive effect of N-acetyl glucosamine in a rat model of neuropathic pain. Acta Neuropsychiatr 2022; 34:260-268. [PMID: 35109948 DOI: 10.1017/neu.2022.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE This study was aimed at evaluating the efficacy of glucosamine and potential mechanisms of actions in a neuropathic pain model in rats. METHODS Glucosamine (500, 1000 and 2000 mg/kg) was administered via gavage route, 1 day before the chronic constriction injury (CCI) of sciatic nerve and daily for 14 days (prophylactic regimen), or from days 5 to 14 post-injury (therapeutic regimen), as the indicators of neuropathic pain, mechanical allodynia, cold allodynia and thermal hyperalgesia were assessed on days 0, 3, 5, 7, 10 and 14 after ligation. Inducible nitric oxide synthase (iNOS) and tumour necrosis factor alpha (TNF-α) gene expressions were measured by real-time polymerase chain reaction. TNF-α protein content was measured using the enzyme-linked immunosorbent assay method. RESULTS Three days after nerve injury, the threshold of pain was declined among animals subjected to neuropathic pain. Mechanical and cold allodynia, as well as thermal hyperalgesia were attenuated by glucosamine (500, 1000, 2000 mg/kg) in the prophylactic regimen. However, existing pain was not decreased by this drug. Increased mRNA expression of iNOS and TNF-α was significantly reduced in the spinal cord of CCI animals by glucosamine (500, 1000, 2000 mg/kg) in the prophylactic regimen. The overall expression of spinal TNF-α was increased by CCI, but this increase was reduced in animals receiving glucosamine prophylactic treatment. CONCLUSION Findings suggest that glucosamine as a safe supplement may be a useful candidate in preventing neuropathic pain following nerve injury. Antioxidant and anti-inflammatory effects may be at least in part responsible for the antinociceptive effects of this drug.
Collapse
|
3
|
Kolahdouz M, Jafari F, Falanji F, Nazemi S, Mohammadzadeh M, Molavi M, Amin B. Clavulanic Acid Attenuating Effect on the Diabetic Neuropathic Pain in Rats. Neurochem Res 2021; 46:1759-1770. [PMID: 33846883 DOI: 10.1007/s11064-021-03308-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 10/24/2020] [Accepted: 03/18/2021] [Indexed: 12/27/2022]
Abstract
Diabetic neuropathy is one of the most common complications of diabetes mellitus. Excess glutamate release and oxidative stress are hypothesized to be involved in the pathophysiology of diabetes-induced neuropathy. This study was designed to investigate the effect of clavulanic acid (CLAV), a competitive beta-lactamase inhibitor, on the streptozocin (STZ)-induced neuropathic pain and possible mechanisms in the spinal cord of rats. Male Wistar rats were divided into naive group; control group which got a single dose of STZ (50 mg/kg, i.p.), as a model of diabetic neuropathic pain; prophylactic groups: animals received CLAV (10, 20 and 40 mg/kg, i.p.) 1 week after STZ for 10 days; and therapeutic group: animals received 20 mg/kg CLAV, 21 days after STZ for 10 days. Study of pain behaviors was started on days 0, 7, 14, 21, 28, 35 and 42 after STZ. The expression of the glutamate transport 1 (GLT1), genes of oxidative stress including inducible nitric oxide synthase (iNOS), proinflammatory cytokine, tumor necrosis factor alpha (TNF-α), as well as genes involved in the apoptosis including bcl2, bcl2-associated x (bax) were measured in the spinal cord tissue by Real Time PCR, on day 42. On day 21 post injection of STZ, diabetic animals showed significant mechanical allodynia, cold allodynia and thermal hyperalgesia. CLAV in all doses of 10, 20 and 40 mg/kg reduced symptoms of allodynia and hyperalgesia, in both prophylactic and therapeutic regimens. While iNOS, TNF-α, bax/bcl2 were found significantly overexpressed in spinal cord of diabetic animals, their expression in animals received CLAV had been reduced. In contrast, GLT1 that had decreased in the spinal cord of diabetic animals, significantly increased in those received CLAV. CLAV was found a promising candidate for reliving neuropathic pain in diabetes mellitus. Such beneficial effect of CLAV could be, in part, attributed to the increased expression of GLT 1, inhibition of nitrosative stress, anti-inflammation, and inhibition of some apoptotic mediators followed by administration into diabetic animals.
Collapse
Affiliation(s)
- Mahnoush Kolahdouz
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Faranak Jafari
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Farahnaz Falanji
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Samad Nazemi
- Cellular and Molecular Research Center, Department of Physiology and Pharmacology, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mohammad Mohammadzadeh
- Cellular and Molecular Research Center, Department of Physiology and Pharmacology, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mehdi Molavi
- Department of Internal Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Bahareh Amin
- Cellular and Molecular Research Center, Department of Physiology and Pharmacology, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran.
| |
Collapse
|
4
|
Jin HY, Moon SS, Calcutt NA. Lost in Translation? Measuring Diabetic Neuropathy in Humans and Animals. Diabetes Metab J 2021; 45:27-42. [PMID: 33307618 PMCID: PMC7850880 DOI: 10.4093/dmj.2020.0216] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/06/2020] [Indexed: 12/21/2022] Open
Abstract
The worldwide diabetes epidemic is estimated to currently afflict almost 500 million persons. Long-term diabetes damages multiple organ systems with the blood vessels, eyes, kidneys and nervous systems being particularly vulnerable. These complications of diabetes reduce lifespan, impede quality of life and impose a huge social and economic burden on both the individual and society. Peripheral neuropathy is a debilitating complication that will impact over half of all persons with diabetes. There is no treatment for diabetic neuropathy and a disturbingly long history of therapeutic approaches showing promise in preclinical studies but failing to translate to the clinic. These failures have prompted re-examination of both the animal models and clinical trial design. This review focuses on the functional and structural parameters used as indices of peripheral neuropathy in preclinical and clinical studies and the extent to which they share a common pathogenesis and presentation. Nerve conduction studies in large myelinated fibers have long been the mainstay of preclinical efficacy screening programs and clinical trials, supplemented by quantitative sensory tests. However, a more refined approach is emerging that incorporates measures of small fiber density in the skin and cornea alongside these traditional assays at both preclinical and clinical phases.
Collapse
Affiliation(s)
- Heung Yong Jin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju,
USA
| | - Seong-Su Moon
- Department of Internal Medicine, Dongguk University College of Medicine, Gyeongju,
USA
- Division of Endocrinology, Department of Internal Medicine, Nazareth General Hospital, Daegu,
Korea,
USA
| | - Nigel A. Calcutt
- Department of Pathology, University of California San Diego, La Jolla, CA,
USA
| |
Collapse
|
5
|
Mert T, Sahin E, Yaman S, Sahin M. Effects of immune cell-targeted treatments result from the suppression of neuronal oxidative stress and inflammation in experimental diabetic rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:1293-1302. [PMID: 32361779 DOI: 10.1007/s00210-020-01871-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/08/2020] [Indexed: 01/17/2023]
Abstract
In this study, we hypothesized that reduction of immune cell activation as well as their oxidant or inflammatory mediators with minocycline (MCN), liposome-encapsulated clodronate (LEC), or anti-Ly6G treatments can be neuroprotective approaches in diabetic neuropathy. MCN (40 mg/kg) for reduction of microglial activation, LEC (25 mg/kg) for of macrophage inhibition, or anti-Ly6G (150 μg/kg) for neutrophil suppression injected to streptozotocin (STZ)-induced diabetic rats twice, 3 days, and 1 week (half dose) after STZ. Animal mass and blood glucose levels were measured; thermal and mechanical sensitivities were tested for in pain sensations. The levels of chemokine C-X-C motif ligand 1 (CXCL1), CXCL8, and C-C motif ligand 2 (CCL2), CCL3, and total oxidant status (TOS) and total antioxidant status (TAS) were measured in the spinal cord and sciatic nerve tissues of rats. LEC significantly reduced the glucose level of diabetic rats compared with drug control. However, MCN or anti-LY6G did not change the glucose level. While diabetic rats showed a marked decrease in both thermal and mechanical sensations, all treatments alleviated these abnormal sensations. The levels of chemokines and oxidative stress parameters increased in diabetic rats. All drug treatments significantly decreased the CCL2, CXCL1, and CXCL8 levels of spinal cord tissues and ameliorated the neuronal oxidative stress compared with control treatments. Present findings suggest that the neuroprotective actions of MCN, LEC, or anti-Ly6G treatments may be due to the modulation of neuronal oxidative stress and/or inflammatory mediators of immune cells in diabetic rats with neuropathy.
Collapse
Affiliation(s)
- Tufan Mert
- Department of Biophysics, Faculty of Medicine, Bolu Abant Izzet Baysal University, 14030, Bolu, Turkey.
| | - Emel Sahin
- Department of Medical Biology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Selma Yaman
- Department of Biophysics, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Mehmet Sahin
- Department of Medical Biology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
6
|
Prnova MS, Kovacikova L, Svik K, Bezek S, Elmazoğlu Z, Karasu C, Stefek M. Triglyceride-lowering effect of the aldose reductase inhibitor cemtirestat-another factor that may contribute to attenuation of symptoms of peripheral neuropathy in STZ-diabetic rats. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:651-661. [PMID: 31802170 DOI: 10.1007/s00210-019-01769-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/08/2019] [Indexed: 12/24/2022]
Abstract
Hyperglycemia is considered a key risk factor for development of diabetic complications including neuropathy. There is strong scientific evidence showing a primary role of aldose reductase, the first enzyme of the polyol pathway, in the cascade of metabolic imbalances responsible for the detrimental effects of hyperglycemia. Aldose reductase is thus considered a significant drug target. We investigated the effects of cemtirestat, a novel aldose reductase inhibitor, in the streptozotocin-induced rat model of uncontrolled type 1 diabetes in a 4-month experiment. Markedly increased sorbitol levels were recorded in the erythrocytes and the sciatic nerve of diabetic animals. Osmotic fragility of red blood cells was increased in diabetic animals. Indices of thermal hypoalgesia were significantly increased in diabetic rats. Tactile allodynia, recorded in diabetic animals in the early stages, turned to mechanical hypoalgesia by the end of the experiment. Treatment of diabetic animals with cemtirestat (i) reduced plasma triglycerides and TBAR levels; (ii) did not affect the values of HbA1c and body weights; (iii) reversed erythrocyte sorbitol accumulation to near control values, while sorbitol in the sciatic nerve was not affected; (iv) ameliorated indices of the erythrocyte osmotic fragility; and (v) attenuated the symptoms of peripheral neuropathy more significantly in the middle of the experiment than at the end of the treatment. Taking into account the lipid metabolism as an interesting molecular target for prevention or treatment of diabetic peripheral neuropathy, the triglyceride-lowering effect of cemtirestat should be considered in future studies. The most feasible mechanisms of triglyceride-lowering action of cemtirestat were suggested.
Collapse
Affiliation(s)
- Marta Soltesova Prnova
- Department of Biochemical Pharmacology, Institute of Experimental Pharmacology and Toxicology, CEM, Slovak Academy of Sciences, Dubravska cesta 9, 841 04, Bratislava, Slovakia
| | - Lucia Kovacikova
- Department of Biochemical Pharmacology, Institute of Experimental Pharmacology and Toxicology, CEM, Slovak Academy of Sciences, Dubravska cesta 9, 841 04, Bratislava, Slovakia
| | - Karol Svik
- Department of Biochemical Pharmacology, Institute of Experimental Pharmacology and Toxicology, CEM, Slovak Academy of Sciences, Dubravska cesta 9, 841 04, Bratislava, Slovakia
| | - Stefan Bezek
- Department of Biochemical Pharmacology, Institute of Experimental Pharmacology and Toxicology, CEM, Slovak Academy of Sciences, Dubravska cesta 9, 841 04, Bratislava, Slovakia
| | - Zübeyir Elmazoğlu
- Department of Medical Pharmacology, Faculty of Medicine, Gazi University, 06510, Beşevler, Ankara, Turkey
| | - Cimen Karasu
- Department of Medical Pharmacology, Faculty of Medicine, Gazi University, 06510, Beşevler, Ankara, Turkey
| | - Milan Stefek
- Department of Biochemical Pharmacology, Institute of Experimental Pharmacology and Toxicology, CEM, Slovak Academy of Sciences, Dubravska cesta 9, 841 04, Bratislava, Slovakia.
| |
Collapse
|
7
|
Infiltration of Blood-Derived Macrophages Contributes to the Development of Diabetic Neuropathy. J Immunol Res 2019; 2019:7597382. [PMID: 31534976 PMCID: PMC6732633 DOI: 10.1155/2019/7597382] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/30/2019] [Accepted: 07/16/2019] [Indexed: 11/18/2022] Open
Abstract
Background and Objective Diabetic neuropathic pain (DNP) is a common complication associated with diabetes. Currently, its underlying pathomechanism remains unknown. Studies have revealed that the recruitment of blood monocyte-derived macrophages (MDMs) to the spinal cord plays a pivotal role in different models of central nervous system injury. Therefore, the present study aimed at exploring the infiltration and function of MDMs in DNP using a mice model. Methods Diabetes was induced using streptozotocin in male A/J mice. Mechanical withdrawal thresholds were measured weekly to characterize neuropathy phenotype. Quantitative analysis of CD11b was performed and visualized by immunofluorescence. Spinal cord cells were isolated from myelin and debris by Percoll gradient. Flow cytometry was used to label CD11b and CD45 antibodies to differentiate MDMs (CD45highCD11b+) from resident microglia (CD45lowCD11b+). Mice were injected with clodronate liposomes to investigate the role of MDMs in DNP. The successful depletion of monocytes was determined by flow cytometry. Results The DNP mice model was successfully established. Compared with nondiabetic mice, diabetic mice displayed a markedly higher level of CD11b immunofluorescence in the spinal cord. The number of CD11b-positive microglia/macrophages gradually increased over the 28 days of testing after STZ injection, and a significant increase was observed on Day 14 (P < 0.01) and 28 (P < 0.01). Further analysis by flow cytometry showed that the infiltration of peripheral macrophages began to increase in 2 weeks (P < 0.001) and reached a maximum at 4 weeks (P < 0.001) post-STZ injection compared to the control. The depletion of MDMs by clodronate liposomes alleviated diabetes-induced tactile allodynia (P < 0.05) and reduced the infiltration of MDMs (P < 0.001) as well as the expression of IL-1β and TNF-α in the spinal cord (P < 0.05). Conclusions The infiltration of blood MDMs in the spinal cord may promote the development of painful neuropathy in diabetes.
Collapse
|
8
|
Alterations in evoked and spontaneous activity of dorsal horn wide dynamic range neurons in pathological pain: a systematic review and analysis. Pain 2019; 160:2199-2209. [DOI: 10.1097/j.pain.0000000000001632] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
9
|
McGaraughty S, Chu KL, Xu J. Characterization and pharmacological modulation of noci-responsive deep dorsal horn neurons across diverse rat models of pathological pain. J Neurophysiol 2018; 120:1893-1905. [DOI: 10.1152/jn.00325.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This overview compares the activity of wide dynamic range (WDR) and nociceptive specific (NS) neurons located in the deep dorsal horn across different rat models of pathological pain and following modulation by diverse pharmacology. The data were collected by our group under the same experimental conditions over numerous studies to facilitate comparison. Spontaneous firing of WDR neurons was significantly elevated (>3.7 Hz) in models of neuropathic, inflammation, and osteoarthritic pain compared with naive animals (1.9 Hz) but was very low (<0.5 Hz) and remained unchanged in NS neurons. WDR responses to low-intensity mechanical stimulation were elevated in neuropathic and inflammation models. WDR responses to high-intensity stimuli were enhanced in inflammatory (heat) and osteoarthritis (mechanical) models. NS responses to high-intensity stimulation did not change relative to control in any model examined. Several therapeutic agents reduced both evoked and spontaneous firing of WDR neurons (e.g., TRPV1, TRPV3, Nav1.7, Nav1.8, P2X7, P2X3, H3), other targets affected neither evoked nor spontaneous firing of WDR neurons (e.g., H4, TRPM8, KCNQ2/3), and some only modulated evoked (e.g, ASIC1a, Cav3.2) whereas others decreased evoked but affected spontaneous activity only in specific models (e.g., TRPA1, CB2). Spontaneous firing of WDR neurons was not altered by any peripherally restricted compound or by direct administration of compounds to peripheral sites, although the same compounds decreased evoked activity. Compounds acting centrally were effective against this endpoint. The diversity of incoming/modulating inputs to the deep dorsal horn positions this group of neurons as an important intersection within the pain system to validate novel therapeutics. NEW & NOTEWORTHY Data from multiple individual experiments were combined to show firing properties of wide dynamic range and nociceptive specific spinal dorsal horn neurons across varied pathological pain models. This high-powered analysis describes the sensitization following different forms of injury. Effects of diverse pharmacology on these neurons is also summarized from published and unpublished data all recorded under the same conditions to facilitate comparison. This comprehensive overview describes the function and utility of these neurons.
Collapse
Affiliation(s)
| | | | - Jun Xu
- AbbVie Discovery, North Chicago, Illinois
| |
Collapse
|
10
|
Ved N, Da Vitoria Lobo ME, Bestall SM, L Vidueira C, Beazley-Long N, Ballmer-Hofer K, Hirashima M, Bates DO, Donaldson LF, Hulse RP. Diabetes-induced microvascular complications at the level of the spinal cord: a contributing factor in diabetic neuropathic pain. J Physiol 2018; 596:3675-3693. [PMID: 29774557 PMCID: PMC6092307 DOI: 10.1113/jp275067] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/08/2018] [Indexed: 02/06/2023] Open
Abstract
KEY POINTS Diabetes is thought to induce neuropathic pain through activation of dorsal horn sensory neurons in the spinal cord. Here we explore the impact of hyperglycaemia on the blood supply supporting the spinal cord and chronic pain development. In streptozotocin-induced diabetic rats, neuropathic pain is accompanied by a decline in microvascular integrity in the dorsal horn. Hyperglycaemia-induced degeneration of the endothelium in the dorsal horn was associated with a loss in vascular endothelial growth factor (VEGF)-A165 b expression. VEGF-A165 b treatment prevented diabetic neuropathic pain and degeneration of the endothelium in the spinal cord. Using an endothelial-specific VEGFR2 knockout transgenic mouse model, the loss of endothelial VEGFR2 signalling led to a decline in vascular integrity in the dorsal horn and the development of hyperalgesia in VEGFR2 knockout mice. This highlights that vascular degeneration in the spinal cord could be a previously unidentified factor in the development of diabetic neuropathic pain. ABSTRACT Abnormalities of neurovascular interactions within the CNS of diabetic patients is associated with the onset of many neurological disease states. However, to date, the link between the neurovascular network within the spinal cord and regulation of nociception has not been investigated despite neuropathic pain being common in diabetes. We hypothesised that hyperglycaemia-induced endothelial degeneration in the spinal cord, due to suppression of vascular endothelial growth factor (VEGF)-A/VEGFR2 signalling, induces diabetic neuropathic pain. Nociceptive pain behaviour was investigated in a chemically induced model of type 1 diabetes (streptozotocin induced, insulin supplemented; either vehicle or VEGF-A165 b treated) and an inducible endothelial knockdown of VEGFR2 (tamoxifen induced). Diabetic animals developed mechanical allodynia and heat hyperalgesia. This was associated with a reduction in the number of blood vessels and reduction in Evans blue extravasation in the lumbar spinal cord of diabetic animals versus age-matched controls. Endothelial markers occludin, CD31 and VE-cadherin were downregulated in the spinal cord of the diabetic group versus controls, and there was a concurrent reduction of VEGF-A165 b expression. In diabetic animals, VEGF-A165 b treatment (biweekly i.p., 20 ng g-1 ) restored normal Evans blue extravasation and prevented vascular degeneration, diabetes-induced central neuron activation and neuropathic pain. Inducible knockdown of VEGFR2 (tamoxifen treated Tie2CreERT2 -vegfr2flfl mice) led to a reduction in blood vessel network volume in the lumbar spinal cord and development of heat hyperalgesia. These findings indicate that hyperglycaemia leads to a reduction in the VEGF-A/VEGFR2 signalling cascade, resulting in endothelial dysfunction in the spinal cord, which could be an undiscovered contributing factor to diabetic neuropathic pain.
Collapse
Affiliation(s)
- N Ved
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine University of Nottingham, Nottingham, NG7 2UH, UK.,Institute of Ophthalmology, 11-43 Bath St, London, EC1V 9EL, UK.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - M E Da Vitoria Lobo
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine University of Nottingham, Nottingham, NG7 2UH, UK
| | - S M Bestall
- Arthritis Research UK Pain Centre and School of Life Sciences, The Medical School QMC, University of Nottingham, Nottingham, NG7 2UH, UK
| | - C L Vidueira
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine University of Nottingham, Nottingham, NG7 2UH, UK
| | - N Beazley-Long
- Arthritis Research UK Pain Centre and School of Life Sciences, The Medical School QMC, University of Nottingham, Nottingham, NG7 2UH, UK
| | | | - M Hirashima
- Division of Vascular Biology, Kobe University, Japan
| | - D O Bates
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine University of Nottingham, Nottingham, NG7 2UH, UK.,Centre of Membrane and Protein and Receptors (COMPARE), University of Birmingham, Birmingham and University of Nottingham, Nottingham, UK
| | - L F Donaldson
- Institute of Ophthalmology, 11-43 Bath St, London, EC1V 9EL, UK
| | - R P Hulse
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine University of Nottingham, Nottingham, NG7 2UH, UK.,School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| |
Collapse
|
11
|
Lee JY, Choi HY, Park CS, Pyo MK, Yune TY, Kim GW, Chung SH. GS-KG9 ameliorates diabetic neuropathic pain induced by streptozotocin in rats. J Ginseng Res 2017; 43:58-67. [PMID: 30662294 PMCID: PMC6323171 DOI: 10.1016/j.jgr.2017.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 08/01/2017] [Accepted: 08/07/2017] [Indexed: 02/08/2023] Open
Abstract
Background Diabetic neuropathy is one of the most devastating ailments of the peripheral nervous system. Neuropathic pain develops in ∼30% of diabetics. Here, we examined the suppressive effect of GS-KG9 on neuropathic pain induced by streptozotocin (STZ). Methods Hyperglycemia was induced by intraperitoneal injection of STZ. Rats showing blood glucose level > 250 mg/dL were divided into five groups, and treatment groups received oral saline containing GS-KG9 (50 mg/kg, 150 mg/kg, or 300 mg/kg) twice daily for 4 wk. The effects of GS-KG9 on pain behavior, microglia activation in the lumbar spinal cord and ventral posterolateral (VPL) nucleus of the thalamus, and c-Fos expression in the dorsal horn of the lumbar spinal cord were examined. Results The development of neuropathic pain began at Day 5 and peaked at Week 4 after STZ injection. Mechanical and thermal pains were both significantly attenuated in GS-KG9-treated groups from 10 d after STZ injection as compared to those in the STZ control. GS-KG9 also repressed microglia activation in L4 dorsal horn and VPL region of the thalamus. In addition, increase in c-Fos-positive cells within L4 dorsal horn lamina I and II of the STZ control group was markedly alleviated by GS-KG9. Conclusion These results suggest that GS-KG9 effectively relieves STZ-induced neuropathic pain by inhibiting microglial activation in the spinal cord dorsal horn and VPL region of the thalamus.
Collapse
Affiliation(s)
- Jee Youn Lee
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul, Republic of Korea
| | - Hae Young Choi
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul, Republic of Korea
| | - Chan Sol Park
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| | - Mi Kyung Pyo
- International Ginseng and Herb Research Institute, Geumsan, Republic of Korea
| | - Tae Young Yune
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul, Republic of Korea.,KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea.,Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Go Woon Kim
- Department of Pharmacology and Clinical Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Sung Hyun Chung
- Department of Pharmacology and Clinical Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Liao C, Yang M, Zhong W, Liu P, Zhang W. Association of myelinated primary afferents impairment with mechanical allodynia in diabetic peripheral neuropathy: an experimental study in rats. Oncotarget 2017; 8:64157-64169. [PMID: 28969059 PMCID: PMC5609991 DOI: 10.18632/oncotarget.19359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/16/2017] [Indexed: 01/03/2023] Open
Abstract
To investigate the mechanisms underlying the efficacy of surgical treatment for painful diabetic peripheral neuropathy. Rats were initially divided into 3 groups (I, control rats, II, streptozotocin-induced diabetic rats, III, streptozotocin-induced diabetic rats with latex tube encircling the sciatic nerve without compression). When mechanical allodynia (MA) became stable in the third week, one third of group III rats were sacrificed and the remainder were further divided into subgroups depending on whether the latex tube was removed. Except for some rats in group III, all rats were sacrificed in the fifth week. Morphometric analysis of nerve fibers was performed. Expression level of GABAB receptor protein in spinal dorsal horn was determined. Changes of GABAB receptor within areas of primary afferents central terminal were identified. Chronic nerve compression caused by the interaction of diabetic nerves swelling and the encircling latex tube increased the incidence of MA in diabetic rats, and nerve decompression could ameliorate MA. In diabetic rats with MA, demyelination of myelinated fibers was noted and reduction of GABAB receptor was mainly detected in the area of myelinated afferent central terminals. MA in DPN should be partially attributed to compression impairment of myelinated afferents, supporting the rationale for surgical decompression.
Collapse
Affiliation(s)
- Chenlong Liao
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China
| | - Min Yang
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China
| | - Wenxiang Zhong
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China
| | - Pengfei Liu
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China
| | - Wenchuan Zhang
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China
| |
Collapse
|
13
|
Amorim D, Puga S, Bragança R, Braga A, Pertovaara A, Almeida A, Pinto-Ribeiro F. Minocycline reduces mechanical allodynia and depressive-like behaviour in type-1 diabetes mellitus in the rat. Behav Brain Res 2017; 327:1-10. [DOI: 10.1016/j.bbr.2017.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 02/24/2017] [Accepted: 03/02/2017] [Indexed: 12/29/2022]
|
14
|
Pain modulation from the brain during diabetic neuropathy: Uncovering the role of the rostroventromedial medulla. Neurobiol Dis 2016; 96:346-356. [PMID: 27717882 DOI: 10.1016/j.nbd.2016.10.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/06/2016] [Accepted: 10/01/2016] [Indexed: 01/17/2023] Open
Abstract
Diabetic neuropathy has a profound impact in the quality of life of patients who frequently complain of pain. The mechanisms underlying diabetic neuropathic pain (DNP) are no longer ascribed only to damage of peripheral nerves. The effects of diabetes at the central nervous system are currently considered causes of DPN. Management of DNP may be achieved by antidepressants that act on serotonin (5-HT) uptake, namely specific serotonin reuptake inhibitors. The rostroventromedial medulla (RVM) is a key pain control center involved in descending pain modulation at the spinal cord through local release of 5-HT and plays a peculiar role in the balance of bidirectional control (i.e. inhibitory and facilitatory) from the brain to the spinal cord. This review discusses recently uncovered neurobiological mechanisms that mediate nociceptive modulation from the RVM during diabetes installation. In early phases of the disease, facilitation of pain modulation from the RVM prevails through a triplet of mechanisms which include increase in serotonin expression at the RVM and consequent rise of serotonin levels at the spinal cord and upregulation of local facilitatory 5HT3 receptors, enhancement of spontaneous activity of facilitatory RVM neurons and up-regulation of the expression of transient receptor potential vanilloid type 1 (TRPV1) receptor. With the progression of diabetes the alterations in the RVM increase dramatically, with oxidative stress and neuronal death associated to microglia-mediated inflammation. In a manner similar to other central areas, like the thalamus, the RVM is likely to be a "pain generator/amplifier" during diabetes, accounting to increase DNP. Early interventions in DNP prevention using strategies that simultaneously tackle the exacerbation of 5-HT3 spinal receptors and of microglial RVM activity, namely those that increase the levels of anti-inflammatory cytokines, should be considered in the future of DNP treatment.
Collapse
|
15
|
Abstract
Painful neuropathy, like the other complications of diabetes, is a growing healthcare concern. Unfortunately, current treatments are of variable efficacy and do not target underlying pathogenic mechanisms, in part because these mechanisms are not well defined. Rat and mouse models of type 1 diabetes are frequently used to study diabetic neuropathy, with rats in particular being consistently reported to show allodynia and hyperalgesia. Models of type 2 diabetes are being used with increasing frequency, but the current literature on the progression of indices of neuropathic pain is variable and relatively few therapeutics have yet been developed in these models. While evidence for spontaneous pain in rodent models is sparse, measures of evoked mechanical, thermal and chemical pain can provide insight into the pathogenesis of the condition. The stocking and glove distribution of pain tantalizingly suggests that the generator site of neuropathic pain is found within the peripheral nervous system. However, emerging evidence demonstrates that amplification in the spinal cord, via spinal disinhibition and neuroinflammation, and also in the brain, via enhanced thalamic activity or decreased cortical inhibition, likely contribute to the pathogenesis of painful diabetic neuropathy. Several potential therapeutic strategies have emerged from preclinical studies, including prophylactic treatments that intervene against underlying mechanisms of disease, treatments that prevent gains of nociceptive function, treatments that suppress enhancements of nociceptive function, and treatments that impede normal nociceptive mechanisms. Ongoing challenges include unraveling the complexity of underlying pathogenic mechanisms, addressing the potential disconnect between the perceived location of pain and the actual pain generator and amplifier sites, and finding ways to identify which mechanisms operate in specific patients to allow rational and individualized choice of targeted therapies.
Collapse
Affiliation(s)
- Corinne A Lee-Kubli
- Graduate School of Biomedical Sciences, Sanford-Burnham Institute for Molecular Medicine, La Jolla, CA, USA; Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Nigel A Calcutt
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
16
|
Cossu G, Ceravolo R, Zibetti M, Arca R, Ricchi V, Paribello A, Murgia D, Merola A, Romagnolo A, Nicoletti V, Palermo G, Mereu A, Lopiano L, Melis M, Abbruzzese G, Bonuccelli U. Levodopa and neuropathy risk in patients with Parkinson disease: Effect of COMT inhibition. Parkinsonism Relat Disord 2016; 27:81-4. [DOI: 10.1016/j.parkreldis.2016.04.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/17/2016] [Accepted: 04/18/2016] [Indexed: 12/19/2022]
|
17
|
Amorim D, Viisanen H, Wei H, Almeida A, Pertovaara A, Pinto-Ribeiro F. Galanin-Mediated Behavioural Hyperalgesia from the Dorsomedial Nucleus of the Hypothalamus Involves Two Independent Descending Pronociceptive Pathways. PLoS One 2015; 10:e0142919. [PMID: 26565961 PMCID: PMC4643915 DOI: 10.1371/journal.pone.0142919] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 10/28/2015] [Indexed: 12/17/2022] Open
Abstract
Activation of the dorsomedial nucleus of the hypothalamus (DMH) by galanin (GAL) induces behavioural hyperalgesia. Since DMH neurones do not project directly to the spinal cord, we hypothesized that the medullary dorsal reticular nucleus (DRt), a pronociceptive region projecting to the spinal dorsal horn (SDH) and/or the serotoninergic raphe-spinal pathway acting on the spinal 5-HT3 receptor (5HT3R) could relay descending nociceptive facilitation induced by GAL in the DMH. Heat-evoked paw-withdrawal latency (PWL) and activity of SDH neurones were assessed in monoarthritic (ARTH) and control (SHAM) animals after pharmacological manipulations of the DMH, DRt and spinal cord. The results showed that GAL in the DMH and glutamate in the DRt lead to behavioural hyperalgesia in both SHAM and ARTH animals, which is accompanied particularly by an increase in heat-evoked responses of wide-dynamic range neurons, a group of nociceptive SDH neurones. Facilitation of pain behaviour induced by GAL in the DMH was reversed by lidocaine in the DRt and by ondansetron, a 5HT3R antagonist, in the spinal cord. However, the hyperalgesia induced by glutamate in the DRt was not blocked by spinal ondansetron. In addition, in ARTH but not SHAM animals PWL was increased after lidocaine in the DRt and ondansetron in the spinal cord. Our data demonstrate that GAL in the DMH activates two independent descending facilitatory pathways: (i) one relays in the DRt and (ii) the other one involves 5-HT neurones acting on spinal 5HT3Rs. In experimental ARTH, the tonic pain-facilitatory action is increased in both of these descending pathways.
Collapse
Affiliation(s)
- Diana Amorim
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Institute of Biomedicine/Physiology, University of Helsinki, Helsinki, Finland
| | - Hanna Viisanen
- Institute of Biomedicine/Physiology, University of Helsinki, Helsinki, Finland
| | - Hong Wei
- Institute of Biomedicine/Physiology, University of Helsinki, Helsinki, Finland
| | - Armando Almeida
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Antti Pertovaara
- Institute of Biomedicine/Physiology, University of Helsinki, Helsinki, Finland
| | - Filipa Pinto-Ribeiro
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
18
|
Silva M, Martins D, Tavares I, Morgado C. Inhibition of spinal 5-HT3R reverted diabetes-induced mechanical hypersensitivity in a GABAAR-mediated neurotransmission-dependent manner. Neuroscience 2015. [PMID: 26210577 DOI: 10.1016/j.neuroscience.2015.07.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Spinal 5-HT3 receptor (5-HT3R) has been implicated in chronic pain development. The extent to which 5-HT3R contributes to spinal sensitization and diabetic neuropathic pain (DNP) remains elusive and the mechanisms subserving the effects of 5-HT3R activation on spinal pain processing during chronic pain are still unclear. In this study, we evaluated the contribution of spinal 5-HT3R to pain facilitation and spinal sensitization during DNP, exploiting the role of GABAAR-mediated neurotransmission and glial activation in the effects elicited by intrathecal administration of a 5-HT3R antagonist. Mechanical nociception was evaluated by paw pressure test in streptozotocin (STZ)-diabetic and control rats after intrathecal (i.t.) administration of a 5-HT3R antagonist (Y25130). The spinal activation of extracellular signal-regulated kinases (ERKs) pathway and the expression of 5-HT3R, glial fibrillary acidic protein (GFAP; marker of astroglia activation) and ionized calcium binding adaptor molecule 1 (IBA-1; marker of microglia activation) were evaluated at the peak maximum effect of Y25130. The involvement of GABAAR-mediated neurotransmission in the behavioral pain effect of Y25130, was assessed in STZ-diabetic animals receiving i.t. administrations of muscimol (GABAAR agonist). Intrathecal administration of Y25130 reverted mechanical hyperalgesia and decreased the activation of ERKs in STZ-diabetic rats, while no effects were observed in control animals. The spinal activation of GABAAR by i.t. administration of muscimol abolished Y25130-driven antinociception. The expression of IBA-1, GFAP and 5-HT3R was unaltered by treatment. These findings point to a GABA-mediated pronociceptive role of spinal 5-HT3R during DNP.
Collapse
Affiliation(s)
- M Silva
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, Portugal; i3S - Instituto de Inovação e investigação em Saúde, Universidade do Porto, Portugal
| | - D Martins
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, Portugal; i3S - Instituto de Inovação e investigação em Saúde, Universidade do Porto, Portugal
| | - I Tavares
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, Portugal; i3S - Instituto de Inovação e investigação em Saúde, Universidade do Porto, Portugal.
| | - C Morgado
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, Portugal; i3S - Instituto de Inovação e investigação em Saúde, Universidade do Porto, Portugal
| |
Collapse
|
19
|
Nguyen HTT, Bhattarai JP, Park SJ, Lee JC, Cho DH, Han SK. Enhanced GABA action on the substantia gelatinosa neurons of the medullary dorsal horn in the offspring of streptozotocin-injected mice. J Diabetes Complications 2015; 29:629-36. [PMID: 25891974 DOI: 10.1016/j.jdiacomp.2015.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 03/06/2015] [Accepted: 03/11/2015] [Indexed: 11/20/2022]
Abstract
Peripheral neuropathy is a frequent complication of diabetes mellitus and a common symptom of neuropathic pain, the mechanism of which is complex and involves both peripheral and central components of the sensory system. The lamina II of the medullary dorsal horn, called the substantia gelatinosa (SG), is well known to be a critical site for processing of orofacial nociceptive information. Although there have been a number of studies done on diabetic neuropathy related to the orofacial region, the action of neurotransmitter receptors on SG neurons in the diabetic state is not yet fully understood. Therefore, we used the whole-cell patch clamp technique to investigate this alteration on SG neurons in both streptozotocin (STZ)-induced diabetic mice and offspring from diabetic female mice. STZ (200 mg/kg)-injected mice showed a small decrease in body weight and a significant increase in blood glucose level when compared with their respective control group. However, application of different concentrations of glycine, gamma-aminobutyric acid (GABA) and glutamate on SG neurons from STZ-injected mice did not induce any significant differences in inward currents when compared to their control counterparts. On the other hand, the offspring of diabetic female mice (induced by multiple injections of STZ (40 mg/kg) for 5 consecutive days) led to a significant decrease in both body weight and blood glucose level compared to the control offspring. Glycine and glutamate responses in the SG neurons of the offspring from diabetic female mice were similar to those of control offspring. However, the GABA response in SG neurons of offspring from diabetic female mice was greater than that of control offspring. Furthermore, the GABA-mediated responses in offspring from diabetic and control mice were examined at different concentrations ranging from 3 to 1,000 μM. At each concentration, the GABA-induced mean inward currents in the SG neurons of offspring from diabetic female mice were larger than those of control mice. These results demonstrate that SG neurons in offspring from diabetic mice are more sensitive to GABA compared to control mice, suggesting that GABA sensitivity may alter orofacial pain processing in offspring from diabetic female mice.
Collapse
Affiliation(s)
- Hoang Thi Thanh Nguyen
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju, Republic of Korea
| | - Janardhan Prasad Bhattarai
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju, Republic of Korea
| | - Soo Joung Park
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju, Republic of Korea
| | - Jeong Chae Lee
- Department of Orthodontics, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju, Republic of Korea
| | - Dong Hyu Cho
- Department of Obstetrics and Gynecology, Chonbuk National University Hospital and School of Medicine, Jeonju, Republic of Korea.
| | - Seong Kyu Han
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju, Republic of Korea.
| |
Collapse
|
20
|
Tan AM, Samad OA, Dib-Hajj SD, Waxman SG. Virus-Mediated Knockdown of Nav1.3 in Dorsal Root Ganglia of STZ-Induced Diabetic Rats Alleviates Tactile Allodynia. Mol Med 2015; 21:544-52. [PMID: 26101954 DOI: 10.2119/molmed.2015.00063] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 06/16/2015] [Indexed: 11/06/2022] Open
Abstract
Diabetic neuropathic pain affects a substantial number of people and represents a major public health problem. Available clinical treatments for diabetic neuropathic pain remain only partially effective and many of these treatments carry the burden of side effects or the risk of dependence. The misexpression of sodium channels within nociceptive neurons contributes to abnormal electrical activity associated with neuropathic pain. Voltage-gated sodium channel Nav1.3 produces tetrodotoxin-sensitive sodium currents with rapid repriming kinetics and has been shown to contribute to neuronal hyperexcitability and ectopic firing in injured neurons. Suppression of Nav1.3 activity can attenuate neuropathic pain induced by peripheral nerve injury. Previous studies have shown that expression of Nav1.3 is upregulated in dorsal root ganglion (DRG) neurons of diabetic rats that exhibit neuropathic pain. Here, we hypothesized that viral-mediated knockdown of Nav1.3 in painful diabetic neuropathy would reduce neuropathic pain. We used a validated recombinant adeno-associated virus (AAV)-shRNA-Nav1.3 vector to knockdown expression of Nav1.3, via a clinically applicable intrathecal injection method. Three weeks following vector administration, we observed a significant rate of transduction in DRGs of diabetic rats that concomitantly reduced neuronal excitability of dorsal horn neurons and reduced behavioral evidence of tactile allodynia. Taken together, these findings offer a novel gene therapy approach for addressing chronic diabetic neuropathic pain.
Collapse
Affiliation(s)
- Andrew M Tan
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, United States of America; and Center for Neuroscience and Regeneration Research, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, United States of America
| | - Omar A Samad
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, United States of America; and Center for Neuroscience and Regeneration Research, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, United States of America
| | - Sulayman D Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, United States of America; and Center for Neuroscience and Regeneration Research, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, United States of America
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, United States of America; and Center for Neuroscience and Regeneration Research, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, United States of America
| |
Collapse
|
21
|
Austin PJ, Bembrick AL, Denyer GS, Keay KA. Injury-Dependent and Disability-Specific Lumbar Spinal Gene Regulation following Sciatic Nerve Injury in the Rat. PLoS One 2015; 10:e0124755. [PMID: 25905723 PMCID: PMC4408097 DOI: 10.1371/journal.pone.0124755] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 03/06/2015] [Indexed: 12/23/2022] Open
Abstract
Allodynia, hyperalgesia and spontaneous pain are cardinal sensory signs of neuropathic pain. Clinically, many neuropathic pain patients experience affective-motivational state changes, including reduced familial and social interactions, decreased motivation, anhedonia and depression which are severely debilitating. In earlier studies we have shown that sciatic nerve chronic constriction injury (CCI) disrupts social interactions, sleep-wake-cycle and endocrine function in one third of rats, a subgroup reliably identified six days after injury. CCI consistently produces allodynia and hyperalgesia, the intensity of which was unrelated either to the altered social interactions, sleep-wake-cycle or endocrine changes. This decoupling of the sensory consequences of nerve injury from the affective-motivational changes is reported in both animal experiments and human clinical data. The sensory changes triggered by CCI are mediated primarily by functional changes in the lumbar dorsal horn, however, whether lumbar spinal changes may drive different affective-motivational states has never been considered. In these studies, we used microarrays to identify the unique transcriptomes of rats with altered social behaviours following sciatic CCI to determine whether specific patterns of lumbar spinal adaptations characterised this subgroup. Rats underwent CCI and on the basis of reductions in dominance behaviour in resident-intruder social interactions were categorised as having Pain & Disability, Pain & Transient Disability or Pain alone. We examined the lumbar spinal transcriptomes two and six days after CCI. Fifty-four ‘disability-specific’ genes were identified. Sixty-five percent were unique to Pain & Disability rats, two-thirds of which were associated with neurotransmission, inflammation and/or cellular stress. In contrast, 40% of genes differentially regulated in rats without disabilities were involved with more general homeostatic processes (cellular structure, transcription or translation). We suggest that these patterns of gene expression lead to either the expression of disability, or to resilience and recovery, by modifying local spinal circuitry at the origin of ascending supraspinal pathways.
Collapse
Affiliation(s)
- Paul J. Austin
- School of Medical Sciences (Anatomy & Histology), The University of Sydney, Sydney, NSW, Australia
| | - Alison L. Bembrick
- School of Medical Sciences (Anatomy & Histology), The University of Sydney, Sydney, NSW, Australia
| | - Gareth S. Denyer
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW, Australia
| | - Kevin A. Keay
- School of Medical Sciences (Anatomy & Histology), The University of Sydney, Sydney, NSW, Australia
- * E-mail:
| |
Collapse
|
22
|
Schuelert N, Gorodetskaya N, Just S, Doods H, Corradini L. Electrophysiological characterization of spinal neurons in different models of diabetes type 1- and type 2-induced neuropathy in rats. Neuroscience 2015; 291:146-54. [PMID: 25686525 DOI: 10.1016/j.neuroscience.2015.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 01/15/2015] [Accepted: 02/03/2015] [Indexed: 10/24/2022]
Abstract
Diabetic polyneuropathy (DPN) is a devastating complication of diabetes. The underlying pathogenesis of DPN is still elusive and an effective treatment devoid of side effects presents a challenge. There is evidence that in type-1 and -2 diabetes, metabolic and morphological changes lead to peripheral nerve damage and altered central nociceptive transmission, which may contribute to neuropathic pain symptoms. We characterized the electrophysiological response properties of spinal wide dynamic range (WDR) neurons in three diabetic models. The streptozotocin (STZ) model was used as a drug-induced model of type-1 diabetes, and the BioBreeding/Worcester (BB/Wor) and Zucker diabetic fatty (ZDF) rat models were used for genetic DPN models. Data were compared to the respective control group (BB/Wor diabetic-resistant, Zucker lean (ZL) and saline-injected Wistar rat). Response properties of WDR neurons to mechanical stimulation and spontaneous activity were assessed. We found abnormal response properties of spinal WDR neurons in all diabetic rats but not controls. Profound differences between models were observed. In BB/Wor diabetic rats evoked responses were increased, while in ZDF rats spontaneous activity was increased and in STZ rats mainly after discharges were increased. The abnormal response properties of neurons might indicate differential pathological, diabetes-induced, changes in spinal neuronal transmission. This study shows for the first time that specific electrophysiological response properties are characteristic for certain models of DPN and that these might reflect the diverse and complex symptomatology of DPN in the clinic.
Collapse
Affiliation(s)
- N Schuelert
- Department of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, 88397 Biberach, Germany.
| | - N Gorodetskaya
- Department of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, 88397 Biberach, Germany
| | - S Just
- Department of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, 88397 Biberach, Germany
| | - H Doods
- Department of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, 88397 Biberach, Germany
| | - L Corradini
- Department of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, 88397 Biberach, Germany
| |
Collapse
|
23
|
Byrne FM, Cheetham S, Vickers S, Chapman V. Characterisation of pain responses in the high fat diet/streptozotocin model of diabetes and the analgesic effects of antidiabetic treatments. J Diabetes Res 2015; 2015:752481. [PMID: 25759824 PMCID: PMC4338392 DOI: 10.1155/2015/752481] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/08/2014] [Accepted: 12/16/2014] [Indexed: 12/12/2022] Open
Abstract
Chronic pain is a common complication of diabetes. The aim of the present study was to characterise pain behaviour in a high fat diet/streptozotocin (HFD/STZ) model of diabetes in the rat, investigate spinal mechanisms, and determine the effects of antidiabetic interventions. Three-week consumption of a high fat diet followed by single injection of STZ (45 mgkg(-1)) produced sustained changes in plasma insulin and glucose until day 120. Hindpaw mechanical withdrawal thresholds were significantly lowered in the model, but mechanically evoked responses of spinal neurones were unaltered, compared to HFD/vehicle rats. HFD/STZ rats had significantly lower numbers of spinal Iba-1 positive cells (morphologically identified as activated microglia) and spinal GFAP immunofluorescence (a marker of astrogliosis) in the spinal cord at day 50, compared to time-matched controls. The PPARγ ligand pioglitazone (10 mgkg(-1)) did not alter HFD/STZ induced metabolic changes or hindpaw withdrawal thresholds of HFD/STZ rats. Daily linagliptin (3 mgkg(-1)) and metformin (200 mgkg(-1)) from day 4 after model induction did not alter plasma glucose or insulin in HFD/STZ rats but significantly prevented changes in the mechanical withdrawal thresholds. The demonstration that currently prescribed antidiabetic drugs prevent aberrant pain behaviour supports the use of this model to investigate pain mechanisms associated with diabetes.
Collapse
Affiliation(s)
| | - Sharon Cheetham
- RenaSci Ltd., BioCity Nottingham, Pennyfoot Street, Nottingham NG1 1GF, UK
| | - Steven Vickers
- RenaSci Ltd., BioCity Nottingham, Pennyfoot Street, Nottingham NG1 1GF, UK
| | - Victoria Chapman
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
- Arthritis Research UK Pain Centre, University of Nottingham, Nottingham NG7 2UH, UK
- *Victoria Chapman:
| |
Collapse
|
24
|
Becker M, Benromano T, Shahar A, Nevo Z, Pick CG. Changes in the basal membrane of dorsal root ganglia Schwann cells explain the biphasic pattern of the peripheral neuropathy in streptozotocin-induced diabetic rats. J Mol Neurosci 2014; 54:704-13. [PMID: 25260693 DOI: 10.1007/s12031-014-0424-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 09/11/2014] [Indexed: 10/24/2022]
Abstract
Peripheral neuropathy is one of the main complications of diabetes mellitus. The current study demonstrated the bimodal pattern of diabetic peripheral neuropathy found in the behavioral study of pain perception in parallel to the histopathological findings in dorsal root ganglia (DRGs) neurons and satellite Schwann cell basement membranes. A gradual decrease in heparan sulfate content, with a reciprocal increase in deposited laminin in the basement membranes of dorsal root ganglia Schwann cells, was shown in streptozotocin-treated rats. In addition, the characteristic biphasic pain profiles were demonstrated in diabetic rats, as shown by hypersensitivity at the third week and hyposensitivity at the tenth week post-streptozotocin injection, accompanied by a continuous decrease in the sciatic nerve conduction velocity. It appears that these basal membrane abnormalities in content of heparan sulfate and laminin, noticed in diabetic rats, may underline the primary damage in dorsal ganglion sensory neurons, simultaneously with the bimodal painful profile in diabetic peripheral neuropathy, simulating the scenario of filtration rate in diabetic kidney.
Collapse
Affiliation(s)
- Maria Becker
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, University of Tel Aviv, Tel Aviv, 69978, Israel
| | | | | | | | | |
Collapse
|
25
|
Wang D, Couture R, Hong Y. Activated microglia in the spinal cord underlies diabetic neuropathic pain. Eur J Pharmacol 2014; 728:59-66. [PMID: 24508519 DOI: 10.1016/j.ejphar.2014.01.057] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 01/23/2014] [Accepted: 01/29/2014] [Indexed: 12/22/2022]
Abstract
Diabetes mellitus is an increasingly common chronic medical condition. Approximately 30% of diabetic patients develop neuropathic pain, manifested as spontaneous pain, hyperalgesia and allodynia. Hyperglycemia induces metabolic changes in peripheral tissues and enhances oxidative stress in nerve fibers. The damages and subsequent reactive inflammation affect structural properties of Schwann cells and axons leading to the release of neuropoietic mediators, such as pro-inflammatory cytokines and pro-nociceptive mediators. Therefore, diabetic neuropathic pain (DNP) shares some histological features and underlying mechanisms with traumatic neuropathy. DNP displays, however, other distinct features; for instance, sensory input to the spinal cord decreases rather than increasing in diabetic patients. Consequently, development of central sensitization in DNP involves mechanisms that are distinct from traumatic neuropathic pain. In DNP, the contribution of spinal cord microglia activation to central sensitization and pain processes is emerging as a new concept. Besides inflammation in the periphery, hyperglycemia and the resulting production of reactive oxygen species affect the local microenvironment in the spinal cord. All these alterations could trigger resting and sessile microglia to the activated phenotype. In turn, microglia synthesize and release pro-inflammatory cytokines and neuroactive molecules capable of inducing hyperactivity of spinal nociceptive neurons. Hence, it is imperative to elucidate glial mechanisms underlying DNP for the development of effective therapeutic agents. The present review highlights the recent developments regarding the contribution of spinal microglia as compelling target for the treatment of DNP.
Collapse
Affiliation(s)
- Dongmei Wang
- College of Life Sciences and Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, New campus, Fuzhou, Fujian 350108, People׳s Republic of China
| | - Réjean Couture
- Department of Physiology, Faculty of Medicine, Université de Montréal, C.P. 6128, Succursale Downtown, Montréal, Québec, Canada H3C 3J7
| | - Yanguo Hong
- College of Life Sciences and Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, New campus, Fuzhou, Fujian 350108, People׳s Republic of China.
| |
Collapse
|
26
|
Lee-Kubli CA, Mixcoatl-Zecuatl T, Jolivalt CG, Calcutt NA. Animal models of diabetes-induced neuropathic pain. Curr Top Behav Neurosci 2014; 20:147-70. [PMID: 24510303 DOI: 10.1007/7854_2014_280] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neuropathy will afflict over half of the approximately 350 million people worldwide who currently suffer from diabetes and around one-third of diabetic patients with neuropathy will suffer from painful symptoms that may be spontaneous or stimulus evoked. Diabetes can be induced in rats or mice by genetic, dietary, or chemical means, and there are a variety of well-characterized models of diabetic neuropathy that replicate either type 1 or type 2 diabetes. Diabetic rodents display aspects of sensorimotor dysfunction such as stimulus-evoked allodynia and hyperalgesia that are widely used to model painful neuropathy. This allows investigation of pathogenic mechanisms and development of potential therapeutic interventions that may alleviate established pain or prevent onset of pain.
Collapse
|
27
|
Burn injury-induced mechanical allodynia is maintained by Rac1-regulated dendritic spine dysgenesis. Exp Neurol 2013; 248:509-19. [DOI: 10.1016/j.expneurol.2013.07.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/16/2013] [Accepted: 07/26/2013] [Indexed: 11/22/2022]
|
28
|
Heritability of nociception IV: neuropathic pain assays are genetically distinct across methods of peripheral nerve injury. Pain 2013; 155:868-880. [PMID: 24071598 DOI: 10.1016/j.pain.2013.09.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 09/07/2013] [Accepted: 09/19/2013] [Indexed: 11/21/2022]
Abstract
Prior genetic correlation analysis of 22 heritable behavioral measures of nociception and hypersensitivity in the mouse identified 5 genetically distinct pain types. In the present study, we reanalyzed that dataset and included the results of an additional 9 assays of nociception and hypersensitivity, with the following goals: to replicate the previously identified 5 pain types; to test whether any of the newly added pain assays represent novel genetically distinct pain types; and to test the level of genetic relatedness among 9 commonly used neuropathic pain assays. Multivariate analysis of pairwise correlations between assays shows that the newly added zymosan-induced heat hypersensitivity assay does not conform to the 2 previously identified groups of heat hypersensitivity assays and cyclophosphamide-induced cystitis, the first organ-specific visceral pain model examined, is genetically distinct from other inflammatory assays. The 4 included mechanical hypersensitivity assays are genetically distinct and do not comprise a single pain type as previously reported. Among the 9 neuropathic pain assays including autotomy, chemotherapy, nerve ligation and spared nerve injury assays, at least 4 genetically distinct types of neuropathic sensory abnormalities were identified, corresponding to differences in nerve injury method. In addition, 2 itch assays and Comt genotype were compared to the expanded set of nociception and hypersensitivity assays. Comt genotype was strongly related only to spontaneous inflammatory nociception assays. These results indicate the priority for continued investigation of genetic mechanisms in several assays newly identified to represent genetically distinct pain types.
Collapse
|
29
|
Carozzi VA, Renn CL, Bardini M, Fazio G, Chiorazzi A, Meregalli C, Oggioni N, Shanks K, Quartu M, Serra MP, Sala B, Cavaletti G, Dorsey SG. Bortezomib-induced painful peripheral neuropathy: an electrophysiological, behavioral, morphological and mechanistic study in the mouse. PLoS One 2013; 8:e72995. [PMID: 24069168 PMCID: PMC3772181 DOI: 10.1371/journal.pone.0072995] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 07/23/2013] [Indexed: 11/18/2022] Open
Abstract
Bortezomib is the first proteasome inhibitor with significant antineoplastic activity for the treatment of relapsed/refractory multiple myeloma as well as other hematological and solid neoplasms. Peripheral neurological complications manifesting with paresthesias, burning sensations, dysesthesias, numbness, sensory loss, reduced proprioception and vibratory sensitivity are among the major limiting side effects associated with bortezomib therapy. Although bortezomib-induced painful peripheral neuropathy is clinically easy to diagnose and reliable models are available, its pathophysiology remains partly unclear. In this study we used well-characterized immune-competent and immune-compromised mouse models of bortezomib-induced painful peripheral neuropathy. To characterize the drug-induced pathological changes in the peripheral nervous system, we examined the involvement of spinal cord neuronal function in the development of neuropathic pain and investigated the relevance of the immune response in painful peripheral neuropathy induced by bortezomib. We found that bortezomib treatment induced morphological changes in the spinal cord, dorsal roots, dorsal root ganglia (DRG) and peripheral nerves. Neurophysiological abnormalities and specific functional alterations in Aδ and C fibers were also observed in peripheral nerve fibers. Mice developed mechanical allodynia and functional abnormalities of wide dynamic range neurons in the dorsal horn of spinal cord. Bortezomib induced increased expression of the neuronal stress marker activating transcription factor-3 in most DRG. Moreover, the immunodeficient animals treated with bortezomib developed a painful peripheral neuropathy with the same features observed in the immunocompetent mice. In conclusion, this study extends the knowledge of the sites of damage induced in the nervous system by bortezomib administration. Moreover, a selective functional vulnerability of peripheral nerve fiber subpopulations was found as well as a change in the electrical activity of wide dynamic range neurons of dorsal horn of spinal cord. Finally, the immune response is not a key factor in the development of morphological and functional damage induced by bortezomib in the peripheral nervous system.
Collapse
Affiliation(s)
- Valentina A. Carozzi
- Department of Surgery and Translational Medicine, University of Milan Bicocca, Monza, Italy
- * E-mail: (VAC)
| | - Cynthia L. Renn
- School of Nursing, Center for Pain Studies, University of Maryland, Baltimore, Maryland, United States of America
| | - Michela Bardini
- “M. Tettamanti” Research Center, Department of Health Sciences, University of Milan Bicocca, Monza, Italy
| | - Grazia Fazio
- “M. Tettamanti” Research Center, Department of Health Sciences, University of Milan Bicocca, Monza, Italy
| | - Alessia Chiorazzi
- Department of Surgery and Translational Medicine, University of Milan Bicocca, Monza, Italy
| | - Cristina Meregalli
- Department of Surgery and Translational Medicine, University of Milan Bicocca, Monza, Italy
| | - Norberto Oggioni
- Department of Surgery and Translational Medicine, University of Milan Bicocca, Monza, Italy
| | - Kathleen Shanks
- School of Nursing, Center for Pain Studies, University of Maryland, Baltimore, Maryland, United States of America
| | - Marina Quartu
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Monserrato, Italy
| | - Maria Pina Serra
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Monserrato, Italy
| | - Barbara Sala
- Department of Surgery and Translational Medicine, University of Milan Bicocca, Monza, Italy
| | - Guido Cavaletti
- Department of Surgery and Translational Medicine, University of Milan Bicocca, Monza, Italy
| | - Susan G. Dorsey
- School of Nursing, Center for Pain Studies, University of Maryland, Baltimore, Maryland, United States of America
| |
Collapse
|
30
|
Koivisto A, Pertovaara A. Transient receptor potential ankyrin 1 (TRPA1) ion channel in the pathophysiology of peripheral diabetic neuropathy. Scand J Pain 2013; 4:129-136. [DOI: 10.1016/j.sjpain.2012.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 11/04/2012] [Indexed: 01/13/2023]
Abstract
Abstract
Background
Transient receptor potential ankyrin 1 (TRPA1) is a non-selective cation channel permeable to calcium that is expressed on pain-mediating primary afferent nerve fibers. Here we review recent experimental evidence supporting the hypothesis that activation of the TRPA1 channel by reactive compounds generated in diabetes mellitus, such as 4-hydroxynonenal and methylglyoxal, exerts an important role in the pathophysiology of peripheral diabetic neuropathy (PDN). The hypothesis includes development of the early diabetic pain hypersensitivity and the later loss of cutaneous nerve endings of pain fibers and their dysfunction, which are hallmarks of peripheral diabetic neuropathy (PDN).
Methods
The evidence for a role of the TRPA1 channel in PDN consists of in vitro patch clamp and calcium imaging data and assessments of pain behavior, axon reflex measurements, and immunohistochemical analyses of cutaneous innervation in an experimental animal model of diabetes. The experiments were combined with blocking the TRPA1 channel with selective antagonists Chembridge-5861528 or A-967079.
Results
In vitro studies indicate that under physiological concentration of Ca2+, methylglyoxal and 4-hydroxynonenal produce sustained activation of the TRPA1 channel and sustained inflow of calcium. In vivo studies indicate that diabetic pain hypersensitivity is maintained by the TRPA1 channel as indicated by the antihypersensitivity effect induced by acute blocking of the TRPA1 channel. Moreover, TRPA1 channel is involved in the development of diabetic hypersensitivity as indicated by prevention of the development of pain hypersensitivity in diabetic animals treated daily with Chembridge-5861528. The diabetes-induced loss of substance P-like cutaneous innervation and that of the TRPA1 channel-mediated cutaneous axon reflex function during the later phase of diabetes were also prevented or delayed by prolonged blocking of the TRPA1 channel. No motor impairment or other obvious side-effects were observed following block of the TRPA1 channel.
Conclusions
Together the in vitro and in vivo results indicate that reactive compounds generated in diabetes exert, through action on the TRPA1 channel, an important role in the pathophysiology of PDN. Sustained activation of the TRPA1 channel is a plausible mechanism that contributes to the early diabetic pain hypersensitivity and the later loss of cutaneous pain fiber endings and their dysfunction with prolonged diabetes.
Implications
Blocking the TRPA1 channel with a selective antagonist provides a promising disease-modifying treatment for PDN, with only minor, if any, side-effects.
Collapse
Affiliation(s)
- Ari Koivisto
- Orion Corporation , OrionPharma , Turku , Finland
| | - Antti Pertovaara
- Institute of Biomedicine/Physiology , University of Helsinki , Helsinki , Finland
| |
Collapse
|
31
|
Silva M, Amorim D, Almeida A, Tavares I, Pinto-Ribeiro F, Morgado C. Pronociceptive changes in the activity of rostroventromedial medulla (RVM) pain modulatory cells in the streptozotocin-diabetic rat. Brain Res Bull 2013; 96:39-44. [PMID: 23644033 DOI: 10.1016/j.brainresbull.2013.04.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 04/06/2013] [Accepted: 04/19/2013] [Indexed: 12/12/2022]
Abstract
Neuropathic pain is one of the most frequent complications of diabetes. The increased neuronal activity of primary afferents and spinal cord neurons in streptozotocin (STZ)-diabetic rats increases the recruitment of the nociceptive ascending pathways, which may affect the activity of pain control circuits in the brain. This study aimed to characterize the electrophysiological responses of neurons of the rostroventromedial medulla (RVM), a key brainstem area involved in descending modulation of nociceptive neurotransmission at the spinal cord, in STZ-diabetic rats. Spontaneous and noxious-evoked activity of ON-like cells (pain facilitatory cells) and OFF-like cells (pain inhibitory cells) in the RVM were analyzed by single cell extracellular electrophysiological recordings in STZ-diabetic rats with behavioral signs of diabetic neuropathic pain 4 weeks after diabetes induction and in age-matched non-diabetic controls (CTRL). The electrophysiological analysis revealed an increase in the spontaneous activity of RVM pronociceptive ON-like cells in STZ-diabetic rats when compared to CTRL. On the contrary, the number of active antinociceptive OFF-like cells was significantly lower in the STZ-diabetic rats and their spontaneous activity was decreased when compared with CTRL. Overall, the changes in the activity of RVM pain modulatory cells in STZ-diabetic rats point to enhancement of descending pain facilitation. Based on similar results obtained at the RVM in traumatic neuropathic pain models, the changes in the electrophysiological responses of RVM in STZ-diabetic rats may account for exacerbated pain-like behaviors in diabetic neuropathy.
Collapse
Affiliation(s)
- M Silva
- Department of Experimental Biology, Faculty of Medicine of Porto and IBMC, University of Porto, Rua Dr Plácido Costa, 4200-450 Porto, Portugal.
| | | | | | | | | | | |
Collapse
|
32
|
Catechol-O-methyltransferase gene polymorphism and chronic human pain: a systematic review and meta-analysis. Pharmacogenet Genomics 2013; 22:673-91. [PMID: 22722321 DOI: 10.1097/fpc.0b013e3283560c46] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In human studies, low COMT (catechol-O-methyltransferase) activity has been associated with increased sensitivity to acute clinical preoperative or postoperative pain. We explored the association between the COMT genotype and three chronic pain conditions: migrainous headache, fibromyalgia, or chronic widespread pain and chronic musculoskeletal pain. Furthermore, we evaluated whether COMT genotype affects the efficacy of opioids in chronic pain. After a systematic literature review, we carried out meta-analyses on the three chronic pain conditions. The efficacy of opioids was evaluated using a systematic review only. The meta-analyses showed that fibromyalgia or chronic widespread pain is the only type of chronic pain that could be associated with the COMT single nucleotide polymorphism rs4680 (Val158Met). Met158, which results in the low-activity variant of COMT, is the risk allele. In chronic clinical pain, the effect of the COMT polymorphism depends on the pain condition. Low COMT activity is not associated with migrainous headache or chronic musculoskeletal pain conditions, but it may increase the risk for fibromyalgia or chronic widespread pain. Low COMT activity increases opioid receptors and enhances opioid analgesia and adverse effects in some cancer pains. Findings from animal studies that have utilized COMT inhibitors elucidate the mechanism behind these findings. In rodent pain models, COMT inhibitors are pronociceptive, except for neuropathic pain models, where nitecapone was found to be antiallodynic. The complex interplay between enhanced adrenergic and dopaminergic activity in different parts of the nociceptive system probably explains the complicated actions of low COMT activity.
Collapse
|
33
|
Wei H, Viisanen H, Amorim D, Koivisto A, Pertovaara A. Dissociated modulation of conditioned place-preference and mechanical hypersensitivity by a TRPA1 channel antagonist in peripheral neuropathy. Pharmacol Biochem Behav 2013; 104:90-6. [DOI: 10.1016/j.pbb.2012.12.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 12/11/2012] [Accepted: 12/19/2012] [Indexed: 12/22/2022]
|
34
|
Segall SK, Maixner W, Belfer I, Wiltshire T, Seltzer Z, Diatchenko L. Janus molecule I: dichotomous effects of COMT in neuropathic vs nociceptive pain modalities. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2012; 11:222-35. [PMID: 22483297 DOI: 10.2174/187152712800672490] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 10/27/2011] [Accepted: 10/28/2012] [Indexed: 01/02/2023]
Abstract
The enzyme catechol-O-methyltransferase (COMT) has been shown to play a critical role in pain perception by regulating levels of epinephrine (Epi) and norepinephrine (NE). Although the key contribution of catecholamines to the perception of pain has been recognized for a long time, there is a clear dichotomy of observations. More than a century of research has demonstrated that increasing adrenergic transmission in the spinal cord decreases pain sensitivity in animals. Equally abundant evidence demonstrates the opposite effect of adrenergic signaling in the peripheral nervous system, where adrenergic signaling increases pain sensitivity. Viewing pain processing within spinal and peripheral compartments and determining the directionality of adrenergic signaling helps clarify the seemingly contradictory findings of the pain modulatory properties of adrenergic receptor agonists and antagonists presented in other reviews. Available evidence suggests that adrenergic signaling contributes to pain phenotypes through α(1/2) and β(2/3) receptors. While stimulation of α(2) adrenergic receptors seems to uniformly produce analgesia, stimulation of α(1) or β receptors produces either analgesic or hyperalgesic effects. Establishing the directionality of adrenergic receptor modulation of pain processing, and related COMT activity in different pain models are needed to bring meaning to recent human molecular genetic findings. This will enable the translation of current findings into meaningful clinical applications such as diagnostic markers and novel therapeutic targets for complex human pain conditions.
Collapse
Affiliation(s)
- S K Segall
- Center for Neurosensory Disorders, University of North Carolina, Chapel Hill, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Diabetic neuropathic pain imposes a huge burden on individuals and society, and represents a major public health problem. Despite aggressive efforts, diabetic neuropathic pain is generally refractory to available clinical treatments. A structure-function link between maladaptive dendritic spine plasticity and pain has been demonstrated previously in CNS and PNS injury models of neuropathic pain. Here, we reasoned that if dendritic spine remodeling contributes to diabetic neuropathic pain, then (1) the presence of malformed spines should coincide with the development of pain, and (2) disrupting maladaptive spine structure should reduce chronic pain. To determine whether dendritic spine remodeling contributes to neuropathic pain in streptozotocin (STZ)-induced diabetic rats, we analyzed dendritic spine morphology and electrophysiological and behavioral signs of neuropathic pain. Our results show changes in dendritic spine shape, distribution, and shape on wide-dynamic-range (WDR) neurons within lamina IV-V of the dorsal horn in diabetes. These diabetes-induced changes were accompanied by WDR neuron hyperexcitability and decreased pain thresholds at 4 weeks. Treatment with NSC23766 (N(6)-[2-[[4-(diethylamino)-1-methylbutyl]amino]-6-methyl-4-pyrimidinyl]-2-methyl-4,6-quinolinediamine trihydrochloride), a Rac1-specific inhibitor known to interfere with spine plasticity, decreased the presence of malformed spines in diabetes, attenuated neuronal hyperresponsiveness to peripheral stimuli, reduced spontaneous firing activity from WDR neurons, and improved nociceptive mechanical pain thresholds. At 1 week after STZ injection, animals with hyperglycemia with no evidence of pain had few or no changes in spine morphology. These results demonstrate that diabetes-induced maladaptive dendritic spine remodeling has a mechanistic role in neuropathic pain. Molecular pathways that control spine morphogenesis and plasticity may be promising future targets for treatment.
Collapse
|
36
|
Xiang X, Jiang Y, Ni Y, Fan M, Shen F, Wang X, Han J, Cui C. Catechol-O-methyltransferase polymorphisms do not play a significant role in pain perception in male Chinese Han population. Physiol Genomics 2012; 44:318-28. [PMID: 22253202 DOI: 10.1152/physiolgenomics.00162.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Polymorphisms in the human catechol-O-methyltransferase (COMT) gene have been widely studied for their role in pain and analgesia. In this study, sensitivity to potassium iontophoresis, visual analog scale measurements for fixed twofold pain threshold stimulation and pain threshold changes induced by transcutaneous electrical acupoint stimulation (TEAS) were assessed in a population of healthy Chinese males. These results were correlated with the alleles of six single nucleotide polymorphisms (SNP) or diplotypes of common haplotypes designated as low pain sensitive, average pain sensitive, and high pain sensitive in the COMT gene of these subjects. Our results reveal that the alleles of each SNP are not significantly correlated with pain perception except for the rs4633 allele in the 2 Hz TEAS session (P < 0.05). In addition, the six diplotypes of COMT haplotypes, which cover 92.5% of the Chinese population, are also not correlated with pain perception. Moreover, there were no significant differences in pain threshold changes induced by 2 and 100 Hz TEAS among the diplotypes of each SNP or the various haplotypes. These results suggest that COMT activity do not play a significant role in pain perception and TEAS-induced analgesia in the Chinese Han male population.
Collapse
Affiliation(s)
- Xiaohui Xiang
- Neuroscience Research Institute, Peking University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Morgado C, Terra PP, Tavares I. Neuronal hyperactivity at the spinal cord and periaqueductal grey during painful diabetic neuropathy: Effects of gabapentin. Eur J Pain 2012; 14:693-9. [DOI: 10.1016/j.ejpain.2009.11.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 11/04/2009] [Accepted: 11/27/2009] [Indexed: 02/08/2023]
|
38
|
Nitecapone reduces development and symptoms of neuropathic pain after spinal nerve ligation in rats1. Eur J Pain 2012; 15:732-40. [DOI: 10.1016/j.ejpain.2010.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Revised: 11/03/2010] [Accepted: 12/08/2010] [Indexed: 12/26/2022]
|
39
|
Ghorbani MLM, Qin C, Wu M, Farber JP, Sheykhzade M, Fjalland B, Nyborg NCB, Foreman RD. Characterization of upper thoracic spinal neurons receiving noxious cardiac and/or somatic inputs in diabetic rats. Auton Neurosci 2011; 165:168-77. [PMID: 21862419 DOI: 10.1016/j.autneu.2011.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 07/19/2011] [Accepted: 07/25/2011] [Indexed: 01/11/2023]
Abstract
The aim of the present study was to examine spinal processing of cardiac and somatic nociceptive input in rats with STZ-induced diabetes. Type 1 diabetes was induced with streptozotocin (50mg/kg) in 14 male Sprague-Dawley rats and citrate buffer was injected in 14 control rats. After 4-11 weeks, the rats were anesthetized with pentobarbital, ventilated and paralyzed. A laminectomy enabled extracellular recording of T(3) spinal cord neuronal activity. Intrapericardial administration of a mixture of algogenic chemicals (bradykinin, serotonin, prostaglandin E(2) (all at 10(-5)M), and adenosine (10(-3)M)) was applied to activate nociceptors of cardiac afferent nerve endings. Furthermore, somatic receptive properties were examined by applying innocuous (brush and light pressure) and noxious (pinch) cutaneous mechanical stimuli. Diabetes-induced increases in spontaneous activity were observed in subsets of neurons exhibiting long-lasting excitatory responses to administration of the algogenic mixture. Algogenic chemicals altered activity of a larger proportion of neurons from diabetic animals (73/111) than control animals (55/115, P<0.05). Some subtypes of neurons exhibiting long-lasting excitatory responses, elicited prolonged duration and others, had a shortened latency. Some neurons exhibiting short-lasting excitatory responses in diabetic animals elicited a shorter latency and some a decreased excitatory change. The size of the somatic receptive field was increased for cardiosomatic neurons from diabetic animals. Cutaneous somatic mechanical stimulation caused spinal neurons to respond with a mixture of hyper- and hypoexcitability. In conclusion, diabetes induced changes in the spinal processing of cardiac input and these might contribute to cardiovascular autonomic neuropathy in patients with diabetes.
Collapse
Affiliation(s)
- Marie Louise M Ghorbani
- Dept. Pharmacology and Pharmacotherapy, Faculty of Pharmaceutical Sciences, Copenhagen University, DK-2100 Copenhagen, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Freshwater JD, Calcutt NA. Low Doses of Formalin Reveal Allodynia in Diabetic Rats. ACTA ACUST UNITED AC 2011. [DOI: 10.3109/j426v01n01_08] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
41
|
Inhibiting TRPA1 ion channel reduces loss of cutaneous nerve fiber function in diabetic animals: sustained activation of the TRPA1 channel contributes to the pathogenesis of peripheral diabetic neuropathy. Pharmacol Res 2011; 65:149-58. [PMID: 22133672 DOI: 10.1016/j.phrs.2011.10.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 10/21/2011] [Accepted: 10/22/2011] [Indexed: 11/24/2022]
Abstract
Peripheral diabetic neuropathy (PDN) is a devastating complication of diabetes mellitus (DM). Here we test the hypothesis that the transient receptor potential ankyrin 1 (TRPA1) ion channel on primary afferent nerve fibers is involved in the pathogenesis of PDN, due to sustained activation by reactive compounds generated in DM. DM was induced by streptozotocin in rats that were treated daily for 28 days with a TRPA1 channel antagonist (Chembridge-5861528) or vehicle. Laser Doppler flow method was used for assessing axon reflex induced by intraplantar injection of a TRPA1 channel agonist (cinnamaldehyde) and immunohistochemistry to assess substance P-like innervation of the skin. In vitro calcium imaging and patch clamp were used to assess whether endogenous TRPA1 agonists (4-hydroxynonenal and methylglyoxal) generated in DM induce sustained activation of the TRPA1 channel. Axon reflex induced by a TRPA1 channel agonist in the plantar skin was suppressed and the number of substance P-like immunoreactive nerve fibers was decreased 4 weeks after induction of DM. Prolonged treatment with Chembridge-5861528 reduced the DM-induced attenuation of the cutaneous axon reflex and loss of substance P-like immunoreactive nerve fibers. Moreover, in vitro calcium imaging and patch clamp results indicated that reactive compounds generated in DM (4-hydroxynonenal and methylglyoxal) produced sustained activations of the TRPA1 channel, a prerequisite for adverse long-term effects. The results indicate that the TRPA1 channel exerts an important role in the pathogenesis of PDN. Blocking the TRPA1 channel provides a selective disease-modifying treatment of PDN.
Collapse
|
42
|
Lennertz RC, Medler KA, Bain JL, Wright DE, Stucky CL. Impaired sensory nerve function and axon morphology in mice with diabetic neuropathy. J Neurophysiol 2011; 106:905-14. [PMID: 21653724 DOI: 10.1152/jn.01123.2010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Diabetes is the most prevalent metabolic disorder in the United States, and between 50% and 70% of diabetic patients suffer from diabetes-induced neuropathy. Yet our current knowledge of the functional changes in sensory nerves and their distal terminals caused by diabetes is limited. Here, we set out to investigate the functional and morphological consequences of diabetes on specific subtypes of cutaneous sensory nerves in mice. Diabetes was induced in C57Bl/6 mice by a single intraperitoneal injection of streptozotocin. After 6-8 wk, mice were characterized for behavioral sensitivity to mechanical and heat stimuli followed by analysis of sensory function using teased nerve fiber recordings and histological assessment of nerve fiber morphology. Diabetes produced severe functional impairment of C-fibers and rapidly adapting Aβ-fibers, leading to behavioral hyposensitivity to both mechanical and heat stimuli. Electron microscopy images showed that diabetic nerves have axoplasm with more concentrated organelles and frequent axon-myelin separations compared with control nerves. These changes were restricted to the distal nerve segments nearing their innervation territory. Furthermore, the relative proportion of Aβ-fibers was reduced in diabetic skin-nerve preparations compared with nondiabetic control mice. These data identify significant deficits in sensory nerve terminal function that are associated with distal fiber loss, morphological damage, and behavioral hyposensitivity in diabetic C57Bl/6 mice. These findings suggest that diabetes damages sensory nerves, leading to functional deficits in sensory signaling that underlie the loss of tactile acuity and pain sensation associated with insensate diabetic neuropathy.
Collapse
Affiliation(s)
- Richard C Lennertz
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226-0509, USA
| | | | | | | | | |
Collapse
|
43
|
Renn CL, Leitch CC, Lessans S, Rhee P, McGuire WC, Smith BA, Traub RJ, Dorsey SG. Brain-derived neurotrophic factor modulates antiretroviral-induced mechanical allodynia in the mouse. J Neurosci Res 2011; 89:1551-65. [PMID: 21647939 DOI: 10.1002/jnr.22685] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 04/06/2011] [Accepted: 04/12/2011] [Indexed: 01/12/2023]
Abstract
Nucleoside reverse transcriptase inhibitors (NRTIs) are key components of HIV/AIDS treatment to reduce viral load. However, these drugs can induce chronic neuropathic pain, leading to increased morbidity in HIV patients. This study examines the role of brain-derived neurotrophic factor (BDNF) in the spinal dorsal horn (SDH) in development of mechanical allodynia in male C57BL/6J mice treated with the NRTI stavudine (d4T). After d4T administration, mice developed increased neuronal activity and BDNF expression in the SDH and hind paw mechanical allodynia that was exacerbated by intrathecal BDNF administration. Intrathecal BDNF alone also increased neuronal activity and caused mechanical allodynia. Because excess BDNF amplified d4T-induced mechanical allodynia and neuronal activity, the impact of decreasing BDNF in the SDH was investigated. After d4T, BDNF heterozygous mice were less allodynic than wild-type littermates, which was negated by intrathecal BDNF administration. Finally, pretreatment with intrathecal trkB-Fc chimera prior to d4T or administration of the tyrosine kinase inhibitor K252a 3 days after d4T blocked BDNF-mediated signaling, significantly attenuated the development of mechanical allodynia (trkB-Fc), and decreased neuronal activity (trkB-Fc and K252a). Taken together, these findings provide evidence that BDNF in the SDH contributes to the development of NRTI-induced painful peripheral neuropathy and may represent a new therapeutic opportunity.
Collapse
Affiliation(s)
- Cynthia L Renn
- Department of Organizational Systems and Adult Health, School of Nursing, University of Maryland, Baltimore, Maryland 21201-1579, USA.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Can ÖD, Öztürk Y, Öztürk N, Sagratini G, Ricciutelli M, Vittori S, Maggi F. Effects of treatment with St. John's Wort on blood glucose levels and pain perceptions of streptozotocin-diabetic rats. Fitoterapia 2011; 82:576-84. [DOI: 10.1016/j.fitote.2011.01.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 01/04/2011] [Accepted: 01/17/2011] [Indexed: 12/24/2022]
|
45
|
Morgado C, Silva L, Pereira-Terra P, Tavares I. Changes in serotoninergic and noradrenergic descending pain pathways during painful diabetic neuropathy: the preventive action of IGF1. Neurobiol Dis 2011; 43:275-84. [PMID: 21515376 DOI: 10.1016/j.nbd.2011.04.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 03/24/2011] [Accepted: 04/07/2011] [Indexed: 12/13/2022] Open
Abstract
Painful diabetic neuropathy (PDN) induces neuronal hyperactivity at the spinal cord and periaqueductal gray (PAG), a key area in descending nociceptive modulation. Since the PAG uses relay stations at serotoninergic and noradrenergic brainstem areas, we determined the serotonin and noradrenaline levels at the spinal cord of streptozotocin-diabetic rats and at those brainstem areas (serotoninergic rostroventromedial medulla and noradrenergic A(5) and A(7) cell groups). Since, during diabetes, the levels of insulin growth factor 1 (IGF1) decrease, reducing its neurotrophic effect in the brain, we also studied the effects of IGF1 treatment. One week after diabetes induction, subcutaneous injections of IGF1 (2.5mg/kg) were performed during 3 weeks. Body weights, glycemia, and mechanical nociception were weekly evaluated until the end of the study, the time when the animals were subjected to a modified formalin test to study chemical allodynia. Serotonin and noradrenaline levels were quantified by ELISA at the spinal cord, whereas at the brainstem, the quantification was performed by immunohistochemistry against, respectively, tryptophan hydroxylase (TpH) or tyrosine hydroxylase (TH). STZ-diabetic rats exhibited mechanical hyperalgesia and chemical allodynia, along with higher spinal levels of serotonin and noradrenaline and higher numbers of neurons expressing TpH at the RVM and TH at the A(5) noradrenergic cell group. Treatment with IGF1 prevented the behavioral signs of PDN and reversed the neuronal hyperactivity at the spinal cord and ventrolateral PAG and the neurochemical changes at the spinal cord and at the brainstem. Based on the facilitatory role of serotoninergic and noradrenergic descending modulation during chronic pain, the increased serotonin and noradrenaline innervation of the dorsal horn in STZ-diabetic rats may probably account for enhanced pain during PDN. The benefits of IGF1 in PDN are probably due to blockade of the increased peripheral input to the somatosensory system, but direct central actions cannot be discarded. The value of IGF1 in PDN treatment deserves further evaluation.
Collapse
Affiliation(s)
- Carla Morgado
- Institute of Histology and Embryology, Faculty of Medicine of Porto, IBMC, University of Porto, Alameda Professor Hernâni Monteiro, 4200–319 Porto, Portugal
| | | | | | | |
Collapse
|
46
|
Morgado C, Pereira-Terra P, Cruz CD, Tavares I. Minocycline completely reverses mechanical hyperalgesia in diabetic rats through microglia-induced changes in the expression of the potassium chloride co-transporter 2 (KCC2) at the spinal cord. Diabetes Obes Metab 2011; 13:150-9. [PMID: 21199267 DOI: 10.1111/j.1463-1326.2010.01333.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AIM neuronal hyperactivity at the spinal cord during mechanical hyperalgesia induced by diabetes may result from a decrease in the local expression of the potassium chloride co-transporter 2 (KCC2), which shifts the action of the neurotransmitter γ-amminobutiric acid (GABA) from inhibitory to excitatory. In this study, we evaluated the effects of spinal microglia inhibition or brain-derived neurotrophic factor (BDNF) blockade on KCC2 expression, spinal neuronal activity and mechanically induced pain responses of streptozotocin (STZ)-diabetic rats. METHODS four weeks after induction of diabetes, the STZ-diabetic rats received daily intrathecal injections, for 3 days, of minocycline (microglia inhibitor), TrkB/Fc (BDNF sequester) or saline. Behavioural responses to mechanical nociceptive stimulation of STZ-diabetic rats were evaluated by the Randall-Selitto test. The lumbar spinal cord was immunoreacted against the Fos protein (marker of neuronal activation) or KCC2, which was also quantified by western blotting. BDNF levels at the spinal cord were quantified by an enzyme-linked immunosorbent assay (ELISA). RESULTS minocycline treatment reversed the mechanical hyperalgesia, increased Fos expression and decreased the KCC2 expression detected in STZ-diabetic rats to control levels. Treatment with TrkB/Fc was less effective, inducing moderate effects in mechanical hyperalgesia and Fos expression and only a partial correction of KCC2 expression. BDNF levels were not increased in STZ-diabetic rats. CONCLUSIONS this study demonstrates that the microglial activation at the spinal cord contributes to mechanical hyperalgesia and spinal neuronal hyperactivity induced by diabetes, apparently by regulating the KCC2 expression. These effects do not seem to be mediated by BDNF, which is an important difference from other chronic pain conditions. New targets directed to prevent spinal microglia activation should be considered for the treatment of mechanical hyperalgesia induced by diabetes.
Collapse
Affiliation(s)
- C Morgado
- Faculty of Medicine of Porto and IBMC, Institute of Histology and Embryology, University of Porto, Alameda Prof. Hernâni Monteiro, Porto, Portugal
| | | | | | | |
Collapse
|
47
|
Kambur O, Talka R, Ansah OB, Kontinen VK, Pertovaara A, Kalso E, Männistö PT. Inhibitors of catechol-O-methyltransferase sensitize mice to pain. Br J Pharmacol 2010; 161:1553-65. [PMID: 20726980 PMCID: PMC3010567 DOI: 10.1111/j.1476-5381.2010.00999.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 06/30/2010] [Accepted: 07/12/2010] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND AND PURPOSE Catechol-O-methyltransferase (COMT) inhibitors are used in Parkinson's disease in which pain is an important symptom. COMT polymorphisms modulate pain and opioid analgesia in humans. In rats, COMT inhibitors have been shown to be pro-nociceptive in acute pain models, but also to attenuate allodynia and hyperalgesia in a model of diabetic neuropathy. Here, we have assessed the effects of acute and repeated administrations of COMT inhibitors on mechanical, thermal and carrageenan-induced nociception in male mice. EXPERIMENTAL APPROACH We used single and repeated administration of a peripherally restricted, short-acting (nitecapone) and also a centrally acting (3,5-dinitrocatechol, OR-486) COMT inhibitor. We also tested CGP 28014, an indirect inhibitor of COMT enzyme. Effects of OR-486 on thermal nociception were also studied in COMT deficient mice. Effects on spinal pathways were assessed in rats given intrathecal nitecapone. KEY RESULTS After single administration, both nitecapone and OR-486 reduced mechanical nociceptive thresholds and thermal nociceptive latencies (hot plate test) at 2 and 3 h, regardless of their brain penetration. These effects were still present after chronic treatment with COMT inhibitors for 5 days. Intraplantar injection of carrageenan reduced nociceptive latencies and both COMT inhibitors potentiated this reduction without modifying inflammation. CGP 28014 shortened paw flick latencies. OR-486 did not modify hot plate times in Comt gene deficient mice. Intrathecal nitecapone modified neither thermal nor mechanical nociception. CONCLUSIONS AND IMPLICATIONS Pro-nociceptive effects of COMT inhibitors were confirmed. The pro-nociceptive effects were primarily mediated via mechanisms acting outside the brain and spinal cord. COMT protein was required for these actions.
Collapse
Affiliation(s)
- O Kambur
- Primary laboratory of origin: Division of Pharmacology and Toxicology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | |
Collapse
|
48
|
Taherianfard M, Akbarpour M, Jelodar G. Pain sensitivity in diabetic rats during estrous. COMPARATIVE CLINICAL PATHOLOGY 2010. [DOI: 10.1007/s00580-009-0830-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Wei H, Chapman H, Saarnilehto M, Kuokkanen K, Koivisto A, Pertovaara A. Roles of cutaneous versus spinal TRPA1 channels in mechanical hypersensitivity in the diabetic or mustard oil-treated non-diabetic rat. Neuropharmacology 2010; 58:578-84. [DOI: 10.1016/j.neuropharm.2009.12.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 11/11/2009] [Accepted: 12/01/2009] [Indexed: 10/20/2022]
|
50
|
Nissinen E, Männistö PT. Biochemistry and Pharmacology of Catechol-O-Methyltransferase Inhibitors. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2010; 95:73-118. [DOI: 10.1016/b978-0-12-381326-8.00005-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|