1
|
Laplante F, Dufresne MM, Ouboudinar J, Ochoa-Sanchez R, Sullivan RM. Reduction in cholinergic interneuron density in the nucleus accumbens attenuates local extracellular dopamine release in response to stress or amphetamine. Synapse 2012; 67:21-9. [PMID: 23034725 DOI: 10.1002/syn.21612] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 09/26/2012] [Accepted: 09/27/2012] [Indexed: 01/24/2023]
Abstract
Depletion of cholinergic interneurons in the ventral striatum (nucleus accumbens or N.Acc.) in adult rats increases the locomotor activating effects of amphetamine. It also impairs sensorimotor gating processes, an effect reversed by the antipsychotic haloperidol. These behavioral effects are suggestive of pronounced hyper-responsiveness of the mesolimbic dopamine (DA) projection to the N.Acc. However, it is unclear whether local cholinergic depletion results predominantly in exaggerated presynaptic DA release or a postsynaptic upregulation of DAergic function. The purpose of the present study is to test the former possibility by employing in vivo voltammetry to examine changes in the levels of extracellular DA within the N.Acc. in response to either mild tail pinch stress or amphetamine administration. While both cholinergic-lesioned and control rats showed reliable stress-induced increases in extracellular DA on two consecutive test days, those in the lesioned rats were significantly less pronounced. In response to amphetamine, a separate cohort of lesioned rats also exhibited smaller increases in extracellular DA release than controls, despite showing greater locomotor activity. Moreover, the increased behavioral response to amphetamine in lesioned rats coincided temporally with decreasing levels of DA in the N.Acc. The results confirm that cholinergic depletion within the N.Acc. suppresses presynaptic DA release and suggest that lesion-induced behavioral effects are more likely due to postsynaptic DA receptor upregulation. The results are also discussed in the context of schizophrenia, where post mortem studies have revealed a selective loss of cholinergic interneurons within the ventral striatum.
Collapse
Affiliation(s)
- François Laplante
- Department of Psychiatry, McGill University, Montréal, Quebec, Canada
| | | | | | | | | |
Collapse
|
2
|
Savage S, Mattsson A, Olson L. Cholinergic denervation attenuates phencyclidine-induced c-fos responses in rat cortical neurons. Neuroscience 2012; 216:38-45. [PMID: 22561731 DOI: 10.1016/j.neuroscience.2012.04.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 04/25/2012] [Accepted: 04/26/2012] [Indexed: 12/15/2022]
Abstract
The cortical cholinergic innervation, which is important for memory and cognition, has been implicated in schizophrenia. To experimentally analyze such a possible role of the cholinergic system, we have used the dissociative drug phencyclidine (PCP), known to produce schizophrenia-like psychosis in humans, to model aspects of schizophrenia in rats. We previously showed that induced cortical cholinergic hypofunction leads to enhanced PCP-induced locomotor activity and attenuated social interaction. After PCP, rats lacking cortical cholinergic innervation also show impaired declarative memory. To directly study the role of the basalo-cortical cholinergic projections for PCP-induced neural activation in different cortical areas, we have now monitored the rapid (30 and 60 min) effects of low doses of PCP (2 and 3mg/kg) on neural activation as reflected by transcriptional activation of c-fos in cortical areas, using quantitative in situ hybridization. We find an almost pan-cortical neural induction of c-fos mRNA with doses of PCP low enough not to alter levels of either BDNF or Nogo receptor mRNA levels. Specific unilateral lesioning of the uncrossed cholinergic projections to the cortical mantle by 192-IgG-saporin immunotoxin delivery to nc basalis (NBM) caused a striking ipsilateral decrease of the PCP-induced cortical c-fos mRNA induction, restricted to areas which had become effectively denervated. Because PCP at low doses is unlikely to directly influence cortical neurons, we suggest that it acts by activation of the cholinergic input, which in turn leads to cortical c-fos mRNA increases. Our results are compatible with a role for the cholinergic system in symptoms of schizophrenia, by showing that the basalo-cortical cholinergic projections are needed in order for PCP to have full activating effects on cortical neurons.
Collapse
Affiliation(s)
- S Savage
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | |
Collapse
|
3
|
Savage S, Kehr J, Olson L, Mattsson A. Impaired social interaction and enhanced sensitivity to phencyclidine-induced deficits in novel object recognition in rats with cortical cholinergic denervation. Neuroscience 2011; 195:60-9. [DOI: 10.1016/j.neuroscience.2011.08.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Revised: 08/12/2011] [Accepted: 08/13/2011] [Indexed: 11/24/2022]
|
4
|
Cholinergic depletion in the nucleus accumbens: effects on amphetamine response and sensorimotor gating. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:501-9. [PMID: 21163316 DOI: 10.1016/j.pnpbp.2010.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 11/30/2010] [Accepted: 12/06/2010] [Indexed: 11/21/2022]
Abstract
A delicate balance between dopaminergic and cholinergic activity in the ventral striatum or nucleus accumbens (N.Acc) appears to be important for optimal performance of a wide range of behaviours. While functional interactions between these systems are complex, some data suggest that acetylcholine in the N.Acc. may dampen the effects of excessive dopamine (DA) release. We proposed that a reduction in the density of cholinergic interneurons in the N.Acc would result in behavioural alterations suggestive of a hyper-responsiveness of the N.Acc DA system. The present study aimed to produce a sustainable depletion of cholinergic neurons in the N.Acc in the rat and study the effects of such lesions on DA-dependent behaviour. A novel saporin immunotoxin targeting choline acetyltransferase was microinjected bilaterally into the N.Acc of adult rats. We confirmed histologically that two weeks post-injection, animals show a local, selective depletion of cholinergic interneurons (mean cell loss of 44%). Cholinergic-depleted rats showed a marked increase in the locomotor activating effects of amphetamine. In addition, such lesions induced a disruption of sensorimotor gating processes, reflected in a reduction in the prepulse inhibition of the acoustic startle response, which was reversed by haloperidol. These data are suggestive of pronounced hyper-responsiveness of the meso-accumbens DA system which may be of relevance to the pathophysiology of schizophrenia, a condition where selective reduction in the number of ventral striatal cholinergic neurons has been demonstrated.
Collapse
|
5
|
Lecourtier L, de Vasconcelos AP, Cosquer B, Cassel JC. Combined lesions of GABAergic and cholinergic septal neurons increase locomotor activity and potentiate the locomotor response to amphetamine. Behav Brain Res 2010; 213:175-82. [PMID: 20450937 DOI: 10.1016/j.bbr.2010.04.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 04/24/2010] [Accepted: 04/28/2010] [Indexed: 10/19/2022]
Abstract
Potentiated locomotor response to amphetamine has been associated with an increased sensitivity of the dopaminergic system and used as a model of the positive symptoms of schizophrenia in rodents. The hippocampus, through the subiculum, modulates dopamine transmission and hippocampal or subicular lesions potentiate the locomotor response to amphetamine. However, little is known about the upstream structures controlling hippocampal/subicular activity towards the regulation of dopamine transmission. The main modulatory input to the hippocampus is the septal area, composed of the medial septum and vertical limb of the diagonal band of Broca (MS/vDBB). The so-called septohippocampal pathway includes cholinergic and GABAergic fibers reaching the hippocampus through the fimbria-fornix. While electrolytic lesions of the MS/vDBB potentiate the locomotor response to amphetamine, cholinergic damage in the MS/vDBB does not affect this response. Moreover, the role of the GABAergic connections has never been investigated. Therefore, we performed in rats lesions of cholinergic or/and GABAergic septal neurons and assessed locomotor activity, (i) in an unfamiliar environment, (ii) under baseline conditions (separating light-on and light-off periods) and (iii) in response to an amphetamine challenge. While single lesions had no effects, rats with combined lesions were hyperactive in all three conditions. Thus, damage to cholinergic and GABAergic septohippocampal neurons induced locomotor alterations qualitatively comparable to those produced by hippocampal and/or subicular lesions. Our results further suggest that the septum, through both cholinergic and GABAergic fibers, modulates the functional contribution of the hippocampus/subiculum in the regulation of mesolimbic dopamine transmission.
Collapse
Affiliation(s)
- Lucas Lecourtier
- Laboratoire d'Imagerie et de Neurosciences Cognitives, FRE 3289, Université de Strasbourg-CNRS, 12 rue Goethe, Strasbourg, France
| | | | | | | |
Collapse
|
6
|
Tereshchenko Y, Brandewiede J, Schachner M, Irintchev A, Morellini F. Novelty-induced behavioral traits correlate with numbers of brainstem noradrenergic neurons and septal cholinergic neurons in C57BL/6J mice. Behav Brain Res 2008; 191:280-4. [PMID: 18468704 DOI: 10.1016/j.bbr.2008.03.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 03/26/2008] [Indexed: 11/19/2022]
Abstract
It is generally accepted that different brain regions regulate specific behavioral responses and that structural alterations in these regions may affect behavior. We investigated whether inter-individual variability in novelty-induced behaviors in C57BL/6J mice correlates with numbers of noradrenergic neurons in the locus coeruleus and cholinergic neurons in the septum. We found that exploration of new stimuli correlated negatively with numbers of noradrenergic neurons, whereas anxiety correlated positively with numbers of cholinergic neurons. The observed correlations suggest physiologically plausible links between structure and function and indicate that precise morphological estimates can be predictive for behavioral responses.
Collapse
Affiliation(s)
- Yuliya Tereshchenko
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, Hamburg 20251, Germany
| | | | | | | | | |
Collapse
|
7
|
Angelucci F, Gruber SHM, El Khoury A, Tonali PA, Mathé AA. Chronic amphetamine treatment reduces NGF and BDNF in the rat brain. Eur Neuropsychopharmacol 2007; 17:756-62. [PMID: 17434716 DOI: 10.1016/j.euroneuro.2007.03.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Revised: 02/19/2007] [Accepted: 03/06/2007] [Indexed: 01/05/2023]
Abstract
Amphetamines (methamphetamine and d-amphetamine) are dopaminergic and noradrenergic agonists and are highly addictive drugs with neurotoxic effect on the brain. In human subjects, it has also been observed that amphetamine causes psychosis resembling positive symptoms of schizophrenia. Neurotrophins are molecules involved in neuronal survival and plasticity and protect neurons against (BDNF) are the most abundant neurotrophins in the central nervous system (CNS) and are important survival factors for cholinergic and dopaminergic neurons. Interestingly, it has been proposed that deficits in the production or utilization of neurotrophins participate in the pathogenesis of schizophrenia. In this study in order to investigate the mechanism of amphetamine-induced neurotoxicity and further elucidate the role of neurotrophins in the pathogenesis of schizophrenia we administered intraperitoneally d-amphetamine for 8 days to rats and measured the levels of neurotrophins NGF and BDNF in selected brain regions by ELISA. Amphetamine reduced NGF levels in the hippocampus, occipital cortex and hypothalamus and of BDNF in the occipital cortex and hypothalamus. Thus the present data indicate that chronic amphetamine can reduce the levels of NGF and BDNF in selected brain regions. This reduction may account for some of the effects of amphetamine in the CNS neurons and provides evidences for the role of neurotrophins in schizophrenia.
Collapse
Affiliation(s)
- Francesco Angelucci
- Karolinska Institutet, Clinical Neuroscience, Psychiatry M56, Karolinska University Hospital Huddinge, SE-14186 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
8
|
Mattsson A, Olson L, Svensson TH, Schilström B. Cortical cholinergic deficiency enhances amphetamine-induced dopamine release in the accumbens but not striatum. Exp Neurol 2007; 208:73-9. [PMID: 17714706 DOI: 10.1016/j.expneurol.2007.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Revised: 06/25/2007] [Accepted: 07/13/2007] [Indexed: 10/23/2022]
Abstract
Cholinergic dysfunction has been implicated as a putative contributing factor in the pathogenesis of schizophrenia. Recently, we showed that cholinergic denervation of the neocortex in adult rats leads to a marked increase in the behavioral response to amphetamine. The main objective of this study was to investigate if the enhanced locomotor response to amphetamine seen after cortical cholinergic denervation was paralleled by an increased amphetamine-induced release of dopamine in the nucleus accumbens and/or striatum. The corticopetal cholinergic projections were lesioned by intraparenchymal infusion of 192 IgG-saporin into the nucleus basalis magnocellularis of adult rats. Amphetamine-induced dopamine release in the nucleus accumbens or striatum was monitored by in vivo microdialysis 2 to 3 weeks after lesioning. We found that cholinergic denervation of the rat neocortex leads to a significantly increased amphetamine-induced dopamine release in the nucleus accumbens. Interestingly, the cholinergic lesion did not affect amphetamine-induced release of dopamine in the striatum. The enhanced amphetamine-induced dopamine release in the nucleus accumbens in the cholinergically denervated rats could be reversed by administration of the muscarinic agonist oxotremorine, but not nicotine, prior to the amphetamine challenge, suggesting that loss of muscarinic receptor stimulation is likely to have caused the observed effect. The results suggest that abnormal responsiveness of dopamine neurons can be secondary to cortical cholinergic deficiency. This, in turn, might be of relevance for the pathophysiology of schizophrenia and provides a possible link between cholinergic disturbances and alteration of dopamine transmission.
Collapse
Affiliation(s)
- Anna Mattsson
- Department of Neuroscience, Retzius Laboratory, Karolinska Institute, Retzius väg 8, S-171 77 Stockholm, Sweden.
| | | | | | | |
Collapse
|
9
|
López-Crespo GA, Carvajal F, Flores P, Sánchez-Santed F, Sánchez-Amate MC. Time course of biochemical and behavioural effects of a single high dose of chlorpyrifos. Neurotoxicology 2007; 28:541-7. [PMID: 17350100 DOI: 10.1016/j.neuro.2007.01.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2006] [Revised: 01/27/2007] [Accepted: 01/30/2007] [Indexed: 10/23/2022]
Abstract
The purpose the present study was to determine if tolerance is developed to all behavioural effects produced by a single high dose of chlorpyrifos (CPF). For this, the study was divided in two phases; in the first phase, we studied the time course of the effects produced by treatment with a high dose of CPF (250 mg/kg s.c.) on rat locomotor activity and anxiety behaviours recorded on an open-field, as well as on AChE inhibition. Results showed that CPF produced a maximum inhibition of AChE (72% of inhibition) 2 days after its administration, exhibiting a partial recovery of its activity by day 30 (55% of inhibition). On locomotor activity CPF produced a biphasic effect; a reduction only on day 2, and an increase on day 30. An anxiolytic-like effect was only observed within 2 and 5 days after CPF treatment. These results indicate that the tolerance has been developed to the behavioural effects produced by s.c. administration of CPF, but with a different time course. In the second phase, since disturbances in cholinergic system might trigger dopaminergic dysfunctions, we tested the locomotor activity following challenge with amphetamine (1mg/kg i.p.) at 11 and 30 days after CPF treatment. Data obtained showed that amphetamine produced an increase in total distances and rearing in vehicle and CPF groups on days 11 and 30. However, CPF group exhibited lower increase relative to vehicle group in both days. This effect is independent of the percentage of AChE inhibition and therefore, of change in the cholinergic system. Data are discussed under the light of the adaptative mechanisms underlying the recovery of the cholinergic overstimulation after s.c. exposure to high doses of CPF.
Collapse
Affiliation(s)
- G A López-Crespo
- Departamento de Neurociencia y Ciencias de la Salud, University of Almería, Crta. Sacramento s/n, 04120 La Cañada de San Urbano, Almería, Spain
| | | | | | | | | |
Collapse
|
10
|
Traissard N, Herbeaux K, Cosquer B, Jeltsch H, Ferry B, Galani R, Pernon A, Majchrzak M, Cassel JC. Combined damage to entorhinal cortex and cholinergic basal forebrain neurons, two early neurodegenerative features accompanying Alzheimer's disease: effects on locomotor activity and memory functions in rats. Neuropsychopharmacology 2007; 32:851-71. [PMID: 16760925 DOI: 10.1038/sj.npp.1301116] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In Alzheimer's disease (AD), cognitive decline is linked to cholinergic dysfunctions in the basal forebrain (BF), although the earliest neuronal damage is described in the entorhinal cortex (EC). In rats, selective cholinergic BF lesions or fiber-sparing EC lesions may induce memory deficits, but most often of weak magnitude. This study investigated, in adult rats, the effects on activity and memory of both lesions, alone or in combination, using 192 IgG-saporin (OX7-saporin as a control) and L-N-methyl-D-aspartate to destroy BF and EC neurons, respectively. Rats were tested for locomotor activity in their home cage and for working- and/or reference-memory in various tasks (water maze, Hebb-Williams maze, radial maze). Only rats with combined lesions showed diurnal and nocturnal hyperactivity. EC lesions impaired working memory and induced anterograde memory deficits in almost all tasks. Lesions of BF cholinergic neurons induced more limited deficits: reference memory was impaired in the probe trial of the water-maze task and in the radial maze. When both lesions were combined, performance never improved in the water maze and the number of errors in the Hebb-Williams and the radial mazes was always larger than in any other group. These results (i) indicate synergistic implications of BF and EC in memory function, (ii) suggest that combined BF cholinergic and fiber-sparing EC lesions may model aspects of anterograde memory deficits and restlessness as seen in AD, (iii) challenge the cholinergic hypothesis of cognitive dysfunctions in AD, and (iv) contribute to open theoretical views on AD-related memory dysfunctions going beyond the latter hypothesis.
Collapse
Affiliation(s)
- Natalia Traissard
- Laboratoire de Neurosciences Comportementales et Cognitives, FRE 2855 CNRS, Université Louis Pasteur, IFR 37 Neurosciences, GDR 2905 CNRS, Strasbourg, France
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Hanlon FM, Weisend MP, Hamilton DA, Jones AP, Thoma RJ, Huang M, Martin K, Yeo RA, Miller GA, Cañive JM. Impairment on the hippocampal-dependent virtual Morris water task in schizophrenia. Schizophr Res 2006; 87:67-80. [PMID: 16844347 DOI: 10.1016/j.schres.2006.05.021] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Revised: 05/23/2006] [Accepted: 05/25/2006] [Indexed: 10/24/2022]
Abstract
Traditional neuropsychological tests of visual and verbal memory have been used to evaluate memory deficits in schizophrenia. However, these tests cannot be used in non-human animal research, which is important for the discovery of treatments that will improve cognition and for study of the etiology of schizophrenia. To help bridge the gap between human and non-human animal research on hippocampal function in schizophrenia, this study sought to characterize the behavioral performance exhibited by patients using the Morris water task (MWT). The MWT has been shown in human and non-human animal studies to be hippocampus-dependent. In the virtual MWT, human subjects navigate a computer-generated on-screen environment to escape from the "water" by locating a platform. Patients with schizophrenia and controls performed two versions of the virtual MWT: a hippocampal-dependent hidden-platform version, relying on allocentric navigational abilities, and a non-hippocampal-dependent visible-platform version, relying on cued-navigational abilities. Patients traveled further and took longer to find the hidden platform over training blocks and spent less time in the correct quadrant during a probe trial. There was no deficit in the visible-platform condition. These findings identify a behavioral impairment on a hippocampal-dependent task in schizophrenia and support using the MWT in testing animal models of schizophrenia.
Collapse
Affiliation(s)
- Faith M Hanlon
- The Mental Illness and Neuroscience Discovery (MIND) Institute, 1101 Yale Blvd. NE, Albuquerque, New Mexico 87106, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Pappas BA, Payne KB, Fortin T, Sherren N. Neonatal lesion of forebrain cholinergic neurons: Further characterization of behavioral effects and permanency. Neuroscience 2005; 133:485-92. [PMID: 15878806 DOI: 10.1016/j.neuroscience.2005.02.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Revised: 01/20/2005] [Accepted: 02/12/2005] [Indexed: 10/25/2022]
Abstract
Intraventricular injections of 192 IgG-saporin in the neonatal rat caused severe loss of basal forebrain cholinergic neurons and ectopic hippocampal ingrowths. These were evident at 24 months of age and thus, were lifelong consequences of the 192 IgG-saporin treatment. When tested as young adults on a novel water-escape radial arm maze, the rats with this lesion were slower to learn the task, committing significantly more working and reference memory errors before they achieved control level of performance. It is unlikely that this was a result of attentional impairment as the lesioned rats performed as vigilantly as controls in a five choice serial reaction time task. When tested in the Morris water maze at 22 months of age, they were slower at learning the hidden platform location. This contrasts with previous studies which have repeatedly shown that they normally acquire this task as young adults. It was concluded that this neonatal cholinergic lesion has modest but discernable effects on problem solving in young adulthood that are consistent with the reported effects of the lesion on cortical pyramidal neurons. The cognitive effects of the lesion may become more severe in aging, perhaps as a result of the added effects of aging on these neurons.
Collapse
Affiliation(s)
- B A Pappas
- Institute of Neuroscience, Carleton University, Ottawa, Ontario, Canada K1S 5B6.
| | | | | | | |
Collapse
|
13
|
Jeltsch H, Lazarus C, Cosquer B, Galani R, Cassel JC. No facilitation of amphetamine- or cocaine-induced hyperactivity in adult rats after various 192 IgG-saporin lesions in the basal forebrain. Brain Res 2004; 1029:259-71. [PMID: 15542081 DOI: 10.1016/j.brainres.2004.09.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2004] [Indexed: 11/25/2022]
Abstract
Lesions of basal forebrain cholinergic neurons by intracerebroventricular (i.c.v.) injections of 192 IgG-saporin increased the locomotor response to 0.5 and 1.5 mg/kg of D-amphetamine in adult rats [A. Mattsson, S.O. Ogren, L. Olson, Facilitation of dopamine_mediated locomotor activity in adult rats following cholinergic denervation, Exp Neurol. 174 (2002) 96-108.]. In the present study, adult male rats were subjected to bilateral injections of 192 IgG-saporin either into the septum (Sp), the nucleus basalis magnocellularis (Nbm), both structures (SpNbm) or i.c.v. Locomotor activity was assessed in the home cage 23 days after surgery, and, subsequently, thrice after an intraperitoneal injection of D-amphetamine (1 mg/kg) and twice after an injection of cocaine (15 mg/kg). Analysis of AChE-stained material showed that Sp lesions induced preferentially hippocampal denervation, Nbm lesions induced preferentially cortical denervation, while both SpNbm and i.c.v. lesions deprived the hippocampus and the cortex of almost all AChE-positive reaction products. The spontaneous and drug-induced locomotor activity of all lesioned rats did not differ significantly from that of control rats, except in rats subjected to i.c.v. injections, in which the locomotor response was significantly increased after the second administration of cocaine. In addition, in Nbm and SpNbm rats, the locomotor reaction to cocaine was weaker right after the second injection. The present results do not confirm the report by Mattsson et al. on the potentiation of amphetamine-induced locomotion by i.c.v. injections of 192 IgG-saporin, but suggest that cocaine-induced locomotion can be increased by such lesions and, to some respect, attenuated by cholinergic damage in the Nbm.
Collapse
Affiliation(s)
- Hélène Jeltsch
- Laboratoire de Neurosciences Comportementales et Cognitives, UMR 7521 Université Louis Pasteur/CNRS IFR 37 Neurosciences 12, rue Goethe 67000 Strasbourg, France
| | | | | | | | | |
Collapse
|
14
|
Cooper-Kuhn CM, Winkler J, Kuhn HG. Decreased neurogenesis after cholinergic forebrain lesion in the adult rat. J Neurosci Res 2004; 77:155-65. [PMID: 15211583 DOI: 10.1002/jnr.20116] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Adult neurogenesis has been shown to be regulated by a multitude of extracellular cues, including hormones, growth factors, and neurotransmitters. The cholinergic system of the basal forebrain is one of the key transmitter systems for learning and memory. Because adult neurogenesis has been implicated in cognitive performance, the present work aims at defining the role of cholinergic input for adult neurogenesis by using an immunotoxic lesion approach. The immunotoxin 192IgG-saporin was infused into the lateral ventricle of adult rats to selectively lesion cholinergic neurons of the cholinergic basal forebrain (CBF), which project to the two main regions of adult neurogenesis: the dentate gyrus and the olfactory bulb. Five weeks after lesioning, neurogenesis, defined by the number of cells colocalized for bromodeoxyuridine (BrdU) and the neuronal nuclei marker NeuN, declined significantly in the granule cell layers of the dentate gyrus and olfactory bulb. Furthermore, immunotoxic lesions to the CBF led to increased numbers of apoptotic cells specifically in the subgranular zone, the progenitor region of the dentate gyrus, and within the periglomerular layer of the olfactory bulb. We propose that the cholinergic system plays a survival-promoting role for neuronal progenitors and immature neurons within regions of adult neurogenesis, similar to effects observed previously during brain development. As a working hypothesis, neuronal loss within the CBF system leads not only to cognitive deficits but may also alter on a cellular level the functionality of the dentate gyrus, which in turn may aggravate cognitive deficits.
Collapse
|
15
|
Mattsson A, Pernold K, Ogren SO, Olson L. Loss of cortical acetylcholine enhances amphetamine-induced locomotor activity. Neuroscience 2004; 127:579-91. [PMID: 15283958 DOI: 10.1016/j.neuroscience.2004.05.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2004] [Indexed: 11/16/2022]
Abstract
Cholinergic disturbances have been implicated in schizophrenia. In a recent study we found that intracerebroventricular (i.c.v.) delivery of the immunotoxin 192 IgG-saporin, that effectively destroys cholinergic projections from the basal forebrain to hippocampus and cortex cerebri, leads to a marked facilitation of amphetamine-induced locomotor activity in adult rats. The aim of the present experiments was to evaluate the contribution of the septohippocampal versus the basalocortical cholinergic projections for the amphetamine hyper-response seen previously in i.c.v. 192 IgG-saporin injected rats. Since i.c.v. delivery of 192 IgG-saporin also destroys a population of Purkinje neurons in cerebellum, this cell loss needs to be taken into consideration as well. Cortex cerebri and hippocampus were selectively cholinergically denervated by intraparenchymal injections of 192 IgG-saporin into nucleus basalis magnocellularis and the medial septum/diagonal band of Broca, respectively. Selective loss of Purkinje cells in cerebellum was achieved by i.c.v. delivery of OX7 saporin. Possible effects of these three lesions on spontaneous and amphetamine-induced locomotor activity were assessed in locomotor activity cages. We find that selective cholinergic denervation of cortex cerebri, but not denervation of hippocampus or damage to cerebellum can elicit dopaminergic hyper-reactivity similar to that seen in previous i.c.v. 192 IgG-saporin experiments. Our data are compatible with the hypothesis that disturbances of cholinergic neurotransmission in cortex cerebri may be causally involved in forms of schizophrenia.
Collapse
Affiliation(s)
- A Mattsson
- Department of Neuroscience, Retzius Laboratory, Karolinska Institute, S-171 77 Stockholm, Sweden
| | | | | | | |
Collapse
|
16
|
Pappas BA, Sherren N. Neonatal 192 IgG-saporin lesion of forebrain cholinergic neurons: focus on the life span? Neurosci Biobehav Rev 2003; 27:365-76. [PMID: 12946689 DOI: 10.1016/s0149-7634(03)00067-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The cholinergic immunotoxin 192 IgG-saporin can be used to effect selective, substantial and permanent lesions of basal forebrain neurons in the neonatal rat. Human neurodevelopmental disorders such as Rett and Down syndromes are characterized by early cholinergic dysfunction and cognitive impairment. Hence, the study of the neonatal 192 IgG-saporin lesioned rat should illuminate the role of cholinergic dysfunction in these human disorders. To date, we and others have failed to observe notable effects of this neonatal lesion on learning and memory, even when combined with a severe lesion of noradrenergic forebrain innervation. As well, attention seems not to be affected. However, complex problem solving (intelligence?) is compromised by the cholinergic lesion. There also appears to be reduced cortical dendritic branching indicative of synapse loss but further research is needed to characterize this. Even if the synapse loss due to neonatal cholinergic lesion is modest and thus insufficient to cause a significant neurodevelopmental dysfunction, its consequences may be devastating during old age.
Collapse
Affiliation(s)
- Bruce A Pappas
- Institute of Neuroscience, Life Sciences Research Centre, Carleton University, Ottawa, Ont., Canada K1S 5B6.
| | | |
Collapse
|