1
|
Wysmołek ME, Długosz E, Wiśniewski M. The Immunological Role of Vascular and Lymphatic Endothelial Cells in Filarial Infections. Animals (Basel) 2022; 12:ani12040426. [PMID: 35203133 PMCID: PMC8868237 DOI: 10.3390/ani12040426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/25/2022] [Accepted: 02/07/2022] [Indexed: 11/26/2022] Open
Abstract
Simple Summary The endothelium is a monolayer of cells forming a thin membrane that lines the inside of blood vessels. These cells release molecules that regulate vascular relaxation, contraction, and can control blood clotting and the immune response. During infections with filarial nematodes, common parasites of humans and animals, the endothelium is believed to play a key role in the communication between the host and the parasite, since the embryonic stage of filaroids is distributed in the bloodstream. Therefore, this review aims to gather research from different scientists in order to better understand the host immune response in infections with filarial nematodes. Abstract The embryonic stage of filarial nematodes, or microfilariae (Mf), shows daily and seasonal periodicity that requires their migration through blood vessels into the lungs, where they are sequestered when not circulating in the peripheral blood. Therefore, Mf and the host endothelium are likely in a permanent state of hide and seek. Interestingly, filarial nematodes co-cultured in media with a murine endothelial cell line survive eight times longer than those cultured in media alone. This suggests that the endothelium is an important element of the immune response in filarial nematodes, perversely promoting their survival in the host. In this review, we will focus on potential pathways involved in the relationship between filarial nematodes and the host endothelium, including the role of endothelial ICAM/VCAM/PECAM adhesion molecules, surface markers involved in the passage of Mf through host tissue, anti-thrombolic effects caused by the presence of filarial nematodes (including plasmins), endothelial cell proliferation (VEGF), and other aspects of the immune activation of the endothelium. The aim of this review is to merge the knowledge about the cross-talk between Mf of different filarial nematode species and endothelial cells (EC), thus allowing a better understanding of the mechanism of these parasitic infections.
Collapse
|
2
|
A review on the druggability of a thiol-based enzymatic antioxidant thioredoxin reductase for treating filariasis and other parasitic infections. Int J Biol Macromol 2020; 142:125-141. [DOI: 10.1016/j.ijbiomac.2019.09.083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 01/07/2023]
|
3
|
The Architecture of Thiol Antioxidant Systems among Invertebrate Parasites. Molecules 2017; 22:molecules22020259. [PMID: 28208651 PMCID: PMC6155587 DOI: 10.3390/molecules22020259] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/03/2017] [Indexed: 01/14/2023] Open
Abstract
The use of oxygen as the final electron acceptor in aerobic organisms results in an improvement in the energy metabolism. However, as a byproduct of the aerobic metabolism, reactive oxygen species are produced, leaving to the potential risk of an oxidative stress. To contend with such harmful compounds, living organisms have evolved antioxidant strategies. In this sense, the thiol-dependent antioxidant defense systems play a central role. In all cases, cysteine constitutes the major building block on which such systems are constructed, being present in redox substrates such as glutathione, thioredoxin, and trypanothione, as well as at the catalytic site of a variety of reductases and peroxidases. In some cases, the related selenocysteine was incorporated at selected proteins. In invertebrate parasites, antioxidant systems have evolved in a diversity of both substrates and enzymes, representing a potential area in the design of anti-parasite strategies. The present review focus on the organization of the thiol-based antioxidant systems in invertebrate parasites. Differences between these taxa and its final mammal host is stressed. An understanding of the antioxidant defense mechanisms in this kind of parasites, as well as their interactions with the specific host is crucial in the design of drugs targeting these organisms.
Collapse
|
4
|
Vicente CSL, Ikuyo Y, Shinya R, Mota M, Hasegawa K. Catalases Induction in High Virulence Pinewood Nematode Bursaphelenchus xylophilus under Hydrogen Peroxide-Induced Stress. PLoS One 2015; 10:e0123839. [PMID: 25894519 PMCID: PMC4404050 DOI: 10.1371/journal.pone.0123839] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 02/24/2015] [Indexed: 12/13/2022] Open
Abstract
Considered an EPPO A2 quarantine pest, Bursaphelenchus xylophilus is the causal agent of the pine wilt disease and the most devastating plant parasitic nematode attacking coniferous trees in the world. In the early stages of invasion, this nematode has to manage host defence mechanisms, such as strong oxidative stress. Only successful, virulent nematodes are able to tolerate the basal plant defences, and furthermore migrate and proliferate inside of the host tree. In this work, our main objective was to understand to what extent B. xylophilus catalases are involved in their tolerance to oxidative stress and virulence, using as oxidant agent the reactive oxygen species hydrogen peroxide (H2O2). After 24 hours of exposure, high virulence isolates of B. xylophilus could withstand higher H2O2 concentrations in comparison with low virulence B. xylophilus and B. mucronatus, corroborating our observation of Bxy-ctl-1 and Bxy-ctl-2 catalase up-regulation under the same experimental conditions. Both catalases are expressed throughout the nematode intestine. In addition, transgenic strains of Caenorhabditis elegans overexpressing B. xylophilus catalases were constructed and evaluated for survival under similar conditions as previously. Our results suggest that catalases of high virulence B. xylophilus were crucial for nematode survival under prolonged exposure to in vitro oxidative stress, highlighting their adaptive response, which could contribute to their success in host conditions.
Collapse
Affiliation(s)
- Cláudia S. L. Vicente
- Department of Environmental Biology, College of Bioscience & Biotechnology, Chubu University, Kasugai, Aichi, Japan
- ICAAM—Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Departamento de Biologia, Universidade de Évora, Évora, Portugal
| | - Yoriko Ikuyo
- Department of Environmental Biology, College of Bioscience & Biotechnology, Chubu University, Kasugai, Aichi, Japan
| | - Ryoji Shinya
- Department of Environmental Biology, College of Bioscience & Biotechnology, Chubu University, Kasugai, Aichi, Japan
- HHMI and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Manuel Mota
- ICAAM—Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Departamento de Biologia, Universidade de Évora, Évora, Portugal
| | - Koichi Hasegawa
- Department of Environmental Biology, College of Bioscience & Biotechnology, Chubu University, Kasugai, Aichi, Japan
- * E-mail:
| |
Collapse
|
5
|
Schroeder JH, Simbi BH, Ford L, Cole SR, Taylor MJ, Lawson C, Lawrence RA. Live Brugia malayi microfilariae inhibit transendothelial migration of neutrophils and monocytes. PLoS Negl Trop Dis 2012; 6:e1914. [PMID: 23209856 PMCID: PMC3510151 DOI: 10.1371/journal.pntd.0001914] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 10/04/2012] [Indexed: 01/13/2023] Open
Abstract
Lymphatic filariasis is a major tropical disease caused by the parasite Brugia malayi. Microfilariae (Mf) circulate in the peripheral blood for 2-3 hours in synchronisation with maximal feeding of the mosquito vector. When absent from the peripheral blood, Mf sequester in the capillaries of the lungs. Mf are therefore in close contact with vascular endothelial cells (EC) and may induce EC immune function and/or wound repair mechanisms such as angiogenesis. In this study, Mf were co-cultured with human umbilical vein EC (HUVEC) or human lung microvascular EC (HLMVEC) and the transendothelial migration of leukocyte subsets was analysed. In addition, the protein and/or mRNA expression of chemokine, cytokine and angiogenic mediators in endothelial cells in the presence of live microfilariae were measured by a combination of cDNA arrays, protein arrays, ELISA and fluorescence antibody tests.Surprisingly, our findings indicate that Mf presence partially blocked transendothelial migration of monocytes and neutrophils, but not lymphocytes. However, Mf exposure did not result in altered vascular EC expression of key mediators of the tethering stage of extravasation, such as ICAM-1, VCAM-1 and various chemokines. To further analyse the immunological function of vascular EC in the presence of Mf, we measured the mRNA and/or protein expression of a number of pro-inflammatory mediators. We found that expression levels of the mediators tested were predominantly unaltered upon B. malayi Mf exposure. In addition, a comparison of angiogenic mediators induced by intact Mf and Wolbachia-depleted Mf revealed that even intact Mf induce the expression of remarkably few angiogenic mediators in vascular EC. Our study suggests that live microfilariae are remarkably inert in their induction and/or activation of vascular cells in their immediate local environment. Overall, this work presents important insights into the immunological function of the vascular endothelium during an infection with B. malayi.
Collapse
Affiliation(s)
| | - Bigboy H. Simbi
- Royal Veterinary College, University of London, London, United Kingdom
| | - Louise Ford
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Sara R. Cole
- Royal Veterinary College, University of London, London, United Kingdom
| | - Mark J. Taylor
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Charlotte Lawson
- Royal Veterinary College, University of London, London, United Kingdom
| | - Rachel A. Lawrence
- Royal Veterinary College, University of London, London, United Kingdom
- * E-mail:
| |
Collapse
|
6
|
Wiria AE, Djuardi Y, Supali T, Sartono E, Yazdanbakhsh M. Helminth infection in populations undergoing epidemiological transition: a friend or foe? Semin Immunopathol 2012; 34:889-901. [PMID: 23129304 DOI: 10.1007/s00281-012-0358-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 10/21/2012] [Indexed: 12/21/2022]
Abstract
Helminth infections are highly prevalent in developing countries, especially in rural areas. With gradual development, there is a transition from living conditions that are dominated by infection, poor sanitation, manual labor, and traditional diet to a situation where burden of infections is reduced, infrastructure is improved, sedentary lifestyle dominates, and processed food forms a large proportion of the calorie intake. The combinations of some of the changes in lifestyle and environment are expected to result in alteration of the landscape of diseases, which will become dominated by non-communicable disorders. Here we review how the major helminth infections affect a large proportion of the population in the developing world and discuss their impact on the immune system and the consequences of this for other infections which are co-endemic in the same areas. Furthermore, we address the issue of decreasing helminth infections in many parts of the world within the context of increasing inflammatory, metabolic, and cardiovascular diseases.
Collapse
|
7
|
Functional and phenotypic characteristics of alternative activation induced in human monocytes by interleukin-4 or the parasitic nematode Brugia malayi. Infect Immun 2011; 79:3957-65. [PMID: 21788379 DOI: 10.1128/iai.05191-11] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human monocytes from patients with patent filarial infections are studded with filarial antigen and express markers associated with alternative activation of macrophages (MΦ). To explore the role of filaria-derived parasite antigen in differentiation of human monocytes, cells were exposed to microfilariae (mf) of Brugia malayi, and their phenotypic and functional characteristics were compared with those of monocytes exposed to factors known to generate either alternatively (interleukin-4 [IL-4]) or classically (macrophage colony-stimulating factor [MCSF]) activated MΦ. IL-4 upregulated mRNA expression of CCL13, CCL15, CCL17, CCL18, CCL22, CLEC10A, MRC1, CADH1, CD274, and CD273 associated with alternative activation of MΦ but not arginase 1. IL-4-cultured monocytes had a diminished ability to promote proliferation of both CD4(+) and CD8(+) T cells compared to that of unexposed monocytes. Similar to results with IL-4, exposure of monocytes to live mf induced upregulation of CCL15, CCL17, CCL18, CCL22, CD274, and CD273 and downregulation of Toll-like receptor 3 (TLR3), TLR5, and TLR7. In contrast to results with MCSF-cultured monocytes, exposure of monocytes to mf resulted in significant inhibition of the phagocytic ability of these cells to the same degree as that seen with IL-4. Our data suggest that short exposure of human monocytes to IL-4 induces a phenotypic characteristic of alternative activation and that secreted filarial products skew monocytes similarly.
Collapse
|
8
|
Robinson MW, Hutchinson AT, Dalton JP, Donnelly S. Peroxiredoxin: a central player in immune modulation. Parasite Immunol 2010; 32:305-13. [PMID: 20500659 DOI: 10.1111/j.1365-3024.2010.01201.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Peroxiredoxins (Prx) are a family of anti-oxidants that protect cells from metabolically produced reactive oxygen species (ROS). The presence of these enzymes in the secretomes of many parasitic helminths suggests they provide protection against ROS released by host immune effector cells. However, we recently reported that helminth-secreted Prx also contribute to the development of Th2-responses via a mechanism involving the induction of alternatively activated macrophages. In this review, we discuss the role helminth Prx may play in modulating the immune responses of their hosts.
Collapse
Affiliation(s)
- M W Robinson
- Institute for the Biotechnology of Infectious Diseases (IBID), University of Technology Sydney (UTS), Ultimo, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
9
|
Li BW, Rush AC, Mitreva M, Yin Y, Spiro D, Ghedin E, Weil GJ. Transcriptomes and pathways associated with infectivity, survival and immunogenicity in Brugia malayi L3. BMC Genomics 2009; 10:267. [PMID: 19527522 PMCID: PMC2708187 DOI: 10.1186/1471-2164-10-267] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 06/15/2009] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Filarial nematode parasites cause serious diseases such as elephantiasis and river blindness in humans, and heartworm infections in dogs. Third stage filarial larvae (L3) are a critical stage in the life cycle of filarial parasites, because this is the stage that is transmitted by arthropod vectors to initiate infections in mammals. Improved understanding of molecular mechanisms associated with this transition may provide important leads for development of new therapies and vaccines to prevent filarial infections. This study explores changes in gene expression associated with the transition of Brugia malayi third stage larvae (BmL3) from mosquitoes into mammalian hosts and how these changes are affected by radiation. Radiation effects are especially interesting because irradiated L3 induce partial immunity to filarial infections. The underlying molecular mechanisms responsible for the efficacy of such vaccines are unkown. RESULTS Expression profiles were obtained using a new filarial microarray with 18, 104 64-mer elements. 771 genes were identified as differentially expressed in two-way comparative analyses of the three L3 types. 353 genes were up-regulated in mosquito L3 (L3i) relative to cultured L3 (L3c). These genes are important for establishment of filarial infections in mammalian hosts. Other genes were up-regulated in L3c relative to L3i (234) or irradiated L3 (L3ir) (22). These culture-induced transcripts include key molecules required for growth and development. 165 genes were up-regulated in L3ir relative to L3c; these genes encode highly immunogenic proteins and proteins involved in radiation repair. L3ir and L3i have similar transcription profiles for genes that encode highly immunogenic proteins, antioxidants and cuticle components. CONCLUSION Changes in gene expression that normally occur during culture under conditions that support L3 development and molting are prevented or delayed by radiation. This may explain the enhanced immunogenicity of L3ir. Gene Ontology and KEGG analyses revealed altered pathways between L3 types. Energy and "immune pathways" are up-regulated and may be needed for L3i invasion and survival, while growth and development are priorities for L3c. This study has improved our understanding of molecules involved in parasite invasion and immune evasion, potential targets of protective immunity, and molecules required for parasite growth and development.
Collapse
Affiliation(s)
- Ben-Wen Li
- Department of internal medicine, Washington University School of Medicine, St, Louis, MO 63110, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Enzymatic antioxidant systems in helminth parasites. Parasitol Res 2009; 105:593-603. [PMID: 19462181 DOI: 10.1007/s00436-009-1483-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 05/08/2009] [Indexed: 10/20/2022]
Abstract
Parasitic helminths have a coexistence with mammalian hosts whereby they survive for several years in known hostile conditions of their hosts. Many explanations exist describing how these parasitic helminths are able to survive. In the last years, a lot of studies have focused on both enzymatic and non-enzymatic antioxidant systems now shown to exist in these parasites and which may serve as defence tactics against the host-generated oxygen radicals. The relevance of antioxidant enzymes is confirmed by the fact that some of these molecules represent putative protective anti-parasite vaccines (i.e. in schistosomiasis). This review tries to compile what is known to date of the enzymatic antioxidant systems in selected parasitic helminths.
Collapse
|
11
|
Martínez J, Rodríguez-Caabeiro F. Relationship between heat shock protein levels and infectivity in Trichinella spiralis larvae exposed to different stressors. Parasitol Res 2005; 97:213-8. [PMID: 15997408 DOI: 10.1007/s00436-005-1420-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Accepted: 05/03/2005] [Indexed: 12/13/2022]
Abstract
The aim of the present study was to investigate the relationship between infectivity and the levels of two major heat shock proteins (Hsp70 and Hsp60) in Trichinella spiralis larvae. Parasites were exposed to either sublethal thermal stress (43 and 45 degrees C) or to warm or cold temperature oxidative stress. The stressed larvae were then inoculated into female CD1 mice to determine their infectivity. Hsps were detected and quantified by Western blotting using monoclonal antibodies. Infectivity was expressed as larvae per gram of muscle. Warm temperature oxidative stress (20 mM H2O2 at 37 degrees C) caused a significant increase in Hsp levels and total loss of infectivity. Cold oxidative stress (20 mM H2O2 at 4 degrees C) caused no alterations in either Hsp levels or infectivity. However, high oxidative stress and cold (200 mM H2O2 at 4 degrees C) caused a slight increase in Hsp60 levels and a drastic reduction in infectivity. Exposure of the larvae to 43 or 45 degrees C did not significantly alter Hsp levels or infectivity. These results show that (i) cold reduces the deleterious effects of oxidative stress; (ii) heat induces neither increased Hsp60/Hsp70 levels nor reduces infectivity; (iii) increased Hsp levels induced by oxidative stress may cause lower infectivity.
Collapse
Affiliation(s)
- J Martínez
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Alcalá, 28871, Alcalá de Henares, Madrid, Spain.
| | | |
Collapse
|
12
|
Singh A, Rathaur S. Identification and characterization of a selenium-dependent glutathione peroxidase in Setaria cervi. Biochem Biophys Res Commun 2005; 331:1069-74. [PMID: 15882986 DOI: 10.1016/j.bbrc.2005.03.235] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2005] [Indexed: 11/26/2022]
Abstract
Setaria cervi a bovine filarial parasite secretes selenium glutathione peroxidase during in vitro cultivation. A significant amount of enzyme activity was detected in the somatic extract of different developmental stages of the parasite. Among different stages, microfilariae showed a higher level of selenium glutathione peroxidase activity followed by males then females. However, when the activity was compared in excretory secretory products of these stages males showed higher activity than microfilariae and female worms. The enzyme was purified from female somatic extract using a combination of glutathione agarose and gel filtration chromatography, which migrated as a single band of molecular mass approximately = 20 kDa. Selenium content of purified enzyme was estimated by atomic absorption spectroscopy and found to be 3.5 ng selenium/microg of protein. Further, inhibition of enzyme activity by potassium cyanide suggested the presence of selenium at the active site of enzyme. This is the first report of identification of selenium glutathione peroxidase from any filarial parasite.
Collapse
Affiliation(s)
- Anchal Singh
- Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | | |
Collapse
|
13
|
Sánchez-Monsalvez I, de Armas-Serra C, Martínez J, Dorado M, Sánchez A, Rodríguez-Caabeiro F. A new procedure for marinating fresh anchovies and ensuring the rapid destruction of Anisakis larvae. J Food Prot 2005; 68:1066-72. [PMID: 15895743 DOI: 10.4315/0362-028x-68.5.1066] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The consumption of marinated anchovies is the main route of transmission of anisakiasis in Spain. Because this country is one of the world's major tourist destinations, this traditional food also poses a potential health risk to millions of foreign visitors. Anisakis larvae are not destroyed by the traditional marinating procedure, and alternative methods, such as long-term storage in brine, freezing, or hydrostatic pressure treatment, all present major difficulties. In this study, we used high food-grade acetic acid concentrations (10, 20, 30, and 40% [vol/vol] in line with the quantum satis rule) to destroy these larvae rapidly, and we report data on the survival of Anisakis larvae exposed directly to different marinades and when the larvae are placed under the fish musculature. The percentage of salt and acetic acid in the fish tissue water phase was also determined. A marinating procedure is proposed that ensures the rapid death of Anisakis through the use of strong acetic acid concentrations. Posttreatment washes with water reduce these to levels acceptable to consumers. The sensory characteristics of the product were shown to be satisfactory. The actual selection of an acetic acid concentration for marinating depends on costs and the processing time available. The physiological stress of the larvae exposed to the different marinades was determined by measuring the levels of their stress proteins. The latter are good indicators of injury and might reflect the infectivity of larvae. In addition, we also used a rat model to determine the infectivity of larvae considered microscopically dead.
Collapse
Affiliation(s)
- I Sánchez-Monsalvez
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
14
|
Gupta R, Bajpai P, Tripathi LM, Srivastava VML, Jain SK, Misra-Bhattacharya S. Macrophages in the development of protective immunity against experimental Brugia malayi infection. Parasitology 2004; 129:311-23. [PMID: 15471006 DOI: 10.1017/s0031182004005682] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The present report compares the macrophage function in rodent hosts susceptible and resistant to the human lymphatic filariid Brugia malayi. Macrophages from both mastomys (resistant) and gerbil (susceptible) infected intraperitoneally (i.p.) with the infective larvae (L3) of B. malayi were isolated from peritoneal lavage at different time-intervals and formation rate of NO, H2O2, O2-, TNF-alpha, glutathione peroxidase and reductase was assayed. NO release was found to be significantly increased in resistant mastomys as compared to gerbils and the release was markedly suppressed by i.p. administration of the NOS inhibitor aminoguanidine (AG). The AG-treated mastomys also demonstrated significantly greater establishment of larvae which correlated well with suppressed formation of NO. Nitric oxide synergizes with superoxide to form peroxynitrite radical (potent oxidant), which is known to be more toxic per se than NO. Results indicate the possible involvement of peroxynitrite in the rapid killing of larvae in the peritoneal cavity of mastomys. In contrast, the production of H2O2 was found to be enhanced in both species indicating that B. malayi L3 could withstand the toxic effects of H2O2. The higher level of glutathione peroxidase and reductase, as observed in mastomys compared with the gerbil after larval introduction, possibly protects the cell against the injurious effect of H2O2. The TNF-alpha level remained virtually unchanged in both the hosts, suggesting an insignificant role for this cytokine in parasite establishment.
Collapse
Affiliation(s)
- R Gupta
- Central Drug Research Institute, Lucknow-226001, India
| | | | | | | | | | | |
Collapse
|
15
|
Bagnall NH, Kotze AC. cDNA cloning and expression patterns of a peroxiredoxin, a catalase and a glutathione peroxidase from Haemonchus contortus. Parasitol Res 2004; 94:283-9. [PMID: 15368124 DOI: 10.1007/s00436-004-1204-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Accepted: 07/12/2004] [Indexed: 10/26/2022]
Abstract
The range of antioxidant enzyme systems available to Haemonchus contortus for detoxification of hydrogen peroxide was investigated using cDNA cloning of candidate genes. PCR with primers based on conserved amino acid regions and spliced leader sequences was used to obtain full-length sequences for a 2-Cys peroxiredoxin, a catalase, and a selenium-independent glutathione peroxidase, indicating that H. contortus expresses a number of antioxidant systems with the potential to detoxify peroxide (nucleotide sequence data reported in this paper are available in the GenBank, EMBL and DDBJ databases under the accession numbers AY603335, AY603336 and AY603337). Quantitative PCR analysis comparing L3-stage larvae with adult worms showed significantly elevated peroxiredoxin levels in adults, equivalent catalase levels in the two stages, and significantly less glutathione peroxidase in adults, suggesting a significant role for peroxiredoxin in allowing the nematode to detoxify hydrogen peroxide encountered in the parasitic environment. Exposure of L4-stage worms to hydrogen peroxide in vitro (generated using glucose/glucose oxidase) caused no change in mRNA levels for each of the genes, though the exposed worms showed up to eightfold higher catalase activities. The lack of mRNA changes alongside increased catalase enzyme activity indicates that transcript level was not predictive of enzyme activity, suggesting that activity may be regulated in response to oxidative stress by a mechanism other than increased transcription.
Collapse
Affiliation(s)
- N H Bagnall
- Queensland Bioscience Precinct, CSIRO Livestock Industries, 306 Carmody Rd., QLD 4068 St Lucia, Australia
| | | |
Collapse
|
16
|
Martinez J, Perez-Serrano J, Bernadina WE, Rodriguez-Caabeiro F. Expression of Hsp90, Hsp70 and Hsp60 in Trichinella species exposed to oxidative shock. J Helminthol 2002; 76:217-23. [PMID: 12363374 DOI: 10.1079/joh2002127] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Stress response and phosphorylation of heat shock proteins (HSPs) 60, 70 and 90 were studied in Trichinella nativa, T. nelsoni, T. pseudospiralis and T. spiralis larvae at 30-min intervals following exposure to 20, 100 and 200 mM H2O2. There was a time- and dose-dependent differential survival for the infective stage larvae (L1) of these four Trichinella species. Immunoblotting analysis revealed that constitutive Hsp60 and Hsp70, but not Hsp90, from test Trichinella species are constitutively phosphorylated on serine/threonine residues as they converted to forms with increased sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) mobility by treatment with alkaline phosphatase. After exposure to H2O2, while there was a time-related occurrence of the three HSPs with decreased SDS-PAGE mobility, these HSPs were insensitive to alkaline phosphatase except in the case of exposure to 20 mM H2O2 for Hsp60 from all Trichinella species and Hsp70 from T. spiralis and T. nelsoni. The synthesis of HSPs forms with decreased SDS-PAGE mobility is a susceptibility signal because the lower concentration of peroxide (20 mM) did not cause a decrease on HSPs SDS-PAGE mobility in T. spiralis and T. nelsoni, the two more resistant selected Trichinella species.
Collapse
Affiliation(s)
- J Martinez
- Facultad de Farmacia, Departamento de Microbiologia y Parasitologia, Universidad de Alcala, 28871 Alcala de Henares, Madrid, Spain.
| | | | | | | |
Collapse
|
17
|
Abstract
Host immune responses limit, and in some instances eliminate, nematode infections. There is considerable interest in enhancing these natural processes by the use of antinematode vaccines to achieve control of infection or disease. How nematodes are damaged is unclear. Worms might be damaged directly by effector cells and molecules of the immune system. Alternatively, they might be damaged by the physiological stress of their efforts to resist attack. Separating these possibilities could have important implications for approaches to the control of nematode infections and the disease that they cause.
Collapse
Affiliation(s)
- Mark Viney
- School of Biological Sciences, University of Bristol, Woodland Rd, BS8 1UG, Bristol, UK.
| |
Collapse
|
18
|
Kotze AC, McClure SJ. Haemonchus contortus utilises catalase in defence against exogenous hydrogen peroxide in vitro. Int J Parasitol 2001; 31:1563-71. [PMID: 11730782 DOI: 10.1016/s0020-7519(01)00303-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The toxicity of activated oxygen species towards adult Haemonchus contortus nematodes was examined in in vitro assays using ingestion of [3H]inulin to assess nematode viability. Both glucose/glucose oxidase (generation of hydrogen peroxide) and xanthine/xanthine oxidase (generation of superoxide anion) systems showed concentration-dependent toxicity to the nematodes. Both adult and larval Haemonchus contortus enzyme preparations showed significant catalase activities. Adult nematodes exposed to aminotriazole for 24 h showed catalase activities reduced to less than 20% of controls. Aminotriazole-treated nematodes exposed to a glucose/glucose oxidase system were significantly more susceptible to the toxic effects of the oxidant-generating system than controls (no aminotriazole pre-treatment). The concentration of glucose oxidase required to inhibit feeding by 50% was decreased 33-fold in aminotriazole-treated nematodes compared with controls. The effect of aminotriazole pre-treatment implicates hydrogen peroxide as a significant toxic agent in the glucose/glucose oxidase system. It is apparent that inhibition of Haemonchus contortus catalase increases the susceptibility of the parasite to the toxic effects of hydrogen peroxide, demonstrating a protective role for this enzyme. This suggests that catalase has the potential to play a significant role in the defence of this parasite against hydrogen peroxide produced as part of the respiratory burst of activated phagocytes within the host during its response to nematode infection.
Collapse
Affiliation(s)
- A C Kotze
- CSIRO Livestock Industries, Locked Bag 1 Delivery Centre, Blacktown, NSW, 2148, Australia.
| | | |
Collapse
|
19
|
Abstract
Mosquito-borne filarial nematodes cause the severe, debilitating disease of human lymphatic filariasis. In areas endemic for this disease, differential responses range from putative immunity through asymptomatic microfilaraemic infection to chronic pathology. Current research in mouse models of infection is elucidating the immunological mechanisms that can lead to immunity against this disease. In this review, the importance of different immunological pathways are discussed in relation to their role in human disease and in terms of their ability to kill separate developmental stages of the filarial parasite.
Collapse
Affiliation(s)
- R A Lawrence
- School of Biological Sciences, University of Manchester, 3.239 Stopford Building, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
20
|
Lawrence RA, Devaney E. Lymphatic filariasis: parallels between the immunology of infection in humans and mice. Parasite Immunol 2001; 23:353-61. [PMID: 11472555 DOI: 10.1046/j.1365-3024.2001.00396.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mouse models of Brugia infection have provided much useful quantitative and qualitative information on the immune response elicited by different life cycle stages of filarial worms. Many parallels exist between the immune response in the mouse and the infected human and in this review we highlight areas of topical interest, including the induction of specific cytokine responses and their role in immunomodulation and protective immunity. These studies have reinforced the concept that different life cycle stages of filarial parasites each have their own mechanism of modulating responses so that potentially inflammatory IFN-gamma responses are downregulated. While the precise mechanisms of protective immunity remain to be defined, studies in the mouse have suggested novel pathways, including a possible role for granulocytes.
Collapse
Affiliation(s)
- R A Lawrence
- School of Biological Sciences, University of Manchester, Manchester, UK.
| | | |
Collapse
|
21
|
Abstract
Macrophages have long been recognized as important cells associated with filarial infection but their function as effectors and/or suppressors has not been elucidated. Recent advances in our understanding of the role that macrophages may play in lymphatic filariasis have come from in vitro studies and mouse models of filarial infection. Based on these new findings, we hypothesize that while dead or dying worms induce the 'classical' activation of macrophages and a subsequent pro-inflammatory response, live and healthy worms secrete products that induce type 2 cytokines and the differentiation of 'alternatively' activated macrophages that downregulate an inflammatory response. Thus, the balance between the 'classical' and 'alternative' activation pathways of macrophages could be an important factor in inflammatory pathology associated with filariasis.
Collapse
Affiliation(s)
- J E Allen
- Institute of Cell, Animal and Population Biology, University of Edinburgh, Edinburgh, UK.
| | | |
Collapse
|
22
|
Maizels RM, Blaxter ML, Scott AL. Immunological genomics of Brugia malayi: filarial genes implicated in immune evasion and protective immunity. Parasite Immunol 2001; 23:327-44. [PMID: 11472553 DOI: 10.1046/j.1365-3024.2001.00397.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Filarial nematodes are metazoan parasites with genome sizes of> 100 million base pairs, probably encoding 15 000-20 000 genes. Within this considerable gene complement, it seems likely that filariae have evolved a spectrum of immune evasion products which underpin their ability to live for many years within the human host. Moreover, no suitable vaccine currently exists for human filarial diseases, and few markers have yet been established for diagnostic use. In this review, we bring together biochemical and immunological data on prominent filarial proteins with the exciting new information provided by the Filarial Genome Project's expressed sequence tag (EST) database. In this discussion, we focus on those genes with the highest immunological profile, such as inhibitors of host enzymes, cytokine homologues and stage-specific surface proteins, as well as products associated with the mosquito-borne infective larva which offer the best opportunity for an anti-filarial vaccine. These gene products provide a fascinating glimpse of the molecular repertoire which helminth parasites have evolved to manipulate and evade the mammalian immune response.
Collapse
Affiliation(s)
- R M Maizels
- Institute for Cell, Animal and Population Biology, University of Edinburgh, Edinburgh, UK.
| | | | | |
Collapse
|
23
|
Pfaff AW, Schulz-Key H, Soboslay PT, Geiger SM, Hoffmann WH. The role of nitric oxide in the innate resistance to microfilariae of Litomosoides sigmodontis in mice. Parasite Immunol 2000; 22:397-405. [PMID: 10972846 DOI: 10.1046/j.1365-3024.2000.00317.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nitric oxide (NO) has been shown to be an important effector mechanism in the defence against various pathogens, including filariae. The production of NO, as well as H2O2, is induced by the Th1 cytokine IFN-gamma. Therefore, the microfilariae (mf) of filarial nematodes, which are known to elicit the release of IFN-gamma, may be a target of NO release. In this study, we found that mf of the filarial species Litomosoides sigmodontis were resistant to the attack of H2O2, but vulnerable to NO exposure in vitro by a chemical NO donor, as well as activated macrophages. Adult worms were considerably less affected by exposure to NO. In-vivo production of NO following injection of mf, in this and previous studies, suggested a central role in the defence to filariae. However, neither pharmaceutical inhibition of nitric oxide synthesis, nor genetic knockout of the gene for inducible nitric oxide synthase (iNOS), abrogated resistance to circulating mf in mice. Interestingly, however, iNOS-KO mice showed higher interleukin (IL)-2 responses and lower IL-10 production, compared to their wild-type counterparts. In conclusion, despite its effectiveness in vitro and the observed production of NO by ex vivo cells following infection, nitric oxide seems not to be an important factor in elimination of mf of L. sigmodontis in vivo. However, it may have a regulatory role in the immune response.
Collapse
Affiliation(s)
- A W Pfaff
- Institute for Tropical Medicine, University of Tübingen, Germany
| | | | | | | | | |
Collapse
|
24
|
Liebau E, Eschbach ML, Tawe W, Sommer A, Fischer P, Walter RD, Henkle-Dührsen K. Identification of a stress-responsive Onchocerca volvulus glutathione S-transferase (Ov-GST-3) by RT-PCR differential display. Mol Biochem Parasitol 2000; 109:101-10. [PMID: 10960169 DOI: 10.1016/s0166-6851(00)00232-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The effects of oxidative insult on gene transcript levels in the filarial nematode Onchocerca volvulus were investigated using differential display RT-PCR. Oxidative stress was applied with the reagents paraquat, plumbagin and xanthine-xanthine oxidase. In all three cases, a cDNA fragment encoding a novel glutathione S-transferase (GST) resembling members of the theta-class was identified as upregulated (PQ29, PG112, XOD26). The subsequently isolated full-length cDNA harbors a 753-bp open reading frame encoding a GST with 268 amino acid residues and a predicted molecular mass of 31 kDa. This stress-responsive GST (Ov-GST-3) possesses only 14 and 21% sequence identity with the other O. volvulus GSTs (Ov-GST-1 and Ov-GST-2, respectively). Interestingly, Ov-GST-3 shares higher sequence identity with GSTs that are upregulated due to environmental stress. In order to confirm the specific upregulation of the Ov-GST-3 transcripts identified by differential display and to analyze the mRNA levels of the other Ov-GSTs (Ov-GST-1 and Ov-GST-2) under elevated stress conditions, a semi-quantitative polymerase chain reaction-enzyme-linked immunosorbent assay was performed. The Ov-GST-3 gene transcript level increased dramatically in response to xanthine-xanthine oxidase and to a lesser extent with paraquat and plumbagin. In contrast, Ov-GST-1 and Ov-GST-2 did not show any significant alterations in their steady-state mRNA levels in response to oxidative stress when examining the same mRNA samples. The present study clearly demonstrates that Ov-GST-3 is a critical enzyme in the defense against oxidative stress.
Collapse
Affiliation(s)
- E Liebau
- Department of Biochemical Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The finding that the intracellular bacteria of filarial nematodes are related to the Wolbachia symbionts of arthropods has generated great interest. Here, Mark Taylor and Achim Hoerauf review recent studies by several groups on the structure, distribution and phylogeny of these endosymbionts, and discuss the potential role for these bacteria in filarial disease and as a target for chemotherapy.
Collapse
Affiliation(s)
- M J Taylor
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK L3 5QA.
| | | |
Collapse
|
26
|
Tetteh KK, Loukas A, Tripp C, Maizels RM. Identification of abundantly expressed novel and conserved genes from the infective larval stage of Toxocara canis by an expressed sequence tag strategy. Infect Immun 1999; 67:4771-9. [PMID: 10456930 PMCID: PMC96808 DOI: 10.1128/iai.67.9.4771-4779.1999] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/1999] [Accepted: 06/01/1999] [Indexed: 12/31/2022] Open
Abstract
Larvae of Toxocara canis, a nematode parasite of dogs, infect humans, causing visceral and ocular larva migrans. In noncanid hosts, larvae neither grow nor differentiate but endure in a state of arrested development. Reasoning that parasite protein production is orientated to immune evasion, we undertook a random sequencing project from a larval cDNA library to characterize the most highly expressed transcripts. In all, 266 clones were sequenced, most from both 3' and 5' ends, and similarity searches against GenBank protein and dbEST nucleotide databases were conducted. Cluster analyses showed that 128 distinct gene products had been found, all but 3 of which represented newly identified genes. Ninety-five genes were represented by a single clone, but seven transcripts were present at high frequencies, each composing >2% of all clones sequenced. These high-abundance transcripts include a mucin and a C-type lectin, which are both major excretory-secretory antigens released by parasites. Four highly expressed novel gene transcripts, termed ant (abundant novel transcript) genes, were found. Together, these four genes comprised 18% of all cDNA clones isolated, but no similar sequences occur in the Caenorhabditis elegans genome. While the coding regions of the four genes are dissimilar, their 3' untranslated tracts have significant homology in nucleotide sequence. The discovery of these abundant, parasite-specific genes of newly identified lectins and mucins, as well as a range of conserved and novel proteins, provides defined candidates for future analysis of the molecular basis of immune evasion by T. canis.
Collapse
Affiliation(s)
- K K Tetteh
- Institute of Cell, Animal and Population Biology, University of Edinburgh, Edinburgh EH9 3JT, Scotland, United Kingdom
| | | | | | | |
Collapse
|
27
|
Taiwo FA, Brophy PM, Pritchard DI, Brown A, Wardlaw A, Patterson LH. Cu/Zn superoxide dismutase in excretory-secretory products of the human hookworm Necator americanus. An electron paramagnetic spectrometry study. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 264:434-8. [PMID: 10491088 DOI: 10.1046/j.1432-1327.1999.00626.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
EPR spectrometry was used to investigate the effect of excretory/secretory product from Necator americanus on superoxide radical anions generated by xanthine/xanthine oxidase as a measure of excretory/secretory product superoxide dismutase activity. Using 1,1',5,5'-dimethylpyrollidine-N-oxide (DMPO) as a superoxide spin-trapping agent a 12-line EPR spectrum characteristic of the DMPO-OOH adduct was observed to decrease in the presence of excretory/secretory product. Superoxide dismutase activity was proportional to excretory/secretory protein concentration, was inhibited with cyanide treatment and was progressively destroyed with increasing time of heat denaturation of excretory/secretory product. Using a purpose-built chamber the superoxide dismutase activity of excretory/secretory product from live worms in culture was shown to accumulate with time to a maximum at 4 h. The electron paramagnetic resonance spectrum obtained for the frozen excretory/secretory product of N. americanus recorded at 77 K is typical of Cu(II) in a protein matrix. The results are consistent with the presence of an active Cu/Zn superoxide dismutase in excretory/secretory product from N. americanus and demonstrate a method for the unequivocal determination of the fate of superoxide anions in the presence of live worms.
Collapse
Affiliation(s)
- F A Taiwo
- School of Pharmacy, De Montfort University, Leicester, UK.
| | | | | | | | | | | |
Collapse
|
28
|
Selkirk ME, Smith VP, Thomas GR, Gounaris K. Resistance of filarial nematode parasites to oxidative stress. Int J Parasitol 1998; 28:1315-32. [PMID: 9770616 DOI: 10.1016/s0020-7519(98)00107-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
All filariae examined to date express a comprehensive repertoire of both cytoplasmic and secreted anti-oxidant enzymes, although significant differences exist between species and life-cycle stages. Adult Brugia malayi, Dirofilaria immitis and Onchocerca volvulus secrete CuZn superoxide dismutases, and the former two species also secrete a selenocysteine-independent glutathione peroxidase. This enzyme has been localised to the cuticular matrix of B. malayi, and the preferential reduction of fatty acid- and phospholipid hydroperoxides suggests that it may protect cuticular membranes from oxidative damage rather than directly metabolise hydrogen peroxide. Adult O. volvulus may compensate for an apparent deficiency in expression of this enzyme via a secreted variant of glutathione S-transferase. Recent studies have identified a highly expressed family of enzymes collectively termed peroxiredoxins, which most probably play an essential role in reduction of hydroperoxides. Data from cDNA cloning exercises indicate that all filarial species examined thus far express at least two peroxiredoxin variants which have been localised to diverse tissues. In-vitro studies have shown that B. malayi are particularly resistant to oxidative stress, and that the parasites do not rely solely on enzymatic mechanisms of defence. Cuticular lipids are relatively resistant to lipid peroxidation due to the low unsaturation indices of the constituent fatty acyl residues, but complete protection is afforded by the presence of alpha-tocopherol, presumably assimilated from host extracellular fluids. Brugia malayi are also relatively resistant to nitric oxide-mediated toxicity, and this may be due in part to incomplete dependence on aerobic metabolism. Little is known of potential mechanisms for detoxification of nitric oxide derivatives and adaptive responses to oxidative stress in general, and these represent goals for future research.
Collapse
Affiliation(s)
- M E Selkirk
- Department of Biochemistry, Imperial College of Science, Technology and Medicine, London, U.K.
| | | | | | | |
Collapse
|
29
|
Abstract
Parasite-derived antioxidant proteins have been implicated in playing an important role in protection against the oxygen radicals that are generated during aerobic metabolism and in defense against host immune cell attack. Here we report that filarial nematodes include the thioredoxin peroxidase/thiol-specific antioxidant (TPx/TSA) family of antioxidant proteins as part of their complex defense against radical-mediated damage. At the protein level, the TPx/TSA from Brugia malayi (Bm-TPx-1) was approximately 50% identical and approximately 60% similar to TPx/TSAs from mammals, amphibians and yeast. Bm-TPx-1 was also approximately 60% identical to putative TPx proteins from a related filarial nematode, Onchocerca volvulus, and from the free-living nematode Caenorhabditis elegans. That B. malayi may express multiple forms of molecules with TPx/TSA activity was indicated by the identification of a B. malayi gene encoding a second, distinct member of the TPx/TSA family (Bm-tpx-2). Bm-tpx-1 was found to be transcribed in all stages of the parasite present in the mammalian host and the 25 kDa translation product was present in all of the developmental stages studied. The results of immunohistochemical, immunofluorescent and immunoprecipitation studies showed Bm-TPx-1 to be localized in the cells of the hypodermis/lateral chord in adult parasites and not to be present at the surface or in excretory/secretory products. The distribution in the parasite suggests that Bm-TPx-1 may play its major role in countering radicals produced within cells. A recombinant form of Bm-TPx-1 was biologically active and capable of protecting DNA from oxygen radical-mediated damage. Thioredoxin peroxidases may prove to be a critical component in the parasite's defense against injury caused by oxygen radicals derived from endogenous and exogenous sources.
Collapse
Affiliation(s)
- I Ghosh
- Department of Molecular Microbiology and Immunology, School of Hygiene and Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
30
|
Lu W, Egerton GL, Bianco AE, Williams SA. Thioredoxin peroxidase from Onchocerca volvulus: a major hydrogen peroxide detoxifying enzyme in filarial parasites. Mol Biochem Parasitol 1998; 91:221-35. [PMID: 9566516 DOI: 10.1016/s0166-6851(97)00230-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Random screening of an Onchocerca volvulus third-stage (L3) cDNA library identified a highly abundant cDNA encoding a newly discovered antioxidant enzyme, thioredoxin peroxidase (TPx), a member of the peroxidoxin superfamily. This TPx cDNA (Ov-tpx-2) encodes a polypeptide of 199 amino acid residues with a calculated molecular weight of 21,890 Da. The Ov-tpx-2 cDNA represents roughly 2.5% of the total cDNAs from the L3 cDNA library. The gene was expressed in Escherichia coli and the protein product was shown to have antioxidant activity. Antiserum raised against Ov-TPX-2 recognized a native protein from extracts of both the L3 and adult-stages with a molecular weight of 22 kD. The localization and stage-specificity of Ov-TPX-2 protein was analyzed by immunocytochemistry and immunoelectron microscopy using monospecific antibodies. Expression was detected in late first-stage larvae during development in the vector and increased in intensity during differentiation to the infective L3-stage. The antigen was also detected in post-infective larvae and adult worms. In larvae, Ov-TPX-2 protein was predominantly localized to the hypodermis and cuticle, with additional sites in the hypodermal chords and multivesicular bodies. In adult worms, the primary sites of expression were the uterine epithelium and intestine, with additional labeling of the body wall and cuticle. Developing embryos and microfilariae in utero were bathed in Ov-TPX-2 protein discharged from epithelial cells. These results suggest that Ov-TPX-2 may protect the parasites from being damaged by host-generated oxidative stress and that Ov-TPX-2 protein provides the H2O2-detoxifying activity predicted but not previously identified in filarial parasites. Its highly upregulated expression in infective larvae may aid in parasite establishment following transmission to the definitive host.
Collapse
Affiliation(s)
- W Lu
- Department of Biological Sciences, Clark Science Center, Smith College, Northampton, MA 01063, USA
| | | | | | | |
Collapse
|
31
|
Smith VP, Selkirk ME, Gounaris K. Brugia malayi: resistance of cuticular lipids to oxidant-induced damage and detection of alpha-tocopherol in the neutral lipid fraction. Exp Parasitol 1998; 88:103-10. [PMID: 9538864 DOI: 10.1006/expr.1998.4209] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have examined the susceptibility of cuticular membrane lipids of Brugia malayi to oxidants generated in vitro. Live parasites as well as extracted cuticular lipids were treated with hydrogen peroxide and hypochlorous acid and the extent of lipid peroxidation was quantified. The cuticular membranes of B. malayi were found to be resistant to lipid peroxidation at hydrogen peroxide concentrations which were lethal to the organism. This resistance was partly due to the inherently low unsaturation indices of the fatty acyl residues, but complete protection was afforded by lipid-soluble antioxidants present in the neutral lipid fraction of the parasites. We have identified alpha-tocopherol as a major antioxidant present in both adult and microfilarial B. malayi. In addition, we report that although hypochlorous acid chemically modifies isolated parasite lipids, the latter do not appear to be the primary substrate for the oxidant in live worms. The data are discussed in terms of the susceptibility of B. malayi to products of the respiratory burst from activated myeloid cells.
Collapse
Affiliation(s)
- V P Smith
- Department of Biochemistry, Imperial College of Science, Technology and Medicine, London, United Kingdom
| | | | | |
Collapse
|
32
|
Thomas GR, McCrossan M, Selkirk ME. Cytostatic and cytotoxic effects of activated macrophages and nitric oxide donors on Brugia malayi. Infect Immun 1997; 65:2732-9. [PMID: 9199443 PMCID: PMC175385 DOI: 10.1128/iai.65.7.2732-2739.1997] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The susceptibility of Brugia malayi microfilariae and adults to injury by the murine macrophage cell line J774 activated with gamma interferon and bacterial lipopolysaccharide has been examined in vitro. Parasites of both stages showed a decline in viability over 48 h of coculture with activated macrophages, assessed by their capacity to reduce the tetrazolium salt 3-[4,5-diethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT), although adult parasites were more resistant than microfilariae. Removal of parasites to cell-free medium following exposure to activated macrophages for up to 48 h resulted in partial recovery of their capacity to reduce MTT, suggesting that the effects were primarily cytostatic. However, prolonged exposure to activated J774 cells for 72 h resulted in parasite death. Addition of the nitric oxide synthase inhibitor L-NMMA (N(G)-monomethyl-L-arginine monoacetate) indicated that nitric oxide derivatives were responsible for cytostasis and ultimate toxicity. The toxicity of nitric oxide derivatives was confirmed by coincubation of parasites with chemical donors, although far higher concentrations were required than those generated by activated J774 cells, implying additional complexity in macrophage-mediated cytotoxicity. These experiments further suggested that peroxynitrite or its by-products were more potently damaging to filariae than nitric oxide per se. Examination of ultrastructural changes on exposure of parasites to activated macrophages or donors of nitric oxide indicated that hypodermal mitochondria were highly vacuolated, with less prominent cristae. The data are discussed with reference to immunity to lymphatic filariae and their mechanisms of energy generation.
Collapse
Affiliation(s)
- G R Thomas
- Department of Biochemistry, Imperial College of Science, Technology and Medicine, London, United Kingdom
| | | | | |
Collapse
|
33
|
Smith VP, Selkirk ME, Gounaris K. Identification and composition of lipid classes in surface and somatic preparations of adult Brugia malayi. Mol Biochem Parasitol 1996; 78:105-16. [PMID: 8813681 DOI: 10.1016/s0166-6851(96)02615-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The cuticle of adult Brugia malayi is the organisms's major point of interaction with the mammalian host environment. We therefore undertook an investigation in order to define the lipid composition of this outermost layer of the parasite. The lipid class and fatty acid composition of the cuticle of adult Brugia malayi was examined by surface specific radioiodination, organic extraction, thin layer chromatography and gas chromatography. The data were compared with those derived from similar analyses of somatic preparations of the parasites. The composition of the cuticular lipid fraction was found to be highly unusual and distinct from that of the internal lipids. Cholesterol esters and wax esters were absent from the cuticular lipid fraction, which was however enriched in unesterified fatty acids. The major polar lipids in both cuticular and somatic preparations were phosphatidylcholine and phosphatidylethanolamine, but unusually high levels of lysophosphatidylethanolamine were observed in the cuticular extracts. Analyses of cuticular polar lipids indicated that there is an asymmetric distribution of the fatty acids in phosphatidylethanolamine, assuming that lysophosphatidylethanolamine is derived from deacylation of the former molecule in the cuticle. The major fatty acids in all lipid fractions examined were the 18-carbon, mono- and di-unsaturated type, while significant amounts of palmitic, palmitoleic, stearic and eicosatrienoic acids were also found. A highly unusual feature of the cuticular lipid fraction was that it contained large amounts of a novel polar lipid species which, on exposure to atmospheric oxygen, degraded to a hydrophobic and a hydrophilic moiety. This polar lipid was absent from the somatic preparations. The data are discussed in terms of the possible resistance or susceptibility of the parasite to reactive oxygen species.
Collapse
Affiliation(s)
- V P Smith
- Department of Biochemistry, Imperial College of Science, Technology and Medicine, London, UK
| | | | | |
Collapse
|
34
|
Taylor MJ, Cross HF, Mohammed AA, Trees AJ, Bianco AE. Susceptibility of Brugia malayi and Onchocerca lienalis microfilariae to nitric oxide and hydrogen peroxide in cell-free culture and from IFN gamma-activated macrophages. Parasitology 1996; 112 ( Pt 3):315-22. [PMID: 8728995 DOI: 10.1017/s0031182000065835] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The susceptibility of Brugia malayi and Onchocerca lienalis microfilariae to H2O2 and NO either in cell-free culture or from IFN gamma-activated macrophages was examined. In cell-free culture, O. lienalis microfilariae were highly susceptible to H2O2 induced toxicity, exhibiting rapid reductions in motility and viability. The addition of exogenous catalase abrogated H2O2-induced killing. In contrast, B. malayi microfilariae were relatively resistant to H2O2, with concentrations as high as 50 microM having no effect on motility or viability. On exposure to NO, both species showed reductions in motility within 5-30 min, but longer was required to see effects on the viability of microfilariae. Parasites incubated with IFN gamma-activated macrophages also exhibited marked reductions in motility and viability. In cultures with B. malayi and activated macrophages, inhibition of these effects was achieved by the addition of either L-NMMA, to abolish NO production, or neutralizing anti-TNF alpha antibodies. Attempts to inhibit parasite killing by the addition of catalase to macrophage cultures were ineffective. The results of this study show that B. malayi and O. lienalis microfilariae have different susceptibility to H2O2, but are equally affected by exposure to NO. Moreover both species are killed by IFN gamma-activated macrophages and in the case of B. malayi, killing is dependent on the generation of NO via TNF alpha.
Collapse
Affiliation(s)
- M J Taylor
- Liverpool School of Tropical Medicine, UK
| | | | | | | | | |
Collapse
|