1
|
Screening of Yeasts Isolated from Baijiu Environments for Producing 3-Methylthio-1-propanol and Optimizing Production Conditions. Foods 2022; 11:foods11223616. [PMID: 36429207 PMCID: PMC9689521 DOI: 10.3390/foods11223616] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
3-Methylthio-1-propanol (3-Met) is widely used as a flavoring substance and an essential aroma ingredient in many foods. Producing 3-Met by microbial transformation is green and eco-friendly. In the present study, one strain, YHM-G, which produced a high level of 3-Met, was isolated from the Baijiu-producing environment. Strain YHM-G was identified as Hyphopichia burtonii according to its morphological properties, physiological and biochemical characteristics, and ribosomal large subunit 26S rRNA gene D1/D2 domain sequence analysis. The optimal conditions for 3-Met production by YHM-G were obtained by single factor design, Plackett-Burman design, steepest ascent path design and response surface methodology as follows: 42.7 g/L glucose, pH 6, 0.9 g/L yeast extract, 6 g/L L-methionine (L-Met), culture temperature 28 °C, shaking speed 210 rpm, loading volume 50 mL/250 mL, inoculum size 0.5% (v/v), culturing period 48 h and 2.5 g/L Tween-80. Under these optimal conditions, the 3-Met production by strain YHM-G was 3.16 g/L, a value 88.1% higher than that before optimization. Strain YHM-G can also produce a variety of flavor compounds that are important for many foods. This strain thus has the potential to increase the abundance of 3-Met in some fermented foods and enhance their aroma profiles.
Collapse
|
2
|
Santos AG, Buarque FS, Ribeiro BD, Coelho MAZ. Extractive fermentation for the production and partitioning of lipase and citric acid by Yarrowia lipolytica. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Kubiak M, Białas W, Celińska E. Thermal treatment improves a process of crude glycerol valorization for the production of a heterologous enzyme by Yarrowia lipolytica. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 31:e00648. [PMID: 34221911 PMCID: PMC8243353 DOI: 10.1016/j.btre.2021.e00648] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/30/2022]
Abstract
A crude glycerol valorization process to enzymatic preparation was developed. Impact of thermal treatment on the protein production by Y. lipolytica is studied. Pilot-scale processes with laboratory and technical substrates were simulated. Techno-economic analysis of a pilot-scale waste-free process was conducted. Comprehensive stream analysis and identification of bottlenecks is provided.
Valorization of crude glycerol requires a potent bifunctional biocatalyst, such as Yarrowia lipolytica, capable of high-density growth on this substrate, and having i.a. high propensity for heterologous protein synthesis. Increasing evidence suggests that controlled administration of stress, i.a. thermal treatment, has a positive impact on bioprocess performance. In this study, we systematically adjusted thermal treatment conditions (20 to 42 °C) in order to maximize heterologous protein production by Y. lipolytica growing in crude glycerol-based medium. Our results showed nearly 30% enhancement in the enzyme production triggered by temporary exposure to decreased temperature. Here developed mathematical model indicated optimal treatment conditions (20 °C, 153′) that were later applied to a process with biodiesel-derived glycerol and technical substrates. Techno-economic analysis of a pilot-scale-waste-free process was conducted. Quantitative description of the associated costs and economic gain due to exploitation of industrial substrates, as well as indication of current bottlenecks of the process, are also provided.
Collapse
Affiliation(s)
- Monika Kubiak
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego, 60-637 Poznań, Poland
| | - Wojciech Białas
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego, 60-637 Poznań, Poland
| | - Ewelina Celińska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego, 60-637 Poznań, Poland
| |
Collapse
|
4
|
Milanović V, Sabbatini R, Garofalo C, Cardinali F, Pasquini M, Aquilanti L, Osimani A. Evaluation of the inhibitory activity of essential oils against spoilage yeasts and their potential application in yogurt. Int J Food Microbiol 2021; 341:109048. [PMID: 33486390 DOI: 10.1016/j.ijfoodmicro.2021.109048] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/14/2020] [Accepted: 12/30/2020] [Indexed: 11/30/2022]
Abstract
Yeasts are the leading cause of spoilage in yogurt. Considering the high demand from consumers to use natural products as an alternative to additives, essential oils (EOs) could be a promising solution to guarantee high microbiological standards. The present study highlighted the in vitro antifungal potential of cinnamon, ginger, lemongrass, mandarin, orange, lemon and lime EOs against spoilage yeasts isolated from yogurts prepared with pasteurized buffalo milk. A total of 74 isolates represented by 14 different species of Candida, Rhodotorula, Debaryomyces, Kluyveromyces and Yarrowia genera were subjected to a disc diffusion assay, showing lemongrass EO to have the highest antifungal activity (40.97 ± 9.86 mm), followed by cinnamon (38.46 ± 6.59 mm) and orange (12.00 ± 4.52 mm) EOs. Yarrowia lipolytica was less susceptible to lemongrass EO than Candida sake and Yarrowia deformans isolates. Ginger EO exhibited the lowest efficacy. A minimum inhibitory concentration (MIC) assay showed the ability of lemongrass and cinnamon EOs to inhibit the growth of all selected isolates at concentrations between ≤0.31 and 1.25 μL/mL. Therefore, for the first time, the two best-performing EOs (lemongrass and cinnamon) based on in vitro assays were assessed for their potential roles as preservatives in an in vivo yogurt model prepared at the laboratory scale. Since some limitations, such as the inhibition of lactic acid bacteria by cinnamon EO, consequently leading to fermentation failure as well as species-specific antifungal activity of lemongrass EO, were observed, further studies are needed to explore the possibility of using a slightly higher concentration of lemongrass EO and/or combinations of different EOs and/or their components. Finally, since yogurt spoilage could also be prevented by correct sanitation procedures of the production environment, the sanitizers commonly used in the food industry were tested against all isolates, showing the high efficiency of alcohol-based sanitizers and the ineffectiveness of chlorine-based sanitizers.
Collapse
Affiliation(s)
- Vesna Milanović
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Riccardo Sabbatini
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Cristiana Garofalo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Federica Cardinali
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Marina Pasquini
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Lucia Aquilanti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Andrea Osimani
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, 60131 Ancona, Italy
| |
Collapse
|
5
|
Geronikou A, Srimahaeak T, Rantsiou K, Triantafillidis G, Larsen N, Jespersen L. Occurrence of Yeasts in White-Brined Cheeses: Methodologies for Identification, Spoilage Potential and Good Manufacturing Practices. Front Microbiol 2020; 11:582778. [PMID: 33178163 PMCID: PMC7593773 DOI: 10.3389/fmicb.2020.582778] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/14/2020] [Indexed: 01/30/2023] Open
Abstract
Yeasts are generally recognized as contaminants in the production of white-brined cheeses, such as Feta and Feta-type cheeses. The most predominant yeasts species are Debaryomyces hansenii, Geotrichum candidum, Kluyveromyces marxianus, Kluyveromyces lactis, Rhodotorula mucilaginosa, and Trichosporon spp. Although their spoilage potential varies at both species and strain levels, yeasts will, in case of excessive growth, present a microbiological hazard, effecting cheese quality. To evaluate the hazard and trace routes of contamination, the exact taxonomic classification of yeasts is required. Today, identification of dairy yeasts is mainly based on DNA sequencing, various genotyping techniques, and, to some extent, advanced phenotypic identification technologies. Even though these technologies are state of the art at the scientific level, they are only hardly implemented at the industrial level. Quality defects, caused by yeasts in white-brined cheese, are mainly linked to enzymatic activities and metabolism of fermentable carbohydrates, leading to production of metabolites (CO2, fatty acids, volatile compounds, amino acids, sulfur compounds, etc.) and resulting in off-flavors, texture softening, discoloration, and swelling of cheese packages. The proliferation of spoilage yeast depends on maturation and storage conditions at each specific dairy, product characteristics, nutrients availability, and interactions with the co-existing microorganisms. To prevent and control yeast contamination, different strategies based on the principles of HACCP and Good Manufacturing Practice (GMP) have been introduced in white-brined cheese production. These strategies include milk pasteurization, refrigeration, hygienic sanitation, air filtration, as well as aseptic and modified atmosphere packaging. Though a lot of research has been dedicated to yeasts in dairy products, the role of yeast contaminants, specifically in white-brined cheeses, is still insufficiently understood. This review aims to summarize the current knowledge on the identification of contaminant yeasts in white-brined cheeses, their occurrence and spoilage potential related to different varieties of white-brined cheeses, their interactions with other microorganisms, as well as guidelines used by dairies to prevent cheese contamination.
Collapse
Affiliation(s)
- Athina Geronikou
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Thanyaporn Srimahaeak
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Kalliopi Rantsiou
- Department of Agricultural, Forestry and Food Sciences, University of Turin, Turin, Italy
| | | | - Nadja Larsen
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Lene Jespersen
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
6
|
Bouillon GA, Gåserød O, Rattray FP. Evaluation of the inhibitory effect of alginate oligosaccharide on yeast and mould in yoghurt. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2019.104554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
7
|
Mestres C, Munanga BDJ, Grabulos J, Loiseau G. Modeling mixed fermentation of gowé using selected Lactobacillus plantarum and Pichia kluyveri strains. Food Microbiol 2019; 84:103242. [DOI: 10.1016/j.fm.2019.103242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 06/03/2019] [Accepted: 06/12/2019] [Indexed: 11/29/2022]
|
8
|
Gündüz Ergün B, Hüccetoğulları D, Öztürk S, Çelik E, Çalık P. Established and Upcoming Yeast Expression Systems. Methods Mol Biol 2019; 1923:1-74. [PMID: 30737734 DOI: 10.1007/978-1-4939-9024-5_1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Yeast was the first microorganism used by mankind for biotransformation of feedstock that laid the foundations of industrial biotechnology. Long historical use, vast amount of data, and experience paved the way for Saccharomyces cerevisiae as a first yeast cell factory, and still it is an important expression platform as being the production host for several large volume products. Continuing special needs of each targeted product and different requirements of bioprocess operations have led to identification of different yeast expression systems. Modern bioprocess engineering and advances in omics technology, i.e., genomics, transcriptomics, proteomics, secretomics, and interactomics, allow the design of novel genetic tools with fine-tuned characteristics to be used for research and industrial applications. This chapter focuses on established and upcoming yeast expression platforms that have exceptional characteristics, such as the ability to utilize a broad range of carbon sources or remarkable resistance to various stress conditions. Besides the conventional yeast S. cerevisiae, established yeast expression systems including the methylotrophic yeasts Pichia pastoris and Hansenula polymorpha, the dimorphic yeasts Arxula adeninivorans and Yarrowia lipolytica, the lactose-utilizing yeast Kluyveromyces lactis, the fission yeast Schizosaccharomyces pombe, and upcoming yeast platforms, namely, Kluyveromyces marxianus, Candida utilis, and Zygosaccharomyces bailii, are compiled with special emphasis on their genetic toolbox for recombinant protein production.
Collapse
Affiliation(s)
- Burcu Gündüz Ergün
- Biochemical Reaction Engineering Laboratory, Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey
| | - Damla Hüccetoğulları
- Biochemical Reaction Engineering Laboratory, Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey
| | - Sibel Öztürk
- Biochemical Reaction Engineering Laboratory, Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey
| | - Eda Çelik
- Department of Chemical Engineering, Hacettepe University, Ankara, Turkey
- Bioengineering Division, Institute of Science, Hacettepe University, Ankara, Turkey
| | - Pınar Çalık
- Biochemical Reaction Engineering Laboratory, Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey.
- Industrial Biotechnology and Metabolic Engineering Laboratory, Department of Biotechnology, Graduate School of Natural and Applied Sciences, Middle East Technical University, Ankara, Turkey.
| |
Collapse
|
9
|
Koubkova-Yu TCT, Chao JC, Leu JY. Heterologous Hsp90 promotes phenotypic diversity through network evolution. PLoS Biol 2018; 16:e2006450. [PMID: 30439936 PMCID: PMC6264905 DOI: 10.1371/journal.pbio.2006450] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 11/29/2018] [Accepted: 10/30/2018] [Indexed: 12/24/2022] Open
Abstract
Biological processes in living cells are often carried out by gene networks in which signals and reactions are integrated through network hubs. Despite their functional importance, it remains unclear to what extent network hubs are evolvable and how alterations impact long-term evolution. We investigated these issues using heat shock protein 90 (Hsp90), a central hub of proteostasis networks. When native Hsp90 in Saccharomyces cerevisiae cells was replaced by the ortholog from hypersaline-tolerant Yarrowia lipolytica that diverged from S. cerevisiae about 270 million years ago, the cells exhibited improved growth in hypersaline environments but compromised growth in others, indicating functional divergence in Hsp90 between the two yeasts. Laboratory evolution shows that evolved Y. lipolytica-HSP90–carrying S. cerevisiae cells exhibit a wider range of phenotypic variation than cells carrying native Hsp90. Identified beneficial mutations are involved in multiple pathways and are often pleiotropic. Our results show that cells adapt to a heterologous Hsp90 by modifying different subnetworks, facilitating the evolution of phenotypic diversity inaccessible to wild-type cells. Biological processes in living cells are often carried out by gene networks. Hubs are highly connected network components important for integrating signal inputs and generating responsive functional outputs. Heat shock protein 90 (Hsp90), a versatile hub in the protein homeostasis network, is a molecular chaperone essential for cell viability in all tested eukaryotic cells. In yeast, about a quarter of the expressed proteins are profoundly influenced when Hsp90 activity is reduced. Despite its pivotal role, we found that the function of Hsp90 has diverged between two yeast species, Yarrowia lipolytica and Saccharomyces cerevisiae, which split about 270 million years ago. To understand the impacts and adaptive strategies in cells with an altered network hub, we conducted laboratory evolution experiments using a S. cerevisiae strain in which native Hsp90 is replaced by its counterpart in Y. lipolytica. We observed different fitness gain or loss under various stress conditions in individual evolved clones, suggesting that cells adapted via different evolutionary paths. Genome sequencing and mutation reconstitution experiments show that beneficial mutations occurred in multiple Hsp90-related pathways that interact with each other. Our results show that a perturbed network allows cells to evolve a broader range of phenotypic diversity unavailable to wild-type cells.
Collapse
Affiliation(s)
- Tracy Chih-Ting Koubkova-Yu
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung-Hsing University and Academia Sinica, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
| | - Jung-Chi Chao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Jun-Yi Leu
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung-Hsing University and Academia Sinica, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
10
|
Del Olmo A, Calzada J, Nuñez M. Benzoic acid and its derivatives as naturally occurring compounds in foods and as additives: Uses, exposure, and controversy. Crit Rev Food Sci Nutr 2018; 57:3084-3103. [PMID: 26587821 DOI: 10.1080/10408398.2015.1087964] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Benzoic acid is an aromatic carboxylic acid naturally present in plant and animal tissues, which can also be produced by microorganisms. Benzoic acid and a wide range of derivatives and related benzenic compounds, such as salts, alkyl esters, parabens, benzyl alcohol, benzaldehyde, and benzoyl peroxide, are commonly used as antibacterial and antifungal preservatives and as flavoring agents in food, cosmetic, hygiene, and pharmaceutical products. As a result of their widespread occurrence, production, and uses, these compounds are largely distributed in the environment and found in water, soil, and air. Consequently, human exposure to them can be high, common, and lengthy. This review is mainly focused on the presence and use of benzoic acid in foods but it also covers the occurrence, uses, human exposure, metabolism, toxicology, analytical methods for detection, and legal limits for benzoic acid and its derivatives. Their controversial effects and potential public health concerns are discussed.
Collapse
Affiliation(s)
- Ana Del Olmo
- a Departamento de Tecnología de Alimentos , INIA , Madrid , Spain
| | - Javier Calzada
- a Departamento de Tecnología de Alimentos , INIA , Madrid , Spain
| | - Manuel Nuñez
- a Departamento de Tecnología de Alimentos , INIA , Madrid , Spain
| |
Collapse
|
11
|
Ding Q, Alborzi S, Bastarrachea LJ, Tikekar RV. Novel sanitization approach based on synergistic action of UV-A light and benzoic acid: Inactivation mechanism and a potential application in washing fresh produce. Food Microbiol 2017; 72:39-54. [PMID: 29407404 DOI: 10.1016/j.fm.2017.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 12/17/2022]
Abstract
Antimicrobial activity of the simultaneous UV-A light and benzoic acid (BA) treatment against stationary phase Escherichia coli O157:H7 was investigated. While 15 mM BA or UV-A light exposure for 30 min alone caused < 1 logarithmic reduction in the bacterial population, > 5 logarithmic reductions were induced by the simultaneous application of UV-A and 15 mM BA in 30 min, demonstrating a synergistic antimicrobial effect. Due to its ability to increase cell membrane permeability, addition of EDTA (1 mM) was able to decrease the required concentration of BA in the simultaneous treatment from 15 to 8 mM. Microbial inactivation was a result of simultaneous membrane damage, intracellular acidification, and intracellular oxidative stress. The simultaneous treatment was effective in the presence of organic load of up to 500 mg/L of chemical oxygen demand (COD) and was able to lower cross-contamination risk during simulated washing of spinach (Spinacia oleracea) without adversely affecting its color.
Collapse
Affiliation(s)
- Qiao Ding
- Department of Nutrition and Food Science, University of Maryland, 112 Skinner Building, College Park, MD 20742, United States
| | - Solmaz Alborzi
- Department of Nutrition and Food Science, University of Maryland, 112 Skinner Building, College Park, MD 20742, United States
| | - Luis J Bastarrachea
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, 8700 Old Main Hill, Logan, UT 84322, United States
| | - Rohan V Tikekar
- Department of Nutrition and Food Science, University of Maryland, 112 Skinner Building, College Park, MD 20742, United States.
| |
Collapse
|
12
|
Lačanin I, Mounier J, Pawtowski A, Dušková M, Kameník J, Karpíšková R. Assessment of the antifungal activity of Lactobacillus and Pediococcus spp. for use as bioprotective cultures in dairy products. World J Microbiol Biotechnol 2017; 33:188. [DOI: 10.1007/s11274-017-2354-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/22/2017] [Indexed: 12/20/2022]
|
13
|
Sánchez-Rubio M, Guerrouj K, Taboada-Rodríguez A, López-Gómez A, Marín-Iniesta F. Control of Native Spoilage Yeast on Dealcoholized Red Wine by Preservatives Alone and in Binary Mixtures. J Food Sci 2017; 82:2128-2133. [PMID: 28833163 DOI: 10.1111/1750-3841.13817] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 05/19/2017] [Accepted: 06/23/2017] [Indexed: 11/29/2022]
Abstract
In order to preserve a commercial dealcoholized red wine (DRW), a study with 4 preservatives and binary mixtures of them were performed against 2 native spoilage yeasts: Rhodotorula mucilaginosa and Saccharomyces cerevisiae. Minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC) for potassium sorbate, sodium benzoate, sodium metabisulfite and dimethyl dicarbonate (DMDC) were evaluated in DRW stored at 25 °C. MICs of potassium sorbate and sodium metabisulfite were 250 and 60 mg/kg, respectively for both target strains. However for sodium benzoate, differences between yeasts were found; R. mucilaginosa was inhibited at 125 mg/kg, while S. cerevisiae at 250 mg/kg. Regarding MFC, differences between strains were only found for sodium metabisulfite obtaining a MFC of 500 mg/kg for R. mucilaginosa and a MFC of 250 mg/kg for S. cerevisiae. Potassium sorbate and sodium benzoate showed the MFC at 1000 mg/kg and DMDC at 200 mg/kg. Regarding the effect of binary mixtures the Fractional Fungicidal Concentration Index (FFCi ) methodology showed that binary mixtures of 100 mg/kg DMDC/200 mg/kg potassium sorbate (FFCi = 0.7) and 50 mg/kg DMDC / 400 mg/kg sodium benzoate (FFCi = 0.65) have both synergistic effect against the 2 target strains. These binary mixtures can control the growth of spoilage yeasts in DRW without metabisulfite addition. The results of this work may be important in preserving the health of DRW consumers by eliminating the use of metabisulfite and reducing the risk of growth of R. mucilagosa, recently recognized as an emerging pathogen.
Collapse
Affiliation(s)
- Marta Sánchez-Rubio
- Grupo de Biotecnología de Alimentos (Food Biotechnology Group). Dept. de Tecnología de Alimentos, Nutrición y Bromatología, Facultad de Veterinaria, Univ. de Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Kamal Guerrouj
- Inst. Supérieur des Professions Infirmières et des Techniques de Santé, Al Hoceima, Morocco
| | - Amaury Taboada-Rodríguez
- Desarrollos Bio-Tecno Alimentarios Ltd. (Debiotec) Virgen de las Maravillas 6, P01 B. 30009, Murcia, Spain
| | - Antonio López-Gómez
- Food Engineering and Agricultural Equipment Dept., Univ. Politécnica de Cartagena, Paseo Alfonso XIII, 48, 30203, Cartagena, Spain
| | - Fulgencio Marín-Iniesta
- Grupo de Biotecnología de Alimentos (Food Biotechnology Group). Dept. de Tecnología de Alimentos, Nutrición y Bromatología, Facultad de Veterinaria, Univ. de Murcia, Campus de Espinardo, 30100, Murcia, Spain
| |
Collapse
|
14
|
Samapundo S, de Baenst I, Eeckhout M, Devlieghere F. Inhibitory activity of fermentates towards Zygosaccharomyces bailii and their potential to replace potassium sorbate in dressings. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.01.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Mieszkin S, Hymery N, Debaets S, Coton E, Le Blay G, Valence F, Mounier J. Action mechanisms involved in the bioprotective effect of Lactobacillus harbinensis K.V9.3.1.Np against Yarrowia lipolytica in fermented milk. Int J Food Microbiol 2017; 248:47-55. [DOI: 10.1016/j.ijfoodmicro.2017.02.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 12/16/2016] [Accepted: 02/20/2017] [Indexed: 10/20/2022]
|
16
|
Reyes-Becerril M, Guluarte C, Ceballos-Francisco D, Angulo C, Esteban MÁ. Dietary yeast Sterigmatomyces halophilus enhances mucosal immunity of gilthead seabream (Sparus aurata L.). FISH & SHELLFISH IMMUNOLOGY 2017; 64:165-175. [PMID: 28315392 DOI: 10.1016/j.fsi.2017.03.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/10/2017] [Accepted: 03/11/2017] [Indexed: 06/06/2023]
Abstract
A yeast was isolated from hypersaline sediments, grown and phylogenetically characterized as Sterigmatomyces halophilus strainN16. The dietary administration of this yeast was studied for its effect on skin mucosal immune and antioxidant status of gilthead seabream (Sparus aurata L.). Fish were fed a commercial diet (control, non-supplemented diet), or the same commercial diet supplemented with 0.55% or 1.1% of yeast for 15 and 30 days. One month after the end of the trial, fish from all treatments were intraperitoneally injected with pathogenic Vibrio parahaemolyticus and further fed with the same diets for one week, after which fish were also sampled. Significant increases were observed in the immune activities determined in the fish fed the yeast supplemented diets compared with the values recorded in mucus of fish from the control group. The expression levels of trypsin (one of the main digestive enzymes) and several immune-related genes (IL-1β, TNF-α, IgM, C3 and lysozyme) were also evaluated by real-time PCR in intestine and skin. Interestingly, trypsin gene expression in intestine was up regulated in both experimental diets compared with the control group, particularly in fish fed with 0.55% of S. halophilus at any time of the experimental trial. Immune-related genes in intestine and skin were strongly expressed principally in fish fed with 0.55% of S. halophilus for 15 days and 1.1% for 30 days and after infection, respectively. The present results suggest that the yeast S. halophilus can be considered as a novel fish immunostimulant. The excellent potential of marine microorganisms isolated from extreme environments with beneficial properties for fish is discussed.
Collapse
Affiliation(s)
- Martha Reyes-Becerril
- Immunology& Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S. 23090, Mexico
| | - Crystal Guluarte
- Immunology& Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S. 23090, Mexico
| | - Diana Ceballos-Francisco
- Fish Innate Immune System Group, Department of Cell Biology & Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Spain
| | - Carlos Angulo
- Immunology& Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S. 23090, Mexico.
| | - M Ángeles Esteban
- Fish Innate Immune System Group, Department of Cell Biology & Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Spain.
| |
Collapse
|
17
|
Diversity of spoilage fungi associated with various French dairy products. Int J Food Microbiol 2017; 241:191-197. [DOI: 10.1016/j.ijfoodmicro.2016.10.026] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 10/03/2016] [Accepted: 10/20/2016] [Indexed: 11/23/2022]
|
18
|
Khanipour E, Flint SH, McCarthy OJ, Golding M, Palmer J, Ratkowsky DA, Ross T, Tamplin M. Modelling the combined effects of salt, sorbic acid and nisin on the probability of growth of Clostridium sporogenes in a controlled environment (nutrient broth). Food Control 2016. [DOI: 10.1016/j.foodcont.2015.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
19
|
Wang H, Hu Z, Long F, Guo C, Niu C, Yuan Y, Yue T. Combined effect of sugar content and pH on the growth of a wild strain of Zygosaccharomyces rouxii and time for spoilage in concentrated apple juice. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.05.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Tabanelli G, Verardo V, Pasini F, Cavina P, Lanciotti R, Caboni M, Gardini F, Montanari C. Survival of the functional yeast Kluyveromyces marxianus B0399 in fermented milk with added sorbic acid. J Dairy Sci 2016; 99:120-9. [DOI: 10.3168/jds.2015-10084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/17/2015] [Indexed: 11/19/2022]
|
21
|
Wang H, Hu Z, Long F, Guo C, Niu C, Yuan Y, Yue T. The Effects of Stress Factors on the Growth of Spoilage Yeasts Isolated From Apple-Related Environments in Apple Juice. J Food Saf 2015. [DOI: 10.1111/jfs.12223] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Huxuan Wang
- College of Food Science and Engineering; Northwest A&F University; Yangling Shaanxi Province 712100 China
| | - Zhongqiu Hu
- College of Food Science and Engineering; Northwest A&F University; Yangling Shaanxi Province 712100 China
| | - Fangyu Long
- College of Food Science and Engineering; Northwest A&F University; Yangling Shaanxi Province 712100 China
| | - Chunfeng Guo
- College of Food Science and Engineering; Northwest A&F University; Yangling Shaanxi Province 712100 China
| | - Chen Niu
- College of Food Science and Engineering; Northwest A&F University; Yangling Shaanxi Province 712100 China
| | - Yahong Yuan
- College of Food Science and Engineering; Northwest A&F University; Yangling Shaanxi Province 712100 China
| | - Tianli Yue
- College of Food Science and Engineering; Northwest A&F University; Yangling Shaanxi Province 712100 China
| |
Collapse
|
22
|
Zhao C, Gu D, Nambou K, Wei L, Chen J, Imanaka T, Hua Q. Metabolome analysis and pathway abundance profiling of Yarrowia lipolytica cultivated on different carbon sources. J Biotechnol 2015; 206:42-51. [DOI: 10.1016/j.jbiotec.2015.04.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 04/02/2015] [Accepted: 04/08/2015] [Indexed: 10/23/2022]
|
23
|
Radecka D, Mukherjee V, Mateo RQ, Stojiljkovic M, Foulquié-Moreno MR, Thevelein JM. Looking beyond Saccharomyces: the potential of non-conventional yeast species for desirable traits in bioethanol fermentation. FEMS Yeast Res 2015; 15:fov053. [PMID: 26126524 DOI: 10.1093/femsyr/fov053] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2015] [Indexed: 01/18/2023] Open
Abstract
Saccharomyces cerevisiae has been used for millennia in the production of food and beverages and is by far the most studied yeast species. Currently, it is also the most used microorganism in the production of first-generation bioethanol from sugar or starch crops. Second-generation bioethanol, on the other hand, is produced from lignocellulosic feedstocks that are pretreated and hydrolyzed to obtain monomeric sugars, mainly D-glucose, D-xylose and L-arabinose. Recently, S. cerevisiae recombinant strains capable of fermenting pentose sugars have been generated. However, the pretreatment of the biomass results in hydrolysates with high osmolarity and high concentrations of inhibitors. These compounds negatively influence the fermentation process. Therefore, robust strains with high stress tolerance are required. Up to now, more than 2000 yeast species have been described and some of these could provide a solution to these limitations because of their high tolerance to the most predominant stress conditions present in a second-generation bioethanol reactor. In this review, we will summarize what is known about the non-conventional yeast species showing unusual tolerance to these stresses, namely Zygosaccharomyces rouxii (osmotolerance), Kluyveromyces marxianus and Ogataea (Hansenula) polymorpha (thermotolerance), Dekkera bruxellensis (ethanol tolerance), Pichia kudriavzevii (furan derivatives tolerance) and Z. bailii (acetic acid tolerance).
Collapse
Affiliation(s)
- Dorota Radecka
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Vaskar Mukherjee
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium Laboratory for Process Microbial Ecology and Bioinspirational Management, Cluster for Bioengineering Technology (CBeT), Department of Microbial and Molecular Systems (M2S), KU Leuven, Campus De Nayer, B-2860 Sint-Katelijne-Waver, Flanders, Belgium
| | - Raquel Quintilla Mateo
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Marija Stojiljkovic
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - María R Foulquié-Moreno
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| |
Collapse
|
24
|
Kuplennik N, Tchoudakov R, Ben-Barak Zelas Z, Sadovski A, Fishman A, Narkis M. Antimicrobial packaging based on linear low-density polyethylene compounded with potassium sorbate. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2015.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Boons K, Noriega E, Verherstraeten N, David CC, Hofkens J, Van Impe JF. The effect of medium structure complexity on the growth of Saccharomyces cerevisiae in gelatin-dextran systems. Int J Food Microbiol 2015; 199:8-14. [PMID: 25621715 DOI: 10.1016/j.ijfoodmicro.2014.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/31/2014] [Accepted: 12/14/2014] [Indexed: 11/29/2022]
Abstract
As most food systems are (semi-)solid, the effect of food structure on bacterial growth has been widely acknowledged. However, studies on the growth dynamics of yeasts have neglected the effect of food structure. In this paper, the growth dynamics of the spoilage yeast Saccharomyces cerevisiae was investigated at 23.5 °C in broth, singular, homogeneous biopolymer systems and binary biopolymer systems with a heterogeneous microstructure. The biopolymers gelatin and dextran were used to introduce the different levels of structure. The metabolizing ability of gelatin and dextran by S. cerevisiae was examined. To study microbial behavior in the binary systems at the micro level, mixtures were imaged with confocal laser scanning microscopy (CLSM). Growth dynamics and microscopic images of S. cerevisiae were compared with those obtained for Escherichia coli in the same model system (Boons et al., 2014). Different phase-separated, heterogeneous microstructures were obtained by changing the amount of added gelatin and dextran. Regardless of the microstructure, S. cerevisiae was preferentially located in the dextran phase. Metabolizing ability-tests indicated that gelatin could be consumed by S. cerevisiae but in the presence of glucose, no change in gelatin concentration was observed. No indication of dextran metabolizing ability was observed. When supplementing broth with gelatin or dextran alone, an enhanced growth rate and maximum cell density were observed. This enhancement was further increased by adding a second biopolymer, introducing a heterogeneous microstructure and hence increasing the medium structure complexity. The results obtained indicate that food structure complexity plays a significant role in the growth dynamics of S. cerevisiae, an important food spoiler.
Collapse
Affiliation(s)
- Kathleen Boons
- CPMF(2)-Flemish Cluster Predictive Microbiology in Foods, Belgium(1); BioTeC-Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Leuven, Belgium.
| | - Estefanía Noriega
- CPMF(2)-Flemish Cluster Predictive Microbiology in Foods, Belgium(1); BioTeC-Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Leuven, Belgium.
| | - Niels Verherstraeten
- BioTeC-Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Leuven, Belgium.
| | | | - Johan Hofkens
- Molecular Visualization and Photonics, KU Leuven, Leuven, Belgium.
| | - Jan F Van Impe
- CPMF(2)-Flemish Cluster Predictive Microbiology in Foods, Belgium(1); BioTeC-Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Leuven, Belgium.
| |
Collapse
|
26
|
Rojo M, Arroyo López F, Lerena M, Mercado L, Torres A, Combina M. Evaluation of different chemical preservatives to control Zygosaccharomyces rouxii growth in high sugar culture media. Food Control 2015. [DOI: 10.1016/j.foodcont.2014.09.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Gliemmo MF, Montagnani MA, Schelegueda LI, González MM, Campos CA. Effect of xantham gum, steviosides, clove, and cinnamon essential oils on the sensory and microbiological quality of a low sugar tomato jam. FOOD SCI TECHNOL INT 2015; 22:122-31. [PMID: 25712155 DOI: 10.1177/1082013215574400] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 01/21/2015] [Indexed: 11/15/2022]
Abstract
The partial or total decrease of sugar content in the formulation of jams affects their physical, chemical and microbiological stability. In order to minimize these technological problems, we studied the effect of xanthan gum (XG), steviosides, cinnamon (CO), and clove (CLO) essential oils on the sensory and microbiological quality of a low sugar tomato jam. Levels of 0.250 g/100 g steviosides and 0.450 g/100 g XG showed maximum score of overall acceptability of jam. The combination of essential oils produced synergistic and additive effects in vitro on growth of Z. bailii and Z. rouxii, respectively. However, in the jam, CO was more effective and CLO did not modify the CO action. Cell surface was one of the sites of action of CO since a decrease in yeast cell surface hydrophobicity was observed. From the microbiological and sensory points of view, 0.0060 g/100 g CO showed the maximum score of jam overall acceptability and did not cause yeast inactivation but it could be useful as an additional stress factor against yeast post--process contamination. The adequate levels of XG, steviosides, and CO can improve the quality of a low sugar jam formulation.
Collapse
Affiliation(s)
- María F Gliemmo
- Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Int. Güiraldes 2160, Ciudad Universitaria, Buenos Aires, Argentina Members of Consejo Nacional de Investigaciones, Científicas y Técnicas de la República Argentina
| | - María A Montagnani
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental, Área Metropolitana Buenos Aires, Capital Federal, Argentina
| | - Laura I Schelegueda
- Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Int. Güiraldes 2160, Ciudad Universitaria, Buenos Aires, Argentina Members of Consejo Nacional de Investigaciones, Científicas y Técnicas de la República Argentina
| | - Malena M González
- Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Int. Güiraldes 2160, Ciudad Universitaria, Buenos Aires, Argentina
| | - Carmen A Campos
- Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Int. Güiraldes 2160, Ciudad Universitaria, Buenos Aires, Argentina Members of Consejo Nacional de Investigaciones, Científicas y Técnicas de la República Argentina
| |
Collapse
|
28
|
Ng’ong’ola-Manani TA, Wicklund T, Mwangwela AM, Østlie HM. Identification and Characterization of Lactic Acid Bacteria Involved in Natural and Lactic Acid Bacterial Fermentations of Pastes of Soybeans and Soybean-Maize Blends Using Culture-Dependent Techniques and Denaturing Gradient Gel Electrophoresis. FOOD BIOTECHNOL 2015. [DOI: 10.1080/08905436.2014.996894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Microorganisms for the Production of Lactic Acid and Organic Lactates. MICROORGANISMS IN BIOREFINERIES 2015. [DOI: 10.1007/978-3-662-45209-7_9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Monnet C, Landaud S, Bonnarme P, Swennen D. Growth and adaptation of microorganisms on the cheese surface. FEMS Microbiol Lett 2014; 362:1-9. [PMID: 25790503 DOI: 10.1093/femsle/fnu025] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Microbial communities living on cheese surfaces are composed of various bacteria, yeasts and molds that interact together, thus generating the typical sensory properties of a cheese. Physiological and genomic investigations have revealed important functions involved in the ability of microorganisms to establish themselves at the cheese surface. These functions include the ability to use the cheese's main energy sources, to acquire iron, to tolerate low pH at the beginning of ripening and to adapt to high salt concentrations and moisture levels. Horizontal gene transfer events involved in the adaptation to the cheese habitat have been described, both for bacteria and fungi. In the future, in situ microbial gene expression profiling and identification of genes that contribute to strain fitness by massive sequencing of transposon libraries will help us to better understand how cheese surface communities function.
Collapse
Affiliation(s)
- Christophe Monnet
- INRA, UMR782 Génie et Microbiologie des Procédés Alimentaires, 78850 Thiverval-Grignon, France AgroParisTech, UMR782 Génie et Microbiologie des Procédés Alimentaires, 78850 Thiverval-Grignon, France
| | - Sophie Landaud
- INRA, UMR782 Génie et Microbiologie des Procédés Alimentaires, 78850 Thiverval-Grignon, France AgroParisTech, UMR782 Génie et Microbiologie des Procédés Alimentaires, 78850 Thiverval-Grignon, France
| | - Pascal Bonnarme
- INRA, UMR782 Génie et Microbiologie des Procédés Alimentaires, 78850 Thiverval-Grignon, France AgroParisTech, UMR782 Génie et Microbiologie des Procédés Alimentaires, 78850 Thiverval-Grignon, France
| | - Dominique Swennen
- INRA, UMR 1319 Micalis, 78850 Thiverval-Grignon, France AgroParisTech, UMR 1319 Micalis, 78850 Thiverval-Grignon, France
| |
Collapse
|
31
|
Nambou K, Zhao C, Wei L, Chen J, Imanaka T, Hua Q. Designing of a "cheap to run" fermentation platform for an enhanced production of single cell oil from Yarrowia lipolytica DSM3286 as a potential feedstock for biodiesel. BIORESOURCE TECHNOLOGY 2014; 173:324-333. [PMID: 25310869 DOI: 10.1016/j.biortech.2014.09.096] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/16/2014] [Accepted: 09/18/2014] [Indexed: 05/26/2023]
Abstract
In this study, the culture medium components screening and filtering were undertaken in order to set up efficient and cost effective minimal culture media for lipid production from Yarrowia lipolytica DSM3286. The basal minimal culture medium (S2) designed yielded lipid content up to 35% of the microbial dry cell weight. A set of fermentation strategies based on this minimal medium was developed and the lipid content was raised to 51%. The scale-up under different fermentation conditions based on S2 medium led to a maximum lipid content of 65%. The produced microbial oils displayed interesting properties to be used as a feedstock for high quality biodiesel production. The minimal media and operable cultivation strategies devised in this study, in association with the works done so far by other authors, could enable fast, massive, viable and more economical production of single cell oils and smooth biodiesel manufacture.
Collapse
Affiliation(s)
- Komi Nambou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Chen Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Liujing Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Jun Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Tadayuki Imanaka
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), 130 Meilong Road, Shanghai 200237, PR China.
| |
Collapse
|
32
|
Growth/no growth models for Zygosaccharomyces rouxii associated with acidic, sweet intermediate moisture food products. Int J Food Microbiol 2014; 192:51-7. [PMID: 25306299 DOI: 10.1016/j.ijfoodmicro.2014.09.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/18/2014] [Accepted: 09/20/2014] [Indexed: 11/21/2022]
Abstract
The most notorious spoilage organism of sweet intermediate moisture foods (IMFs) is Zygosaccharomyces rouxii, which can grow at low water activity, low pH and in the presence of organic acids. Together with an increased consumer demand for preservative free and healthier food products with less sugar and fat and a traditionally long self-life of sweet IMFs, the presence of Z. rouxii in the raw materials for IMFs has made assessment of the microbiological stability a significant hurdle in product development. Therefore, knowledge on growth/no growth boundaries of Z. rouxii in sweet IMFs is important to ensure microbiological stability and aid product development. Several models have been developed for fat based, sweet IMFs. However, fruit/sugar based IMFs, such as fruit based chocolate fillings and jams, have lower pH and aw than what is accounted for in previously developed models. In the present study growth/no growth models for acidified sweet IMFs were developed with the variables aw (0.65-0.80), pH (2.5-4.0), ethanol (0-14.5% (w/w) in water phase) and time (0-90 days). Two different strains of Z. rouxii previously found to show pronounced resistance to the investigated variables were included in model development, to account for strain differences. For both strains data sets with and without the presence of sorbic acid (250 ppm on product basis) were built. Incorporation of time as an exploratory variable in the models gave the possibility to predict the growth/no growth boundaries at each time between 0 and 90 days without decreasing the predictive power of the models. The influence of ethanol and aw on the growth/no growth boundary of Z. rouxii was most pronounced in the first 30 days and 60 days of incubation, respectively. The effect of pH was almost negligible in the range of 2.5-4.0. The presence of low levels of sorbic acid (250 ppm) eliminated growth of both strains at all conditions tested. The two strains tested have previously been shown to have similar tolerance towards the single stress factors included in the study, but when the stress factors were combined the two strains showed difference in their ability to grow illustrating the importance of including more strains when developing growth/no growth models. The developed models can be useful tools for development of new acidic sweet IMFs.
Collapse
|
33
|
Identification and characterisation of organisms associated with chocolate pralines and sugar syrups used for their production. Int J Food Microbiol 2014; 185:167-76. [DOI: 10.1016/j.ijfoodmicro.2014.05.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 05/18/2014] [Accepted: 05/25/2014] [Indexed: 11/21/2022]
|
34
|
Vermeulen A, Marvig CL, Daelman J, Xhaferi R, Nielsen DS, Devlieghere F. Strategies to increase the stability of intermediate moisture foods towards Zygosaccharomyces rouxii: the effect of temperature, ethanol, pH and water activity, with or without the influence of organic acids. Food Microbiol 2014; 45:119-25. [PMID: 25481068 DOI: 10.1016/j.fm.2014.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/31/2013] [Accepted: 01/03/2014] [Indexed: 11/30/2022]
Abstract
Intermediate moisture foods (IMF) are in general microbiologically stable products. However, due to health concerns consumer demands are increasingly forcing producers to lower the fat, sugar and preservatives content, which impede the stability of the IMF products. One of the strategies to counteract these problems is the storage of IMF products at lower temperatures. Thorough knowledge on growth/no growth boundaries of Zygosaccharomyces rouxii in IMF products, also at different storage temperatures is an important tool for ensuring microbiologically stability. In this study, growth/no growth models for Z. rouxii, developed by Vermeulen et al. (2012) were further extended by incorporating the factor temperature. Three different data sets were build: (i) without organic acids, (ii) with acetic acid (10,000 ppm on product basis) and (iii) with sorbic acid (1500 ppm on product basis). For each of these data sets three different growth/no growth models were developed after 30, 60 and 90 days. The results show that the influence of temperature is only significant in the lower temperature range (8-15 °C). Also, the effect of pH is negligible (pH 5.0-6.2) unless organic acids are present. More specific, acetic acid had only an additive effect to ethanol and aw at low pH, whereas sorbic acid had also an additive effect at the higher pH values. For incubation periods longer than 30 days the growth/no growth boundary remained stable but enlarged gradually between day 60 and 90, except for the lower temperature range (<12 °C) where the boundary shifts to more stringent environmental conditions.
Collapse
Affiliation(s)
- A Vermeulen
- CPMF (2)- Flemish Cluster Predictive Microbiology in Foods, Belgium; LFMFP, Laboratory of Food Microbiology and Food Preservation, Department of Food Safety and Food Quality, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - C L Marvig
- Section of Food Microbiology, Department of Food Science, University of Copenhagen, Rolighedsvej 30, 1958 Frederiksberg, Denmark
| | - J Daelman
- LFMFP, Laboratory of Food Microbiology and Food Preservation, Department of Food Safety and Food Quality, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - R Xhaferi
- CPMF (2)- Flemish Cluster Predictive Microbiology in Foods, Belgium; LFMFP, Laboratory of Food Microbiology and Food Preservation, Department of Food Safety and Food Quality, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - D S Nielsen
- Section of Food Microbiology, Department of Food Science, University of Copenhagen, Rolighedsvej 30, 1958 Frederiksberg, Denmark
| | - F Devlieghere
- CPMF (2)- Flemish Cluster Predictive Microbiology in Foods, Belgium; LFMFP, Laboratory of Food Microbiology and Food Preservation, Department of Food Safety and Food Quality, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| |
Collapse
|
35
|
|
36
|
Yang LB, Zhan XB, Zheng ZY, Wu JR, Gao MJ, Lin CC. A novel osmotic pressure control fed-batch fermentation strategy for improvement of erythritol production by Yarrowia lipolytica from glycerol. BIORESOURCE TECHNOLOGY 2014; 151:120-7. [PMID: 24215768 DOI: 10.1016/j.biortech.2013.10.031] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/07/2013] [Accepted: 10/10/2013] [Indexed: 05/07/2023]
Abstract
The effect of osmotic pressure on erythritol and mannitol production by an osmophilic yeast strain of Yarrowia lipolytica CICC 1675 using glycerol as the sole carbon source was investigated. Appropriately high osmotic pressure was found to enhance erythritol production and inhibit mannitol formation. A novel two-stage osmotic pressure control fed-batch strategy based on the kinetic analysis was developed for higher erythritol yield and productivity. During the first 96 h, the osmotic pressure was maintained at 4.25 osmol/kg by feeding glycerol to reduce the inhibition of cell growth. After 132 h, the osmotic pressure was controlled at 4.94 osmol/kg to maintain a high dp(ery)/dt. Maximum erythritol yield of 194.3g/L was obtained with 0.95 g/L/h productivity, which were 25.7% and 2.2%, respectively, improvement over the best results in one-stage fed-batch fermentation. This is the first report that a novel osmotic pressure control fed-batch strategy significantly enhanced erythritol production.
Collapse
Affiliation(s)
- Li-Bo Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | | | | | | | | | | |
Collapse
|
37
|
Recent advances in lactic acid production by microbial fermentation processes. Biotechnol Adv 2013; 31:877-902. [DOI: 10.1016/j.biotechadv.2013.04.002] [Citation(s) in RCA: 607] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 04/14/2013] [Accepted: 04/15/2013] [Indexed: 11/18/2022]
|
38
|
Effects of pH and sugar concentration in Zygosaccharomyces rouxii growth and time for spoilage in concentrated grape juice at isothermal and non-isothermal conditions. Food Microbiol 2013; 38:143-50. [PMID: 24290637 DOI: 10.1016/j.fm.2013.08.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 08/05/2013] [Accepted: 08/29/2013] [Indexed: 11/20/2022]
Abstract
The effect of pH (1.7-3.2) and sugar concentration (64-68 °Brix) on the growth of Zygosaccharomyces rouxii MC9 using response surface methodology was studied. Experiments were carried out in concentrated grape juice inoculated with Z. rouxii at isothermal conditions (23 °C) for 60 days. pH was the variable with the highest effect on growth parameters (potential maximum growth rate and lag phase duration), although the effect of sugar concentration were also significant. In a second experiment, the time for spoilage by this microorganism in concentrated grape juice was evaluated at isothermal (23 °C) and non-isothermal conditions, in an effort to reproduce standard storage and overseas shipping temperature conditions, respectively. Results show that pH was again the environmental factor with the highest impact on delaying the spoilage of the product. Thereby, a pH value below 2.0 was enough to increase the shelf life of the product for more than 60 days in both isothermal and non-isothermal conditions. The information obtained in the present work could be used by producers and buyers to predict the growth and time for spoilage of Z. rouxii in concentrated grape juice.
Collapse
|
39
|
Cray JA, Bell ANW, Bhaganna P, Mswaka AY, Timson DJ, Hallsworth JE. The biology of habitat dominance; can microbes behave as weeds? Microb Biotechnol 2013; 6:453-92. [PMID: 23336673 PMCID: PMC3918151 DOI: 10.1111/1751-7915.12027] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 12/03/2012] [Indexed: 02/06/2023] Open
Abstract
Competition between microbial species is a product of, yet can lead to a reduction in, the microbial diversity of specific habitats. Microbial habitats can resemble ecological battlefields where microbial cells struggle to dominate and/or annihilate each other and we explore the hypothesis that (like plant weeds) some microbes are genetically hard-wired to behave in a vigorous and ecologically aggressive manner. These 'microbial weeds' are able to dominate the communities that develop in fertile but uncolonized--or at least partially vacant--habitats via traits enabling them to out-grow competitors; robust tolerances to habitat-relevant stress parameters and highly efficient energy-generation systems; avoidance of or resistance to viral infection, predation and grazers; potent antimicrobial systems; and exceptional abilities to sequester and store resources. In addition, those associated with nutritionally complex habitats are extraordinarily versatile in their utilization of diverse substrates. Weed species typically deploy multiple types of antimicrobial including toxins; volatile organic compounds that act as either hydrophobic or highly chaotropic stressors; biosurfactants; organic acids; and moderately chaotropic solutes that are produced in bulk quantities (e.g. acetone, ethanol). Whereas ability to dominate communities is habitat-specific we suggest that some microbial species are archetypal weeds including generalists such as: Pichia anomala, Acinetobacter spp. and Pseudomonas putida; specialists such as Dunaliella salina, Saccharomyces cerevisiae, Lactobacillus spp. and other lactic acid bacteria; freshwater autotrophs Gonyostomum semen and Microcystis aeruginosa; obligate anaerobes such as Clostridium acetobutylicum; facultative pathogens such as Rhodotorula mucilaginosa, Pantoea ananatis and Pseudomonas aeruginosa; and other extremotolerant and extremophilic microbes such as Aspergillus spp., Salinibacter ruber and Haloquadratum walsbyi. Some microbes, such as Escherichia coli, Mycobacterium smegmatis and Pseudoxylaria spp., exhibit characteristics of both weed and non-weed species. We propose that the concept of nonweeds represents a 'dustbin' group that includes species such as Synodropsis spp., Polypaecilum pisce, Metschnikowia orientalis, Salmonella spp., and Caulobacter crescentus. We show that microbial weeds are conceptually distinct from plant weeds, microbial copiotrophs, r-strategists, and other ecophysiological groups of microorganism. Microbial weed species are unlikely to emerge from stationary-phase or other types of closed communities; it is open habitats that select for weed phenotypes. Specific characteristics that are common to diverse types of open habitat are identified, and implications of weed biology and open-habitat ecology are discussed in the context of further studies needed in the fields of environmental and applied microbiology.
Collapse
Affiliation(s)
- Jonathan A Cray
- School of Biological Sciences, MBC, Queen's University BelfastBelfast, BT9 7BL, Northern Ireland, UK
| | - Andrew N W Bell
- School of Biological Sciences, MBC, Queen's University BelfastBelfast, BT9 7BL, Northern Ireland, UK
| | - Prashanth Bhaganna
- School of Biological Sciences, MBC, Queen's University BelfastBelfast, BT9 7BL, Northern Ireland, UK
| | - Allen Y Mswaka
- School of Biological Sciences, MBC, Queen's University BelfastBelfast, BT9 7BL, Northern Ireland, UK
| | - David J Timson
- School of Biological Sciences, MBC, Queen's University BelfastBelfast, BT9 7BL, Northern Ireland, UK
| | - John E Hallsworth
- School of Biological Sciences, MBC, Queen's University BelfastBelfast, BT9 7BL, Northern Ireland, UK
| |
Collapse
|
40
|
Mechanical properties and antimicrobial efficacy of active wrapping paper for primary packaging of fruits. FOOD BIOSCI 2013. [DOI: 10.1016/j.fbio.2013.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Gliemmo MF, Schelegueda LI, Gerschenson LN, Campos CA. Effect of aspartame and other additives on the growth and thermal inactivation of Zygosaccharomyces bailii in acidified aqueous systems. Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.04.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
42
|
Gliemmo MF, Latorre ME, Narvaiz P, Campos CA, Gerschenson LN. Effect of gamma irradiation and storage time on microbial growth and physicochemical characteristics of pumpkin (Cucurbita Moschata Duchesne ex Poiret) puree. FOOD SCI TECHNOL INT 2013; 20:71-80. [DOI: 10.1177/1082013212472350] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effect of gamma irradiation (0–2 kGy) and storage time (0–28 days) on microbial growth and physicochemical characteristics of a packed pumpkin puree was studied. For that purpose, a factorial design was applied. The puree contained potassium sorbate, glucose and vanillin was stored at 25 ℃. Gamma irradiation diminished and storage time increased microbial growth. A synergistic effect between both variables on microbial growth was observed. Storage time decreased pH and color of purees. Sorbate content decreased with storage time and gamma irradiation. Mathematical models of microbial growth generated by the factorial design allowed estimating that a puree absorbing 1.63 kGy would have a shelf-life of 4 days. In order to improve this time, some changes in the applied hurdles were assayed. These included a thermal treatment before irradiation, a reduction of irradiation dose to 0.75 kGy and a decrease in storage temperature at 20 ℃. As a result, the shelf-life of purees increased to 28 days.
Collapse
Affiliation(s)
- María F Gliemmo
- Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas de la República, Argentina
| | - María E Latorre
- Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas de la República, Argentina
| | - Patricia Narvaiz
- Food Irradiation Section, Radiation Technology and Applications, Ezeiza Atomic Center, National Atomic Energy Commission, Argentina
| | - Carmen A Campos
- Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas de la República, Argentina
| | - Lía N Gerschenson
- Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas de la República, Argentina
| |
Collapse
|
43
|
Jeong SH, Jung JY, Lee SH, Jin HM, Jeon CO. Microbial succession and metabolite changes during fermentation of dongchimi, traditional Korean watery kimchi. Int J Food Microbiol 2013; 164:46-53. [PMID: 23587713 DOI: 10.1016/j.ijfoodmicro.2013.03.016] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 03/14/2013] [Accepted: 03/15/2013] [Indexed: 10/27/2022]
Abstract
Dongchimi, one of the most common types of watery kimchi in Korea, was prepared using radish and its pH values, microbial cell numbers, bacterial communities, and metabolites were monitored periodically to investigate the fermentation process of watery kimchi. The bacterial abundance increased quickly during the early fermentation period and the pH values concurrently decreased rapidly without any initial pH increase. After 15 days of fermentation, the bacterial abundance decreased rapidly with the increase of Saccharomyces abundance and then increased again with a decrease of Saccharomyces abundance after 40 days of fermentation, suggesting that bacteria and Saccharomyces have a direct antagonistic relationship. Finally, after 60 days of fermentation, a decrease in bacterial abundance and the growth of Candida were concurrently observed. Community analysis using pyrosequencing revealed that diverse genera such as Leuconostoc, Lactobacillus, Pseudomonas, Pantoea, and Weissella were present at initial fermentation (day 0), but Leuconostoc became predominant within only three days of fermentation and remained predominant until the end of fermentation (day 100). Metabolite analysis using (1)H NMR showed that the concentrations of free sugars (fructose and glucose) were very low during the early fermentation period, but their concentrations increased rapidly although lactate, mannitol, and acetate were produced. After 30 days of fermentation, quick consumption of free sugars and production of glycerol and ethanol were observed concurrently with the growth of Saccharomyces, levels of which might be considered for use as a potential indicator of dongchimi quality and fermentation time.
Collapse
Affiliation(s)
- Sang Hyeon Jeong
- Department of Life Science, Research Center for Biomolecules and Biosystems, Chung-Ang University, Seoul 156-756, Republic of Korea
| | | | | | | | | |
Collapse
|
44
|
Vermeulen A, Daelman J, Van Steenkiste J, Devlieghere F. Screening of different stress factors and development of growth/no growth models for Zygosaccharomyces rouxii in modified Sabouraud medium, mimicking intermediate moisture foods (IMF). Food Microbiol 2012; 32:389-96. [DOI: 10.1016/j.fm.2012.07.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 07/06/2012] [Accepted: 07/30/2012] [Indexed: 11/24/2022]
|
45
|
Marx G, Moody A, Bermúdez-Aguirre D. A comparative study on the structure of Saccharomyces cerevisiae under nonthermal technologies: high hydrostatic pressure, pulsed electric fields and thermo-sonication. Int J Food Microbiol 2011; 151:327-37. [PMID: 22015244 DOI: 10.1016/j.ijfoodmicro.2011.09.027] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Revised: 09/20/2011] [Accepted: 09/27/2011] [Indexed: 10/17/2022]
Abstract
Nonthermal technologies are becoming more popular in food processing; however, little detailed research has been conducted on the study of the lethal effect of these technologies on certain microorganisms. Saccharomyces cerevisiae is a yeast related to spoilage of fruit products such as juices; novel technologies have been explored to inactivate this yeast. Three nonthermal technologies, high hydrostatic pressure (HHP), pulsed electric fields (PEF) and thermo-sonication (TS), were used to evaluate and to compare the structural damage of yeast cells after processing. Processing conditions were chosen based on previous experiments to ensure the death of cells; HHP was conducted at 600 MPa for 7 min (room temperature, 21 °C); for PEF, 30.76 kV/cm at 40 °C and 21 pulses (2 μs each), and finally for TS the conditions were 120 μm, 60 °C and 30 min in continuous and pulsed modes; all treatments were applied in apple juice. Cells were prepared for electron microscopy using an innovative and short microwave assisted dehydration technique. Scanning electron microscopy showed the degree of damage to the cells after processing and illustrated the important and particular characteristics of each technology. Cells treated with high hydrostatic pressure showed a total disruption of the cell membrane, perforation, and release of the cell wall; scars were also observed on the surface of the pressurized cells. PEF treated cells showed less superficial damage, with the main changes being the deformation of the cells, apparent fusion of cells, the formation of pores, and the breakdown of the cell wall in some cells. Finally, the thermo-sonicated cells showed a similar degree of cellular damage to their structure regardless of whether the TS was applied continuously or pulsed. The main characteristics of cellular death for this technology were the erosion and disruption of the cellular membrane, formation of orifices on the surface, lysis of cells causing the release of intracellular contents, roughness of the cell membrane, and displacement of cell debris to the surface of other cells. This study confirms some theories about cell inactivation and presents new and detailed results about nonthermal technologies, but also shows that after using the above mentioned conditions, recovery of cells, specifically those that are pressurized and thermo-sonicated, it is not possible to do it following the high extent of damage observed in the entire population. Furthermore, a faster methodology that was used in sample preparation for electron microscopy provided high quality resolution images, allowing closer study of the detail of structural lethal effects on treated cells.
Collapse
Affiliation(s)
- Gretchen Marx
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | | | | |
Collapse
|
46
|
Chaves-López C, Paparella A, Tofalo R, Suzzi G. Proteolytic activity of Saccharomyces cerevisiae strains associated with Italian dry-fermented sausages in a model system. Int J Food Microbiol 2011; 150:50-8. [DOI: 10.1016/j.ijfoodmicro.2011.07.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 06/29/2011] [Accepted: 07/13/2011] [Indexed: 10/18/2022]
|
47
|
Deschuyffeleer N, Audenaert K, Samapundo S, Ameye S, Eeckhout M, Devlieghere F. Identification and characterization of yeasts causing chalk mould defects on par-baked bread. Food Microbiol 2011; 28:1019-27. [DOI: 10.1016/j.fm.2011.02.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 01/31/2011] [Accepted: 02/01/2011] [Indexed: 10/18/2022]
|
48
|
A Predictive Model for the Growth/No Growth Boundary of Zygosaccharomyces bailii at 7 °C and Conditions Mimicking Acidified Sauces. FOOD BIOPROCESS TECH 2011. [DOI: 10.1007/s11947-011-0548-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
Hracek V, Gliemmo M, Campos C. Effect of steviosides and system composition on stability and antimicrobial action of sorbates in acidified model aqueous systems. Food Res Int 2010. [DOI: 10.1016/j.foodres.2010.07.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Zupan J, Raspor P. Invasive growth of Saccharomyces cerevisiae depends on environmental triggers: a quantitative model. Yeast 2010; 27:217-28. [PMID: 20052657 DOI: 10.1002/yea.1746] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In this contribution, the influence of various physicochemical factors on Saccharomyces cerevisiae invasive growth is examined quantitatively. Agar-invasion assays are generally applied for in vitro studies on S. cerevisiae invasiveness, the phenomenon observed as a putative virulence trait in this clinically more and more concerning yeast. However, qualitative agar-invasion assays, used until now, strongly limit the feasibility and interpretation of analyses and therefore needed to be improved. Besides, knowledge in this field concerning the physiology of invasive growth, influenced by stress conditions related to the human alimentary tract and food, is poor and should be expanded. For this purpose, a quantitative agar-invasion assay, presented in our previous work, was applied in this contribution to clarify the significance of the stress factors controlling the adhesion and invasion of the yeast in greater detail. Ten virulent and non-virulent S. cerevisiae strains were assayed at various temperatures, pH values, nutrient starvation, modified atmosphere, and different concentrations of NaCl, CaCl2 and preservatives. With the use of specific parameters, like a relative invasion, eight invasive growth models were hypothesized, which enabled intelligible interpretation of the results. A strong preference for invasive growth (meaning high relative invasion) was observed when the strains were grown on nitrogen- and glucose-depleted media. A significant increase in the invasion of the strains was also determined at temperatures typical for human fever (37-39 degrees C). On the other hand, a strong repressive effect on invasion was found in the presence of salts, anoxia and some preservatives.
Collapse
Affiliation(s)
- Jure Zupan
- Biotechnology, Microbiology and Food Safety, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | | |
Collapse
|