1
|
Monari PK, Hammond ER, Zhao X, Maksimoski AN, Petric R, Malone CL, Riters LV, Marler CA. Conditioned preferences: Gated by experience, context, and endocrine systems. Horm Behav 2024; 161:105529. [PMID: 38492501 DOI: 10.1016/j.yhbeh.2024.105529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024]
Abstract
Central to the navigation of an ever-changing environment is the ability to form positive associations with places and conspecifics. The functions of location and social conditioned preferences are often studied independently, limiting our understanding of their interplay. Furthermore, a de-emphasis on natural functions of conditioned preferences has led to neurobiological interpretations separated from ecological context. By adopting a naturalistic and ethological perspective, we uncover complexities underlying the expression of conditioned preferences. Development of conditioned preferences is a combination of motivation, reward, associative learning, and context, including for social and spatial environments. Both social- and location-dependent reward-responsive behaviors and their conditioning rely on internal state-gating mechanisms that include neuroendocrine and hormone systems such as opioids, dopamine, testosterone, estradiol, and oxytocin. Such reinforced behavior emerges from mechanisms integrating past experience and current social and environmental conditions. Moreover, social context, environmental stimuli, and internal state gate and modulate motivation and learning via associative reward, shaping the conditioning process. We highlight research incorporating these concepts, focusing on the integration of social neuroendocrine mechanisms and behavioral conditioning. We explore three paradigms: 1) conditioned place preference, 2) conditioned social preference, and 3) social conditioned place preference. We highlight nonclassical species to emphasize the naturalistic applications of these conditioned preferences. To fully appreciate the complex integration of spatial and social information, future research must identify neural networks where endocrine systems exert influence on such behaviors. Such research promises to provide valuable insights into conditioned preferences within a broader naturalistic context.
Collapse
Affiliation(s)
- Patrick K Monari
- University of Wisconsin-Madison, Department of Psychology, Madison, WI, USA.
| | - Emma R Hammond
- University of Wisconsin-Madison, Department of Psychology, Madison, WI, USA
| | - Xin Zhao
- University of Wisconsin-Madison, Department of Psychology, Madison, WI, USA
| | - Alyse N Maksimoski
- University of Wisconsin-Madison, Department of Integrative Biology, Madison, WI, USA
| | - Radmila Petric
- University of Wisconsin-Madison, Department of Psychology, Madison, WI, USA; Institute for the Environment, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
| | - Candice L Malone
- University of Wisconsin-Madison, Department of Psychology, Madison, WI, USA
| | - Lauren V Riters
- University of Wisconsin-Madison, Department of Integrative Biology, Madison, WI, USA
| | - Catherine A Marler
- University of Wisconsin-Madison, Department of Psychology, Madison, WI, USA; University of Wisconsin-Madison, Department of Integrative Biology, Madison, WI, USA.
| |
Collapse
|
2
|
Rawat A, Chaube R, Joy KP. Air sac and gill vasotocin receptor gene expression in the air-breathing catfish Heteropneustes fossilis exposed to water and air deprivation conditions. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:381-395. [PMID: 35166960 DOI: 10.1007/s10695-022-01058-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Heteropneustes fossilis is a facultative air-breathing freshwater catfish and inhabits ponds, ditches, swamps, marshes and rivers that dry up in summers. It possesses a pair of unique tubular accessory respiratory organ (air sac), which is a modification of the gill chamber and enables it to live in water-air transition zones. In the catfish, three vasotocin (Vt) receptor gene paralogs viz., v1a1, v1a2 and v2a were identified for Vt actions. In the present study, the receptor gene transcripts were localized in the gill and air sac by in situ hybridization, and their expression levels in relation to water and air deprivation conditions were investigated by quantitative RT-PCR. The catfish were exposed to 1 h and 2 h in gonad inactive (resting) and gonad active (prespawning) phases. The gene paralogs showed overlapping distribution in the respiratory epithelium of primary and secondary lamellae of gills and reduced lamellae of the air sacs. In water deprivation (forced aerial mode of respiration) experiment, v2a expression showed a high fold increase in the air sac, which was unchanged or inhibited in the gill. Both v1a1 and v1a2 expression was significantly upregulated in the air sac but showed varied responses in the gill. The gill v1a1 expression was unchanged in the resting phase and modestly upregulated in the prespawning phase. The gill v1a2 expression was modestly upregulated at 1 h in both phases but unchanged at 2 h. In the air deprivation experiment (forced aquatic respiration), the v2a expression in the air sac was inhibited except for a mild stimulation at 1 h in the prespawning phase. In the gill, the v2a expression was stimulated with a steep upregulation at 2 h in the prespawning phase. Both v1a1 and v1a2 expression was significantly high in the gill but only modestly increased or unchanged in the air sac. The expression patterns point to a functional distinction; the V2 type receptor expression was higher in the air sac during forced aerial respiration, and the V1 type receptor expression was highly prominent in the gill during forced aquatic respiration. Water and air deprivation treatments caused a significant increase in plasma cortisol level, and the stimulation was higher in the water deprivation fish in the resting phase but equally prominent in the water and air deprivation groups in the prespawning phase. The results indicate that the changes in the expression patterns of Vt receptor genes may be a sequel to stress (hypoxic, metabolic and osmotic), and both Vt and cortisol may interact to counter the stress responses. This study shows that Vt has a new role in the control of air sac functions.
Collapse
Affiliation(s)
- A Rawat
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - R Chaube
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - K P Joy
- Department of Biotechnology, Cochin University of Science and Technology, Kochi, 682022, India.
| |
Collapse
|
3
|
Campos SM, Belkasim SS. Chemical Communication in Lizards and a Potential Role for Vasotocin in Modulating Social Interactions. Integr Comp Biol 2021; 61:205-220. [PMID: 33940600 DOI: 10.1093/icb/icab044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Lizards use chemical communication to mediate many reproductive, competitive, and social behaviors, but the neuroendocrine mechanisms underlying chemical communication in lizards are not well understood and understudied. By implementing a neuroendocrine approach to the study of chemical communication in reptiles, we can address a major gap in our knowledge of the evolutionary mechanisms shaping chemical communication in vertebrates. The neuropeptide arginine vasotocin (AVT) and its mammalian homolog vasopressin are responsible for a broad spectrum of diversity in competitive and reproductive strategies in many vertebrates, mediating social behavior through the chemosensory modality. In this review, we posit that, though limited, the available data on AVT-mediated chemical communication in lizards reveal intriguing patterns that suggest AVT plays a more prominent role in lizard chemosensory behavior than previously appreciated. We argue that these results warrant more research into the mechanisms used by AVT to modify the performance of chemosensory behavior and responses to conspecific chemical signals. We first provide a broad overview of the known social functions of chemical signals in lizards, the glandular sources of chemical signal production in lizards (e.g., epidermal secretory glands), and the chemosensory detection methods and mechanisms used by lizards. Then, we review the locations of vasotocinergic populations and neuronal projections in lizard brains, as well as sites of peripheral receptors for AVT in lizards. Finally, we end with a case study in green anoles (Anolis carolinensis), discussing findings from recently published work on the impact of AVT in adult males on chemosensory communication during social interactions, adding new data from a similar study in which we tested the impact of AVT on chemosensory behavior of adult females. We offer concluding remarks on addressing several fundamental questions regarding the role of AVT in chemosensory communication and social behavior in lizards.
Collapse
Affiliation(s)
- Stephanie M Campos
- Department of Biology, Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, USA
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, 100 Piedmont Avenue SE, Atlanta, GA 30303, USA
| | - Selma S Belkasim
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, 100 Piedmont Avenue SE, Atlanta, GA 30303, USA
| |
Collapse
|
4
|
Khegay II. Vasopressin Receptors in Blood Vessels and Proliferation of Endotheliocytes. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021040129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
5
|
Kelly AM, Seifert AW. Distribution of Vasopressin and Oxytocin Neurons in the Basal Forebrain and Midbrain of Spiny Mice (Acomys cahirinus). Neuroscience 2021; 468:16-28. [PMID: 34102266 DOI: 10.1016/j.neuroscience.2021.05.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/26/2022]
Abstract
The nonapeptides vasopressin (VP) and oxytocin (OT) are present in some form in most vertebrates. VP and OT play critical roles in modulating physiology and are well-studied for their influences on a variety of social behaviors, ranging from affiliation to aggression. Their anatomical distributions have been mapped for numerous species across taxa, demonstrating relatively strong evolutionary conservation in distributions throughout the basal forebrain and midbrain. Here we examined the distribution of VP-immunoreactive (-ir) and OT-ir neurons in a gregarious, cooperatively breeding rodent species, the spiny mouse (Acomys cahirinus), for which nonapeptide mapping does not yet exist. Immunohistochemical techniques revealed VP-ir and OT-ir neuronal populations throughout the hypothalamus and amygdala of males and females that are consistent with those of other rodents. However, a novel population of OT-ir neurons was observed in the median preoptic nucleus of both sexes, located dorsally to the anterior commissure. Furthermore, we found widespread sex differences in OT neuronal populations, with males having significantly more OT-ir neurons than females. However, we observed a sex difference in only one VP cell group - that of the bed nucleus of the stria terminalis (BST), a VP neuronal population that exhibits a phylogenetically widespread sexual dimorphism. These findings provide mapping distributions of VP and OT neurons in Acomys cahirinus. Spiny mice lend themselves to the study of mammalian cooperation and sociality, and the nonapeptide neuronal mapping presented here can serve as a basic foundation for the study of nonapeptide-mediated behavior in a group of highly social rodents.
Collapse
Affiliation(s)
- Aubrey M Kelly
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, USA.
| | - Ashley W Seifert
- Department of Biology, University of Kentucky, 675 Rose Street, Lexington KY 40508, USA
| |
Collapse
|
6
|
Lyu LK, Li JS, Wang XJ, Yao YJ, Li JF, Li Y, Wen HS, Qi X. Arg-Vasotocin Directly Activates Isotocin Receptors and Induces COX2 Expression in Ovoviviparous Guppies. Front Endocrinol (Lausanne) 2021; 12:617580. [PMID: 33967951 PMCID: PMC8104081 DOI: 10.3389/fendo.2021.617580] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
Oxytocin (OT) is a crucial regulator of reproductive behaviors, including parturition in mammals. Arg-vasopressin (AVP) is a nonapeptide homologous to Arg-vasotocin (AVT) in teleosts that has comparable affinity for the OT receptor. In the present study, ovoviviparous guppies (Poecilia reticulata) were used to study the effect of AVT on delivery mediated by the activation of prostaglandin (PG) biosynthesis via isotocin (IT) receptors (ITRs). One copy each of it and avt and two copies of itrs were identified in guppies. The results of the affinity assay showed that various concentrations of AVT and IT (10-6, 10-7, and 10-8 mol/L) significantly activated itr1 (P < 0.05). In vitro experiments revealed significant upregulation (P < 0.05) of cyclooxygenase 2 (cox2), which is the rate-limiting enzyme involved in PG biosynthesis, and itr1 by AVT and IT. Furthermore, dual in situ hybridization detected positive signals for itr1 and cox2 at the same site, implying that ITR1 may regulate cox2 gene expression. Measurement of prostaglandin F2a (PGF2a) concentrations showed that AVT induced PGF2a synthesis (P < 0.05) and that the effect of IT was not significant. Finally, intraperitoneal administration of PGF2a significantly induced premature parturition of guppies. This study is the first to identify and characterize AVT and ITRs in guppies. The findings suggest that AVT promotes PG biosynthesis via ITR and that PGF2a induces delivery behavior in ovoviviparous guppies.
Collapse
|
7
|
Mitra AK. Oxytocin and vasopressin: the social networking buttons of the body. AIMS MOLECULAR SCIENCE 2021. [DOI: 10.3934/molsci.2021003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
8
|
A comparative genomics study of neuropeptide genes in the cnidarian subclasses Hexacorallia and Ceriantharia. BMC Genomics 2020; 21:666. [PMID: 32993486 PMCID: PMC7523074 DOI: 10.1186/s12864-020-06945-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/24/2020] [Indexed: 12/24/2022] Open
Abstract
Background Nervous systems originated before the split of Proto- and Deuterostomia, more than 600 million years ago. Four animal phyla (Cnidaria, Placozoa, Ctenophora, Porifera) diverged before this split and studying these phyla could give us important information on the evolution of the nervous system. Here, we have annotated the neuropeptide preprohormone genes of twenty species belonging to the subclass Hexacorallia or Ceriantharia (Anthozoa: Cnidaria), using thirty-seven publicly accessible genome or transcriptome databases. Studying hexacorals is important, because they are versatile laboratory models for development (e.g., Nematostella vectensis) and symbiosis (e.g., Exaiptasia diaphana) and also are prominent reef-builders. Results We found that each hexacoral or ceriantharian species contains five to ten neuropeptide preprohormone genes. Many of these preprohormones contain multiple copies of immature neuropeptides, which can be up to 50 copies of identical or similar neuropeptide sequences. We also discovered preprohormones that only contained one neuropeptide sequence positioned directly after the signal sequence. Examples of them are neuropeptides that terminate with the sequence RWamide (the Antho-RWamides). Most neuropeptide sequences are N-terminally protected by pyroglutamyl (pQ) or one or more prolyl residues, while they are C-terminally protected by an amide group. Previously, we isolated and sequenced small neuropeptides from hexacorals that were N-terminally protected by an unusual L-3-phenyllactyl group. In our current analysis, we found that these N-phenyllactyl-peptides are derived from N-phenylalanyl-peptides located directly after the signal sequence of the preprohormone. The N-phenyllactyl- peptides appear to be confined to the hexacorallian order Actiniaria and do not occur in other cnidarians. On the other hand, (1) the neuropeptide Antho-RFamide (pQGRFamide); (2) peptides with the C-terminal sequence GLWamide; and (3) tetrapeptides with the X1PRX2amide consensus sequence (most frequently GPRGamide) are ubiquitous in Hexacorallia. Conclusions We found GRFamide, GLWamide, and X1PRX2amide peptides in all tested Hexacorallia. Previously, we discovered these three neuropeptide classes also in Cubozoa, Scyphozoa, and Staurozoa, indicating that these neuropeptides originated in the common cnidarian ancestor and are evolutionarily ancient. In addition to these ubiquitous neuropeptides, other neuropeptides appear to be confined to specific cnidarian orders or subclasses.
Collapse
|
9
|
Butler JM, Anselmo CM, Maruska KP. Female reproductive state is associated with changes in distinct arginine vasotocin cell types in the preoptic area of Astatotilapia burtoni. J Comp Neurol 2020; 529:987-1003. [PMID: 32706120 DOI: 10.1002/cne.24995] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 12/12/2022]
Abstract
Nonapeptides play a crucial role in mediating reproduction, aggression, and parental care across taxa. In fishes, arginine vasotocin (AVT) expression is related to social and/or reproductive status in most male fishes studied to date, and is linked to territorial defense, paternal care, and courtship. Despite a plethora of studies examining AVT in male fishes, relatively little is known about how AVT expression varies with female reproductive state or its role in female social behaviors. We used multiple methods for examining the AVT system in female African cichlid fish Astatotilapia burtoni, including immunohistochemistry for AVT, in situ hybridization for avt-mRNA, and quantitative PCR. Ovulated and mouthbrooding females had similar numbers of parvocellular, magnocellular, and gigantocellular AVT cells in the preoptic area. However, ovulated females had larger magnocellular and gigantocellular cells compared to mouthbrooding females, and gigantocellular AVT cell size correlated with the number of days brooding, such that late-stage brooding females had larger AVT cells than mid-stage brooding females. In addition, we found that ventral hypothalamic cells were more prominent in females compared to males, and were larger in mouthbrooding compared to ovulated females, suggesting a role in maternal care. Together, these data indicate that AVT neurons change across the reproductive cycle in female fishes, similar to that seen in males. These data on females complement studies in male A. burtoni, providing a comprehensive picture of the regulation and potential function of different AVT cell types in reproduction and social behaviors in both sexes.
Collapse
Affiliation(s)
- Julie M Butler
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Chase M Anselmo
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Karen P Maruska
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
10
|
Kelly AM, Wilson LC. Aggression: Perspectives from social and systems neuroscience. Horm Behav 2020; 123:104523. [PMID: 31002771 DOI: 10.1016/j.yhbeh.2019.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/14/2019] [Accepted: 04/15/2019] [Indexed: 01/16/2023]
Abstract
Exhibiting behavioral plasticity in order to mount appropriate responses to dynamic and novel social environments is crucial to the survival of all animals. Thus, how animals regulate flexibility in the timing, duration, and intensity of specific behaviors is of great interest to biologists. In this review, we discuss how animals rapidly respond to social challenges, with a particular focus on aggression. We utilize a conceptual framework to understand the neural mechanisms of aggression that is grounded in Wingfield and colleagues' Challenge Hypothesis, which has profoundly influenced how scientists think about aggression and the mechanisms that allow animals to exhibit flexible responses to social instability. Because aggressive behavior is rooted in social interactions, we propose that mechanisms modulating prosocial behavior may be intricately tied to mechanisms of aggression. Therefore, in order to better understand how aggressive behavior is mediated, we draw on perspectives from social neuroscience and discuss how social context, species-typical behavioral phenotype, and neural systems commonly studied in relation to prosocial behavior (i.e., neuropeptides) contribute to organizing rapid responses to social challenges. Because complex behaviors are not the result of one mechanism or a single neural system, we consider how multiple neural systems important for prosocial and aggressive behavior (i.e., neuropeptides and neurosteroids) interact in the brain to produce behavior in a rapid, context-appropriate manner. Applying a systems neuroscience perspective and seeking to understand how multiple systems functionally integrate to rapidly modulate behavior holds great promise for expanding our knowledge of the mechanisms underlying social behavioral plasticity.
Collapse
Affiliation(s)
- Aubrey M Kelly
- Department of Psychology, Emory University, Atlanta, GA 30322, USA.
| | - Leah C Wilson
- Department of Biology, Bowdoin College, Brunswick, ME 04011, USA
| |
Collapse
|
11
|
López-Tobón A, Trattaro S, Testa G. The sociability spectrum: evidence from reciprocal genetic copy number variations. Mol Autism 2020; 11:50. [PMID: 32546261 PMCID: PMC7298749 DOI: 10.1186/s13229-020-00347-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/11/2020] [Indexed: 02/14/2023] Open
Abstract
Sociability entails some of the most complex behaviors processed by the central nervous system. It includes the detection, integration, and interpretation of social cues and elaboration of context-specific responses that are quintessentially species-specific. There is an ever-growing accumulation of molecular associations to autism spectrum disorders (ASD), from causative genes to endophenotypes across multiple functional layers; these however, have rarely been put in context with the opposite manifestation featured in hypersociability syndromes. Genetic copy number variations (CNVs) allow to investigate the relationships between gene dosage and its corresponding phenotypes. In particular, CNVs of the 7q11.23 locus, which manifest diametrically opposite social behaviors, offer a privileged window to look into the molecular substrates underlying the developmental trajectories of the social brain. As by definition sociability is studied in humans postnatally, the developmental fluctuations causing social impairments have thus far remained a black box. Here, we review key evidence of molecular players involved at both ends of the sociability spectrum, focusing on genetic and functional associations of neuroendocrine regulators and synaptic transmission pathways. We then proceed to propose the existence of a molecular axis centered around the paradigmatic dosage imbalances at the 7q11.23 locus, regulating networks responsible for the development of social behavior in humans and highlight the key role that neurodevelopmental models from reprogrammed pluripotent cells will play for its understanding.
Collapse
Affiliation(s)
- Alejandro López-Tobón
- Laboratory of Stem Cell Epigenetics, IEO, European Institute of Oncology, IRCCS, Milan, Italy.
- Department of Oncology and Hemato-oncology, Università degli studi di Milano, Milan, Italy.
| | - Sebastiano Trattaro
- Laboratory of Stem Cell Epigenetics, IEO, European Institute of Oncology, IRCCS, Milan, Italy.
- Department of Oncology and Hemato-oncology, Università degli studi di Milano, Milan, Italy.
| | - Giuseppe Testa
- Laboratory of Stem Cell Epigenetics, IEO, European Institute of Oncology, IRCCS, Milan, Italy.
- Department of Oncology and Hemato-oncology, Università degli studi di Milano, Milan, Italy.
- Human Technopole, Via Cristina Belgioioso 171, Milan, Italy.
| |
Collapse
|
12
|
Szczepanska-Sadowska E, Cudnoch-Jedrzejewska A, Sadowski B. Differential role of specific cardiovascular neuropeptides in pain regulation: Relevance to cardiovascular diseases. Neuropeptides 2020; 81:102046. [PMID: 32284215 DOI: 10.1016/j.npep.2020.102046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 03/27/2020] [Accepted: 03/29/2020] [Indexed: 12/11/2022]
Abstract
In many instances, the perception of pain is disproportionate to the strength of the algesic stimulus. Excessive or inadequate pain sensation is frequently observed in cardiovascular diseases, especially in coronary ischemia. The mechanisms responsible for individual differences in the perception of cardiovascular pain are not well recognized. Cardiovascular disorders may provoke pain in multiple ways engaging molecules released locally in the heart due to tissue ischemia, inflammation or cellular stress, and through neurogenic and endocrine mechanisms brought into action by hemodynamic disturbances. Cardiovascular neuropeptides, namely angiotensin II (Ang II), angiotensin-(1-7) [Ang-(1-7)], vasopressin, oxytocin, and orexins belong to this group. Although participation of these peptides in the regulation of circulation and pain has been firmly established, their mutual interaction in the regulation of pain in cardiovascular diseases has not been profoundly analyzed. In the present review we discuss the regulation of the release, and mechanisms of the central and systemic actions of these peptides on the cardiovascular system in the context of their central and peripheral nociceptive (Ang II) and antinociceptive [Ang-(1-7), vasopressin, oxytocin, orexins] properties. We also consider the possibility that they may play a significant role in the modulation of pain in cardiovascular diseases. The rationale for focusing attention on these very compounds was based on the following premises (1) cardiovascular disturbances influence the release of these peptides (2) they regulate vascular tone and cardiac function and can influence the intensity of ischemia - the factor initiating pain signals in the cardiovascular system, (3) they differentially modulate nociception through peripheral and central mechanisms, and their effect strongly depends on specific receptors and site of action. Accordingly, an altered release of these peptides and/or pharmacological blockade of their receptors may have a significant but different impact on individual sensation of pain and comfort of an individual patient.
Collapse
Affiliation(s)
- Ewa Szczepanska-Sadowska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, Warsaw, Poland.
| | - Agnieszka Cudnoch-Jedrzejewska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, Warsaw, Poland
| | - Bogdan Sadowski
- School of Engineering and Health, Bitwy Warszawskiej 1920 r. 18, Warsaw, Poland
| |
Collapse
|
13
|
Kumar S, Venkatesha MA, Lall S, Prakash S, Balaram P. Mechanistic Insights into an Unusual Side-Chain-Mediated N-C α Bond Cleavage under Collision-Induced Dissociation Conditions in the Disulfide-Containing Peptide Conopressin. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1083-1092. [PMID: 32175740 DOI: 10.1021/jasms.0c00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Conopressin, a nonapeptide disulfide CFIRNCPKG amide present in cone snail venom, undergoes a facile cleavage at the Cys6-Pro7 peptide bond to yield a disulfide bridged b6 ion. Analysis of the mass spectral fragmentation pattern reveals the presence of a major fragment ion, which is unambiguously assigned as the tripeptide sequence IRN amide. The sequence dependence of this unusual fragmentation process has been investigated by comparing it with the fragmentation patterns of related peptides, oxytocin (CYIQNCPLG amide), Lys-vasopressin (CYFQNCPKG amide), and a series of synthetic analogues. The results establish the role of the Arg4 residue in facilitating the unusual N-Cα bond cleavage at Cys6. Structures are proposed for a modified disulfide bridged fragment containing the Cys1 and Cys6 residues. Gas-phase molecular dynamics simulations provide evidence for the occurrence of conformational states that permit close approach of the Arg4 side chain to the Cys6 Cβ methylene protons.
Collapse
Affiliation(s)
- Sanjeev Kumar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - M Achanna Venkatesha
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Sahil Lall
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Sunita Prakash
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Padmanabhan Balaram
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
14
|
Kumar S, Vijayasarathy M, Venkatesha M, Sunita P, Balaram P. Cone snail analogs of the pituitary hormones oxytocin/vasopressin and their carrier protein neurophysin. Proteomic and transcriptomic identification of conopressins and conophysins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140391. [DOI: 10.1016/j.bbapap.2020.140391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/09/2020] [Accepted: 02/05/2020] [Indexed: 12/19/2022]
|
15
|
Freeman AR, Aulino EA, Caldwell HK, Ophir AG. Comparison of the distribution of oxytocin and vasopressin 1a receptors in rodents reveals conserved and derived patterns of nonapeptide evolution. J Neuroendocrinol 2020; 32:e12828. [PMID: 31925983 DOI: 10.1111/jne.12828] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/30/2019] [Accepted: 01/07/2020] [Indexed: 12/24/2022]
Abstract
Oxytocin (OT) and vasopressin (VP) are known modulators of social behaviour across rodents. Research has revealed the location of action of these nonapeptides through localization of their associated receptors, which include the oxytocin receptor (OTR) and the vasopressin 1a receptor (V1aR). As research into these complex systems has progressed, studies investigating how these systems modulate behaviour have remained relatively narrow in scope (ie, focused on how a single brain region shapes behaviour in only a handful of species). However, the brain regions that regulate social behaviour are part of interconnected neural networks for which coordinated activity enables behavioural variation. Thus, to better understand how nonapeptide systems have evolved under different selective pressures among rodent species, we conducted a meta-analysis using a multivariate comparative method to examine the patterns of OTR and V1aR density expression in this taxon. Several brain regions were highly correlated based on their OTR and V1aR binding patterns across species, supporting the notion that the distribution of these receptors is highly conserved in rodents. However, our results also revealed that specific patterns of V1aR density differed from OTR density, and within-genus variance for V1aR was low compared to between-genus variance, suggesting that these systems have responded and evolved quite differently to selective pressures over evolutionary time. We propose that, in addition to examining single brain regions of interest, taking a broad comparative approach when studying the OT and VP systems is important for understanding how the systemic action of nonapeptides modulate social behaviour across species.
Collapse
Affiliation(s)
| | | | - Heather K Caldwell
- Department of Biological Sciences, Kent State University, Kent, OH, USA
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | | |
Collapse
|
16
|
Kutina AV, Makashov AA, Balbotkina EV, Karavashkina TA, Natochin YV. Subtypes of Neurohypophyseal Nonapeptide Receptors and Their Functions in Rat Kidneys. Acta Naturae 2020; 12:73-83. [PMID: 32477601 PMCID: PMC7245957 DOI: 10.32607/actanaturae.10943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 02/11/2020] [Indexed: 11/20/2022] Open
Abstract
The nonapeptides of neurohypophysis, vasotocin and mesotocin, detected in most vertebrates, are replaced by vasopressin and oxytocin in mammals. Using bioinformatics methods, we determined the spectrum of receptor subtypes for these hormones in mammals and their physiological effects in the kidneys of rats. A search for sequences similar to the vertebrate vasotocin receptor by proteomes and transcriptomas of nine mammalian species and the rat genome revealed three subtypes of vasopressin receptors (V1a, V1b, and V2) and one type of oxytocin receptors. In the kidneys of non-anesthetized rats, which received a water load of 2 ml per 100 g of body weight, three effects of vasopressin were revealed: 1) increased reabsorption of water and sodium, 2) increased excretion of potassium ions, and 3) increased excretion of sodium ions. It has been suggested that each of the effects on the kidney is associated with selective stimulation of the vasopressin receptor subtypes V2, V1b, and V1a depending on the concentration of nonapeptide. In experiments on non-anaesthetized rats with a water load, the injection of oxytocin reduces the reabsorption of solute-free water in the kidneys and increases the excretion of sodium ions. The possible physiological mechanisms behind the realization of both effects with the participation of a single type of oxytocin receptors are being analyzed. Thus, the spectrum of activated receptor subtypes varies depending on the current concentration of neurohypophyseal hormones, as a result of which the predominant effect on renal function changes, which ensures precise regulation of water-salt homeostasis.
Collapse
Affiliation(s)
- A. V. Kutina
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, 194223 Russia
| | - A. A. Makashov
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, 194223 Russia
| | - E. V. Balbotkina
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, 194223 Russia
| | - T. A. Karavashkina
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, 194223 Russia
| | - Yu. V. Natochin
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, 194223 Russia
| |
Collapse
|
17
|
The inflammatory event of birth: How oxytocin signaling may guide the development of the brain and gastrointestinal system. Front Neuroendocrinol 2019; 55:100794. [PMID: 31560883 DOI: 10.1016/j.yfrne.2019.100794] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/02/2019] [Accepted: 09/23/2019] [Indexed: 02/08/2023]
Abstract
The role of oxytocin (OT) as a neuropeptide that modulates social behavior has been extensively studied and reviewed, but beyond these functions, OT's adaptive functions at birth are quite numerous, as OT coordinates many physiological processes in the mother and fetus to ensure a successful delivery. In this review we explore in detail the potential adaptive roles of oxytocin as an anti-inflammatory, protective molecule at birth for the developing fetal brain and gastrointestinal system based on evidence that birth is a potent inflammatory/immune event. We discuss data with relevance for a number of neurodevelopmental disorders, as well as the emerging role of the gut-brain axis for health and disease. Finally, we discuss the potential relevance of sex differences in OT signaling present at birth in the increased male vulnerability to neurodevelopmental disabilities.
Collapse
|
18
|
Maruska K, Soares MC, Lima-Maximino M, Henrique de Siqueira-Silva D, Maximino C. Social plasticity in the fish brain: Neuroscientific and ethological aspects. Brain Res 2019; 1711:156-172. [PMID: 30684457 DOI: 10.1016/j.brainres.2019.01.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 01/16/2019] [Accepted: 01/22/2019] [Indexed: 12/17/2022]
Abstract
Social plasticity, defined as the ability to adaptively change the expression of social behavior according to previous experience and to social context, is a key ecological performance trait that should be viewed as crucial for Darwinian fitness. The neural mechanisms for social plasticity are poorly understood, in part due to skewed reliance on rodent models. Fish model organisms are relevant in the field of social plasticity for at least two reasons: first, the diversity of social organization among fish species is staggering, increasing the breadth of evolutionary relevant questions that can be asked. Second, that diversity also suggests translational relevance, since it is more likely that "core" mechanisms of social plasticity are discovered by analyzing a wider variety of social arrangements than relying on a single species. We analyze examples of social plasticity across fish species with different social organizations, concluding that a "core" mechanism is the initiation of behavioral shifts through the modulation of a conserved "social decision-making network", along with other relevant brain regions, by monoamines, neuropeptides, and steroid hormones. The consolidation of these shifts may be mediated via neurogenomic adjustments and regulation of the expression of plasticity-related molecules (transcription factors, cell cycle regulators, and plasticity products).
Collapse
Affiliation(s)
- Karen Maruska
- Department of Biological Sciences, Louisiana State University, Baton Rouge, USA
| | - Marta C Soares
- Centro de Investigação em Biodiversidade e Recursos Genéticos - CIBIO, Universidade do Porto, Vairão, Portugal
| | - Monica Lima-Maximino
- Laboratório de Biofísica e Neurofarmacologia, Universidade do Estado do Pará, Campus VIII, Marabá, Brazil; Grupo de Pesquisas em Neuropsicofarmacologia e Psicopatologia Experimental, Brazil
| | - Diógenes Henrique de Siqueira-Silva
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff", Universidade Federal do Sul e Sudeste do Pará, Marabá, Brazil; Grupo de Estudos em Reprodução de Peixes Amazônicos, Universidade Federal do Sul e Sudeste do Pará, Marabá, Brazil
| | - Caio Maximino
- Grupo de Pesquisas em Neuropsicofarmacologia e Psicopatologia Experimental, Brazil; Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff", Universidade Federal do Sul e Sudeste do Pará, Marabá, Brazil.
| |
Collapse
|
19
|
Borland JM, Rilling JK, Frantz KJ, Albers HE. Sex-dependent regulation of social reward by oxytocin: an inverted U hypothesis. Neuropsychopharmacology 2019; 44:97-110. [PMID: 29968846 PMCID: PMC6235847 DOI: 10.1038/s41386-018-0129-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/10/2018] [Accepted: 06/15/2018] [Indexed: 12/17/2022]
Abstract
The rewarding properties of social interactions are essential for the expression of social behavior and the development of adaptive social relationships. Here, we review sex differences in social reward, and more specifically, how oxytocin (OT) acts in the mesolimbic dopamine system (MDS) to mediate the rewarding properties of social interactions in a sex-dependent manner. Evidence from rodents and humans suggests that same-sex social interactions may be more rewarding in females than in males. We propose that there is an inverted U relationship between OT dose, social reward, and neural activity within structures of the MDS in both males and females, and that this dose-response relationship is initiated at lower doses in females than males. As a result, depending on the dose of OT administered, OT could reduce social reward in females, while enhancing it in males. Sex differences in the neural mechanisms regulating social reward may contribute to sex differences in the incidence of a large number of psychiatric and neurodevelopmental disorders. This review addresses the potential significance of a sex-dependent inverted U dose-response function for OT's effects on social reward and in the development of gender-specific therapies for these disorders.
Collapse
Affiliation(s)
- Johnathan M Borland
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - James K Rilling
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA
- Anthropology, Emory University, Atlanta, GA, USA
- Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
- Center for Translational and Social Neuroscience, Emory University, Atlanta, GA, USA
| | - Kyle J Frantz
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - H Elliott Albers
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA.
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
20
|
Wilson LC, Goodson JL, Kingsbury MA. Neural responses to familiar conspecifics are modulated by a nonapeptide receptor in a winter flocking sparrow. Physiol Behav 2018; 196:165-175. [PMID: 30196086 DOI: 10.1016/j.physbeh.2018.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/05/2018] [Accepted: 09/05/2018] [Indexed: 12/27/2022]
Abstract
The social behavior network, a collection of reciprocally connected areas within the basal forebrain and midbrain, plays a conserved role in the regulation of vertebrate social behavior. Specific behaviors are associated with patterns of activity across the network, and these activity profiles vary with species and context. We investigated how the social behavior network responds to familiar social stimuli in a seasonally flocking songbird. Further, we explored how socially-induced neural responses are modulated by endogenous nonapeptide receptor blockade. Winter flocking dark-eyed juncos were exposed to either familiar conspecifics or a familiar empty aviary following a peripheral injection of either saline or [desGly-NH2,d(CH2)5, Tyr(Me)2,Thr4]-ornithine vasotocin, an VT3 receptor antagonist. Socially-exposed animals exhibited greater Fos induction across the social behavior network. Sex and drug effects were site-specific, with females tending to exhibit greater Fos responses to social stimuli and a greater sensitivity to VT3 antagonism. We suggest that in flocking animals, VT3 activation during social interaction may shift the pattern of neural activity towards the dorsocaudal lateral septum and rostral arcopallium and away from the extended amygdala, anterior and ventromedial hypothalamus, and the caudal ventral/ventrolateral lateral septum.
Collapse
Affiliation(s)
- Leah C Wilson
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | - James L Goodson
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Marcy A Kingsbury
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
21
|
Banerjee P, Chaube R, Joy KP. Molecular cloning and characterisation of an isotocin paralogue ([V8] isotocin) in catfishes (superorder Ostariophysi): Origin traced likely to the fish-specific whole genome duplication. J Neuroendocrinol 2018; 30:e12647. [PMID: 30244515 DOI: 10.1111/jne.12647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 11/27/2022]
Abstract
The present study reports the molecular cloning of a previously uncharacterised neurohypophyseal nonapeptide precursor cDNA in two catfish species: Heteropneustes fossilis and Clarias batrachus. The deduced nonapeptide is CYISNCPVG ([V8] isotocin), which has not been reported in any vertebrate till date. Phylogenetic and conserved synteny analyses showed the gene to have originated from the isotocin precursor (pro-it) gene by fish-specific whole genome duplication (3R). The two isotocin lineages have been designated as pro-ita (new gene) and pro-itb (conventional it gene). All teleost groups may not possess both pro-ita and pro-itb and the pattern of losses/retention was found to be lineage-specific. Quantitative reverse transcriptase-polymerase chain reaction studies showed the expression of the pro-ita gene in the brain and ovary of H. fossilis. In situ hybridisation studies localised the pro-ita transcripts in the nucleus preopticus of the hypothalamus and the follicular layer (theca-granulosa) of oocytes, comprising tissues in which pro-itb and vasotocin precursor (pro-vt) mRNA expression was previously reported. The transcript levels varied with the reproductive stage and a high abundance was found in both brain and ovary during the breeding phase. The substitution of valine in place of isoleucine at the eighth position in Ita may have modified the ligand-receptor interaction, leading to sub-functionalisation and the retention of the gene in catfishes.
Collapse
Affiliation(s)
- Putul Banerjee
- Department of Zoology, Centre of Advanced Study, Banaras Hindu University, Varanasi, India
| | - Radha Chaube
- Department of Zoology, Centre of Advanced Study, Banaras Hindu University, Varanasi, India
| | | |
Collapse
|
22
|
Bayerl DS, Bosch OJ. Brain vasopressin signaling modulates aspects of maternal behavior in lactating rats. GENES BRAIN AND BEHAVIOR 2018; 18:e12517. [DOI: 10.1111/gbb.12517] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/22/2018] [Accepted: 09/11/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Doris S. Bayerl
- Department of Behavioural and Molecular Neurobiology; Regensburg Center of Neuroscience, University of Regensburg; Regensburg Germany
| | - Oliver J. Bosch
- Department of Behavioural and Molecular Neurobiology; Regensburg Center of Neuroscience, University of Regensburg; Regensburg Germany
| |
Collapse
|
23
|
Song Z, Albers HE. Cross-talk among oxytocin and arginine-vasopressin receptors: Relevance for basic and clinical studies of the brain and periphery. Front Neuroendocrinol 2018; 51:14-24. [PMID: 29054552 PMCID: PMC5906207 DOI: 10.1016/j.yfrne.2017.10.004] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/07/2017] [Accepted: 10/13/2017] [Indexed: 12/20/2022]
Abstract
Oxytocin (OT) and arginine-vasopressin (AVP) act in the brain to regulate social cognition/social behavior and in the periphery to influence a variety of physiological processes. Although the chemical structures of OT and AVP as well as their receptors are quite similar, OT and AVP can have distinct or even opposing actions. Here, we review the increasing body of evidence that exogenously administered and endogenously released OT and AVP can activate each other's canonical receptors (i.e., cross-talk) and examine the possibility that receptor cross-talk following the synaptic and non-synaptic release of OT and AVP contributes to their distinct roles in the brain and periphery. Understanding the consequences of cross-talk between OT and AVP receptors will be important in identifying how these peptides control social cognition and behavior and for the development of drugs to treat a variety of psychiatric disorders.
Collapse
Affiliation(s)
- Zhimin Song
- Center for Behavioral Neuroscience, Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA
| | - H Elliott Albers
- Center for Behavioral Neuroscience, Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA.
| |
Collapse
|
24
|
Phillips ST, Dodds JN, Ellis BM, May JC, McLean JA. Chiral separation of diastereomers of the cyclic nonapeptides vasopressin and desmopressin by uniform field ion mobility mass spectrometry. Chem Commun (Camb) 2018; 54:9398-9401. [PMID: 30063231 DOI: 10.1039/c8cc03790f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In this study ion mobility-mass spectrometry (IM-MS) is used to distinguish chiral diastereomers of the nonapeptides desmopressin and vasopressin. The differences in gas phase cross sectional area (ca. 2%) were sufficient to directly resolve the enantiomers present in a binary mixture. Results from computational modeling indicate that chiral recognition by IM-MS for nonapeptides is possible due to their diastereomer-specific conformations adopted in the gas-phase, namely a compact ring-tail conformer specific to the l-diastereomer forms.
Collapse
Affiliation(s)
- Shawn T Phillips
- Department of Chemistry, Center for Innovative Technology, Vanderbilt Institute of Chemical Biology, and Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 3726, USA.
| | | | | | | | | |
Collapse
|
25
|
|
26
|
Chérasse S, Aron S. Measuring inotocin receptor gene expression in chronological order in ant queens. Horm Behav 2017; 96:116-121. [PMID: 28919556 DOI: 10.1016/j.yhbeh.2017.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 10/18/2022]
Abstract
In vertebrates and invertebrates, oxytocin/vasopressin-like peptides modulate a variety of behaviors. The recent discovery of the gene and receptor sequences of inotocin, the insect ortholog of oxytocin/vasopressin, opens new opportunities for understanding the role of this peptide family in regulating behaviors in the most populated class of living animals. Ants live in highly organized colonies. Once a year, they produce future queens that soon leave the nest to mate and found new colonies. During the first months of their lives, ant queens display a sequence of behaviors ranging from copulation and social interactions to violent fighting. In order to investigate the potential roles of inotocin in shaping queen behavior, we measured gene expression of the inotocin receptor in the heads of Lasius niger ant queens at different points in time. The highest levels of expression occurred early in queen life when they experience crowded conditions in their mother nests and soon thereafter set out to mate. Inotocin could thus be involved in regulating social and reproductive behaviors as reported in other animals. While oxytocin and vasopressin are also involved in aggression in mammals, we found no direct link between these behaviors and inotocin receptor expression in L. niger. Our study provides a first glimpse into the roles the inotocin receptor might play in regulating important processes in ant physiology and behavior. Further studies are needed to understand the molecular function of this complex signaling system in more detail.
Collapse
Affiliation(s)
- Sarah Chérasse
- Evolutionary Biology and Ecology, Département de Biologie des Organismes, Université Libre de Bruxelles, Avenue Franklin Roosevelt 50, 1050 Brussels, Belgium.
| | - Serge Aron
- Evolutionary Biology and Ecology, Département de Biologie des Organismes, Université Libre de Bruxelles, Avenue Franklin Roosevelt 50, 1050 Brussels, Belgium.
| |
Collapse
|
27
|
Soares MC. The Neurobiology of Mutualistic Behavior: The Cleanerfish Swims into the Spotlight. Front Behav Neurosci 2017; 11:191. [PMID: 29089876 PMCID: PMC5651018 DOI: 10.3389/fnbeh.2017.00191] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/29/2017] [Indexed: 11/29/2022] Open
Abstract
One of the most notorious examples of cooperation between different species happens in the cleaner-client fish mutualism. The best known cleaner fish species, the bluestreak Indo-Pacific cleaner wrasse Labroides dimidiatus has been a model system to study the evolution of cooperation between unrelated animals and between distinct species during the last couple of decades. Given that the cleanerfish mutualism is well-established for behavioral studies of cooperation, it offered an outstanding opportunity to identify the link between cooperation, social cognition, and to undertake proximate studies, which were severely in need. This review surveys the current achievements of several recent studies, pointing towards the potential of the cleanerfish mutualism as a relevant model system for future accomplishments in neuroendocrine research.
Collapse
Affiliation(s)
- Marta C Soares
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Porto, Portugal
| |
Collapse
|
28
|
Kelly AM, Vitousek MN. Dynamic modulation of sociality and aggression: an examination of plasticity within endocrine and neuroendocrine systems. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160243. [PMID: 28673919 PMCID: PMC5498303 DOI: 10.1098/rstb.2016.0243] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2016] [Indexed: 12/13/2022] Open
Abstract
Endocrine and neuroendocrine systems are key mediators of behavioural plasticity and allow for the ability to shift social behaviour across dynamic contexts. These systems operate across timescales, modulating both rapid responses to environmental changes and developmental plasticity in behavioural phenotypes. Thus, not only do endocrine systems mediate behavioural plasticity, but also the systems themselves exhibit plasticity in functional capabilities. This flexibility at both the mechanistic and behavioural levels can be crucial for reproduction and survival. Here, we discuss how plasticity in nonapeptide and steroid actions may influence the expression of, and allow rapid shifts between, sociality and aggression-behavioural shifts that can be particularly important for social interactions. Recent findings of overlap in the mechanisms that modulate social and aggressive behaviour suggest the potential for a mechanistic continuum between these behaviours. We briefly discuss the potential for a sociality-aggression continuum and novel techniques that will enable probing of the functional connectivity of social behaviours. From an evolutionary perspective, we suggest that plasticity in endocrine and neuroendocrine mechanisms of behaviour may be important targets of selection, and discuss the conditions under which we would predict selection to have resulted in differences in endocrine plasticity across species that differ in social organization.This article is part of the themed issue 'Physiological determinants of social behaviour in animals'.
Collapse
Affiliation(s)
- Aubrey M Kelly
- Department of Psychology, Cornell University, 229 Uris Hall, Ithaca, NY 14853, USA
| | - Maren N Vitousek
- Department of Ecology and Evolutionary Biology, Cornell University, E237 Corson Hall, Ithaca, NY 14853, USA
| |
Collapse
|
29
|
Soares MC, Cardoso SC, Mazzei R, André GI, Morais M, Gozdowska M, Kalamarz-Kubiak H, Kulczykowska E. Region specific changes in nonapeptide levels during client fish interactions with allopatric and sympatric cleaner fish. PLoS One 2017; 12:e0180290. [PMID: 28683143 PMCID: PMC5500320 DOI: 10.1371/journal.pone.0180290] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 06/13/2017] [Indexed: 12/02/2022] Open
Abstract
Social relationships are crucially dependent on individual ability to learn and remember ecologically relevant cues. However, the way animals recognize cues before engaging in any social interaction and how their response is regulated by brain neuromodulators remains unclear. We examined the putative involvement of arginine vasotocin (AVT) and isotocin (IT), acting at different brain regions, during fish decision-making in the context of cooperation, by trying to identify how fish distinguish and recognize the value of other social partners or species. We hypothesized that the behavioural responses of cleaner fish clients to different social contexts would be underlain by changes in brain AVT and IT levels. We have found that changes in AVT at the level of forebrain and optic tectum are linked with a response to allopatric cleaners (novel or unfamiliar stimuli) while those at cerebellum are associated with the willingness to be cleaned (in response to sympatric cleaners). On the other hand, higher brain IT levels that were solely found in the diencephalon, also in response to allopatric cleaners. Our results are the first to implicate these nonapeptides, AVT in particular, in the assessment of social cues which enable fish to engage in mutualistic activities.
Collapse
Affiliation(s)
- Marta C. Soares
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
- * E-mail:
| | - Sónia C. Cardoso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
| | - Renata Mazzei
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
- Université de Neuchâtel, Institut de Biologie, Eco-Ethologie, Rue Emilie-Argand 11, Neuchâtel, Switzerland
| | - Gonçalo I. André
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
| | - Marta Morais
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
| | - Magdalena Gozdowska
- Genetics and Marine Biotechnology Department, Institute of Oceanology of the Polish Academy of Sciences, Sopot, Poland
| | - Hanna Kalamarz-Kubiak
- Genetics and Marine Biotechnology Department, Institute of Oceanology of the Polish Academy of Sciences, Sopot, Poland
| | - Ewa Kulczykowska
- Genetics and Marine Biotechnology Department, Institute of Oceanology of the Polish Academy of Sciences, Sopot, Poland
| |
Collapse
|
30
|
Searching for hormonal facilitators: Are vasotocin and mesotocin involved in parental care behaviors in poison frogs? Physiol Behav 2017; 174:74-82. [PMID: 28283464 DOI: 10.1016/j.physbeh.2017.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/16/2017] [Accepted: 03/05/2017] [Indexed: 11/22/2022]
Abstract
Although the involvement of peptide hormones in parental care behaviors is well investigated in vertebrates, in amphibians the physiological basis of parental care is largely unknown. This is all the more surprising as parental care behaviors in these tetrapods are remarkably diverse. The poison frog Ranitomeya imitator performs biparental care, including clutch guarding, tadpole transportation and nutrient provisioning. Here we tested whether the nonapeptides arginine-vasotocin (AVT) and mesotocin (MT) are involved in clutch guarding and tadpole transportation in these frogs. In ex-sito experiments we injected males and females after clutch deposition and before tadpole transport with AVT and MT, respectively, as well as their antagonist or a control. We measured two types of egg caring behavior (intense and general care) and compared the success rate of tadpole transportation after treatments. Surprisingly we found that AVT did not trigger, but decreased intense egg care behaviors in males and females. However, there was a trend for general care behavior to increase, which might explain the adverse effect regarding intense care. MT did not have an effect on egg caring behaviors, but after administration of this hormone males were less likely to transport their offspring later on. Our results indicate that AVT might be partly involved in egg caring behaviors in R. imitator, while MT does not appear to play any role in behaviors prior to tadpole transportation in males. This implies that other hormones, such as steroids or prolactin are likely to be important for early parental care behaviors in poison frogs.
Collapse
|
31
|
Banerjee P, Joy KP, Chaube R. Structural and functional diversity of nonapeptide hormones from an evolutionary perspective: A review. Gen Comp Endocrinol 2017; 241:4-23. [PMID: 27133544 DOI: 10.1016/j.ygcen.2016.04.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 04/09/2016] [Accepted: 04/25/2016] [Indexed: 01/08/2023]
Abstract
The article presents an overview of the comparative distribution, structure and functions of the nonapeptide hormones in chordates and non chordates. The review begins with a historical preview of the advent of the concept of neurosecretion and birth of neuroendocrine science, pioneered by the works of E. Scharrer and W. Bargmann. The sections which follow discuss different vertebrate nonapeptides, their distribution, comparison, precursor gene structures and processing, highlighting the major differences in these aspects amidst the conserved features across vertebrates. The vast literature on the anatomical characteristics of the nonapeptide secreting nuclei in the brain and their projections was briefly reviewed in a comparative framework. Recent knowledge on the nonapeptide hormone receptors and their intracellular signaling pathways is discussed and few grey areas which require deeper studies are identified. The sections on the functions and regulation of nonapeptides summarize the huge and ever increasing literature that is available in these areas. The nonapeptides emerge as key homeostatic molecules with complex regulation and several synergistic partners. Lastly, an update of the nonapeptides in non chordates with respect to distribution, site of synthesis, functions and receptors, dealt separately for each phylum, is presented. The non chordate nonapeptides share many similarities with their counterparts in vertebrates, pointing the system to have an ancient origin and to be an important substrate for changes during adaptive evolution. The article concludes projecting the nonapeptides as one of the very first common molecules of the primitive nervous and endocrine systems, which have been retained to maintain homeostatic functions in metazoans; some of which are conserved across the animal kingdom and some are specialized in a group/lineage-specific manner.
Collapse
Affiliation(s)
- P Banerjee
- Department of Zoology, Centre of Advanced Study, Banaras Hindu University, Varanasi 221005, India
| | - K P Joy
- Department of Biotechnology, Cochin University of Science and Technology, Kochi 682022, India.
| | - R Chaube
- Department of Zoology, Centre of Advanced Study, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
32
|
Loveland JL, Fernald RD. Differential activation of vasotocin neurons in contexts that elicit aggression and courtship. Behav Brain Res 2016; 317:188-203. [PMID: 27609648 DOI: 10.1016/j.bbr.2016.09.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/30/2016] [Accepted: 09/03/2016] [Indexed: 10/21/2022]
Abstract
Despite continued study on the neurobiological bases of aggressive and sexual behaviors, it is still not well understood how the brain integrates social information with physiological and neural states to produce context-specific behavioral outcomes. In fishes, manipulation of endogenous levels of arginine vasotocin (AVT) through peripheral and intracerebroventricular pharmacological injections results in significant changes in social behaviors, including aggressive and reproduction-related behaviors. In addition, many features of AVT neurons have been shown to correlate with social status and associated behavioral phenotypes. In this study, we used the immediate early gene egr-1 as a marker for neuronal activity and quantified the number of AVT neurons that were positive for egr-1 mRNA by in situ hybridization in Astatotilapia burtoni males that were exposed to either a social context that would elicit aggression or to one that would elicit courtship. In these social settings, focal males readily displayed context- appropriate bouts of aggression (towards the opponent) or bouts of courting (towards females). We found that males that fought had higher levels of egr-1 expression in the preoptic area compared to courting males. A greater proportion of AVT cells was positive for egr-1 after a fight than after a bout of courting. We mapped mRNA distribution of AVT V1a receptor subtypes v1a1 and v1a2 in the brain and identified overlapping areas of expression in nuclei in the ventral telencephalon, hypothalamus and thalamus as key areas for AVT signaling in males.
Collapse
Affiliation(s)
- Jasmine L Loveland
- Dept. of Biological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Russell D Fernald
- Dept. of Biological Sciences, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
33
|
Caldwell HK, Albers HE. Oxytocin, Vasopressin, and the Motivational Forces that Drive Social Behaviors. Curr Top Behav Neurosci 2016; 27:51-103. [PMID: 26472550 DOI: 10.1007/7854_2015_390] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The motivation to engage in social behaviors is influenced by past experience and internal state, but also depends on the behavior of other animals. Across species, the oxytocin (Oxt) and vasopressin (Avp) systems have consistently been linked to the modulation of motivated social behaviors. However, how they interact with other systems, such as the mesolimbic dopamine system, remains understudied. Further, while the neurobiological mechanisms that regulate prosocial/cooperative behaviors have been extensively examined, far less is understood about competitive behaviors, particularly in females. In this chapter, we highlight the specific contributions of Oxt and Avp to several cooperative and competitive behaviors and discuss their relevance to the concept of social motivation across species, including humans. Further, we discuss the implications for neuropsychiatric diseases and suggest future areas of investigation.
Collapse
|
34
|
Kulczykowska E, Cardoso SC, Gozdowska M, André GI, Paula JR, Ślebioda M, Oliveira RF, Soares MC. Brain levels of nonapeptides in four labrid fish species with different levels of mutualistic behavior. Gen Comp Endocrinol 2015; 222:99-105. [PMID: 26095225 DOI: 10.1016/j.ygcen.2015.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/09/2015] [Indexed: 11/27/2022]
Abstract
There is strong evidence that brain nonapeptides are implicated as modulators of a wide array of social and reproductive behaviors in fishes. However, the question remains, as to whether there is a link between the distribution of active nonapeptides across brain regions and fishes specific behavioral phenotypes. To explore this link we compared the nonapeptides' profile across the brains of fishes representing different degrees of mutualistic behavior (here: cleaning behavior). Herein we studied the quantitative distribution of both nonapeptides, arginine vasotocin (AVT) and isotocin (IT), in the brains of four species of fish belonging to the family Labridae: two are obligatory cleaners throughout their entire life (Labroides dimidiatus and Labroides bicolor), one species is a facultative cleaner (Labropsis australis; juveniles are cleaners and adults are corallivorous), and one is a non-cleaner species, corallivorous throughout its entire life (Labrichthys unilineatus). The biologically available AVT and IT concentrations were measured simultaneously in distinct brain macro-areas: forebrain, optic tectum, cerebellum and brain stem, using liquid chromatography-tandem mass spectrometry (LC-MS/MS). We showed that the levels of both AVT and IT varied significantly across species, as measured in the whole brain or in the specific macro-areas. Significantly higher AVT concentrations in the cerebellum which were found in the obligate cleaners seemed to be related to expression of mutualistic behavior. On the other hand, the higher levels of brain IT in the non-cleaner L. unilineatus suggested that these might be linked to the development of sexual dimorphism, which occurs only in this non-cleaner species.
Collapse
Affiliation(s)
- Ewa Kulczykowska
- Genetics and Marine Biotechnology, Institute of Oceanology of the Polish Academy of Sciences, Sopot, Poland
| | - Sónia C Cardoso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal; Unidade de Investigação em Eco-Etologia, ISPA - Instituto Universitário, Lisboa, Portugal
| | - Magdalena Gozdowska
- Genetics and Marine Biotechnology, Institute of Oceanology of the Polish Academy of Sciences, Sopot, Poland
| | - Gonçalo I André
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| | - José R Paula
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| | - Marek Ślebioda
- Perlan Technologies Sp. z.o.o., Puławska 303 St., 02-785 Warszawa, Poland
| | - Rui F Oliveira
- Unidade de Investigação em Eco-Etologia, ISPA - Instituto Universitário, Lisboa, Portugal; Champalimaud Neuroscience Programme, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Marta C Soares
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal.
| |
Collapse
|
35
|
Oxytocin mechanisms of stress response and aggression in a territorial finch. Physiol Behav 2015; 141:154-63. [DOI: 10.1016/j.physbeh.2015.01.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 12/30/2022]
|
36
|
Crespi BJ. Oxytocin, testosterone, and human social cognition. Biol Rev Camb Philos Soc 2015; 91:390-408. [PMID: 25631363 DOI: 10.1111/brv.12175] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 12/15/2014] [Accepted: 12/19/2014] [Indexed: 02/06/2023]
Abstract
I describe an integrative social-evolutionary model for the adaptive significance of the human oxytocinergic system. The model is based on a role for this hormone in the generation and maintenance of social familiarity and affiliation across five homologous, functionally similar, and sequentially co-opted contexts: mothers with offspring, female and male mates, kin groups, individuals with reciprocity partners, and individuals within cooperating and competing social groups defined by culture. In each situation, oxytocin motivates, mediates and rewards the cognitive and behavioural processes that underlie the formation and dynamics of a more or less stable social group, and promotes a relationship between two or more individuals. Such relationships may be positive (eliciting neurological reward, reducing anxiety and thus indicating fitness-enhancing effects), or negative (increasing anxiety and distress, and thus motivating attempts to alleviate a problematic, fitness-reducing social situation). I also present evidence that testosterone exhibits opposite effects from oxytocin on diverse aspects of cognition and behaviour, most generally by favouring self-oriented, asocial and antisocial behaviours. I apply this model for effects of oxytocin and testosterone to understanding human psychological disorders centrally involving social behaviour. Reduced oxytocin and higher testosterone levels have been associated with under-developed social cognition, especially in autism. By contrast, some combination of oxytocin increased above normal levels, and lower testosterone, has been reported in a notable number of studies of schizophrenia, bipolar disorder and depression, and, in some cases, higher oxytocin involves maladaptively 'hyper-developed' social cognition in these conditions. This pattern of findings suggests that human social cognition and behaviour are structured, in part, by joint and opposing effects of oxytocin and testosterone, and that extremes of such joint effects partially mediate risks and phenotypes of autism and psychotic-affective conditions. These considerations have direct implications for the development of therapies for alleviating disorders of social cognition, and for understanding how such disorders are associated with the evolution of human cognitive-affective architecture.
Collapse
Affiliation(s)
- Bernard J Crespi
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
37
|
Albers HE. Species, sex and individual differences in the vasotocin/vasopressin system: relationship to neurochemical signaling in the social behavior neural network. Front Neuroendocrinol 2015; 36:49-71. [PMID: 25102443 PMCID: PMC4317378 DOI: 10.1016/j.yfrne.2014.07.001] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/23/2014] [Accepted: 07/27/2014] [Indexed: 11/16/2022]
Abstract
Arginine-vasotocin (AVT)/arginine vasopressin (AVP) are members of the AVP/oxytocin (OT) superfamily of peptides that are involved in the regulation of social behavior, social cognition and emotion. Comparative studies have revealed that AVT/AVP and their receptors are found throughout the "social behavior neural network (SBNN)" and display the properties expected from a signaling system that controls social behavior (i.e., species, sex and individual differences and modulation by gonadal hormones and social factors). Neurochemical signaling within the SBNN likely involves a complex combination of synaptic mechanisms that co-release multiple chemical signals (e.g., classical neurotransmitters and AVT/AVP as well as other peptides) and non-synaptic mechanisms (i.e., volume transmission). Crosstalk between AVP/OT peptides and receptors within the SBNN is likely. A better understanding of the functional properties of neurochemical signaling in the SBNN will allow for a more refined examination of the relationships between this peptide system and species, sex and individual differences in sociality.
Collapse
Affiliation(s)
- H Elliott Albers
- Center for Behavioral Neuroscience, Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA.
| |
Collapse
|
38
|
Bianco G, Battista F, Buchicchio A, Amarena CG, Schmitt-Kopplin P, Guerrieri A. Structural characterization of arginine-vasopressin and lysine-vasopressin by Fourier- transform ion cyclotron resonance mass spectrometry and infrared multiphoton dissociation. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2015; 21:211-219. [PMID: 26307701 DOI: 10.1255/ejms.1339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Arginine-vasopressin (AVP) and lysine-vasopressin (LVP) were analyzed by reversed-phase liquid chromatography/mass spectrometry (LC-MS) using Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) electrospray ionization (ESI) in the positive ion mode. LVP and AVP exhibited the protonated adduct [M+H](+) as the predominant ion at m/z 1056.43965 and at m/z 1084.44561, respectively. Infrared multiphoton dissociation (IRMPD), using a CO(2) laser source at a wavelength of 10.6 μm, was applied to protonated vasopressin molecules. The IRMPD mass spectra presented abundant mass fragments essential for a complete structural information. Several fragment ions, shared between two target molecules, are discussed in detail. Some previously unpublished fragments were identified unambiguously utilizing the high resolution and accurate mass information provided by the FT-ICR mass spectrometer. The opening of the disulfide loop and the cleavage of the peptide bonds within the ring were observed even under low-energy fragmentation conditions. Coupling the high-performance FT-ICR mass spectrometer with IRMPD as a contemporary fragmentation technique proved to be very promising for the structural characterization of vasopressin.
Collapse
Affiliation(s)
- Giuliana Bianco
- Dipartimento di Scienze, Scuola di Ingegneria, Università degli Studi della Basilicata, Via dell'Ateneo Lucano, 10; 85100 Potenza, Italy.
| | - Fabio Battista
- Dipartimento di Scienze, Scuola di Ingegneria, Università degli Studi della Basilicata, Via dell'Ateneo Lucano, 10; 85100 Potenza, Italy.
| | - Alessandro Buchicchio
- Scuola di Ingegneria, Università degli Studi della Basilicata, Via dell'Ateneo Lucano, 10; 85100 Potenza, Italy.
| | - Concetta G Amarena
- Dipartimento di Scienze, Scuola di Ingegneria, Università degli Studi della Basilicata, Via dell'Ateneo Lucano, 10; 85100 Potenza, Italy.
| | - Philippe Schmitt-Kopplin
- German Research Center for Environmental Health, Department of BioGeoChemistry and Analytics, Helmholtz Zentrum Munchen; D-85764 Neuherberg, Germany.
| | - Antonio Guerrieri
- Dipartimento di Scienze, Scuola di Ingegneria, Università degli Studi della Basilicata, Via dell'Ateneo Lucano, 10; 85100 Potenza, Italy.
| |
Collapse
|
39
|
Kulczykowska E, Kalamarz-Kubiak H, Nietrzeba M, Gozdowska M. Brain nonapeptide and gonadal steroid responses to deprivation of heterosexual contact in the black molly. Biol Open 2014; 4:69-78. [PMID: 25527645 PMCID: PMC4295167 DOI: 10.1242/bio.20149597] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Fish may respond to different social situations with changes in both physiology and behaviour. A unique feature of fish is that social interactions between males and females strongly affect the sexual characteristics of individuals. Here we provide the first insight into the endocrine background of two phenomena that occur in mono-sex groups of the black molly (Poecilia sphenops): masculinization in females and same-sex sexual behaviour, manifested by gonopodial displays towards same-sex tank mates and copulation attempts in males. In socially controlled situations, brain neurohormones impact phenotypic sex determination and sexual behaviour. Among these hormones are the nonapeptides arginine vasotocin (AVT) and isotocin (IT), counterparts of the well-known mammalian arginine vasopressin and oxytocin, respectively. To reveal potential hormone interactions, we measured the concentrations of bioactive AVT and IT in the brain, along with those of the sex steroids 17β-estradiol and 11-ketotestosterone in the gonads, of females, masculinized females, males displaying same-sex sexual behaviour and those who did not. These data were supplemented by morphological and histological analyses of the gonads. Correlations between brain nonapeptides and gonadal steroids strongly suggest a cross talk between hormonal systems. In the black molly, the masculinization process was associated with the production of brain AVT and gonadal steroids, whereas same-sex sexual behaviour involves both brain nonapeptides, but neither of the sex steroids. This study extends current knowledge of endocrine control of phenotypic sex and sexual behaviour in fish and for the first time links brain nonapeptides with the occurrence of male-male sexual behaviour in lower vertebrates.
Collapse
Affiliation(s)
- Ewa Kulczykowska
- Department of Genetics and Marine Biotechnology, Institute of Oceanology of Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Hanna Kalamarz-Kubiak
- Department of Genetics and Marine Biotechnology, Institute of Oceanology of Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Marta Nietrzeba
- Department of Genetics and Marine Biotechnology, Institute of Oceanology of Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Magdalena Gozdowska
- Department of Genetics and Marine Biotechnology, Institute of Oceanology of Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| |
Collapse
|
40
|
Cádiz L, Román-Padilla J, Gozdowska M, Kulczykowska E, Martínez-Rodríguez G, Mancera JM, Martos-Sitcha JA. Cortisol modulates vasotocinergic and isotocinergic pathways in the gilthead sea bream. ACTA ACUST UNITED AC 2014; 218:316-25. [PMID: 25524977 DOI: 10.1242/jeb.113944] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In the present study, we assessed the responses of the vasotocinergic and isotocinergic systems to chronic stress induced by cortisol administration in the gilthead sea bream (Sparus aurata). Pituitary and plasma arginine vasotocin (AVT) and isotocin (IT) levels, as well as hypothalamic pro-vasotocin (pro-VT) and pro-isotocin (pro-IT) mRNA expression levels, were analysed. In addition, the mRNA levels of three receptors, AVTR type V1a2, AVTR type V2 and ITR, were analysed in several target organs associated with the following physiological processes: (i) integration and control (hypothalamus), (ii) metabolism and its control (liver and hypothalamus), (iii) osmoregulation (gills) and (iv) stress response (head kidney). Specimens were injected intraperitoneally with slow-release implants (5 μL g(-1) body mass) containing coconut oil alone (control group) or with cortisol (50 μg g(-1) body mass; cortisol group). Both AVT and IT synthesis and release were correlated with plasma cortisol values, suggesting a potential interaction between both hormonal systems and cortisol administration. Our results suggest that the activation of hepatic metabolism as well as the hypothalamic control of metabolic processes provide the energy necessary to overcome stress, which could be partly mediated by AVTRs and ITR. Upregulation of branchial AVT and IT receptor expression following cortisol treatment suggests an involvement of the vasotocinergic and isotocinergic systems in the regulation of ion channels/transporters during stressful situations. Finally, changes in AVT and IT receptor mRNA expression in the head kidney suggest these nonapeptides participate in feedback mechanisms that regulate the synthesis/release of cortisol. Our results indicate a relationship between cortisol and both the vasotocinergic and isotocinergic systems during simulated chronic stress in S. aurata.
Collapse
Affiliation(s)
- Laura Cádiz
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, 11510 Puerto Real, Cádiz, Spain Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas (ICMAN-CSIC), 11510 Puerto Real, Cádiz, Spain
| | - Javier Román-Padilla
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, 11510 Puerto Real, Cádiz, Spain
| | - Magdalena Gozdowska
- Department of Genetics and Marine Biotechnology, Institute of Oceanology of the Polish Academy of Sciences, 81-712 Sopot, Poland
| | - Ewa Kulczykowska
- Department of Genetics and Marine Biotechnology, Institute of Oceanology of the Polish Academy of Sciences, 81-712 Sopot, Poland
| | - Gonzalo Martínez-Rodríguez
- Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas (ICMAN-CSIC), 11510 Puerto Real, Cádiz, Spain
| | - Juan M Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, 11510 Puerto Real, Cádiz, Spain
| | - Juan A Martos-Sitcha
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, 11510 Puerto Real, Cádiz, Spain Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas (ICMAN-CSIC), 11510 Puerto Real, Cádiz, Spain
| |
Collapse
|
41
|
Molecular variation in AVP and AVPR1a in New World monkeys (Primates, Platyrrhini): evolution and implications for social monogamy. PLoS One 2014; 9:e111638. [PMID: 25360668 PMCID: PMC4216101 DOI: 10.1371/journal.pone.0111638] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 10/03/2014] [Indexed: 11/19/2022] Open
Abstract
The neurohypophysial hormone arginine vasopressin (AVP) plays important roles in fluid regulation and vascular resistance. Differences in AVP receptor expression, particularly mediated through variation in the noncoding promoter region of the primary receptor for AVP (AVPR1a), may play a role in social phenotypes, particularly social monogamy, in rodents and humans. Among primates, social monogamy is rare, but is common among New World monkeys (NWM). AVP is a nonapeptide and generally conserved among eutherian mammals, although a recent paper demonstrated that some NWM species possess a novel form of the related neuropeptide hormone, oxytocin. We therefore characterized variation in the AVP and AVPR1a genes in 22 species representing every genus in the three major platyrrhine families (Cebidae, Atelidae and Pitheciidae). For AVP, a total of 16 synonymous substitutions were detected in 15 NWM species. No non-synonymous substitutions were noted, hence, AVP is conserved in NWM. By contrast, relative to the human AVPR1a, 66 predicted amino acids (AA) substitutions were identified in NWM. The AVPR1a N-terminus (ligand binding domain), third intracellular (G-protein binding domain), and C-terminus were variable among species. Complex evolution of AVPR1a is also apparent in NWM. A molecular phylogenetic tree inferred from AVPR1a coding sequences revealed some consensus taxonomic separation by families, but also a mixed group composed of genera from all three families. The overall dN/dS ratio of AVPR1a was 0.11, but signals of positive selection in distinct AVPR1a regions were observed, including the N-terminus, in which we identified six potential positive selection sites. AA substitutions at positions 241, 319, 399 and 409 occurred uniquely in marmosets and tamarins. Our results enhance the appreciation of genetic diversity in the mammalian AVP/AVPR1a system, and set the stage for molecular modeling of the neurohypophyseal hormones and social behavior in primates.
Collapse
|
42
|
Kelly AM, Goodson JL. Social functions of individual vasopressin-oxytocin cell groups in vertebrates: what do we really know? Front Neuroendocrinol 2014; 35:512-29. [PMID: 24813923 DOI: 10.1016/j.yfrne.2014.04.005] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 04/18/2014] [Accepted: 04/25/2014] [Indexed: 12/26/2022]
Abstract
Vasopressin-oxytocin (VP-OT) nonapeptides modulate numerous social and stress-related behaviors, yet these peptides are made in multiple nuclei and brain regions (e.g., >20 in some mammals), and VP-OT cells in these areas often exhibit overlapping axonal projections. Furthermore, the magnocellular cell groups release peptide volumetrically from dendrites and soma, which gives rise to paracrine modulation in distal brain areas. Nonapeptide receptors also tend to be promiscuous. Hence, behavioral effects that are mediated by any given receptor type (e.g., the OT receptor) in a target brain region cannot be conclusively attributed to either VP or OT, nor to a specific cell group. We here review what is actually known about the social behavior functions of nonapeptide cell groups, with a focus on aggression, affiliation, bonding, social stress, and parental behavior, and discuss recent studies that demonstrate a diversity of sex-specific contributions of VP-OT cell groups to gregariousness and pair bonding.
Collapse
Affiliation(s)
- Aubrey M Kelly
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | - James L Goodson
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
43
|
Khegai II, Mel'nikova VI, Popova NA, Zakharova LA, Ivanova LN. The effect of vasopressin on the Zajdela hepatocellular carcinoma growth rate. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2014; 457:222-224. [PMID: 25172586 DOI: 10.1134/s0012496614040061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Indexed: 06/03/2023]
Affiliation(s)
- I I Khegai
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia,
| | | | | | | | | |
Collapse
|
44
|
Postma TM, Albericio F. Immobilized N-chlorosuccinimide as a friendly peptide disulfide-forming reagent. ACS COMBINATORIAL SCIENCE 2014; 16:160-3. [PMID: 24641490 PMCID: PMC3987461 DOI: 10.1021/co500003p] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
![]()
A novel immobilized N-chlorosuccinimide resin
was developed for peptide disulfide bond formation in combinatorial
libraries. The resin is prepared in a simple two-step process from
commercial starting materials. Disulfide formation is initiated by
adding a peptide solution to the resin, and excess reagent is removed
by a convenient filtration upon completion of disulfide formation.
Completion of disulfide formation is rapid and clean, as demonstrated
by the oxidation of a small nonapeptide library. This immobilized
reagent allows a wider scope for the use of N-chlorosuccinimide-based
disulfide formation in combinatorial chemistry.
Collapse
Affiliation(s)
- Tobias M. Postma
- Institute for Research in Biomedicine (IRB) Barcelona, Baldiri Reixac 10, Barcelona 08028, Spain
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and
Nanomedicine, Barcelona
Science Park, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Fernando Albericio
- Institute for Research in Biomedicine (IRB) Barcelona, Baldiri Reixac 10, Barcelona 08028, Spain
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and
Nanomedicine, Barcelona
Science Park, Baldiri Reixac 10, 08028 Barcelona, Spain
- School
of Chemistry and Physics, University of KwaZulu Natal, 4001 Durban, South Africa
- Department
of Organic Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| |
Collapse
|
45
|
Martos-Sitcha JA, Wunderink YS, Gozdowska M, Kulczykowska E, Mancera JM, Martínez-Rodríguez G. Vasotocinergic and isotocinergic systems in the gilthead sea bream (Sparus aurata): an osmoregulatory story. Comp Biochem Physiol A Mol Integr Physiol 2013; 166:571-81. [PMID: 24021911 DOI: 10.1016/j.cbpa.2013.09.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 08/29/2013] [Accepted: 09/03/2013] [Indexed: 10/26/2022]
Abstract
To investigate the physiological roles of arginine vasotocin (AVT) and isotocin (IT) in osmoregulatory process in gilthead sea bream (Sparus aurata), a time course study (0, 12h, and 1, 3, 7 and 14 days) has been performed in specimens submitted to hypoosmotic (from 40‰ salinity to 5‰ salinity) or hyperosmotic (from 40‰ salinity to 55‰ salinity) challenges. Plasma and liver osmoregulatory and metabolic parameters, as well as AVT and IT pituitary contents were determined concomitantly with hypothalamic pro-vasotocin (pro-VT) and pro-isotocin (pro-IT) mRNA expression levels. Previously, sequences coding for pro-VT and pro-IT cDNAs were cloned. Two osmoregulatory periods related to plasma osmolality and metabolic parameter variations could be distinguished: i) an adaptative period, from 12h to 3 days after transfer, and ii) a chronic regulatory period, starting at day 3 after transfer. Higher values in hypothalamic pro-VT and pro-IT mRNA expression as well as in pituitary AVT and IT storage levels in both hypo- and/or hyper-osmotic transfers have been distinguished. These increase correlated with changes in plasma cortisol levels, suggesting an interaction between this hormone and pro-VT expression. Furthermore, pro-IT expression enhancement also suggests a role of the isotocinergic system as a modulator in the acute stress response induced by hyper-osmotic challenge in S. aurata.
Collapse
Affiliation(s)
- J A Martos-Sitcha
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, 11510 Puerto Real, Cádiz, Spain; Instituto de Ciencias Marinas de Andalucía (ICMAN), Consejo Superior de Investigaciones Científicas (CSIC), 11510 Puerto Real, Cádiz, Spain.
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
The design and development of selective ligands for the human OT (oxytocin) and AVP (arginine vasopressin) receptors is a big challenge since the different receptor subtypes and their native peptide ligands display great similarity. Detailed understanding of the mechanism of OT's interaction with its receptor is important and may assist in the ligand- or structure-based design of selective and potent ligands. In the present article, we compared 69 OT- and OT-like receptor sequences with regards to their molecular evolution and diversity, utilized an in silico approach to map the common ligand interaction sites of recently published G-protein-coupled receptor structures to a model of the human OTR (OT receptor) and compared these interacting residues within a selection of different OTR sequences. Our analysis suggests the existence of a binding site for OT peptides within the common transmembrane core region of the receptor, but it appears extremely difficult to identify receptor or ligand residues that could explain the selectivity of OT to its receptors. We remain confident that the presented evolutionary overview and modelling approach will aid interpretation of forthcoming OTR crystal structures.
Collapse
|
47
|
Park MS, Kim NN, Shin HS, Min BH, Kil GS, Cho SH, Choi CY. Hypoosmotic shock adaptation by prolactin involves upregulation of arginine vasotocin and osmotic stress transcription factor 1 mRNA in the cinnamon clownfishAmphiprion melanopus. Anim Cells Syst (Seoul) 2012. [DOI: 10.1080/19768354.2012.719547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
48
|
Koshimizu TA, Nakamura K, Egashira N, Hiroyama M, Nonoguchi H, Tanoue A. Vasopressin V1a and V1b Receptors: From Molecules to Physiological Systems. Physiol Rev 2012; 92:1813-64. [DOI: 10.1152/physrev.00035.2011] [Citation(s) in RCA: 250] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The neurohypophysial hormone arginine vasopressin (AVP) is essential for a wide range of physiological functions, including water reabsorption, cardiovascular homeostasis, hormone secretion, and social behavior. These and other actions of AVP are mediated by at least three distinct receptor subtypes: V1a, V1b, and V2. Although the antidiuretic action of AVP and V2 receptor in renal distal tubules and collecting ducts is relatively well understood, recent years have seen an increasing understanding of the physiological roles of V1a and V1b receptors. The V1a receptor is originally found in the vascular smooth muscle and the V1b receptor in the anterior pituitary. Deletion of V1a or V1b receptor genes in mice revealed that the contributions of these receptors extend far beyond cardiovascular or hormone-secreting functions. Together with extensively developed pharmacological tools, genetically altered rodent models have advanced the understanding of a variety of AVP systems. Our report reviews the findings in this important field by covering a wide range of research, from the molecular physiology of V1a and V1b receptors to studies on whole animals, including gene knockout/knockdown studies.
Collapse
Affiliation(s)
- Taka-aki Koshimizu
- Department of Pharmacology, Division of Molecular Pharmacology, Jichi Medical University, Tochigi, Japan; Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo, Japan; Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan; and Department of Internal Medicine, Kitasato University, Kitasato Institute Medical Center Hospital, Saitama, Japan
| | - Kazuaki Nakamura
- Department of Pharmacology, Division of Molecular Pharmacology, Jichi Medical University, Tochigi, Japan; Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo, Japan; Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan; and Department of Internal Medicine, Kitasato University, Kitasato Institute Medical Center Hospital, Saitama, Japan
| | - Nobuaki Egashira
- Department of Pharmacology, Division of Molecular Pharmacology, Jichi Medical University, Tochigi, Japan; Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo, Japan; Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan; and Department of Internal Medicine, Kitasato University, Kitasato Institute Medical Center Hospital, Saitama, Japan
| | - Masami Hiroyama
- Department of Pharmacology, Division of Molecular Pharmacology, Jichi Medical University, Tochigi, Japan; Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo, Japan; Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan; and Department of Internal Medicine, Kitasato University, Kitasato Institute Medical Center Hospital, Saitama, Japan
| | - Hiroshi Nonoguchi
- Department of Pharmacology, Division of Molecular Pharmacology, Jichi Medical University, Tochigi, Japan; Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo, Japan; Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan; and Department of Internal Medicine, Kitasato University, Kitasato Institute Medical Center Hospital, Saitama, Japan
| | - Akito Tanoue
- Department of Pharmacology, Division of Molecular Pharmacology, Jichi Medical University, Tochigi, Japan; Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo, Japan; Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan; and Department of Internal Medicine, Kitasato University, Kitasato Institute Medical Center Hospital, Saitama, Japan
| |
Collapse
|
49
|
Juul KV. The evolutionary origin of the vasopressin/V2-type receptor/aquaporin axis and the urine-concentrating mechanism. Endocrine 2012; 42:63-8. [PMID: 22374125 DOI: 10.1007/s12020-012-9634-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 02/08/2012] [Indexed: 01/11/2023]
Abstract
In this mini-review, current evidence for how the vasopressin/V2-type receptor/aquaporin axis developed co-evolutionary as a crucial part of the urine-concentrating mechanism will be presented. The present-day human kidney, allowing the concentration of urine up to a maximal osmolality around 1200 mosmol kg(-1)-or urine to plasma osmolality ratio around 4-with essentially no sodium secreted is the result of up to 3 billion years evolution. Moving from aquatic to terrestrial habitats required profound changes in kidney morphology, most notable the loops of Henle modifying the kidneys from basically a water excretory system to a water conserving system. Vasopressin-like molecules has during the evolution played a significant role in body fluid homeostasis, more specifically, the osmolality of body liquids by controlling the elimination/reabsorption of fluid trough stimulating V2-type receptors to mobilize aquaporin water channels in the renal collector tubules. Recent evidence supports that all components of the vasopressin/V2-type receptor/aquaporin axis can be traced back to early precursors in evolutionary history. The potential clinical and pharmacological implications of a better phylogenetic understanding of these biological systems so essential for body fluid homeostasis relates to any pathological aspects of the urine-concentrating mechanism, in particular deficiencies of any part of the vasopressin-V2R-AQP2 axis causing central or nephrogenic diabetes insipidus-and for broader patient populations also in preventing and treating disturbances in human circadian regulation of urine volume and osmolality that may lead to enuresis and nocturia.
Collapse
Affiliation(s)
- Kristian Vinter Juul
- Clinical R&D, Medical Science Urology, Ferring International Pharmascience Center, 11 Kay Fiskers Plads, 2300, Copenhagen S, Denmark.
| |
Collapse
|
50
|
Shi L, Fan Y, Xu Z. Development of oxytocin- and vasopressin-network in the supraoptic and paraventricular nuclei of fetal sheep. Physiol Res 2012; 61:277-86. [PMID: 22480425 DOI: 10.33549/physiolres.932257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The hypothalamic supraoptic and paraventricular nuclei consist of oxytocin and arginine vasopressin synthesizing neurons that send projections to the neurohypophysis. A growing body of evidence in adult animals and young animals at near term confirmed the structure and function in the vasopressinergic and oxytocinergic network. However, whether those distinctive neural networks are formed before near term is largely unknown. This study determined the special patterns in location and distribution of oxytocin- and vasopressin-neurons in the paraventricular and supraoptic nuclei from preterm to term in the ovine fetuses. The results showed that oxytocin- and vasopressin-neurons were present in both nuclei at the three gestational time periods (preterm, near term, and term). In the paraventricular nuclei, vasopressin-cells concentrated mainly in the core of the middle magnocellular paraventricular nuclei, and oxytocin-cells were scattered surrounding the core. In the supraoptic nuclei, vasopressin-cells mostly located in the ventral part, and oxytocin-cells in the dorsal part. The data demonstrated that the special distributed patterns of vasopressin- and oxytocin-neuron network have formed in those two nuclei at least from preterm. Intracerebroventricular injection of angiotensin II significantly increased fetal plasma oxytocin and vasopressin levels at preterm, which was associated with an increase of oxytocin- and vasopressin-neuron activity marked with c-fos expression. The data provided new evidence for the structural and functional development of the oxytocin- and vasopressin-network before birth.
Collapse
Affiliation(s)
- L Shi
- Beijing Sport University, Beijing China
| | | | | |
Collapse
|