1
|
Cao Y, Liu J, Liu G, Du H, Liu T, Liu T, Li P, Yu Q, Wang G, Wang E. A nanocarrier immersion vaccine encoding surface immunogenic protein confers cross-immunoprotection against Streptococcus agalactiae and Streptococcus iniae infection in tilapia. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109267. [PMID: 38043875 DOI: 10.1016/j.fsi.2023.109267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/18/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Streptococcosis is a highly contagious aquatic bacterial disease that poses a significant threat to tilapia. Vaccination is a well-known effective measure to prevent and control fish bacterial diseases. Among the various immunization methods, immersion vaccination is simple and can be widely used in aquaculture. Besides, nanocarrier delivery technology has been reported as an effective solution to improve the immune effect of immersion vaccine. In this study, the surface immunogenic protein (Sip) was proved to be conserved and potential to provide cross-immunoprotection for both Streptococcus agalactiae (S. agalactiae) and Streptococcus iniae (S. iniae) by multiple sequences alignment and Western blotting analysis. On this basis, we expressed and obtained the recombinant protein rSip and connected it with functionalized carbon nanotubes (CNT) to construct the nanocarrier vaccine system CNT-rSip. After immersion immunization, the immune effect of CNT-rSip against above two streptococcus infections was evaluated in tilapia based on some aspects including the serum specific antibody level, non-specific enzyme activities, immune-related genes expression and relative percent survival (RPS) after bacteria challenge. The results showed that compared with control group, CNT-rSip significantly (P < 0.05) increased the serum antibody levels, related enzyme activities including acid phosphatase, alkaline phosphatase, lysozyme and total antioxidant capacity activities, as well as the expression levels of immune-related genes from 2 to 4 weeks post immunization (wpi), and all these indexes peaked at 3 wpi. Besides, the above indexes of CNT-rSip were higher than those of rSip group with different extend during the experiment. Furthermore, the challenge test indicated that CNT-rSip provided cross-immunoprotection against S. agalactiae and S. iniae infection with RPS of 75 % and 72.41 %, respectively, which were much higher than those of other groups. Our study indicated that the nanocarrier immersion vaccine CNT-rSip could significantly improve the antibody titer and confer cross-immuneprotection against S. agalactiae and S. iniae infection in tilapia.
Collapse
Affiliation(s)
- Ye Cao
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, 518000, China; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jia Liu
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, 518000, China; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gaoyang Liu
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, 518000, China; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hui Du
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, 518000, China; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianqiang Liu
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, 518000, China; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tao Liu
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, 518000, China; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pengfei Li
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, China
| | - Qing Yu
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, China.
| | - Gaoxue Wang
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, 518000, China; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Erlong Wang
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, 518000, China; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Cao Y, Liu J, Liu G, Du H, Liu T, Wang G, Wang Q, Zhou Y, Wang E. Exploring the Immunoprotective Potential of a Nanocarrier Immersion Vaccine Encoding Sip against Streptococcus Infection in Tilapia ( Oreochromis niloticus). Vaccines (Basel) 2023; 11:1262. [PMID: 37515077 PMCID: PMC10383804 DOI: 10.3390/vaccines11071262] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/06/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Tilapia, as one of the fish widely cultured around the world, is suffering severe impact from the streptococcus disease with the deterioration of the breeding environment and the increasing of breeding density, which brings serious economic loss to tilapia farming. In this study, the surface immunogenic protein (Sip) of Streptococcus agalactiae (S. agalactiae) was selected as the potential candidate antigen and connected with bacterial nano cellulose (BNC) to construct the nanocarrier subunit vaccine (BNC-rSip), and the immersion immune effects against S. agalactiae and Streptococcus iniae (S. iniae) in Nile tilapia were evaluated on the basis of the serum antibody level, non-specific enzyme activity, the immune-related gene expression and relative percent survival (RPS). The results indicated that Sip possessed the expected immunogenicity according to the immunoinformatic analysis. Compared with the rSip group, BNC-rSip significantly induced serum antibody production and improved the innate immunity level of tilapia. After challenge, the RPS of BNC-rSip groups were 78.95% (S. agalactiae) and 67.86% (S. iniae), which were both higher than those of rSip groups,31.58% (S. agalactiae) and 35.71% (S. iniae), respectively. Our study indicated that BNC-rSip can induce protective immunity for tilapia through immersion immunization and may be an ideal candidate vaccine for controlling tilapia streptococcal disease.
Collapse
Affiliation(s)
- Ye Cao
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- Northwest A&F University Shenzhen Research Institute, Shenzhen 518000, China
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jia Liu
- Northwest A&F University Shenzhen Research Institute, Shenzhen 518000, China
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Gaoyang Liu
- Northwest A&F University Shenzhen Research Institute, Shenzhen 518000, China
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Hui Du
- Northwest A&F University Shenzhen Research Institute, Shenzhen 518000, China
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Tianqiang Liu
- Northwest A&F University Shenzhen Research Institute, Shenzhen 518000, China
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Gaoxue Wang
- Northwest A&F University Shenzhen Research Institute, Shenzhen 518000, China
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Qing Wang
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Ya Zhou
- College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing 404155, China
| | - Erlong Wang
- Northwest A&F University Shenzhen Research Institute, Shenzhen 518000, China
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
3
|
Zhang J, Zhang S, Sun X, Xu X. Comparative transcriptome analysis reveals the immune response of turbot (Scophthalmus maximus) induced by inactivated bivalent vaccine. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108461. [PMID: 36462744 DOI: 10.1016/j.fsi.2022.108461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/21/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Vibrio species are important pathogens that affect a wide range of farmed fish. Vaccination is regarded as the most efficacious strategy for fighting bacterial infections. However, the underlying mechanisms remain to be elucidated. In the present study, a comparative transcriptome analysis was performed on the spleens from turbot (Scophthalmus maximus) induced by an inactivated bivalent vaccine (Vibrio anguillarum and Vibrio harveyi, IVVah1) at 4 week and 1 day post further challenge. Strong immune responses were induced by the bivalent vaccine, besides differentially expressed genes (DEGs) associated with adaptive immunity, more innate immunity-related DEGs were detected. At the late stage of vaccination, immune-related molecules associated with pattern recognition receptors, inflammatory factors, complement and coagulation cascade-related components, and antigen processing and presentation were significantly regulated, and some of them were even further up-regulated after the bacterial challenge, indicating the cooperation of multiple immune processes during the vaccine immunization process. In addition to the terms or pathways associated with the immune response, enrichment analysis revealed multiple significantly enriched terms/pathways associated with the response to stimulus/stress, homeostasis, metabolism, and biosynthesis, suggesting that a defensive status was established by the bivalent vaccine. This study furnishes new insights into the internal mechanism of immunity upon a combined vaccine administrating in turbot and lays a foundation for developing highly immunogenic vaccines in teleost.
Collapse
Affiliation(s)
- Jian Zhang
- School of Ocean, Yantai University, Yantai, China
| | | | - Xiangyi Sun
- School of Ocean, Yantai University, Yantai, China
| | - Xiudan Xu
- School of Ocean, Yantai University, Yantai, China.
| |
Collapse
|
4
|
Vallejos-Vidal E, Reyes-López FE, Sandino AM, Imarai M. Sleeping With the Enemy? The Current Knowledge of Piscine Orthoreovirus (PRV) Immune Response Elicited to Counteract Infection. Front Immunol 2022; 13:768621. [PMID: 35464421 PMCID: PMC9019227 DOI: 10.3389/fimmu.2022.768621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Piscine orthoreovirus (PRV) is a virus in the genus Orthoreovirus of the Reoviridae family, first described in 2010 associated with Heart and Skeletal Muscle Inflammation (HSMI) in Atlantic salmon (Salmo salar). Three phases of PRV infection have been described, the early entry and dissemination, the acute dissemination phase, and the persistence phase. Depending on the PRV genotype and the host, infection can last for life. Mechanisms of immune response to PRV infection have been just beginning to be studied and the knowledge in this matter is here revised. PRV induces a classical antiviral immune response in experimental infection of salmonid erythrocytes, including transcriptional upregulation of ifn-α, rig-i, mx, and pkr. In addition, transcript upregulation of tcra, tcrb, cd2, il-2, cd4-1, ifn-γ, il-12, and il-18 has been observed in Atlantic salmon infected with PRV, indicating that PRV elicited a Th1 type response probably as a host defense strategy. The high expression levels of cd8a, cd8b, and granzyme-A in PRV-infected fish suggest a positive modulatory effect on the CTL-mediated immune response. This is consistent with PRV-dependent upregulation of the genes involved in antigen presentation, including MHC class I, transporters, and proteasome components. We also review the potential immune mechanisms associated with the persistence phenotype of PRV-infected fish and its consequence for the development of a secondary infection. In this scenario, the application of a vaccination strategy is an urgent and challenging task due to the emergence of this viral infection that threatens salmon farming.
Collapse
Affiliation(s)
- Eva Vallejos-Vidal
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | - Felipe E Reyes-López
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Department of Cell Biology, Physiology, and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ana María Sandino
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Mónica Imarai
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
5
|
Wangkaghart E, Deville S, Wang B, Srisapoome P, Wang T, Secombes CJ. Immune response and protective efficacy of two new adjuvants, Montanide™ ISA 763B VG and Montanide™ GEL02, administered with a Streptococcus agalactiae ghost vaccine in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2021; 116:19-29. [PMID: 34153428 DOI: 10.1016/j.fsi.2021.06.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Streptococcus agalactiae is one of the most important pathogens infecting tilapia worldwide and causes meningoencephalitis, septicemia and high mortalities with considerable losses. Various types of vaccines have been developed against S. agalactiae infection, such as inactivated vaccines, live attenuated vaccines and subunit vaccines. Bacterial ghosts (BGs) are nonliving, empty cell envelopes and have been reported as novel vaccine candidates. Therefore, the main aims of this study were to develop an S. agalactiae ghost vaccine (SAGV) and to evaluate the immune response and protective effect of SAGV against S. agalactiae with two novel adjuvants, Montanide™ ISA 763B VG and Montanide™ GEL02. Nile tilapia, mean weight 50 g, were divided into four groups as follows; 1) fish injected with PBS as control, 2) fish injected with the SAGV alone; 3) fish injected with the SAGV+Montanide™ ISA 763B VG; and 4) fish injected with SAGV+Montanide™ GEL02. Following vaccination, innate immunity parameters including serum lysozyme, myeloperoxidase, catalase, and bactericidal activity were all significantly enhanced. Moreover, specific serum IgM antibodies were induced and reached their highest level 2-8 weeks post vaccination. Importantly, the relative percent survival of tilapia vaccinated against the SAGV formulated with both adjuvants was 80-93%. Furthermore, the transcription of immune-related genes (IgM, TCRβ, IL-1β, IL-8 and TNFα) were up-regulated in tilapia after vaccination, indicating that both cellular and humoral immune responses were induced by these adjuvanted vaccines. In summary, Montanide™ ISA 763B VG and Montanide™ GEL02 can enhance immunoprotection induced by the SAGV vaccine against streptococcosis, demonstrating that both have value as potential adjuvants of fish vaccines.
Collapse
Affiliation(s)
- Eakapol Wangkaghart
- Research Unit of Excellence for Tropical Fisheries and Technology, Division of Fisheries, Department of Agricultural Technology, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Mahasarakham, Thailand.
| | - Sebastien Deville
- SEPPIC, Paris La Défense, 50 Boulevard National, CS 90020, 92257, La Garenne Colombes Cedex, France.
| | - Bei Wang
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, PR China.
| | - Prapansak Srisapoome
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Jatujak, Bangkok, 10900, Thailand.
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom.
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom.
| |
Collapse
|
6
|
Veenstra KA, Hodneland K, Fischer S, Takehana K, Belmonte R, Fischer U. Cellular Immune Responses in Rainbow Trout ( Onchorhynchus mykiss) Following Vaccination and Challenge Against Salmonid Alphavirus (SAV). Vaccines (Basel) 2020; 8:vaccines8040725. [PMID: 33276596 PMCID: PMC7761581 DOI: 10.3390/vaccines8040725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 01/25/2023] Open
Abstract
Viral disease outbreaks remain a significant limiting factor for aquaculture. The majority of licensed vaccines used in the industry are administered as oil-adjuvanted formulations carrying inactivated whole pathogens. Cell-mediated immune responses, in particular those based on virus-specific cytotoxic T-cells (CTLs) to conventional inactivated oil-based vaccines, are largely unexplored. As vaccines cannot be optimized against viral pathogens if knowledge of host cellular immune mechanisms remains unknown, in this study we examined fundamental cell-mediated immune responses after vaccination of rainbow trout with an oil-adjuvanted inactivated vaccine against salmonid alphavirus (SAV) and after infection with SAV. A unique in vitro model system was developed to examine MHC class I restricted CTL responses in a clonal line of rainbow trout. The levels of cell-mediated cytotoxicity were compared to pathology, virus load, specific antibody response, changes in immune cell populations, and mRNA expression. Our results hint that different protective mechanisms are being triggered by infection compared to vaccination. While vaccination itself did not cause a strong cytotoxic or humoral response, subsequent challenge of vaccinated fish resulted in significantly stronger and faster specific cytotoxicity, alongside reduced viral titers and pathology. Hence, testing a vaccine on the capacity to induce cell-mediated cytotoxicity will still require a challenge test. Examination of cellular markers additionally indicates that the initial innate response induced by the vaccine could play an important role in steering adaptive mechanisms.
Collapse
Affiliation(s)
- Kimberly A. Veenstra
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Infectology, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (K.A.V.); (S.F.)
| | - Kjartan Hodneland
- MSD Animal Health Innovation, Thormøhlens Gate 55, 5006 Bergen, Norway; (K.H.); (R.B.)
| | - Susanne Fischer
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Infectology, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (K.A.V.); (S.F.)
| | - Kota Takehana
- Nagano Prefectural Fisheries Experimental Station, 2871 Oaza-Nakagawate, Akashina, Azumino-shi, Nagano 399-7102, Japan;
| | - Rodrigo Belmonte
- MSD Animal Health Innovation, Thormøhlens Gate 55, 5006 Bergen, Norway; (K.H.); (R.B.)
| | - Uwe Fischer
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Infectology, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (K.A.V.); (S.F.)
- Correspondence: ; Tel.: +49-38351-71175
| |
Collapse
|
7
|
Yamaguchi T, Takizawa F, Furihata M, Soto-Lampe V, Dijkstra JM, Fischer U. Teleost cytotoxic T cells. FISH & SHELLFISH IMMUNOLOGY 2019; 95:422-439. [PMID: 31669897 DOI: 10.1016/j.fsi.2019.10.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Cell-mediated cytotoxicity is one of the major mechanisms by which vertebrates control intracellular pathogens. Two cell types are the main players in this immune response, natural killer (NK) cells and cytotoxic T lymphocytes (CTL). While NK cells recognize altered target cells in a relatively unspecific manner CTLs use their T cell receptor to identify pathogen-specific peptides that are presented by major histocompatibility (MHC) class I molecules on the surface of infected cells. However, several other signals are needed to regulate cell-mediated cytotoxicity involving a complex network of cytokine- and ligand-receptor interactions. Since the first description of MHC class I molecules in teleosts during the early 90s of the last century a remarkable amount of information on teleost immune responses has been published. The corresponding studies describe teleost cells and molecules that are involved in CTL responses of higher vertebrates. These studies are backed by functional investigations on the killing activity of CTLs in a few teleost species. The present knowledge on teleost CTLs still leaves considerable room for further investigations on the mechanisms by which CTLs act. Nevertheless the information on teleost CTLs and their regulation might already be useful for the control of fish diseases by designing efficient vaccines against such diseases where CTL responses are known to be decisive for the elimination of the corresponding pathogen. This review summarizes the present knowledge on CTL regulation and functions in teleosts. In a special chapter, the role of CTLs in vaccination is discussed.
Collapse
Affiliation(s)
- Takuya Yamaguchi
- Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany
| | - Fumio Takizawa
- Laboratory of Marine Biotechnology, Faculty of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui, 917-0003, Japan
| | - Mitsuru Furihata
- Nagano Prefectural Fisheries Experimental Station, 2871 Akashina-nakagawate, Azumino-shi, Nagano-ken, 399-7102, Japan
| | - Veronica Soto-Lampe
- Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany
| | - Johannes M Dijkstra
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Uwe Fischer
- Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany.
| |
Collapse
|
8
|
Discovery of a Novel MHC Class I Lineage in Teleost Fish which Shows Unprecedented Levels of Ectodomain Deterioration while Possessing an Impressive Cytoplasmic Tail Motif. Cells 2019; 8:cells8091056. [PMID: 31505831 PMCID: PMC6769792 DOI: 10.3390/cells8091056] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/25/2022] Open
Abstract
A unique new nonclassical MHC class I lineage was found in Teleostei (teleosts, modern bony fish, e.g., zebrafish) and Holostei (a group of primitive bony fish, e.g., spotted gar), which was designated “H” (from “hexa”) for being the sixth lineage discovered in teleosts. A high level of divergence of the teleost sequences explains why the lineage was not recognized previously. The spotted gar H molecule possesses the three MHC class I consensus extracellular domains α1, α2, and α3. However, throughout teleost H molecules, the α3 domain was lost and the α1 domains showed features of deterioration. In fishes of the two closely related teleost orders Characiformes (e.g., Mexican tetra) and Siluriformes (e.g., channel catfish), the H ectodomain deterioration proceeded furthest, with H molecules of some fishes apparently having lost the entire α1 or α2 domain plus additional stretches within the remaining other (α1 or α2) domain. Despite these dramatic ectodomain changes, teleost H sequences possess rather large, unique, well-conserved tyrosine-containing cytoplasmic tail motifs, which suggests an important role in intracellular signaling. To our knowledge, this is the first description of a group of MHC class I molecules in which, judging from the sequence conservation pattern, the cytoplasmic tail is expected to have a more important conserved function than the ectodomain.
Collapse
|
9
|
Major Histocompatibility Complex (MHC) Genes and Disease Resistance in Fish. Cells 2019; 8:cells8040378. [PMID: 31027287 PMCID: PMC6523485 DOI: 10.3390/cells8040378] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/12/2019] [Accepted: 04/23/2019] [Indexed: 12/20/2022] Open
Abstract
Fascinating about classical major histocompatibility complex (MHC) molecules is their polymorphism. The present study is a review and discussion of the fish MHC situation. The basic pattern of MHC variation in fish is similar to mammals, with MHC class I versus class II, and polymorphic classical versus nonpolymorphic nonclassical. However, in many or all teleost fishes, important differences with mammalian or human MHC were observed: (1) The allelic/haplotype diversification levels of classical MHC class I tend to be much higher than in mammals and involve structural positions within but also outside the peptide binding groove; (2) Teleost fish classical MHC class I and class II loci are not linked. The present article summarizes previous studies that performed quantitative trait loci (QTL) analysis for mapping differences in teleost fish disease resistance, and discusses them from MHC point of view. Overall, those QTL studies suggest the possible importance of genomic regions including classical MHC class II and nonclassical MHC class I genes, whereas similar observations were not made for the genomic regions with the highly diversified classical MHC class I alleles. It must be concluded that despite decades of knowing MHC polymorphism in jawed vertebrate species including fish, firm conclusions (as opposed to appealing hypotheses) on the reasons for MHC polymorphism cannot be made, and that the types of polymorphism observed in fish may not be explained by disease-resistance models alone.
Collapse
|
10
|
Rozas-Serri M, Peña A, Arriagada G, Enríquez R, Maldonado L. Comparison of gene expression in post-smolt Atlantic salmon challenged by LF-89-like and EM-90-like Piscirickettsia salmonis isolates reveals differences in the immune response associated with pathogenicity. JOURNAL OF FISH DISEASES 2018; 41:539-552. [PMID: 29143962 DOI: 10.1111/jfd.12756] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/14/2017] [Accepted: 10/17/2017] [Indexed: 06/07/2023]
Abstract
Piscirickettsiosis is the main bacterial disease affecting the Chilean salmon farming industry and is responsible for high economic losses. The aim of this study was to describe and comparatively quantify the immune response of post-smolt Atlantic salmon infected by cohabitation with fish bearing LF-89-like and EM-90-like Piscirickettsia salmonis. The expression of 17 genes related to the immune response was studied in head kidney from cohabitant fish by RT-qPCR. Our results at the transcriptomic level suggest that P. salmonis is able to manipulate the kinetics of cytokine production in a way that might constitute a virulence mechanism that promotes intracellular bacterial replication in cells of Atlantic salmon. This strategy involves the creation of an ideal environment for the microorganism based on induction of the inflammatory and IFN-mediated response, modulation of Th1 polarization, reduced antigen processing and presentation, modulation of the evasion of the immune response mediated by CD8+ T cells and promotion of the CD4+ T-cell response during the late stage of infection as a mechanism to escape host defences. This response was significantly exacerbated in fish infected by PS-EM-90 compared with fish infected by PS-LF-89, a finding that is probably associated with the higher pathogenicity of PS-EM-90.
Collapse
Affiliation(s)
- M Rozas-Serri
- Pathovet Laboratory Ltd., Puerto Montt, Chile
- Faculty of Veterinary Sciences, Graduate School, Austral University of Chile, Valdivia, Chile
| | - A Peña
- Pathovet Laboratory Ltd., Puerto Montt, Chile
| | - G Arriagada
- EPI-data Research & Consulting, Santiago, Chile
| | - R Enríquez
- Laboratory of Aquatic Pathology and Biotechnology, Faculty of Veterinary Sciences, Animal Pathology Institute, Universidad Austral de Chile, Valdivia, Chile
| | - L Maldonado
- Pathovet Laboratory Ltd., Puerto Montt, Chile
| |
Collapse
|
11
|
Zhang X, Mu Y, Mu P, Ao J, Chen X. Transcriptome Analysis Reveals Comprehensive Insights into the Early Immune Response of Large Yellow Croaker (Larimichthys crocea) Induced by Trivalent Bacterial Vaccine. PLoS One 2017; 12:e0170958. [PMID: 28135311 PMCID: PMC5279777 DOI: 10.1371/journal.pone.0170958] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/14/2017] [Indexed: 11/19/2022] Open
Abstract
Vaccination is an effective and safe strategy for combating bacterial diseases in fish, but the mechanisms underlying the early immune response after vaccination remain to be elucidated. In the present study, we used RNA-seq technology to perform transcriptome analysis of spleens from large yellow croaker (Larimichthys crocea) induced by inactivated trivalent bacterial vaccine (Vibrio parahaemolyticus, Vibrio alginolyticus and Aeromonas hydrophila). A total of 2,789 or 1,511 differentially expressed genes (DEGs) were obtained at 24 or 72 h after vaccination, including 1,132 or 842 remarkably up-regulated genes and 1,657 or 669 remarkably down-regulated genes, respectively. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichments revealed that numerous DEGs belong to immune-relevant genes, involved in many immune-relevant pathways. Most of the strongly up-regulated DEGs are innate defense molecules, such as antimicrobial peptides, complement components, lectins, and transferrins. Trivalent bacterial vaccine affected the expressions of many components associated with bacterial ligand-depending Toll-like receptor signaling pathways and inflammasome formation, indicating that multiple innate immune processes were activated at the early period of vaccination in large yellow croaker. Moreover, the expression levels of genes involved in antigen processing were also up-regulated by bacterial vaccine. However, the expression levels of several T cell receptors and related CD molecules and signal transducers were down-regulated, suggesting that the T cell receptor signaling pathway was rapidly suppressed after vaccination. These results provide the comprehensive insights into the early immune response of large yellow croaker to vaccination and valuable information for developing a highly immunogenic vaccine against bacterial infection in teleosts.
Collapse
Affiliation(s)
- Xin Zhang
- School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, China
| | - Yinnan Mu
- School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, China
| | - Pengfei Mu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, China
| | - Jingqun Ao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, China
| | - Xinhua Chen
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
12
|
Liu L, Gong YX, Zhu B, Liu GL, Wang GX, Ling F. Effect of a new recombinant Aeromonas hydrophila vaccine on the grass carp intestinal microbiota and correlations with immunological responses. FISH & SHELLFISH IMMUNOLOGY 2015; 45:175-83. [PMID: 25862971 DOI: 10.1016/j.fsi.2015.03.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/28/2015] [Accepted: 03/30/2015] [Indexed: 05/20/2023]
Abstract
Intestinal microbiota has become an integral component of the fish, and plays a key role in host metabolism, immunity and health maintenance. However, information on the immune responses after vaccine administration in relation to the intestinal microbiota is absent in fish. The present study focused on the effect of a new recombinant Aeromonas hydrophila vaccine (Aera) by using a novel functionalized, single-walled carbon nanotubes (SWCNTs) as a delivery vehicle on the intestinal microbiota of grass carp (Ctenopharyngodon idella) through the bath immunization, and further explored the immunological responses in intestine, kidney and spleen. By performing deep sequencing, a total of 81,979 valid reads and 609 OTUs obtained from 4 intestine samples were analyzed. We detected 141 genuses, most of which belonged to Firmicutes, Fusobacteria and Proteobacteria. Of note, the quantity of Aeromonas in library Aera (after 6 h Aera vaccine pretreatment, fish were transferred to tanks without SWCNTs-Aera for 28 d) and Aera-GD (6 h Aera vaccine pretreated prior to the group injected by A. hydrophila) was declined 6.5% and 14.6% compared with the control, respectively. Moreover, the expression of seven immune-related genes (IFN-I, TNF-α, CRP, IL-8, IgM, MHC I and CD8α) in the intestine, kidney and spleen of Aera treated fish was significantly enhanced, which indicated that a better tissue immune response in grass carp was induced by the SWCNTs-Aera vaccine. Therefore, a new recombinant SWCNT-Aera vaccine may represent potentially efficient and immunological role in grass carp intestine to resist A. hydrophila infection.
Collapse
Affiliation(s)
- Lei Liu
- Northwest A&F University, Yangling 712100, People's Republic of China
| | - Yu-Xin Gong
- Northwest A&F University, Yangling 712100, People's Republic of China
| | - Bin Zhu
- Northwest A&F University, Yangling 712100, People's Republic of China
| | - Guang-Lu Liu
- Northwest A&F University, Yangling 712100, People's Republic of China
| | - Gao-Xue Wang
- Northwest A&F University, Yangling 712100, People's Republic of China.
| | - Fei Ling
- Northwest A&F University, Yangling 712100, People's Republic of China.
| |
Collapse
|
13
|
Somamoto T, Koppang EO, Fischer U. Antiviral functions of CD8(+) cytotoxic T cells in teleost fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 43:197-204. [PMID: 23938605 DOI: 10.1016/j.dci.2013.07.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 07/24/2013] [Accepted: 07/24/2013] [Indexed: 06/02/2023]
Abstract
Cytotoxic T-cells (CTLs) play a pivotal role in eliminating viruses in mammalian adaptive immune system. Many recent studies on T-cell immunity of fish have suggested that teleost CTLs are also important for antiviral immunity. Cellular functional studies using clonal ginbuan crucian carp and rainbow trout have provided in vivo and in vitro evidence that in many respects, virus-specific CTLs of fish have functions similar to those of mammalian CTLs. In addition, mRNA expression profiles of CTL-related molecules, such as CD8, TCR and MHC class I, have shown that in a wide range of fish species, CTLs are involved in antiviral adaptive immunity. These findings are a basis to formulate possible vaccination strategies to trigger effective antiviral CTL responses in teleost fish. This review describes recent advances in our understanding of antiviral CTL functions in teleost fish and discusses vaccination strategies for efficiently inducing CTL activities.
Collapse
Affiliation(s)
- Tomonori Somamoto
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan.
| | - Erling Olaf Koppang
- Section of Anatomy and Pathology, Institute of Basic Science and Aquatic Medicine, Norwegian School of Veterinary Science, Ullevålsveien 72, 0033 Oslo, Norway
| | - Uwe Fischer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Infectology, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
14
|
Fischer U, Koppang EO, Nakanishi T. Teleost T and NK cell immunity. FISH & SHELLFISH IMMUNOLOGY 2013; 35:197-206. [PMID: 23664867 DOI: 10.1016/j.fsi.2013.04.018] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 02/01/2013] [Accepted: 04/12/2013] [Indexed: 06/02/2023]
Abstract
The main function of the immune system is to maintain the organism's homeostasis when invaded by foreign material or organisms. Prior to successful elimination of the invader it is crucial to distinguish self from non-self. Most pathogens and altered cells can be recognized by immune cells through expressed pathogen- or danger-associated molecular patterns (PAMPS or DAMPS, respectively), through non-self (e.g. allogenic or xenogenic cells) or missing major histocompatibility (MHC) class I molecules (some virus-infected target cells), and by presenting foreign non-self peptides of intracellular (through MHC class I-e.g. virus-infected target cells) or extracellular (through MHC class II-e.g. from bacteria) origin. In order to eliminate invaders directly or by destroying their ability to replicate (e.g. virus-infected cells) specialized immune cells of the innate and adaptive responses appeared during evolution. The first line of defence is represented by the evolutionarily ancient macrophages and natural killer (NK) cells. These innate mechanisms are well developed in bony fish. Two types of NK cell homologues have been described in fish: non-specific cytotoxic cells and NK-like cells. Adaptive cell-mediated cytotoxicity (CMC) requires key molecules expressed on cytotoxic T lymphocytes (CTLs) and target cells. CTLs kill host cells harbouring intracellular pathogens by binding of their T cell receptor (TCR) and its co-receptor CD8 to a complex of MHC class I and bound peptide on the infected host cell. Alternatively, extracellular antigens are taken up by professional antigen presenting cells such as macrophages, dendritic cells and B cells to process those antigens and present the resulting peptides in association with MHC class II to CD4(+) T helper cells. During recent years, genes encoding MHC class I and II, TCR and its co-receptors CD8 and CD4 have been cloned in several fish species and antibodies have been developed to study protein expression in morphological and functional contexts. Functional assays for innate and adaptive lymphocyte responses have been developed in only a few fish species. This review summarizes and discusses recent results and developments in the field of T and NK cell responses with focus on economically important and experimental model fish species in the context of vaccination.
Collapse
Affiliation(s)
- Uwe Fischer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Infectology, Suedufer 10, 17493 Greifswald-Insel Riems, Germany.
| | | | | |
Collapse
|
15
|
Chen W, Jia Z, Zhang T, Zhang N, Lin C, Gao F, Wang L, Li X, Jiang Y, Li X, Gao GF, Xia C. MHC Class I Presentation and Regulation by IFN in Bony Fish Determined by Molecular Analysis of the Class I Locus in Grass Carp. THE JOURNAL OF IMMUNOLOGY 2010; 185:2209-21. [DOI: 10.4049/jimmunol.1000347] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Transcriptional profiling of MHC class I genes in rainbow trout infected with infectious hematopoietic necrosis virus. Mol Immunol 2008; 45:1646-57. [DOI: 10.1016/j.molimm.2007.10.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Accepted: 10/02/2007] [Indexed: 01/19/2023]
|
17
|
Caipang CMA, Hirono I, Aoki T. Immunogenicity, retention and protective effects of the protein derivatives of formalin-inactivated red seabream iridovirus (RSIV) vaccine in red seabream, Pagrus major. FISH & SHELLFISH IMMUNOLOGY 2006; 20:597-609. [PMID: 16213752 DOI: 10.1016/j.fsi.2005.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Revised: 07/25/2005] [Accepted: 08/10/2005] [Indexed: 05/04/2023]
Abstract
A formalin-inactivated virus was previously found to be efficient in protecting fish against challenge with red seabream iridovirus (RSIV), a DNA virus belonging to the Iridoviridae family. In the present study, we determined the amount of the virus in the vaccine in terms of the number of copies of the gene for the major capsid protein (MCP) gene by quantitative real-time PCR and examined the longevity and types of immune response generated after intramuscular vaccination. We also tested whether the protein components of the vaccine are able to mount a protective immune response in fish. The vaccine contained 10(7) MCP copies per microliter of vaccine, and was detected in blood, kidney and spleen of vaccinated fish up to 15 days post-vaccination. Fish vaccinated with either the intact formalin-inactivated vaccine or its protein derivatives had increased serum neutralization antibodies and enhanced expression of MHC class I, although the kinetics of expression varied among groups. However, only those vaccinated with the intact vaccine survived the virus challenge, and this indicates that serum neutralization antibodies have scarce role in protecting the fish against RSIV. We hypothesize that the cell-mediated immunity, particularly the MHC class I pathway is responsible for such protection.
Collapse
Affiliation(s)
- Christopher Marlowe A Caipang
- Laboratory of Genome Science, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | | | | |
Collapse
|
18
|
Coeurdacier JL, Laporte F, Pepin JF. Preliminary approach to find synthetic peptides from nodavirus capsid potentially protective against sea bass viral encephalopathy and retinopathy. FISH & SHELLFISH IMMUNOLOGY 2003; 14:435-47. [PMID: 12711276 DOI: 10.1006/fsim.2002.0449] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Four synthetic peptides of 15 amino acids (aa), corresponding to sequences of the nodavirus DIEV RNA(2) protein, were chosen to test their potential immunogenicity in sea bass. Two of these included the N or C terminal regions (N-ter or C-ter) and the sequences of the others contained a potential external site (aa 127-140: Lp1 and as 266-279: Lp2). Two heat inactivated strains of nodavirus (HI Sb1 and HI Sb2), were used as positive controls and the carrier (KLH) as a negative control. ELISAs were performed to quantify serum antibodies specific to nodavirus, to peptides, and to the carrier in order to monitor their immunogenicity. All the fish reacted to the peptides C-Ter, Lp1 and Lp2 but only 55% of animals injected with N-ter produced specific antibodies. The proportion of fish that produced antibodies that cross reacted with nodavirus was very different with regard to the antigen injected: HI Sb1=88%; HI Sb2=85%; N-ter=38%; C-ter=27%. Protection against nodavirus was investigated by challenging the fish with a virulent viral suspension. The results showed that heat-inactivated Nodavirus protect fish and the N-ter peptide is a potential protective peptide. This initial approach showed that although vaccinating fish with peptides is possible, the tools and strategies of the research used in this field still need to be adapted to fish.
Collapse
|
19
|
Grayson TH, Cooper LF, Wrathmell AB, Roper J, Evenden AJ, Gilpin ML. Host responses to Renibacterium salmoninarum and specific components of the pathogen reveal the mechanisms of immune suppression and activation. Immunology 2002; 106:273-83. [PMID: 12047757 PMCID: PMC1782716 DOI: 10.1046/j.1365-2567.2002.01420.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During infection, Renibacterium salmoninarum survives within the pronephric macrophages of salmonid fish. Therefore, to study the initial phases of the interaction we infected macrophages with live bacteria and analysed the responses of host and pathogen. It was found that the expression of msa encoding the p57 antigen of R. salmoninarum, was constitutive, while the expression of hly and rsh, encoding haemolysins, and lysB and grp was reduced after infection. Macrophages showed a rapid inflammatory response in which the expression of interleukin-1beta (IL-1beta), major histocompatibility complex class II (MHC II), inducible cyclo-oxygenase (Cox-2), and inducible nitric oxide synthase (iNOS) was enhanced, but tumour necrosis factor-alpha (TNF-alpha) expression was greatly reduced initially and then increased. After 5 days, except for TNF-alpha and MHC II, expression returned to levels approaching those of uninfected macrophages. We propose that R. salmoninarum survives initial contact with macrophages by avoiding and/or interfering with TNF-alpha-dependent killing pathways. The effects of specific R. salmoninarum components were studied in vivo by injecting fish with DNA vaccine constructs expressing msa, hly, rsh, lysB, or grp. We found that msa reduced the expression of IL-1beta, Cox-2, and MHC II but stimulated TNF-alpha while hly, rsh and grp stimulated MHC II but down-regulated TNF-alpha. Constructs expressing hly or lysB stimulated iNOS expression and additionally, lysB stimulated TNF-alpha. The results show how p57 suppresses the host immune system and suggest that the immune mechanisms for the containment of R. salmoninarum infections rely on MHC II- and TNF-alpha-dependent pathways. Moreover, prolonged stimulation of TNF-alpha may contribute to the chronic inflammatory pathology of bacterial kidney disease.
Collapse
Affiliation(s)
- T Hilton Grayson
- Department of Biological Sciences, University of Plymouth, Plymouth, Devon, UK.
| | | | | | | | | | | |
Collapse
|
20
|
Köllner B, Wasserrab B, Kotterba G, Fischer U. Evaluation of immune functions of rainbow trout (Oncorhynchus mykiss)--how can environmental influences be detected? Toxicol Lett 2002; 131:83-95. [PMID: 11988361 DOI: 10.1016/s0378-4274(02)00044-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In fish, the first line of defense against infectious microorganisms is based on a broad range of nonspecific humoral and cellular immune mechanisms ("innate immunity") which without prior specific activation can act in forming a more static barrier (Fish Shellfish Immunol. 10 (2000) 243; Dev. Comp. Immunol. 25 (2001) 827). This natural resistance is normally effective enough to protect fish from infectious diseases until specific immune responses are being induced (Fig. 1; Dev. Comp. Immunol. 25 (2001) 841). Healthy fish exhibit both nonspecific and specific immune responses depending directly on environmental temperature. Pollution of the natural aquatic environment with industrial or agricultural sewage is an important immunosuppressing factor resulting in higher susceptibility to infectious diseases. To date, the possible immunotoxicity of a substance is evaluated using quantification of humoral factors like lysozyme, complement, C-reactive protein or total immunoglobulins but less often using functional assays. Furthermore, most of the functional assays (phagocytosis, respiratory burst, proliferative response) are based on the measurement of the response of resting but not of specific activated immune cells. However, the physiological responses of the immune system to an infection are based on a complex, stepwise activation and proliferation, especially of the specific immune functions after first contact to the microorganisms. In this report we describe in vitro methods for the evaluation of cellular immune functions of different leukocyte populations after specific in vivo triggering of the immune system. Parameters to be evaluated are activation and proliferation of leukocyte populations, phagocytosis and respiratory burst, secretion of antigen-specific antibodies and specific cell-mediated cytotoxicity. Furthermore, challenge models with bacterial (Aeromonas salmonicida) and viral pathogens (Viral Haemorrhagic Septicemia Virus, VHSV) are presented.
Collapse
Affiliation(s)
- B Köllner
- Federal Research Centre for Virus Diseases of Animals, Institute of Diagnostic Virology, Insel Riems, Germany.
| | | | | | | |
Collapse
|