1
|
Cohen-Rothschild N, Mizrahi N, Levavi-Sivan B. Characterization of a novel fast-growing zebrafish: a new approach to growth hormone transgenesis. Front Endocrinol (Lausanne) 2024; 15:1369043. [PMID: 38628583 PMCID: PMC11018968 DOI: 10.3389/fendo.2024.1369043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/13/2024] [Indexed: 04/19/2024] Open
Abstract
The manipulation of the somatotropic axis, governing growth, has been a focus of numerous transgenic approaches aimed at developing fast-growing fish for research, medicine and aquaculture purposes. However, the excessively high growth hormone (GH) levels in these transgenic fish often result in deformities that impact both fish health and consumer acceptance. In an effort to mitigate these issues and synchronize exogenous GH expression with reproductive processes, we employed a novel transgenic construct driven by a tilapia luteinizing hormone (LH) promoter. This approach was anticipated to induce more localized and lower exogenous GH secretion. In this study, we characterized the growth and reproduction of these transgenic LHp-GH zebrafish using hormonal and physiological parameters. Our findings reveal that LHp-GH fish exhibited accelerated growth in both length and weight, along with a lower feed conversion ratio, indicating more efficient feed utilization, all while maintaining unchanged body proportions. These fish demonstrated higher expression levels of LH and GH in the pituitary and elevated IGF-1 levels in the liver compared to wild-type fish. An examination of reproductive function in LHp-GH fish unveiled lower pituitary LH and FSH contents, smaller follicle diameter in female gonads, and reduced relative fecundity. However, in transgenic males, neither the distribution of spermatogenesis stages nor sperm concentrations differed significantly between the fish lines. These results suggest that coupling exogenous GH expression with endogenous LH expression in females directs resource investment toward somatic growth at the expense of reproductive processes. Consequently, we conclude that incorporating GH under the LH promoter represents a suitable construct for the genetic engineering of commercial fish species, providing accelerated growth while preserving body proportions.
Collapse
Affiliation(s)
| | | | - Berta Levavi-Sivan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
2
|
Carriquiriborde P, Fernandino JI, López CG, Benito EDS, Gutierrez-Villagomez JM, Cristos D, Trudeau VL, Somoza GM. Atrazine alters early sexual development of the South American silverside, Odontesthes bonariensis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 254:106366. [PMID: 36459853 DOI: 10.1016/j.aquatox.2022.106366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Atrazine (ATZ) is a frequent contaminant in freshwater ecosystems within agricultural regions. The capacity of this herbicide to interfere with the vertebrate endocrine system is broadly recognized, but the mechanisms and responses usually differ among species. In this study, ATZ effects on hypothalamus-pituitary-gonadal (HPG) axis key genes expression and early gonadal development were evaluated in Odontesthes bonariensis larvae waterborne exposed during the gonadal differentiation period. Fish were treated to 0, 0.7, 7.0, and 70 µg ATZ/L at 25 °C from the 2nd to 6th week after hatching (wah), and a group was kept in clean water until the 12th wah. Parallelly, a group was submitted to 0.05 µg/L of ethinylestradiol (EE2) as a positive estrogenic control. From each treatment, eight larvae were sampled at 6 wah for gene expression analysis and twelve larvae at 12 wah for phenotypic sex histological determination. The expression of gnrh1, lhb, fshb, and cyp19a1b was assessed in the head, and the ones of amha, 11βhsd2, and cyp19a1a in the trunk. Fish growth was significantly higher in fish exposed to 7 and 70 µg ATZ/L in the 6 wah, but the effect vanished at the 12 wah. The expression of lhb was upregulated in both sex larvae exposed from 7 µg ATZ/L. However, a dimorphic effect was induced on cyp19a1a expression at 70 µg ATZ/L, up or downregulating mRNA transcription in males and females, respectively. Delayed ovarian development and increased number of testicular germ cells were histologically observed from 7 to 70 µg ATZ/L, respectively, and a sex inversion (genotypic male to phenotypic female) was found in one larva at 70 µg ATZ/L. The lhb expression was also upregulated by EE2, but the cyp19a1a expression was not affected, and a complete male-to-female reversal was induced. Further, EE2 upregulated gnrh1 in females and cyp19a1b in both sexes, but it did not alter any assessed gene in the trunk. In conclusion, ATZ disrupted HPG axis physiology and normal gonadal development in O. bonariensis larvae at environmentally relevant concentrations. The responses to ATZ only partially overlapped and were less active when compared to the model estrogenic compound EE2.
Collapse
Affiliation(s)
- Pedro Carriquiriborde
- Centro de Investigaciones del Medioambiente (CIM, UNLP-CONICET), La Plata, Buenos Aires, Argentina
| | - Juan Ignacio Fernandino
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías. UNSAM. Argentina
| | - Carina G López
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías. UNSAM. Argentina
| | - Eduardo de San Benito
- Centro de Investigaciones del Medioambiente (CIM, UNLP-CONICET), La Plata, Buenos Aires, Argentina
| | | | - Diego Cristos
- Instituto Nacional de Tecnología Agropecuaria, Centro de Investigación de Agroindustria (CIA-INTA), Castelar, Buenos Aires Argentina
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, ON, K1S 6N5, Canada
| | - Gustavo M Somoza
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías. UNSAM. Argentina.
| |
Collapse
|
3
|
Effect of Fishmeal Content in the Diet on the Growth and Sexual Maturation of Olive Flounder ( Paralichthysolivaceus) at a Typical Fish Farm. Animals (Basel) 2021; 11:ani11072055. [PMID: 34359181 PMCID: PMC8300409 DOI: 10.3390/ani11072055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/21/2021] [Accepted: 07/06/2021] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Increasing demand for an efficient and economic fishmeal feed for sustainable aquaculture has urged the aquafeed sector to seek an optimum fish-feed formulation. This study investigated the physiological response in olive flounder fed various fishmeal diets in a typical fish farm. The fish were farmed for 20 weeks, using the following experimental feeds: a control feed (CON), a replacement by 20% (F20), and 30% (F30) of the fish meal content of the CON. All groups showed no significant difference in growth and survival rates. However, due to investigating hormone expression associated with maturation, high expression of PSS-I and low expression of FSH-β, ER-α, and ER-β in FM30 compared to other experimental groups were observed. Therefore, up to 30% fishmeal replacement does not affect growth, but it appears to have a slight effect on the sexual development of olive flounder. Abstract Olive flounder (Paralichthys olivaceus) is a commercially important and valuable species for aquaculture in Korea. Due to the unstable supply of fishmeal for farmed fish, an optimum fish-feed formulation should be researched to ensure the sustainability of P. olivaceus aquaculture. This study investigated the effect of three experimental diets: Con (basal diet); FM20 (20% fishmeal replacement of CON); and FM30 (30% fishmeal replacement of CON) on P. olivaceus over 20 weeks at a typical farm by monitoring the growth and factors relating to sexual maturation. The results showed that no differences in growth were observed between the CON and diet-replacement groups. Gonadal oocyte development was similar between the CON and diet-replacement groups. Moreover, sbGnRH and GH expression did not differ between the CON and diet-replacement groups. The levels of Erβ and Vtg expression were significantly higher in the FM20 group than in the CON and FM30 groups after the experimental period. The expression of PSS-I was significantly higher in the FM30 group than in the CON and FM20 groups. Therefore, although growth occurred when 30% of the fishmeal was replaced, such high dietary protein replacement may be ill-advised during the maturation of olive flounder at the commercial fish farm.
Collapse
|
4
|
Celino-Brady FT, Petro-Sakuma CK, Breves JP, Lerner DT, Seale AP. Early-life exposure to 17β-estradiol and 4-nonylphenol impacts the growth hormone/insulin-like growth-factor system and estrogen receptors in Mozambique tilapia, Oreochromis mossambicus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 217:105336. [PMID: 31733503 PMCID: PMC6935514 DOI: 10.1016/j.aquatox.2019.105336] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/28/2019] [Accepted: 10/14/2019] [Indexed: 05/31/2023]
Abstract
It is widely recognized that endocrine disrupting chemicals (EDCs) released into the environment through anthropogenic activities can have short-term impacts on physiological and behavioral processes and/or sustained or delayed long-term developmental effects on aquatic organisms. While numerous studies have characterized the effects of EDCs on temperate fishes, less is known on the effects of EDCs on the growth and reproductive physiology of tropical species. To determine the long-term effects of early-life exposure to common estrogenic chemicals, we exposed Mozambique tilapia (Oreochromis mossambicus) yolk-sac fry to 17β-estradiol (E2) and nonylphenol (NP) and subsequently characterized the expression of genes involved in growth and reproduction in adults. Fry were exposed to waterborne E2 (0.1 and 1 μg/L) and NP (10 and 100 μg/L) for 21 days. After the exposure period, juveniles were reared for an additional 112 days until males were sampled. Gonadosomatic index was elevated in fish exposed to E2 (0.1 μg/L) while hepatosomatic index was decreased by exposure to NP (100 μg/L). Exposure to E2 (0.1 μg/L) induced hepatic growth hormone receptor (ghr) mRNA expression. The high concentration of E2 (1 μg/L), and both concentrations of NP, increased hepatic insulin-like growth-factor 1 (igf1) expression; E2 and NP did not affect hepatic igf2 and pituitary growth hormone (gh) levels. Both E2 (1 μg/L) and NP (10 μg/L) induced hepatic igf binding protein 1b (igfbp1b) levels while only NP (100 μg/L) induced hepatic igfbp2b levels. By contrast, hepatic igfbp6b was reduced in fish exposed to E2 (1 μg/L). There were no effects of E2 or NP on hepatic igfbp4 and igfbp5a expression. Although the expression of three vitellogenin transcripts was not affected, E2 and NP stimulated hepatic estrogen receptor (erα and erβ) mRNA expression. We conclude that tilapia exposed to E2 and NP as yolk-sac fry exhibit subsequent changes in the endocrine systems that control growth and reproduction during later life stages.
Collapse
Affiliation(s)
- Fritzie T Celino-Brady
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, 1955 East-West Road, Honolulu, HI 96822, USA.
| | - Cody K Petro-Sakuma
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, 1955 East-West Road, Honolulu, HI 96822, USA.
| | - Jason P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA.
| | - Darren T Lerner
- University of Hawai'i Sea Grant College Program, University of Hawai'i at Mānoa, 2525 Correa Road, Honolulu, HI 96822, USA.
| | - Andre P Seale
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, 1955 East-West Road, Honolulu, HI 96822, USA.
| |
Collapse
|
5
|
Rahman ML, Zahangir MM, Kitahashi T, Shahjahan M, Ando H. Effects of high and low temperature on expression of GnIH, GnIH receptor, GH and PRL genes in the male grass puffer during breeding season. Gen Comp Endocrinol 2019; 282:113200. [PMID: 31199926 DOI: 10.1016/j.ygcen.2019.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/29/2019] [Accepted: 06/10/2019] [Indexed: 01/19/2023]
Abstract
Gonadotropin-inhibitory hormone (GnIH) is a multifunctional hypophysiotropic neurohormone and has a stimulatory role in the control of reproduction in the grass puffer. To clarify the neuroendocrine mechanisms underlying the effect of changes in water temperature on reproduction in fish, we previously revealed that, in parallel to gonadal regression, both low and high temperature significantly decreased the expressions of the genes encoding kisspeptin (kiss2), kisspeptin receptor (kiss2r), gonadotropin-releasing hormone 1 (gnrh1) in the brain and gonadotropin (GTH) subunits (fshb and lhb) in the pituitary of sexually mature male grass puffer. In this study, we examined the changes in expression of gnih and GnIH receptor gene (gnihr) in the brain and pituitary along with the genes for growth hormone (gh) and prolactin (prl) in the pituitary of male grass puffer exposed to low temperature (14 °C), normal temperature (21 °C, as initial control) and high temperature (28 °C) conditions for 7 days. The levels of gnih and gnihr mRNAs were significantly decreased in both low and high temperature conditions compared to normal temperature in the brain and pituitary. Similarly, the gh mRNA levels were significantly decreased in both low and high temperature conditions. The prl mRNAs showed no significant changes at high temperature, whereas drastically decreased at low temperature possibly by dysfunctional cold stress. Taken together, the present results suggest that, in addition to the inhibitory effect of temperature changes on the Kiss2/GnRH1/GTH system, the suppression of GnIH/GH system may also be involved in the termination of reproduction by high temperature at the end of breeding season.
Collapse
Affiliation(s)
- Mohammad Lutfar Rahman
- Marine Biological Station, Sado Island Center for Ecological Sustainability, Niigata University, Sado, Niigata 952-2135, Japan; Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Mahiuddin Zahangir
- Marine Biological Station, Sado Island Center for Ecological Sustainability, Niigata University, Sado, Niigata 952-2135, Japan; Department of Fish Biology and Biotechnology, Chittagong Veterinary and Animal Sciences University, Chittagong 4225, Bangladesh
| | - Takashi Kitahashi
- Marine Biological Station, Sado Island Center for Ecological Sustainability, Niigata University, Sado, Niigata 952-2135, Japan
| | - Md Shahjahan
- Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Hironori Ando
- Marine Biological Station, Sado Island Center for Ecological Sustainability, Niigata University, Sado, Niigata 952-2135, Japan.
| |
Collapse
|
6
|
Breves JP, Duffy TA, Einarsdottir IE, Björnsson BT, McCormick SD. In vivo effects of 17α-ethinylestradiol, 17β-estradiol and 4-nonylphenol on insulin-like growth-factor binding proteins (igfbps) in Atlantic salmon. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 203:28-39. [PMID: 30075440 DOI: 10.1016/j.aquatox.2018.07.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 06/08/2023]
Abstract
Feminizing endocrine disrupting compounds (EDCs) affect the growth and development of teleost fishes. The major regulator of growth performance, the growth hormone (Gh)/insulin-like growth-factor (Igf) system, is sensitive to estrogenic compounds and mediates certain physiological and potentially behavioral consequences of EDC exposure. Igf binding proteins (Igfbps) are key modulators of Igf activity, but their alteration by EDCs has not been examined. We investigated two life-stages (fry and smolts) of Atlantic salmon (Salmo salar), and characterized how the Gh/Igf/Igfbp system responded to waterborne 17α-ethinylestradiol (EE2), 17β-estradiol (E2) and 4-nonylphenol (NP). Fry exposed to EE2 and NP for 21 days had increased hepatic vitellogenin (vtg) mRNA levels while hepatic estrogen receptor α (erα), gh receptor (ghr), igf1 and igf2 mRNA levels were decreased. NP-exposed fry had reduced body mass and total length compared to controls. EE2 and NP reduced hepatic igfbp1b1, -2a, -2b1, -4, -5b2 and -6b1, and stimulated igfbp5a. In smolts, hepatic vtg mRNA levels were induced following 4-day exposures to all three EDCs, while erα only responded to EE2 and E2. EDC exposures did not affect body mass or fork length; however, EE2 diminished plasma Gh and Igf1 levels in parallel with reductions in hepatic ghr and igf1. In smolts, EE2 and E2 diminished hepatic igfbp1b1, -4 and -6b1, and stimulated igfbp5a. There were no signs of compromised ionoregulation in smolts, as indicated by unchanged branchial ion pump/transporter mRNA levels. We conclude that hepatic igfbps respond (directly and/or indirectly) to environmental estrogens during two key life-stages of Atlantic salmon, and thus may modulate the growth and development of exposed individuals.
Collapse
Affiliation(s)
- Jason P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA.
| | - Tara A Duffy
- Department of Marine and Environmental Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA.
| | - Ingibjörg E Einarsdottir
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-40530, Gothenburg, Sweden.
| | - Björn Thrandur Björnsson
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-40530, Gothenburg, Sweden.
| | - Stephen D McCormick
- U.S. Geological Survey, Leetown Science Center, S. O. Conte Anadromous Fish Research Laboratory, One Migratory Way, Turners Falls, MA 01376, USA.
| |
Collapse
|
7
|
Liu ZH, Chen QL, Chen Q, Li F, Li YW. Diethylstilbestrol arrested spermatogenesis and somatic growth in the juveniles of yellow catfish (Pelteobagrus fulvidraco), a fish with sexual dimorphic growth. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:789-803. [PMID: 29340879 DOI: 10.1007/s10695-018-0469-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/03/2018] [Indexed: 06/07/2023]
Abstract
In fish, spermatogenesis and somatic growth are mainly regulated by hypothalamic-pituitary-gonadal (HPG) and hypothalamic-pituitary-somatic (HPS) axes, respectively. Xenoestrogens have been reported to impair spermatogenesis in some fishes, and arrest somatic growth in some others, whereas, whether xenoestrogens are capable of disrupting spermatogenesis and somatic growth simultaneously in fish that exhibits sexual dimorphic growth is little known, and the underlying mechanisms remain poorly understood. In this study, male juveniles of yellow catfish (Pelteobagrus fulvidraco), which exhibits a sexual dimorphic growth that favors males, were exposed to diethylstilbestrol (DES) for 28 days. After exposure, DES significantly disrupted the spermatogenesis (decreased gonadal-somatic index (GSI) and germ cell number) and arrested the somatic growth (declined body weight) of the catfish juveniles. Gene expression and plasma steroid analyses demonstrated the suppressed mRNA levels of genes in HPG axis (gnrh-II, fshβ, and lhβ in the brain and dmrt1, sf1, fshr, cyp17a1, cyp19a1a, and cyp11b2 in the testis) and decreased 17β-estrodial (E2) and 11-ketotestosterone (11-KT) levels in plasma. Further analysis revealed the arrested germ cell proliferation (cyclin d1), meiosis (dmc1, sycp3), and enhanced apoptosis (decreased bcl-2 and elevated bax/bcl-2 ratio) in the testis. Besides, DES also suppressed the mRNA levels of genes in HPS axis (ghrh, gh, and prl in the brain and ghr, igf1, igf2a, and igf2b in the liver). The suppressed HPG and HPS axes were thus supposed to disturb spermatogenesis and arrest somatic growth in yellow catfish. The present study greatly extended our understanding on the mechanisms underlying the toxicity of DES on spermatogenesis and somatic growth of fish.
Collapse
Affiliation(s)
- Zhi-Hao Liu
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Qi-Liang Chen
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Qiang Chen
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Fang Li
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Ying-Wen Li
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China.
| |
Collapse
|
8
|
Shahjahan M, Doi H, Ando H. LPXRFamide peptide stimulates growth hormone and prolactin gene expression during the spawning period in the grass puffer, a semi-lunar synchronized spawner. Gen Comp Endocrinol 2016; 227:77-83. [PMID: 26385315 DOI: 10.1016/j.ygcen.2015.09.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 09/02/2015] [Accepted: 09/11/2015] [Indexed: 11/29/2022]
Abstract
Gonadotropin-inhibitory hormone (GnIH) plays as a multifunctional neurohormone that controls reproduction in birds and mammals. LPXRFamide (LPXRFa) peptide, the fish ortholog of GnIH, has been shown to regulate the secretion of not only gonadotropin (GTH) but also growth hormone (GH) and prolactin (PRL), which are potentially important for gonadal function. To investigate the role of LPXRFa peptide on reproduction of the grass puffer, which spawns in semilunar cycles, we examined changes in the levels of gh and prl expression over the several months during the reproductive cycle, and the effects of goldfish LPXRFa peptide-1 (gfLPXRFa-1) on their expression were examined using primary pituitary cultures. The expression levels of both gh and prl showed significant changes during the reproductive cycle in both sexes with one peak in the spawning and pre-spawning periods for gh and prl, respectively. Particularly, gh showed substantial increase in expression in the spawning and post-spawning periods, indicative of its essentiality in the advanced stage of reproduction. gfLPXRFa-1 stimulated the expression of both gh and prl but there was a marked difference in response between them: gfLPXRFa-1 stimulated gh expression at a relatively low dose but little effect was observed on prl. Combined with the previous results of daily and circadian oscillations of lpxrfa expression, the present results suggest that LPXRFa peptide is important in the control of the cyclic reproduction by serving as a multifunctional hypophysiotropic factor that regulates the expression of gh and prl as well as GTH subunit genes.
Collapse
Affiliation(s)
- Md Shahjahan
- Sado Marine Biological Station, Faculty of Science, Niigata University, Sado, Niigata 952-2135, Japan
| | - Hiroyuki Doi
- Shimonoseki Marine Science Museum "Kaikyokan", Shimonoseki Academy of Marine Science, Yamaguchi 750-0036, Japan
| | - Hironori Ando
- Sado Marine Biological Station, Faculty of Science, Niigata University, Sado, Niigata 952-2135, Japan.
| |
Collapse
|
9
|
Bulaeva E, Lanctôt C, Reynolds L, Trudeau VL, Navarro-Martín L. Sodium perchlorate disrupts development and affects metamorphosis- and growth-related gene expression in tadpoles of the wood frog (Lithobates sylvaticus). Gen Comp Endocrinol 2015; 222:33-43. [PMID: 25623150 DOI: 10.1016/j.ygcen.2015.01.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 12/19/2014] [Accepted: 01/16/2015] [Indexed: 11/20/2022]
Abstract
Numerous endocrine disrupting chemicals can affect the growth and development of amphibians. We investigated the effects of a targeted disruption of the endocrine axes modulating development and somatic growth. Wood frog (Lithobates sylvaticus) tadpoles were exposed for 2weeks (from developmental Gosner stage (Gs) 25 to Gs30) to sodium perchlorate (SP, thyroid inhibitor, 14mg/L), estradiol (E2, known to alter growth and development, 200nM) and a reduced feeding regime (RF, to affect growth and development in a chemically-independent manner). All treatments experienced developmental delay, and animals exposed to SP or subjected to RF respectively reached metamorphic climax (Gs42) approximately 11(±3) and 17(±3) days later than controls. At Gs42, only SP-treated animals showed increased weight and snout-vent length (P<0.05) relative to controls. Tadpoles treated with SP had 10-times higher levels of liver igf1 mRNA after 4days of exposure (Gs28) compared to controls. Tadpoles in the RF treatment expressed 6-times lower levels of liver igf1 mRNA and 2-times higher liver igf1r mRNA (P<0.05) at Gs30. Tadpoles treated with E2 exhibited similar developmental and growth patterns as controls, but had increased liver igf1 mRNA levels at Gs28, and tail igf1r at Gs42. Effects on tail trβ mRNA levels were detected in SP-treated tadpoles at Gs42, 40days post-exposure, suggesting that the chemical inhibition of thyroid hormone production early in development can have long-lasting effects. The growth effects observed in the SP-exposed animals suggest a relationship between TH-dependent development and somatic growth in L. sylvaticus tadpoles.
Collapse
Affiliation(s)
- Elizabeth Bulaeva
- Centre for Advanced Research in Environmental Genomics, Biology Department, University of Ottawa, Ontario K1N 6N5, Canada
| | - Chantal Lanctôt
- Centre for Advanced Research in Environmental Genomics, Biology Department, University of Ottawa, Ontario K1N 6N5, Canada
| | - Leslie Reynolds
- Centre for Advanced Research in Environmental Genomics, Biology Department, University of Ottawa, Ontario K1N 6N5, Canada
| | - Vance L Trudeau
- Centre for Advanced Research in Environmental Genomics, Biology Department, University of Ottawa, Ontario K1N 6N5, Canada
| | - Laia Navarro-Martín
- Centre for Advanced Research in Environmental Genomics, Biology Department, University of Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
10
|
Luzio A, Monteiro SM, Garcia-Santos S, Rocha E, Fontaínhas-Fernandes AA, Coimbra AM. Zebrafish sex differentiation and gonad development after exposure to 17α-ethinylestradiol, fadrozole and their binary mixture: A stereological study. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 166:83-95. [PMID: 26240953 DOI: 10.1016/j.aquatox.2015.07.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/22/2015] [Accepted: 07/24/2015] [Indexed: 06/04/2023]
Abstract
Current knowledge on zebrafish (Danio rerio) sex determination suggests that this trait has a polygenic genetic basis, although environmental factors, such as endocrine disrupting chemicals (EDC), may also be involved in modeling or disturbing the species sex differentiation and development. This study aimed to assess how sex steroids imbalance triggers impact on sex differentiation and gonad development in zebrafish. Fish where exposed to an estrogen (EE2, i.e. 17α-ethinylestradiol, 4ng/L), to an inhibitor of estrogen synthesis (Fad, i.e. fadrozole, 50μg/L) or to their binary mixture (Mix-EE2+ Fad, 4ng/L+50μg/L), from 2h to 60 days post-fertilization (dpf). Afterwards, a quantitative (stereological) analysis using light microscopy, based on systematic sampling, was made at 35 and 60dpf, to identify alterations on gonad differentiation and development. During the sex differentiation period, our histological data showed that not all zebrafish males develop a "juvenile ovary", contrarily to what is currently taken for granted. Furthermore, the stereological analysis suggests that EE2 alone enhanced both zebrafish growth and gonad development. On the other hand, exposure to Fad affected the sexual development in zebrafish, inducing masculinization of the specimens, with some degree of intersex observed in males. In addition, the binary mixture allowed identifying sex-dependent roles of steroid hormones in the general growth and gonad development of zebrafish, with estrogens acting as growth promoters in females and being essential for ovary development. Data further support that sex-specific and single EDC impact studies are important, but clearly not sufficient to understand what may occur in the environment.
Collapse
Affiliation(s)
- Ana Luzio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Departamento de Biologia e Ambiente (DeBA), Escola de Ciências da Vida e Ambiente (ECVA), University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801, Vila Real, Portugal(1).
| | - Sandra M Monteiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Departamento de Biologia e Ambiente (DeBA), Escola de Ciências da Vida e Ambiente (ECVA), University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801, Vila Real, Portugal(1)
| | - Sofia Garcia-Santos
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Departamento de Biologia e Ambiente (DeBA), Escola de Ciências da Vida e Ambiente (ECVA), University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801, Vila Real, Portugal(1)
| | - Eduardo Rocha
- Laboratory of Histology and Embryology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (U. Porto), Portugal; Histomorphology, Physiopathology and Applied Toxicology Group, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), CIMAR Associated Laboratory (CIMAR LA), University of Porto (U. Porto), Portugal
| | - António A Fontaínhas-Fernandes
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Departamento de Biologia e Ambiente (DeBA), Escola de Ciências da Vida e Ambiente (ECVA), University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801, Vila Real, Portugal(1)
| | - Ana M Coimbra
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Departamento de Biologia e Ambiente (DeBA), Escola de Ciências da Vida e Ambiente (ECVA), University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801, Vila Real, Portugal(1).
| |
Collapse
|
11
|
Hala D, Petersen LH, Martinović D, Huggett DB. In Silico analysis of perturbed steroidogenesis and gonad growth in fathead minnows (P. promelas) exposed to 17α-ethynylestradiol. Syst Biol Reprod Med 2015; 61:122-38. [PMID: 25910217 DOI: 10.3109/19396368.2015.1035817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The multi-factorial nature of adverse reproductive effects mediated by endocrine disrupting compounds (or EDCs) makes understanding the mechanistic basis of reproductive dysfunction a highly pertinent area of research. As a consequence, a main motivator for continued research is to integrate 'multi-leveled' complexity (i.e., from genes to phenotype) using mathematical methods capable of encapsulating properties of physiological relevance. In this study, an in silico stoichiometric model of piscine steroidogenesis was augmented with a 'biomass' reaction associating the underlying stoichiometry of steroidogenesis with a reaction representative of gonad growth. The ability of the in silico model to predict perturbed steroidogenesis and subsequent effects on gonad growth was tested by exposing reproductively active male and female fathead minnows (Pimephales promelas) to 88 ng/L of the synthetic estrogen, 17α-ethynylestradiol (EE2). The in silico model was parameterized (or constrained) with experimentally quantified concentrations of selected steroid hormones (using mass spectrometry) and fold changes in gene expression (using RT-qPCR) for selected steroidogenic enzyme genes, in gonads of male and female fish. Once constrained, the optimization framework of flux balance analysis (FBA) was used to calculate an optimal flux through the biomass reaction (analogous to gonad growth) and associated steroidogenic flux distributions required to generate biomass. FBA successfully predicted effects of EE2 exposure on fathead minnow gonad growth (%gonadosomatic index or %GSI) and perturbed production of steroid hormones. Specifically, FBA accurately predicted no effects of exposure on male %GSI and a significant reduction for female %GSI. Furthermore, in silico simulations accurately identified disrupted reaction fluxes catalyzing productions of androgens (in male fish) and progestogens (in female fish), an observation which agreed with in vivo experimentation. The analyses presented is the first-ever to successfully associate underlying flux properties of the steroidogenic network with gonad growth in fish, an approach which can incorporate in silico predictions with toxicological risk assessments.
Collapse
Affiliation(s)
- David Hala
- Department of Biology, University of North Texas , Denton, TX , USA
| | | | | | | |
Collapse
|
12
|
Hanson AM, Kittilson JD, Martin LE, Sheridan MA. Environmental estrogens inhibit growth of rainbow trout (Oncorhynchus mykiss) by modulating the growth hormone-insulin-like growth factor system. Gen Comp Endocrinol 2014; 196:130-8. [PMID: 24291304 DOI: 10.1016/j.ygcen.2013.11.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 11/05/2013] [Accepted: 11/17/2013] [Indexed: 10/26/2022]
Abstract
Although environmental estrogens (EE) have been found to disrupt a wide variety of developmental and reproductive processes in vertebrates, there is a paucity of information concerning their effects on organismal growth, particularly postembryonic growth. In this study, we exposed juvenile rainbow trout (Oncorhynchus mykiss) to 17β-estradiol (E2) β-sitosterol (βS), or 4-n-nonylphenol (NP) to assess the effects of EE on overall organismal growth and on the growth hormone-insulin-like-growth factor (GH-IGF) system. EE treatment significantly reduced food conversion, body condition, and body growth. EE-inhibited growth resulted from alterations in peripheral elements of the GH-IGF system, which includes multiple GH receptors (GHRs), IGFs, and IGF receptors (IGFRs). In general, E2, βS, and NP reduced the expression of GHRs, IGFs, and IGFRs; however, the effects varied in an EE-, tissue-, element type-specific manner. For example, in liver, E2 was more efficacious than either βS, and NP in reducing GHR expression, and the effect of E2 was greater on GHR 1 than GHR2 mRNA. By contrast, in gill, all EEs affected GHR expression in a similar manner and there was no difference in the effect on GHR1 and GHR 2 mRNA. With regard to IGF expression, all EEs reduced hepatic IGF1 and IGF2 mRNA levels, whereas as in gill, only E2 and NP significantly reduced IGF1 and IGF2 expression. Lastly, E2 and NP reduced the expression of IGFR1A and IGFR1B mRNA expression similarly in gill and red and white muscle, whereas βS had no effect on expression of IGFR mRNAs. These findings indicate that EEs disrupt post-embryonic growth by reducing GH sensitivity, IGF production, and IGF sensitivity.
Collapse
Affiliation(s)
- Andrea M Hanson
- Department of Biological Sciences, North Dakota State University, Fargo 58108, USA
| | - Jeffrey D Kittilson
- Department of Biological Sciences, North Dakota State University, Fargo 58108, USA
| | - Lincoln E Martin
- Department of Biological Sciences, North Dakota State University, Fargo 58108, USA
| | - Mark A Sheridan
- Department of Biological Sciences, North Dakota State University, Fargo 58108, USA.
| |
Collapse
|
13
|
Grey CL, Chang JP. Growth hormone-releasing hormone stimulates GH release while inhibiting ghrelin- and sGnRH-induced LH release from goldfish pituitary cells. Gen Comp Endocrinol 2013; 186:150-6. [PMID: 23510860 DOI: 10.1016/j.ygcen.2013.02.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 02/20/2013] [Accepted: 02/26/2013] [Indexed: 11/17/2022]
Abstract
Goldfish GH-releasing hormone (gGHRH) has been recently identified and shown to stimulate GH release in goldfish. In goldfish, neuroendocrine regulation of GH release is multifactorial and known stimulators include goldfish ghrelin (gGRLN19) and salmon gonadotropin-releasing hormone (sGnRH), factors that also enhance LH secretion. To further understand the complex regulation of pituitary hormone release in goldfish, we examined the interactions between gGHRH, gGRLN19, and sGnRH on GH and LH release from primary cultures of goldfish pituitary cells in perifusion. Treatment with 100nM gGHRH for 55min stimulated GH release. A 5-min pulse of either 1nM gGRLN19 or 100nM sGnRH induced GH release in naïve cells, and these were just as effective in cells receiving gGHRH. Interestingly, gGHRH abolished both gGRLN19- and sGnRH-induced LH release and reduced basal LH secretion levels. These results suggest that gGHRH does not interfere with sGnRH or gGRLN19 actions in the goldfish somatotropes and further reveal, for the first time, that GHRH may act as an inhibitor of stimulated and basal LH release by actions at the level of pituitary cells.
Collapse
Affiliation(s)
- Caleb L Grey
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9
| | | |
Collapse
|
14
|
Poursaeid S, Falahatkar B, Mojazi Amiri B, Van Der Kraak G. Effects of long-term cortisol treatments on gonadal development, sex steroids levels and ovarian cortisol content in cultured great sturgeon Huso huso. Comp Biochem Physiol A Mol Integr Physiol 2012; 163:111-9. [DOI: 10.1016/j.cbpa.2012.05.202] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Revised: 05/14/2012] [Accepted: 05/16/2012] [Indexed: 11/29/2022]
|
15
|
Abstract
In general, there is a relationship between growth and reproduction, and gonads are known to be important organs for growth, but direct evidence for their role is lacking. Here, using a fish model, we report direct evidence that gonads are endocrine organs equal to the pituitary in controlling body growth. Gonadal loss of function, gain of function, and rescue of growth were investigated in tilapia. Gonadectomy experiments were carried out in juvenile males and females. Gonadectomy significantly retarded growth compared with controls; however, this retardation was rescued by the implantation of extirpated gonads. Because gonads express growth hormone, it is possible that gonads control body growth through the secretion of growth hormone and/or other endocrine factors. We propose that gonads are integral players in the dynamic regulation of growth in teleosts.
Collapse
|
16
|
Johns SM, Denslow ND, Kane MD, Watanabe KH, Orlando EF, Sepúlveda MS. Effects of estrogens and antiestrogens on gene expression of fathead minnow (Pimephales promelas) early life stages. ENVIRONMENTAL TOXICOLOGY 2011; 26:195-206. [PMID: 19890895 DOI: 10.1002/tox.20545] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are known to contaminate aquatic environments and alter the growth and reproduction of organisms. The objective of this study was to evaluate the sensitivity and utility of fathead minnow (Pimephales promelas) early life-stages as a model to measure effects of estrogenic and antiestrogenic EDCs on physiological and gene expression endpoints relative to growth and reproduction. Embryos (<24-h postfertilization, hpf) were exposed to a potent estrogen (17α-ethinyl estradiol, EE(2) , 2, 10, and 50 ng L(-1)); a weak estrogen (mycotoxin zearalenone, ZEAR, same concentrations as above); an antiestrogen (ZM 189, 154; 40, 250, and 1000 ng L(-1)); and to mixtures of EE(2) and ZM until swim-up stage (∼170 hpf). Exposure to all concentrations of ZEAR and to the lowest concentration of ZM resulted in increased body sizes, whereas high concentrations of EE(2) decreased body sizes. There was a significant increase in the frequency of abnormalities (mostly edema) in larvae exposed to all concentrations of EE(2), and high ZEAR, and EE(2) + ZM mixture groups. Expression of growth hormone was upregulated by most of the conditions tested. Exposure to 50 ng L(-1) ZEAR caused an induction of insulin-like growth factor 1, whereas exposure to 40 ng L(-1) ZM caused a downregulation of this gene. Expression of steroidogenic acute regulatory protein gene was significantly upregulated after exposure to all concentrations of EE(2) and luteinizing hormone expression increased significantly in response to all treatments tested. As expected, EE(2) induced vitellogenin expression; however, ZEAR also induced expression of this gene to similar levels compared to EE(2). Overall, exposure to EE(2) + ZM mixture resulted in a different expression pattern compared to single exposures. The results of this study suggest that an early life stage 7-day exposure is sufficient to recognize and evaluate effects of estrogenic compounds on gene expression in this fish model.
Collapse
Affiliation(s)
- Sonia M Johns
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
| | | | | | | | | | | |
Collapse
|
17
|
Jiao B, Cheng CHK. Disrupting actions of bisphenol A and malachite green on growth hormone receptor gene expression and signal transduction in seabream. FISH PHYSIOLOGY AND BIOCHEMISTRY 2010; 36:251-261. [PMID: 20467862 DOI: 10.1007/s10695-008-9227-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2008] [Accepted: 05/06/2008] [Indexed: 05/29/2023]
Abstract
Environmental estrogen could mimic natural estrogens thereby disrupting the endocrine systems of human and animals. The actions of such endocrine disruptors have been studied mainly on reproduction and development. However, estrogen could also affect the somatotropic axis via multiple targets such as growth hormone (GH). In the present study, two endocrine disruptors were chosen to investigate their effects on the expression level and signal transduction of growth hormone receptor (GHR) in fish. Using real-time PCR, it was found that exposure to both the estrogenic (bisphenol A) and anti-estrogenic (malachite green) compounds could attenuate the expression levels of GHR1 and GHR2 in black seabream (Acanthopagrus schlegeli) hepatocytes. The expression level of IGF-I, the downstream effector of GHR activation in the liver, was decreased by bisphenol A but not by malachite green. Luciferase reporter assay of the beta-casein promoter was used to monitor GHR signaling in transfected cells. In the fish liver cell line Hepa-T1, both GHR1 and GHR2 signaling were attenuated by bisphenol A and malachite green. This attenuation could only occur in the presence of estrogen receptor, indicating that these agents probably produce their actions via the estrogen receptor. Results of the present study demonstrated that estrogenic or anti-estrogenic compounds could down-regulate the somatotropic axis in fish by affecting both the gene expression and signaling of GHR. In view of the increasing prevalence of these compounds in the environment, the impact on fish growth and development both in the wild and in aquaculture would be considerable.
Collapse
Affiliation(s)
- Baowei Jiao
- Department of Biochemistry and the Environmental Science Programme, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | | |
Collapse
|
18
|
Martyniuk CJ, Kroll KJ, Porak WF, Steward C, Grier HJ, Denslow ND. Seasonal relationship between gonadotropin, growth hormone, and estrogen receptor mRNA expression in the pituitary gland of largemouth bass. Gen Comp Endocrinol 2009; 163:306-17. [PMID: 19416730 PMCID: PMC4188826 DOI: 10.1016/j.ygcen.2009.04.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2008] [Revised: 04/05/2009] [Accepted: 04/27/2009] [Indexed: 11/22/2022]
Abstract
The objectives of this study were to investigate the seasonal changes in pituitary gonadotropins, growth hormone (GH), and estrogen receptor (ER) isoform mRNA in wild female and male largemouth bass (LMB) (Micropterus salmoides) from an unpolluted habitat to better understand reproductive physiology in this ecologically important species. Female pituitary luteinizing hormone (LH) beta subunit and follicle stimulating hormone (FSH) beta subunit mRNA showed significant seasonal variation with levels peaking from January to April and were lowest from May to August. Male LMB showed more variation in gonadotropin subunit expression from month to month. Females had approximately 2-3 times higher gonadotropin mRNA levels in the pituitary when compared to males. All three gonadotropin mRNAs in females were positively correlated to gonadosomatic index (GSI), but only LHbeta mRNA was correlated to GSI in males. Gonadotropin mRNA expression also increased with increasing oocyte and sperm maturation. Gonadotropin beta subunit mRNA expression was positively correlated to GH mRNA in both sexes. The expression of all three ER isoforms was significantly correlated to each other in both sexes. The concurrent increase in all three ER mRNA isoforms with increasing gonadotropin mRNA in females and males suggests a prominent role for E2 feedback on pituitary gonadotropin synthesis in both sexes and that each of the three ER isoforms are likely to play a role in the pituitary during teleost reproduction.
Collapse
Affiliation(s)
- Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611 USA
| | - Kevin J. Kroll
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611 USA
| | - Wesley F. Porak
- Florida Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, Eustis, FL 32726 USA
| | - Cheree Steward
- Florida Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, Eustis, FL 32726 USA
| | - Harry J. Grier
- Florida Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, St. Petersburg, FL 33701, USA
| | - Nancy D. Denslow
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611 USA
| |
Collapse
|
19
|
Goetz FW, Rise ML, Rise M, Goetz GW, Binkowski F, Shepherd BS. Stimulation of growth and changes in the hepatic transcriptome by 17β-estradiol in the yellow perch (Perca flavescens). Physiol Genomics 2009; 38:261-80. [DOI: 10.1152/physiolgenomics.00069.2009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The effects of dietary 17β-estradiol (E2) on growth and liver transcriptomics were investigated in the yellow perch ( Perca flavescens). After a 3-mo treatment, E2 significantly stimulated an increase in length and weight of juvenile male and female perch relative to control animals. The increase was significantly greater in females compared with males. Separate, unnormalized cDNA libraries were constructed from equal quantities of RNA from 6 male and 6 female livers of E2-treated and control perch, and 3,546 and 3,719 expressed sequence tags (ESTs) were obtained, respectively. To characterize E2-regulated transcripts, EST frequencies between libraries were calculated within contiguous sequences that were assembled from the combined ESTs of both libraries. Frequencies were also determined in EST transcript groupings produced by aligning all of the ESTs from both libraries at the nucleotide level. From these analyses, there were 28 annotated transcripts that were regulated by 75% between libraries and for which there were at least 5 ESTs of the same transcript between libraries. Regulation of a subset ( 14 ) of these transcripts was confirmed by quantitative reverse transcription-polymerase chain reaction (QPCR). Transcripts that were upregulated by E2 included reproduction-related proteins, binding proteins, and proteases and protease inhibitors. While not part of the transcript frequency analysis, QPCR showed significant upregulation of estrogen receptor esr1 and of insulin-like growth factor I (IGF-I) in E2 livers. E2-downregulated transcripts represented a variety of functional categories including components of the respiratory chain, lipid transport and metabolism, glycolysis, amino acid and nitrogen metabolism, binding proteins, a hydrolytic enzyme, and a transcriptional regulator. In perch it appears that exogenous estrogen drastically shifts liver metabolism toward the production of lipoproteins and carbohydrate binding proteins, and that the growth-promoting action may involve an increase in hepatic IGF-I production.
Collapse
Affiliation(s)
- Frederick W. Goetz
- Great Lakes WATER Institute, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - Matthew L. Rise
- Great Lakes WATER Institute, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - Marlies Rise
- Great Lakes WATER Institute, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - Giles W. Goetz
- Great Lakes WATER Institute, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - Frederick Binkowski
- Great Lakes WATER Institute, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - Brian S. Shepherd
- Great Lakes WATER Institute/Agricultural Research Service/U.S. Department of Agriculture, Milwaukee, Wisconsin
| |
Collapse
|
20
|
|
21
|
Canosa LF, Stacey N, Peter RE. Changes in brain mRNA levels of gonadotropin-releasing hormone, pituitary adenylate cyclase activating polypeptide, and somatostatin during ovulatory luteinizing hormone and growth hormone surges in goldfish. Am J Physiol Regul Integr Comp Physiol 2008; 295:R1815-21. [DOI: 10.1152/ajpregu.00166.2008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In goldfish, circulating LH and growth hormone (GH) levels surge at the time of ovulation. In the present study, changes in gene expression of salmon gonadotropin-releasing hormone (sGnRH), chicken GnRH-II (cGnRH-II), somatostatin (SS) and pituitary adenylate cyclase activating polypeptide (PACAP) were analyzed during temperature- and spawning substrate-induced ovulation in goldfish. The results demonstrated that increases in PACAP gene expression during ovulation are best correlated with the GH secretion profile. These results suggest that PACAP, instead of GnRH, is involved in the control of GH secretion during ovulation. Increases of two of the SS transcripts during ovulation are interpreted as the activation of a negative feedback mechanism triggered by high GH levels. The results showed a differential regulation of sGnRH and cGnRH-II gene expression during ovulation, suggesting that sGnRH controls LH secretion, whereas cGnRH-II correlates best with spawning behavior. This conclusion is further supported by the finding that nonovulated fish induced to perform spawning behavior by prostaglandin F2α treatment increased cGnRH-II expression in both forebrain and midbrain, but decreased sGnRH expression in the forebrain.
Collapse
|
22
|
Shved N, Berishvili G, Baroiller JF, Segner H, Reinecke M. Environmentally relevant concentrations of 17alpha-ethinylestradiol (EE2) interfere with the growth hormone (GH)/insulin-like growth factor (IGF)-I system in developing bony fish. Toxicol Sci 2008; 106:93-102. [PMID: 18660547 DOI: 10.1093/toxsci/kfn150] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The aim of this study was to evaluate whether effects of environmental estrogens on fish growth and reproduction may be mediated via modulating the growth hormone (GH)/insulin-like growth factor I (IGF-I) system. To this end, developing male and female monosex populations of tilapia were exposed to 17alpha-ethinylestradiol (EE2) at 5 and 25 ng EE2/l water from 10-day postfertilization (DPF) until 100 DPF. Under exposure to both EE2 concentrations, sex ratio shifted toward more females and body length, and weight were significantly reduced in males. The growth-reducing effect was associated with significant changes in hepatic IGF-I expression, both in males and females and with significant alterations of IGF-I mRNA and GH mRNA in the brain. The changes in IGF-I and GH mRNA were accompanied by altered estrogen receptor alpha (ERalpha) expression in brain and liver. These findings point to an influence of estrogenic exposure on the endocrine GH/IGF-I axis. In addition, the EE2 treatment resulted in significant changes of ERalpha and IGF-I expression in ovaries and testis, suggesting that the estrogens interact not only with the endocrine but also with the autocrine/paracrine part of the IGF-I system. Overall, our results provide evidence that EE2 at environmentally relevant concentrations is able to interfere with the GH/IGF-I system in bony fish and that the impairing effects of estrogens reported on fish growth and reproductive functions may rather result from a cross talk between the sex steroid and the IGF-I system than be toxicological.
Collapse
Affiliation(s)
- Natallia Shved
- Division of Neuroendocrinology, Institute of Anatomy, University of Zürich, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
23
|
Christianson-Heiska IL, Haavisto T, Paranko J, Bergelin E, Isomaa B. Effects of the wood extractives dehydroabietic acid and betulinol on reproductive physiology of zebrafish (Danio rerio)-a two-generation study. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2008; 86:388-396. [PMID: 18207254 DOI: 10.1016/j.aquatox.2007.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Revised: 11/30/2007] [Accepted: 12/03/2007] [Indexed: 05/25/2023]
Abstract
Two wood extractives, dehydroabietic acid (DHAA) and betulinol (BET), present in wood industry effluents were evaluated for their potential effects on the reproductive physiology of zebrafish. Adult zebrafish (F0) were exposed in a continuous flow-through system to 50 microg/l DHAA, 5 microg/l BET and 0.27 microg/l (1 nM) 17beta-estradiol (E2) for 3 months. Eggs were collected from F0 fish and the following F1 generation was exposed for 6 months. Biomarkers analyzed in both F0 and F1 fish were plasma vitellogenin (Vtg), testosterone (T), E2 (only females) and gonadal histology. DHAA and BET affected growth in terms of increased condition factor, and spawning was stimulated in BET-exposed fish of the F0 generation. F0 males exposed to DHAA and F0 females exposed to BET showed lower plasma Vtg concentration, but F1 males exposed to BET showed an increase in Vtg. In fish exposed to E2, the positive control for estrogenic effects, a pronounced increase in Vtg concentration was observed. Plasma sex steroids were not significantly affected by the wood extractives. However, although not statistically significant, the T concentration tended to be lower in fish of all BET treatments. The histological study revealed alterations in spermatogenic stages of F0 males exposed to DHAA and BET, which were different from those caused by E2. In F1 females, the percentage of vitellogenic oocytes was decreased in DHAA, BET and E2 exposures. This study shows that DHAA and BET may contribute to growth alterations and reproductive disturbances reported in fish exposed to pulp and paper mill effluents. Further, these wood extractives may have different effects in F0 and F1 generation fish, which highlights the value of two-generation studies in investigations regarding endocrine disrupting compounds.
Collapse
|
24
|
Davis LK, Hiramatsu N, Hiramatsu K, Reading BJ, Matsubara T, Hara A, Sullivan CV, Pierce AL, Hirano T, Grau EG. Induction of three vitellogenins by 17beta-estradiol with concurrent inhibition of the growth hormone-insulin-like growth factor 1 axis in a euryhaline teleost, the tilapia (Oreochromis mossambicus). Biol Reprod 2007; 77:614-25. [PMID: 17507692 DOI: 10.1095/biolreprod.107.060947] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The objective of the present study was to utilize the male Mozambique tilapia (Oreochromis mossambicus) as a model for examining the molecular mechanisms that mediate the physiological transition between somatic and gonadal growth in female teleost fish, and in vertebrates in general. Partial cDNAs that encode multiple forms of vitellogenin (Vtg), which is the major precursor of yolk proteins, were cloned from estrogen-treated males and utilized to develop real-time quantitative RT-PCR assays, which were supplemented by an assay for Vtg immunoreactivity in the plasma. Alignment analyses of the amino acid sequences deduced from the vtg cDNAs revealed three distinct tilapia Vtgs, which were categorized as Aa-, Ab-, and C-type Vtgs. A single injection of male tilapias with 17beta-estradiol (E(2)) at 5 microg/g body weight significantly increased the plasma E(2) and hepatic levels of all three vtg transcripts within 1 day. Plasma E(2) levels declined after 3 days, whereas the plasma Vtg immunoreactivity and hepatic levels of the three vtg transcripts continued to increase. Hepatic expression of the estrogen receptor (esr) 1 gene, but not the esr2 gene, also increased markedly 1 day after E(2) injection and remained elevated for 5 days. While plasma growth hormone (Gh) levels were unaffected, hepatic expression of transcripts that encoded the Gh receptor and insulin-like growth factor 1 (Igf1) was suppressed by E(2), as were the plasma Igf1 levels. These results clearly suggest a distinct negative interplay between the growth and reproductive axes at the molecular level of key hepatic regulatory pathways involved in the control of energy utilization by gonadal and somatic growth processes.
Collapse
Affiliation(s)
- Lori K Davis
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, Hawaii 96744, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Hallerman EM, McLean E, Fleming IA. Effects of growth hormone transgenes on the behavior and welfare of aquacultured fishes: A review identifying research needs. Appl Anim Behav Sci 2007. [DOI: 10.1016/j.applanim.2006.09.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Canosa LF, Chang JP, Peter RE. Neuroendocrine control of growth hormone in fish. Gen Comp Endocrinol 2007; 151:1-26. [PMID: 17286975 DOI: 10.1016/j.ygcen.2006.12.010] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 12/12/2006] [Accepted: 12/22/2006] [Indexed: 10/23/2022]
Abstract
The biological actions of growth hormone (GH) are pleiotropic, including growth promotion, energy mobilization, gonadal development, appetite, and social behavior. Accordingly, the regulatory network for GH is complex and includes many endocrine and environmental factors. In fish, the neuroendocrine control of GH is multifactorial with multiple inhibitors and stimulators of pituitary GH secretion. In fish, GH release is under a tonic negative control exerted mainly by somatostatin. Sex steroid hormones and nutritional status influence the level of brain expression and effectiveness of some of these GH neuroendocrine regulatory factors, suggesting that their relative importance differs under different physiological conditions. At the pituitary level, some, if not all, somatotropes can respond to multiple regulators. Therefore, ligand- and function-specificity, as well as the integrative responses to multiple signals must be achieved at the level of signal transduction mechanisms. Results from investigations on a limited number of stimulatory and inhibitory GH-release regulators indicate that activation of different but convergent intracellular pathways and the utilization of specific intracellular Ca(2+) stores are some of the strategies utilized. However, more work remains to be done in order to better understand the integrative mechanisms of signal transduction at the somatotrope level and the relevance of various GH regulators in different physiological circumstances.
Collapse
Affiliation(s)
- Luis Fabián Canosa
- Department of Biological Sciences, University of Alberta, Edmonton, Alta., Canada T6G 2E9
| | | | | |
Collapse
|
27
|
Wong AOL, Zhou H, Jiang Y, Ko WKW. Feedback regulation of growth hormone synthesis and secretion in fish and the emerging concept of intrapituitary feedback loop. Comp Biochem Physiol A Mol Integr Physiol 2006; 144:284-305. [PMID: 16406825 DOI: 10.1016/j.cbpa.2005.11.021] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 11/21/2005] [Accepted: 11/21/2005] [Indexed: 11/21/2022]
Abstract
Growth hormone (GH) is known to play a key role in the regulation of body growth and metabolism. Similar to mammals, GH secretion in fish is under the control of hypothalamic factors. Besides, signals generated within the pituitary and/or from peripheral tissues/organs can also exert a feedback control on GH release by effects acting on both the hypothalamus and/or anterior pituitary. Among these feedback signals, the functional role of IGF is well conserved from fish to mammals. In contrast, the effects of steroids and thyroid hormones are more variable and appear to be species-specific. Recently, a novel intrapituitary feedback loop regulating GH release and GH gene expression has been identified in fish. This feedback loop has three functional components: (i) LH induction of GH release from somatotrophs, (ii) amplification of GH secretion by GH autoregulation in somatotrophs, and (iii) GH feedback inhibition of LH release from neighboring gonadotrophs. In this article, the mechanisms for feedback control of GH synthesis and secretion are reviewed and functional implications of this local feedback loop are discussed. This intrapituitary feedback loop may represent a new facet of pituitary research with potential applications in aquaculture and clinical studies.
Collapse
Affiliation(s)
- Anderson O L Wong
- Department of Zoology, University of Hong Kong, Pokfulam Road, Hong Kong, PR China.
| | | | | | | |
Collapse
|
28
|
Yu L, Chen X, Liu S, Long Z. Cloning, expression, and biological activity of growth hormone in bullfrog (Rana catesbeiana). Gen Comp Endocrinol 2006; 146:296-303. [PMID: 16442533 DOI: 10.1016/j.ygcen.2005.11.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Revised: 10/26/2005] [Accepted: 11/14/2005] [Indexed: 11/17/2022]
Abstract
The cDNA (GenBank, AY251538) encoding bullfrog growth hormone (fGH) was cloned by RT-PCR from the total RNA of pituitary glands. Its sequence encoded a putative polypeptide of 215 amino acids, including a signal peptide of 25 amino acids with no change to those of other previous reported bullfrog GHs. The fGH precursor shares 98.1, 96.3, and 95.3% homologies to those of other bullfrog GHs (AAB24792, AAB19428, CAA31038) in amino-acid sequence and its nucleotide sequences of the coding region shares 99.1 and 98.5% homologies to those of previous bullfrog GH genes (S52027 and X12520). The fGH cDNA was also efficiently expressed in Escherichia coli carrying a plasmid pGfGH in which the cDNA was under the control of GST promoter of pGEX1-lambdaT. The expressed fusion protein GST-fGH is comprised about 29.3% of the total cellular protein in such bacteria. The purified GST-fGH cannot only showed a obvious dose-response curve when it reacted with the hepatic membrane receptor proteins from bullfrog, but also significantly increased the body weight and length of bullfrog after twice injection and such effects lasted two or three weeks after the last injection with purified GST-fGH.
Collapse
Affiliation(s)
- Lin Yu
- Key Laboratory of Bio-Resource and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | | | | | | |
Collapse
|
29
|
Elango A, Shepherd B, Chen TT. Effects of endocrine disrupters on the expression of growth hormone and prolactin mRNA in the rainbow trout pituitary. Gen Comp Endocrinol 2006; 145:116-27. [PMID: 16188257 DOI: 10.1016/j.ygcen.2005.08.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Revised: 07/12/2005] [Accepted: 08/06/2005] [Indexed: 11/29/2022]
Abstract
It is now widely accepted that chemical pollutants in the environment can interfere with the endocrine system of animals, thus affecting development and reproduction. Some of these endocrine disrupters (EDs) can have estrogenic or antiestrogenic effects. Most studies to date have focused on the effects of EDs on the reproductive system and sex hormones and only limited information exists on how EDs may affect pituitary gland function. A rainbow trout (Oncorhynchus mykiss) pituitary gland culture system was used for studying the effects of EDs on growth hormone (GH) and prolactin (PRL) mRNA expression. We determined that the pituitary glands actively synthesized and secreted GH and PRL over the experimental time-course. In addition, we found that treatment with 17beta-estradiol (positive control) increased levels of GH and PRL mRNA, in a concentration-dependent manner. Treatment of pituitary glands with 500 and 1000 nM of a xenoestrogen, o,p'-DDT (o,p'-dichlorodiphenyltrichloroethane), resulted in a significant induction of GH and PRL mRNA, with a 20-fold increase for PRL and 3-fold increase for GH following treatment with 1000 nM o,p'-DDT. Co-incubation of pituitary glands with ICI 182 780 (a selective estrogen receptor antagonist) and o,p'-DDT resulted in inhibition of PRL mRNA levels; however, the stimulatory effect of DDT on GH mRNA was not seen in this experiment, nor was the inhibitory effect of ICI 182 780 observed with GH mRNA. To the contrary, ICI 182 780 (2.5 nM) had a stimulatory effect on GH mRNA levels. TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin), which is known to exert antiestrogenic effects, had an estrogenic-like effect that resulted in a concentration-dependent increase in the levels of GH and PRL mRNA. Co-incubation of pituitaries with TCDD and alpha-napthoflavone (ANF), which is an inhibitor of the aryl hydrocarbon receptor (AhR), caused an inhibition of TCDD-induced PRL mRNA at the higher and lower concentrations, but these effects were less consistent on GH mRNA levels. However, the responses of PRL and GH mRNA to co-incubation with TCDD and ANF, at the various concentrations, were bi-phasic wherein stimulation was seen at the low concentrations and inhibition at the high concentrations. Combined, these results suggest that o,p'-DDT and TCDD are xenoestrogens and that their effects on the expression of GH and PRL genes in the rainbow trout pituitary are modulated, in part, through the ER and AhR, respectively.
Collapse
Affiliation(s)
- Anitha Elango
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | | | | |
Collapse
|
30
|
Carnevali O, Cardinali M, Maradonna F, Parisi M, Olivotto I, Polzonetti-Magni AM, Mosconi G, Funkenstein B. Hormonal regulation of hepatic IGF-I and IGF-II gene expression in the marine teleost Sparus aurata. Mol Reprod Dev 2005; 71:12-8. [PMID: 15736123 DOI: 10.1002/mrd.20122] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The present work aimed to determine whether GnRH potentiates the effect of growth hormone (GH) on insulin-like growth factors (IGF-I and IGF-II) hepatic gene expression in Sparus aurata liver. Since several hepatic genes were shown to underlie direct regulation via the hepatic estrogen receptor, another aim was to extend our understanding of direct estrogen effects on liver IGFs gene expression. Pre-reproductive sea bream females were treated with GH, GnRH, estradiol-17beta, GH plus GnRH, and estradiol-17beta plus GH. After 72 hr, all treatment induced an increase of plasma estradiol well correlated with the increase of plasma vitellogenin (VTG) levels. IGF-I and IGF-II expression in the liver of treated females was determined by semi-quantitative RT-PCR, using beta-actin as internal standard. The results reported here show that GH significantly stimulates hepatic transcription of IGF-I and IGF-II genes. Surprisingly, E2 and GnRH treatments decreased both IGF-I and IGF-II mRNA levels. In fishes treated with GH plus GnRH, the GnRH contrasted the GH effect: the IGF-I mRNA levels were still significantly higher than in controls, while the effect of GH on IGF-II gene expression was totally abolished. At the same time, in the combined treatment with GH plus E2, the E2 counteracted the stimulatory effect of GH on both IGF-I and IGF-II genes expression.
Collapse
Affiliation(s)
- Oliana Carnevali
- Dipartimento di Scienze del Mare, Università Politecnica delle Marche, Ancona, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Meiri I, Knibb WR, Zohar Y, Elizur A. Temporal profile of beta follicle-stimulating hormone, beta luteinizing hormone, and growth hormone gene expression in the protandrous hermaphrodite, gilthead seabream, Sparus aurata. Gen Comp Endocrinol 2004; 137:288-99. [PMID: 15201067 DOI: 10.1016/j.ygcen.2004.04.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Revised: 04/06/2004] [Accepted: 04/08/2004] [Indexed: 10/26/2022]
Abstract
The temporal profile of betaFSH, betaLH, and growth hormone (GH) gene expression was measured throughout the periods of gonadal development, spawning, and post-spawning in the protandrous hermaphrodite gilthead seabream (sb), Sparus aurata (L.). Sampling was carried out monthly, covering a 8-31 month fish age. Pituitary RNA was extracted individually. The levels of betaFSH, betaLH, and GH mRNA were measured by dot blot hybridization using sb betaFSH, betaLH, and GH cDNA as probes and analyzed by computing densitometer (values standardized using individuals' beta-actin pituitary mRNA levels). All three genes, betaFSH, betaLH, and GH were expressed throughout the year, with seasonal variations. However, transcript levels of betaLH were consistently higher than those of betaFSH. During the spawning season (which lasts for about 4 months), the mRNA levels of both betaFSH and betaLH subunits increased dramatically. betaFSH peaked at the start of the spawning season for both males and females, and was significantly higher in males. As for betaLH transcripts, a statistical interaction between sex and date was observed. No significant differences between males and females were found for GH. The pattern of GH expression levels was found to be correlated to that of betaLH.
Collapse
Affiliation(s)
- Iris Meiri
- Israel Oceanographic and Limnological Research, National Center for Mariculture, P.O. Box 1212, Eilat, 88112, Israel.
| | | | | | | |
Collapse
|
32
|
Degani G, Tzchori I, Yom-Din S, Goldberg D, Jackson K. Growth differences and growth hormone expression in male and female European eels [Anguilla anguilla (L.)]. Gen Comp Endocrinol 2003; 134:88-93. [PMID: 13129507 DOI: 10.1016/s0016-6480(03)00238-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In this study, we examined the growth differences of males and females following a sex reversion, and the growth hormone (GH) expression variation between sexes of European eels [Anguilla anguilla (L.)]. A high percentage of females (88%) was found in the group fed with estradiol 17beta compared to the control group (comprised of only 6% female eels), which was defined as the male population. Significant differences between growth rate and size were found following 480 days of growth, whereby the males reached 60+/-4.3 g (means+/-SE) in size and the females 73.4+/-5.9 (g+/-SE); after 600 days, the males reached 114.1+/-4.3 and the females 171+/-11.7 (g+/-SE). A cDNA coding for the complete growth hormone of the European eel A. anguilla (eeGH) was cloned by RACE PCR using several sets of degenerate oligonucleotides. The eeGH cDNA coding region is 627 bp long. A sequence comparison of eeGH with Anguilla japonica GH (jeGH) cDNA showed a 98% identical base. Comparison of the deduced amino acid sequence revealed 99% identical residues, meaning that a difference exists in only two of the 209 residues. In both cases, the differing residues in the eeGH amino acid sequence are lysine. We measured the mRNA levels of growth hormone in the pituitaries of male and female eels growing at different rates. A significantly higher expression of eeGH was found in the female eels in comparison to the males. These results show that different levels of GH transcription eeGH can explain the growth rate differences between male and female European eels.
Collapse
Affiliation(s)
- G Degani
- Galilee Technological Center, School of Science and Technology, Tel-Hai Academic College, 12210 Upper Galilee, Israel.
| | | | | | | | | |
Collapse
|
33
|
Drennon K, Moriyama S, Kawauchi H, Small B, Silverstein J, Parhar I, Shepherd B. Development of an enzyme-linked immunosorbent assay for the measurement of plasma growth hormone (GH) levels in channel catfish (Ictalurus punctatus): assessment of environmental salinity and GH secretogogues on plasma GH levels. Gen Comp Endocrinol 2003; 133:314-22. [PMID: 12957475 DOI: 10.1016/s0016-6480(03)00194-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the development of a sensitive, and specific, competitive, antigen-capture enzyme-linked immunosorbent assay for the measurement of channel catfish (Ictalurus punctatus) growth hormone (cfGH). The detection limit of the assay (90% binding) was 2.0ng/ml and the ED(50) value (standard curve range 150-0.59 ng/ml) was 67.3 ng/ml. Recovery of cfGH-spiked plasma samples was determined to be 102%. Dose-response inhibition curves using serially diluted pituitary homogenates and plasma samples consistently showed parallelism with the standard curves using purified cfGH. The GH antibody (rabbit anti-catfish GH) specificity was demonstrated in competitive binding curves employing heterologous hormones and purified channel catfish prolactin (cfPRL). These studies show that there was no significant (0.006%) binding of cfPRL (competitive inhibition of cfGH binding), or heterologous hormones, within the working range of the assay. To physiologically validate the assay, catfish were injected (100 microg/g body weight, 3 injections every 5 days) with either bovine GHRH(1-29)-amide or the synthetic hexapeptide GHRP-2 (KP-102: D-Ala-D-beta-Nal-Ala-Trp-D-Phe-Lys-NH(2)) suspended in corn oil. Following the last injection, half of the animals were sampled for plasma and the remaining transferred from fresh water (FW) to 12 ppt seawater (BW: brackish water). Twenty-four hours after transfer to BW, animals were again sampled for plasma. Plasma GH levels were significantly (p<0.001) elevated in all the BW groups (control, KP-102, and bGHRH), compared with the FW (fresh water) groups. In addition, plasma GH levels were significantly (p<0.001) elevated by treatment with either of the GH secretogogues, KP-102 or bGHRH. Our findings demonstrate that two regulatory mechanisms of GH elevation, one which is seen in euryhaline teleosts (salinity-induced GH levels) and another, which has been recently described in teleosts (GHRP-induced GH levels), are present in the stenohaline channel catfish.
Collapse
Affiliation(s)
- Katherine Drennon
- Department of Biology, University of Kentucky, T.H. Morgan School of Biological Sciences, 101 T.H. Morgan Building, Lexington, KY 40506-0225, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Cardenas R, Lin X, Canosa LF, Luna M, Arámburo C, Peter RE. Estradiol reduces pituitary responsiveness to somatostatin (SRIF-14) and down-regulates the expression of somatostatin sst2 receptors in female goldfish pituitary. Gen Comp Endocrinol 2003; 132:119-24. [PMID: 12765651 DOI: 10.1016/s0016-6480(03)00055-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sex steroid hormones have been shown to regulate somatostatin (SRIF) gene expression in goldfish brain, which in turn influences the regulation of GH secretion. In this study, the influences of sex steroids on pituitary responsiveness to SRIF-14 and the pituitary expression of a type two SRIF receptor (sst(2)) were examined. Results from in vitro perifusion of pituitary fragments show that pituitaries from estradiol-primed sexually regressed female fish have significantly lower GH release responsiveness to pulse exposure to SRIF-14 than pituitaries from control or testosterone-treated sexually regressed females. Results from in vitro static culture show that pituitaries from sexually mature female fish have lower GH release responsiveness to SRIF-14 than those from sexually regressed females. In addition, the sst(2) receptor mRNA levels in pituitaries from mature and recrudescent female fish are significantly lower than in sexually regressed female fish. Our results indicate that estradiol acts at the level of the pituitary to regulate GH secretion by influencing the responsiveness to SRIF-14. The underlying mechanism includes, in part, reduction of the expression of sst(2) receptors, presumably leading to the lower number of the receptors available for SRIF binding.
Collapse
Affiliation(s)
- Rodolfo Cardenas
- Unidad de Morfología y Función, Escuela Nacional de Estudios Professionales Iztacala, Universidad Nacional Autonoma de Mexico, Av. de los Barrios #1, Los Reyes Iztacala, Tlalnepantla, Edo de Mex. 54090, Mexico
| | | | | | | | | | | |
Collapse
|
35
|
Grandi G, Colombo G, Chicca M. Immunocytochemical studies on the pituitary gland of Anguilla anguilla L., in relation to early growth stages and diet-induced sex differentiation. Gen Comp Endocrinol 2003; 131:66-76. [PMID: 12620249 DOI: 10.1016/s0016-6480(02)00646-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mammalian and teleost antisera against pituitary hormones were used to identify and localize pituitary cell types in the European eel (Anguilla anguilla L.). The investigation was conducted on unpigmented glass eels of 5.6-6.2 of total body length (L(T)) caught in river mouths, then on yellow eels reared from the pigmented glass eel (or elver) stage up to 12-14 cm of L(T), in an eel farm in warm freshwater. Treated elvers were fed with commercial paste food supplemented with mature carp ovaries, containing oestradiol, that induced an early ovarian differentiation and a higher growth rate. The antisera detected seven types of immunoreactive (ir) cells, six of which were already found in glass eel adenohypophysis, suggesting differentiation of these cell types during the leptocephalus stage. In 12-14 cm treated yellow eels with small ovaries, a seventh type (ir-GtH) was detected in the proximal pars distalis; in the same animals the ir-TSH cells increased in number and size. From unpigmented glass eels to 12-14 cm yellow eels, the whole pituitary volume of controls increased nearly four times, while that of treated ones increased nearly six times. The larger volume of pituitary in treated eels was mainly due to volume increase of proximal pars distalis and rostral pars distalis. The %GH, that is the potential index of GH production, was significantly higher in treated yellow eels with gonads differentiating into ovaries than in controls; no difference was detected in %PRL between treated and control eels. The above results strongly suggest that in eels the feminizing effects of oestrogen is first exerted on the pituitary, probably through the hypothalamus, and later on the gonads.
Collapse
Affiliation(s)
- Gilberto Grandi
- Department of Biology, University of Ferrara, via L Borsari 46, Ferrara 44100, Italy.
| | | | | |
Collapse
|
36
|
Abstract
The effect of long-term administration of testosterone, progesterone, and a synthetic estrogen, diethylstilbestrol (DES), on intermediary metabolism was studied in a freshwater fish Oreochromis mossambicus. The present study reveals that testosterone, progesterone, and Des specifically control key enzymes involved in carbohydrate, protein and lipid metabolism in the liver of O. mossambicus implying a general influence of sex steroids on intermediary metabolism. The activities of malic enzyme (ME), glucose-6-phosphate dehydrogenase (G6PDH), isocitrate dehydrogenase (ICDH), glucose 6 phosphatase (G-6-Pase), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) are either stimulated or inhibited following the administration of sex steroids. The long-term in vivo i.p. injection of sex steroids intensely reveals that testosterone and progesterone are hyperglycemic, DES is hypoglycemic, testosterone and DES lipogenic, and progesterone antilipogenic (lipolytic) in the present study. It is also established that amino acid catabolism, mostly that of alanine, may be a major source of substrate for gluconeogenesis. A genomic mode of action is proposed for sex steroids for long term treatment, as their action is sensitive to transcription and translation inhibitors.
Collapse
Affiliation(s)
- Francis Sunny
- Dept of Zoology, Govt College Chavara, Kollam, Kerala, India.
| | | | | |
Collapse
|
37
|
Lerner DT, Mason RT. The influence of sex steroids on the sexual size dimorphism in the red-spotted garter snake, Thamnophis sirtalis concinnus. Gen Comp Endocrinol 2001; 124:218-25. [PMID: 11703086 DOI: 10.1006/gcen.2001.7695] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The red-spotted garter snake exhibits adult size dimorphism in which females are the larger sex. To understand which hormones may influence differential growth in this species, growth curves and hormone profiles of estradiol-17beta (E2) and testosterone (T) were constructed in male and female neonates. Growth was manipulated via implantation of exogenous hormones and hormone antagonists. Female neonates are heavier or longer beginning at either 20 or 24 weeks of age, respectively. Although low circulating levels of E2 and T were present in males and females from birth through 15 weeks of age, these levels were not significantly different between the sexes. Differences in the growth curves of the treated and untreated snakes were significant after 24 weeks of age. Antiestrogen produced male-like growth in females but had no effect on males. Antiandrogen had no effect on either males or females. Exogenous T reduced female growth to that observed in males, and E2 reduced male growth. These results suggest that a basal level of either E2 or T is sufficient in males to retain typical male growth patterns. Similar endogenous levels of E2 appear to have growth-promoting effects in females. Endogenous T does not appear to play a role in female growth.
Collapse
Affiliation(s)
- D T Lerner
- Department of Zoology, Oregon State University, Corvallis, Oregon 97331, USA.
| | | |
Collapse
|
38
|
Mori T, Deguchi F, Ueno K. Differential expression of Gh1 and Gh 2 genes by competitive RT-PCR in rainbow trout pituitary. Gen Comp Endocrinol 2001; 123:137-43. [PMID: 11482934 DOI: 10.1006/gcen.2001.7662] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The expressions of the GH1 and GH2 genes were examined by competitive RT-PCR and whole-mount in situ hybridization of pituitary of starved rainbow trout (Oncorhynchus mykiss). lambda RNA having GH primers at both 5' and 3' sites of the gene was used for the competitive RT-PCR, and thermostable reverse transcriptase produced a reasonable band when authentic RNA was examined. The amount of GH1 gene expression was significantly (P < 0.05) greater than that of GH2. Although almost the same amount of GH1 gene expression was obtained during the day, it was significantly (P < 0.05) decreased at midnight. However, there was no significant change in GH2 gene expression in the daily cycle. There were also some differences in gene expression in the pituitary: GH2 gene was more widely expressed than GH1. However, the signal intensity of the GH1 gene was greater than that of GH2.
Collapse
Affiliation(s)
- T Mori
- Laboratory of Physiology, Hokkaido University, Hakodate 041-8611, Japan.
| | | | | |
Collapse
|
39
|
|
40
|
Lin X, Janovick JA, Cardenas R, Conn PM, Peter RE. Molecular cloning and expression of a type-two somatostatin receptor in goldfish brain and pituitary. Mol Cell Endocrinol 2000; 166:75-87. [PMID: 10996426 DOI: 10.1016/s0303-7207(00)00278-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Somatostatin (SRIF or SS) exerts diverse inhibitory actions through binding to specific receptors. In this study, a SRIF receptor cDNA was cloned and sequenced from goldfish brain using PCR and cDNA library screening. The cDNA encodes a 380-amino acid goldfish type-two SRIF receptor (designated as sst(2)), with seven putative transmembrane domains (TMD) and YANSCANP motif in the seventh TMD, a signature sequence for the mammalian SRIF receptor (sst) family. In addition, the amino acid sequence of the receptor has 61-62% homology to mammalian sst(2), 41-47% homology to other mammalian sst subtypes and 41-43% homology to recently identified fish sst(1) and sst(3) receptors. Both SRIF-14 and [Pro(2)]SRIF-14, two of the native goldfish SRIF forms, but not a putative goldfish SRIF-28, significantly inhibited forskolin-stimulated adenosine 3':5'-cyclic monophosphate (cAMP) release in COS-7 cells transiently expressing goldfish sst(2), suggesting functional coupling of the receptor to adenylate cyclase. None of the three peptides affected inositol phosphate production in the same receptor expression system. Northern blot showed that mRNA for the sst(2) receptor is widely distributed in goldfish brain, and highly expressed in the pituitary. The decrease in pituitary sst(2) mRNA levels following estradiol implantation suggests the presence of a negative feedback mechanism on sst(2) gene expression.
Collapse
Affiliation(s)
- X Lin
- Department of Biological Sciences, University of Alberta, Alta, T6G 2E9, Edmonton, Canada
| | | | | | | | | |
Collapse
|
41
|
Holloway AC, Melroe GT, Ehrman MM, Reddy PK, Leatherland JF, Sheridan MA. Effect of 17beta-estradiol on the expression of somatostatin genes in rainbow trout (Oncorhynchus mykiss). Am J Physiol Regul Integr Comp Physiol 2000; 279:R389-93. [PMID: 10938224 DOI: 10.1152/ajpregu.2000.279.2.r389] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present study, the effects of 17beta-estradiol (E(2)) treatment on the expression of preprosomatostatin (PPSS) I, PPSS II', and PPSS II" mRNA in the hypothalamus and endocrine pancreas (Brockmann body), as well as the effects of E(2) treatment on plasma somatostatin (SS)-14 and -25 concentrations in sexually immature rainbow trout (Oncorhynchus mykiss), were investigated. E(2) treatment significantly (P < 0.001) depressed both plasma SS-14 and SS-25. In the hypothalamus, E(2) treatment significantly (P < 0.001) decreased the levels of PPSS I and PPSS II" mRNA. However, there was no effect of E(2) treatment on PPSS II' mRNA levels. In the pancreas, E(2) treatment had no significant effect on the levels of either PPSS II' mRNA or PPSS II" mRNA. However, E(2) treatment significantly (P < 0.005) decreased levels of PPSS I mRNA. These data suggest that E(2) acts, in part, to increase plasma growth hormone levels in rainbow trout by decreasing the endogenous inhibitory somatostatinergic tone by inhibiting plasma levels of both SS-14 and SS-25 and hypothalamic levels of mRNA encoding these proteins.
Collapse
Affiliation(s)
- A C Holloway
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Canada
| | | | | | | | | | | |
Collapse
|
42
|
Trudeau VL, Kah O, Chang JP, Sloley BD, Dubourg P, Fraser EJ, Peter RE. The inhibitory effects of (gamma)-aminobutyric acid (GABA) on growth hormone secretion in the goldfish are modulated by sex steroids. J Exp Biol 2000; 203:1477-85. [PMID: 10751163 DOI: 10.1242/jeb.203.9.1477] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Double-labelling studies at the electron microscopic level demonstrated that gamma-aminobutyric acid (GABA)-immunoreactive nerve endings are associated with growth-hormone-secreting cells in the proximal pars distalis of the goldfish pituitary gland, suggesting that GABA may be important for the control of growth hormone release in this species. An in vitro assay for GABA-transaminase activity demonstrated that the pituitary is a site for the metabolism of GABA to succinic acid. In vitro, GABA or the GABA antagonists bicuculline and saclofen did not affect the rate of growth hormone release from dispersed pituitary cells in static incubation. In contrast, intracerebroventricular injection of GABA reduced serum growth hormone levels within 30 min. During the seasonal gonadal cycle, intraperitoneal injection of GABA was without effect in sexually regressed goldfish, but caused a significant decrease in serum growth hormone levels in sexually recrudescent animals. Intraperitoneal implantation of solid silastic pellets containing oestradiol increased serum GH levels fivefold in sexually regressed and recrudescent goldfish; in both groups, GABA suppressed the oestradiol-stimulated increase in circulating growth hormone levels. The effect of oestradiol on basal serum growth hormone levels was specific since progesterone and testosterone were without effect. However, in recrudescent animals treated with progesterone and testosterone, the inhibitory effects of GABA on serum growth hormone levels were absent, indicating a differential role for these steroids in growth hormone release. Taken together, these results demonstrate that GABA has an inhibitory effect on growth hormone release in goldfish.
Collapse
Affiliation(s)
- V L Trudeau
- Department of Biology, University of Ottawa, PO Box 450, Station A, Ottawa, Ontario, Canada K1N 6N5.
| | | | | | | | | | | | | |
Collapse
|
43
|
Yamamoto K, Takahashi N, Nakai T, Miura S, Shioda A, Iwata T, Kouki T, Kobayashi T, Kikuyama S. Production of a recombinant newt growth hormone and its application for the development of a radioimmunoassay. Gen Comp Endocrinol 2000; 117:103-16. [PMID: 10620427 DOI: 10.1006/gcen.1999.7387] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Complementary DNA (cDNA) encoding newt (Cynops pyrrhogaster) growth hormone (nGH) was cloned from a cDNA library constructed from mRNAs of newt pituitary glands and was expressed in Escherichia coli. Based on Northern blot analysis using the cDNA as a probe, the nGH mRNA was estimated to be 940 bases in length. The recombinant nGH (nGHr) had a molecular mass of 22 kDa as determined by SDS-PAGE and possessed considerable bioactivity as determined in a Xenopus cartilage assay. Using the nGHr, we produced a polyclonal antibody against nGHr. Western blot analysis of newt anterior pituitary gland homogenates revealed that this antiserum specifically detected a single 22-kDa band, and histological studies of newt pituitary gland sections showed that the cells that reacted immunologically by the anti-nGHr antiserum corresponded to those stained by an antiserum against rat GH. A radioimmunoassay (RIA) that is specific and sensitive for nGH was developed, employing the antiserum thus produced. The sensitivity of the RIA was 57 +/- 7 pg/100 microl assay buffer. Interassay and intraassay coefficients of variation were 1.22 and 2.70%, respectively. Serial dilutions of plasma and pituitary homogenate of C. pyrrhogaster yielded dose-response curves that were parallel to the standard curve. Plasma from hypophysectomized newts showed no cross-reactivity. Moreover, displacement curves obtained using pituitary homogenates of the sword-tailed newt (C. ensicauda) and the crested newt (Triturus carnifex) were also parallel to the standard curve. Mammalian and frog GHs and prolactins (PRLs), as well as newt PRL, showed no inhibition of binding, even at relatively high doses, in this RIA. The RIA was used to measure GH released from newt pituitaries in vitro. Enhancement of GH release by 10(-7) M thyrotropin-releasing hormone was observed in cultures of newt pituitaries.
Collapse
Affiliation(s)
- K Yamamoto
- School of Education, Waseda University, Nishiwaseda 1-6-1, Shinjuku-ku, Tokyo, 169-8050, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Tchoudakova A, Pathak S, Callard GV. Molecular cloning of an estrogen receptor beta subtype from the goldfish, Carassius auratus. Gen Comp Endocrinol 1999; 113:388-400. [PMID: 10068500 DOI: 10.1006/gcen.1998.7217] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The brain of many teleost fish species, including the goldfish Carassius auratus, expresses exceptionally high levels of cytochrome P450 aromatase (estrogen synthetase). To begin investigating the molecular and cellular targets of estrogen action in goldfish brain, a polymerase chain reaction (PCR) cloning strategy was used to isolate an estrogen receptor (ER) complementary DNA (cDNA). The 2283-bp cDNA isolated from goldfish liver encoded a protein of 568 amino acids (aa) with an estimated molecular weight of 63,539. The goldfish ER had high overall sequence identity when compared to other vertebrate ER sequences: eel (64%), human beta subtype (59%), human alpha subtype (46%), medaka (46%), and rainbow trout (47%). The highest degree of conservation was seen in the DNA-binding (94-100%) and ligand-binding (67-79%) domains. Phylogenetic analysis of the ER gene family indicated that the goldfish and eel ER are most closely related to mammalian ERbeta subtypes, whereas previously identified fish, amphibian, and avian ER forms cluster separately with mammalian ERalpha subtypes. Using the goldfish ER cDNA (here designated gfERbeta), multiple mRNA species (3.1- 8.6 kb) were detected by Northern blot analysis in goldfish liver and ovary but expression was below detection in brain. Using reverse transcription-PCR analysis, gfERbeta mRNA was detected in forebrain, mid/hindbrain, pituitary, retina, liver, ovary, and testis. Further studies are required to determine whether an additional ERalpha subtype is present in the goldfish and whether ERalpha or ERbeta forms have evolutionary precedence in vertebrates.
Collapse
Affiliation(s)
- A Tchoudakova
- Department of Biology, Boston University, 5 Cummington Street, Boston, Massachusetts, 02215, USA
| | | | | |
Collapse
|
45
|
Gomez JM, Weil C, Ollitrault M, Le Bail PY, Breton B, Le Gac F. Growth hormone (GH) and gonadotropin subunit gene expression and pituitary and plasma changes during spermatogenesis and oogenesis in rainbow trout (Oncorhynchus mykiss). Gen Comp Endocrinol 1999; 113:413-28. [PMID: 10068502 DOI: 10.1006/gcen.1998.7222] [Citation(s) in RCA: 186] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In order to evaluate potential interactions between somatotropic and gonadotropic axes in rainbow trout (Oncorhynchus mykiss), changes in pituitary content of the specific messenger RNA of growth hormone (GH) and gonadotropin (GTH) alpha- and beta-subunits were studied during gametogenesis with respect to pituitary and plasma hormone concentrations. Quantitative analyses of mRNA and hormones were performed by dot blot hybridization and homologous RIA on individual fish according to stage of spermatogenesis and oogenesis. All transcripts were detectable in 9-month-old immature fish. GH, GTH IIbeta, and GTH alpha increased moderately throughout most of gametogenesis and then more dramatically at spermiation and during the periovulatory period. GTH Ibeta mRNA increased first from stage I to V in males and more abruptly at spermiation, while in females GTH Ibeta transcripts increased first during early vitellogenesis and again around ovulation. Pituitary GH absolute content (microgram/pituitary, not normalized with body weight) increased slowly during gametogenesis and more abruptly in males during spermiation. In the pituitary of previtellogenic females and immature males, GTH I beta peptide contents were 80- to 500-fold higher than GTH II beta peptide contents. GTH I contents rose regularly during the initial phases of vitellogenesis and spermatogenesis and then more abruptly in the final stages of gonadal maturation, while GTH II contents show a dramatic elevation during final oocyte growth and maturation, in postovulated females, and during spermiogenesis and spermiation in males. Blood plasma GTH II concentrations were undetectable in most gonadal stages, but were elevated during spermiogenesis and spermiation and during oocyte maturation and postovulation. In contrast, plasma GTH I was already high ( approximately 2 ng/ml) in fish with immature gonads, significantly increased at the beginning of spermatogonial proliferation, and then increased again between stages III and VI to reach maximal levels ( approximately 9 ng/ml) toward the end of sperm cell differentiation, but decreased at spermiation. In females, plasma GTH I rose strongly for the first time up to early exogenous vitellogenesis, decreased during most exogenous vitellogenesis, and increased again around ovulation. Our data revealed that patterns of relative abundance of GTH Ibeta mRNA and pituitary and plasma GTH I were similar, but not the GTH II patterns, suggesting differential regulation between these two hormones at the transcriptional and posttranscriptional levels. Pituitary and plasma GH changes could not be related to sexual maturation, and only a weak relationship was observed between GH and gonadotropin patterns, demonstrating that no simple connection exists between somatotropic and gonadotropic axes at the pituitary level during gametogenesis.
Collapse
Affiliation(s)
- J M Gomez
- Campus de Beaulieu, INRA, Rennes Cedex, 35042, France
| | | | | | | | | | | |
Collapse
|
46
|
Blázquez M, Bosma PT, Fraser EJ, Van Look KJ, Trudeau VL. Fish as models for the neuroendocrine regulation of reproduction and growth. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART C, PHARMACOLOGY, TOXICOLOGY & ENDOCRINOLOGY 1998; 119:345-64. [PMID: 9827007 DOI: 10.1016/s0742-8413(98)00023-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Models are essential for the full understanding of neuroendocrine control processes. In this regard fish offer a rich source of biological material. They have diverse growth and reproductive strategies, inhabiting most of the Earth's aquatic ecological niches. Fish possess many of the common vertebrate features but also offer several unique aspects to allow the biologist easy access to the study of hypothalamic and pituitary function. Several key examples of how teleosts, or the bony fish, can offer insight into fundamental mechanisms of vertebrate sex differentiation, growth and reproduction are reviewed.
Collapse
Affiliation(s)
- M Blázquez
- Department of Zoology, University of Aberdeen, UK
| | | | | | | | | |
Collapse
|
47
|
Gelinas D, Pitoc GA, Callard GV. Isolation of a goldfish brain cytochrome P450 aromatase cDNA: mRNA expression during the seasonal cycle and after steroid treatment. Mol Cell Endocrinol 1998; 138:81-93. [PMID: 9685217 DOI: 10.1016/s0303-7207(98)00015-x] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To investigate the molecular basis and physiological regulation of exceptionally high levels of aromatase (P450arom) activity in the brain of teleost fish, a 2927 bp P450arom cDNA encoding a 510 amino acid protein was isolated from a goldfish brain cDNA library. The brain-derived cDNA had 53% and 61-62% sequence identity when compared with human placental and fish ovarian P450arom forms, respectively, and higher homologies in conserved functional domains. Goldfish brain poly(A) RNA was translatable in vitro to a 56 kDa P450arom immunoprecipitation product. Northern blot analysis using the brain cDNA revealed a major 3.0 kb transcript of high abundance in brain (FB, forebrain > M/HB, mid/hindbrain), but no signal in ovary, testis or liver. P450arom mRNA varied seasonally in brain, with a peak at the onset of gonadal regrowth (February) that preceded the annual rise in enzyme levels and was 4-fold (FB) or 50-fold (M/HB) higher than during reproductive inactivity (July-December). Known markers of neurogenesis and estrogen action in brain (28S rRNA, beta-actin and beta-tubulin transcripts) each had unique seasonal patterns which differed from P450arom mRNA. In vivo steroid treatment showed that estrogen and aromatizable androgen increase FB and M/HB levels of P450arom mRNA 8- and 4-fold, respectively. P450arom mRNA in pituitary and retina had a different regulation. Southern analysis provided no evidence for multiple genes encoding the brain derived cDNA or for brain-specific gene amplification. Results imply that high accumulated levels of P450arom mRNA are the major determinant of high measured enzyme activity in goldfish brain, and that physiological regulation of mRNA expression in the natural environment is mediated by aromatization of androgen to estrogen.
Collapse
Affiliation(s)
- D Gelinas
- Department of Biology, Boston University, MA 02215, USA
| | | | | |
Collapse
|