1
|
Jou V, Peña SM, Lehoczky JA. Regeneration-specific promoter switching facilitates Mest expression in the mouse digit tip to modulate neutrophil response. NPJ Regen Med 2024; 9:32. [PMID: 39468052 PMCID: PMC11519450 DOI: 10.1038/s41536-024-00376-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024] Open
Abstract
The mouse digit tip regenerates following amputation, a process mediated by a cellularly heterogeneous blastema. We previously found the gene Mest to be highly expressed in mesenchymal cells of the blastema and a strong candidate pro-regenerative gene. We now show Mest digit expression is regeneration-specific and not upregulated in post-amputation fibrosing proximal digits. Mest homozygous knockout mice exhibit delayed bone regeneration though no phenotype is found in paternal knockout mice, inconsistent with the defined maternal genomic imprinting of Mest. We demonstrate that promoter switching, not loss of imprinting, regulates biallelic Mest expression in the blastema and does not occur during embryogenesis, indicating a regeneration-specific mechanism. Requirement for Mest expression is tied to modulating neutrophil response, as revealed by scRNAseq and FACS comparing wildtype and knockout blastemas. Collectively, the imprinted gene Mest is required for proper digit tip regeneration and its blastema expression is facilitated by promoter switching for biallelic expression.
Collapse
Affiliation(s)
- Vivian Jou
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Sophia M Peña
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Jessica A Lehoczky
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
2
|
Cevik SE, Skaar DA, Jima DD, Liu AJ, Østbye T, Whitson HE, Jirtle RL, Hoyo C, Planchart A. DNA methylation of imprint control regions associated with Alzheimer's disease in non-Hispanic Blacks and non-Hispanic Whites. Clin Epigenetics 2024; 16:58. [PMID: 38658973 PMCID: PMC11043040 DOI: 10.1186/s13148-024-01672-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/13/2024] [Indexed: 04/26/2024] Open
Abstract
Alzheimer's disease (AD) prevalence is twice as high in non-Hispanic Blacks (NHBs) as in non-Hispanic Whites (NHWs). The objective of this study was to determine whether aberrant methylation at imprint control regions (ICRs) is associated with AD. Differentially methylated regions (DMRs) were bioinformatically identified from whole-genome bisulfite sequenced DNA derived from brain tissue of 9 AD (5 NHBs and 4 NHWs) and 8 controls (4 NHBs and 4 NHWs). We identified DMRs located within 120 regions defined as candidate ICRs in the human imprintome ( https://genome.ucsc.edu/s/imprintome/hg38.AD.Brain_track ). Eighty-one ICRs were differentially methylated in NHB-AD, and 27 ICRs were differentially methylated in NHW-AD, with two regions common to both populations that are proximal to the inflammasome gene, NLRP1, and a known imprinted gene, MEST/MESTIT1. These findings indicate that early developmental alterations in DNA methylation of regions regulating genomic imprinting may contribute to AD risk and that this epigenetic risk differs between NHBs and NHWs.
Collapse
Affiliation(s)
- Sebnem E Cevik
- Toxicology Program, North Carolina State University, Raleigh, NC, USA
| | - David A Skaar
- Toxicology Program, North Carolina State University, Raleigh, NC, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Dereje D Jima
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Andy J Liu
- Department of Neurology, School of Medicine, Duke University, Durham, NC, USA
| | - Truls Østbye
- Department of Family Medicine and Community Health, Duke University, Durham, NC, USA
| | - Heather E Whitson
- Department of Medicine, School of Medicine, Duke University, Durham, NC, USA
- Duke Center for the Study of Aging and Human Development, Durham, NC, USA
- Duke/UNC Alzheimer's Disease Research Center (ADRC), Durham, NC, USA
| | - Randy L Jirtle
- Toxicology Program, North Carolina State University, Raleigh, NC, USA.
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA.
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.
| | - Cathrine Hoyo
- Toxicology Program, North Carolina State University, Raleigh, NC, USA.
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA.
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.
| | - Antonio Planchart
- Toxicology Program, North Carolina State University, Raleigh, NC, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
3
|
Ishihara T, Suzuki S, Newman TA, Fenelon JC, Griffith OW, Shaw G, Renfree MB. Marsupials have monoallelic MEST expression with a conserved antisense lncRNA but MEST is not imprinted. Heredity (Edinb) 2024; 132:5-17. [PMID: 37952041 PMCID: PMC10798977 DOI: 10.1038/s41437-023-00656-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/14/2023] Open
Abstract
The imprinted isoform of the Mest gene in mice is involved in key mammalian traits such as placental and fetal growth, maternal care and mammary gland maturation. The imprinted isoform has a distinct differentially methylated region (DMR) at its promoter in eutherian mammals but in marsupials, there are no differentially methylated CpG islands between the parental alleles. Here, we examined similarities and differences in the MEST gene locus across mammals using a marsupial, the tammar wallaby, a monotreme, the platypus, and a eutherian, the mouse, to investigate how imprinting of this gene evolved in mammals. By confirming the presence of the short isoform in all mammalian groups (which is imprinted in eutherians), this study suggests that an alternative promoter for the short isoform evolved at the MEST gene locus in the common ancestor of mammals. In the tammar, the short isoform of MEST shared the putative promoter CpG island with an antisense lncRNA previously identified in humans and an isoform of a neighbouring gene CEP41. The antisense lncRNA was expressed in tammar sperm, as seen in humans. This suggested that the conserved lncRNA might be important in the establishment of MEST imprinting in therian mammals, but it was not imprinted in the tammar. In contrast to previous studies, this study shows that MEST is not imprinted in marsupials. MEST imprinting in eutherians, therefore must have occurred after the marsupial-eutherian split with the acquisition of a key epigenetic imprinting control region, the differentially methylated CpG islands between the parental alleles.
Collapse
Affiliation(s)
- Teruhito Ishihara
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Shunsuke Suzuki
- Department of Agricultural and Life Sciences, Shinshu University, Nagano, Japan
| | - Trent A Newman
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Jane C Fenelon
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Oliver W Griffith
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Geoff Shaw
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Marilyn B Renfree
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
4
|
Wang H, Cui X, Wang L, Fan N, Yu M, Qin H, Liu S, Yan Q. α1,3-fucosylation of MEST promotes invasion potential of cytotrophoblast cells by activating translation initiation. Cell Death Dis 2023; 14:651. [PMID: 37798282 PMCID: PMC10556033 DOI: 10.1038/s41419-023-06166-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 09/06/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023]
Abstract
Embryo implantation into the uterus is the gateway for successful pregnancy. Proper migration and invasion of embryonic trophoblast cells are the key for embryo implantation, and dysfunction causes pregnancy failure. Protein glycosylation plays crucial roles in reproduction. However, it remains unclear whether the glycosylation of trophoblasts is involved in trophoblast migration and invasion processes during embryo implantation failure. By Lectin array, we discovered the decreased α1,3-fucosylation, especially difucosylated Lewis Y (LeY) glycan, in the villus tissues of miscarriage patients when compared with normal pregnancy women. Downregulating LeY biosynthesis by silencing the key enzyme fucosyltransferase IV (FUT4) inhibited migration and invasion ability of trophoblast cells. Using proteomics and translatomics, the specific LeY scaffolding glycoprotein of mesoderm-specific transcript (MEST) with glycosylation site at Asn163 was identified, and its expression enhanced migration and invasion ability of trophoblast cells. The results also provided novel evidence showing that decreased LeY modification on MEST hampered the binding of MEST with translation factor eIF4E2, and inhibited implantation-related gene translation initiation, which caused pregnancy failure. The α1,3-fucosylation of MEST by FUT4 may serve as a new biomarker for evaluating the functional state of pregnancy, and a target for infertility treatment.
Collapse
Affiliation(s)
- Hao Wang
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Xinyuan Cui
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Luyao Wang
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Ningning Fan
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Ming Yu
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Huamin Qin
- Department of Pathology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, China
| | - Shuai Liu
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China.
| | - Qiu Yan
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China.
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, 116044, China.
| |
Collapse
|
5
|
Amjadian T, Yaghmaei P, Nasim HR, Yari K. Impact of DNA methylation of the human mesoderm-specific transcript ( MEST) on male infertility. Heliyon 2023; 9:e21099. [PMID: 37928396 PMCID: PMC10622617 DOI: 10.1016/j.heliyon.2023.e21099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 09/11/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023] Open
Abstract
Male infertility accounts for nearly 40%-50% of all infertile cases. One of the most prevalent disorders detected in infertile men is errors in the MEST differentially methylated region (DMR), which has been correlated with poor sperm indexes. The aim of our study was to characterize the methylation pattern of the MEST gene, along with assessing seminal factors and chromatin condensation in sperm samples from both infertile patients and fertile cases, all of whom were candidates for intracytoplasmic sperm injection. We collected forty-five semen specimens from men undergoing routine spermiogram analysis at the Infertility Treatment Center. The specimens consisted of 15 samples of normospermia as the control group, 15 individuals of asthenospermia, and 15 individuals of oligoasthenoteratospermia as the cases group. Standard semen analysis and the chromatin quality and sperm maturity tests using aniline blue staining were performed. The DNA from spermatozoa was extracted and treated with a sodium bisulfite-based procedure. The methylation measure was done quantitatively at the DMRs of the MEST gene by quantitative methylation-specific polymerase chain reaction (qMSP). The mean percentages of total motility, progression, and morphology in normospermia were significantly higher than oligoasthenoteratospermia and asthenospermia, and they were substantially higher in asthenospermia compared to oligoasthenoteratospermia (P ≤ 0.05). The mean percentages of histone transition abnormality and MEST methylation in oligoasthenoteratospermia were significantly higher than asthenospermia and normospermia (P ≤ 0.05). A negative correlation existed between the histone transition abnormality and MEST methylation with sperm parameters. In conclusion, chromatin integrity, sperm maturity, and MEST methylation may be considered important predictors for addressing male factor infertility. Therefore, we suggest that male infertility may be linked to methylation of the imprinted genes.
Collapse
Affiliation(s)
- Tayebeh Amjadian
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Parichehreh Yaghmaei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hayati Roodbari Nasim
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kheirollah Yari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
6
|
Sapehia D, Mahajan A, Singh P, Kaur J. High dietary folate and low vitamin B12 in the parental diet disturbed the epigenetics of imprinted genes MEST and PHLDA2 in mice placenta. J Nutr Biochem 2023; 118:109354. [PMID: 37098363 DOI: 10.1016/j.jnutbio.2023.109354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/25/2023] [Accepted: 04/10/2023] [Indexed: 04/27/2023]
Abstract
To elucidate the dietary effects of vitamin B12 and folic acid on fetal and placental epigenetics, different dietary combinations of folic acid and low vitamin B12 (four groups) were fed to the animals (C57BL/6 mice), and mating was carried out within each group in the F0 generation. After weaning for 3 weeks in the F1 generation one group of mice was continued on the same diet (sustained group) while the other was shifted to a normal diet (transient group) for 6-8 weeks (F1). Mating was carried out again within each group, and on day 20 of gestation, the maternal placenta (F1) and fetal tissues (F2) were isolated. Expression of imprinted genes and various epigenetic mechanisms, including global and gene-specific DNA methylation and post-translational histone modifications, were studied. Evaluation of mRNA levels of MEST and PHLDA2 in placental tissue revealed that their expression is maximally influenced by vitamin B12 deficiency and high folate conditions. The gene expression of MEST and PHLDA2 was found significantly decreased in the F0 generation, with the over-expression of the genes in BDFO dietary groups. These dietary combinations also resulted in DNA methylation changes in both generations, which may not play a role in gene expression regulation. However, altered histone modifications were found to be the major regulatory factor in controlling the expression of genes in the F1 generation. The imbalance of low vitamin B12 and high folate leads to increased levels of activating histone marks, contributing to increased gene expression.
Collapse
Affiliation(s)
- Divika Sapehia
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| | - Aatish Mahajan
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| | - Parampal Singh
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| | - Jyotdeep Kaur
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
7
|
Okada T, McIlfatrick S, Hin N, Aryamanesh N, Breen J, St John JC. Mitochondrial supplementation of Sus scrofa metaphase II oocytes alters DNA methylation and gene expression profiles of blastocysts. Epigenetics Chromatin 2022; 15:12. [PMID: 35428319 PMCID: PMC9013150 DOI: 10.1186/s13072-022-00442-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/03/2022] [Indexed: 12/13/2022] Open
Abstract
Background Mitochondrial DNA (mtDNA) copy number in oocytes correlates with oocyte quality and fertilisation outcome. The introduction of additional copies of mtDNA through mitochondrial supplementation of mtDNA-deficient Sus scrofa oocytes resulted in: (1) improved rates of fertilisation; (2) increased mtDNA copy number in the 2-cell stage embryo; and (3) improved development of the embryo to the blastocyst stage. Furthermore, a subset of genes showed changes in gene expression. However, it is still unknown if mitochondrial supplementation alters global and local DNA methylation patterns during early development. Results We generated a series of embryos in a model animal, Sus scrofa, by intracytoplasmic sperm injection (ICSI) and mitochondrial supplementation in combination with ICSI (mICSI). The DNA methylation status of ICSI- and mICSI-derived blastocysts was analysed by whole genome bisulfite sequencing. At a global level, the additional copies of mtDNA did not affect nuclear DNA methylation profiles of blastocysts, though over 2000 local genomic regions exhibited differential levels of DNA methylation. In terms of the imprinted genes, DNA methylation patterns were conserved in putative imprint control regions; and the gene expression profile of these genes and genes involved in embryonic genome activation were not affected by mitochondrial supplementation. However, 52 genes showed significant differences in expression as demonstrated by RNAseq analysis. The affected gene networks involved haematological system development and function, tissue morphology and cell cycle. Furthermore, seven mtDNA-encoded t-RNAs were downregulated in mICSI-derived blastocysts suggesting that extra copies of mtDNA affected tRNA processing and/or turnover, hence protein synthesis in blastocysts. We also showed a potential association between differentially methylated regions and changes in expression for 55 genes due to mitochondrial supplementation. Conclusions The addition of just an extra ~ 800 copies of mtDNA into oocytes can have a significant impact on both gene expression and DNA methylation profiles in Sus scrofa blastocysts by altering the epigenetic programming established during oogenesis. Some of these changes may affect specific tissue-types later in life. Consequently, it is important to determine the longitudinal effect of these molecular changes on growth and development before considering human clinical practice. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-022-00442-x.
Collapse
Affiliation(s)
- Takashi Okada
- Mitochondrial Genetics Group, Robinson Research Institute, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5000, Australia
| | - Stephen McIlfatrick
- Mitochondrial Genetics Group, Robinson Research Institute, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5000, Australia
| | - Nhi Hin
- South Australian Genomics Centre, South Australian Health and Medical Research Institute, SAHMRI, Adelaide, SA, 5000, Australia
| | - Nader Aryamanesh
- South Australian Genomics Centre, South Australian Health and Medical Research Institute, SAHMRI, Adelaide, SA, 5000, Australia.,Embryology Research Unit, Bioinformatics Group, Children's Medical Research Institute, University of Sydney, Westmead, NSW, 2145, Australia
| | - James Breen
- South Australian Genomics Centre, South Australian Health and Medical Research Institute, SAHMRI, Adelaide, SA, 5000, Australia
| | - Justin C St John
- Mitochondrial Genetics Group, Robinson Research Institute, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5000, Australia.
| |
Collapse
|
8
|
Argyraki M, Damdimopoulou P, Chatzimeletiou K, Grimbizis GF, Tarlatzis BC, Syrrou M, Lambropoulos A. In-utero stress and mode of conception: impact on regulation of imprinted genes, fetal development and future health. Hum Reprod Update 2020; 25:777-801. [PMID: 31633761 DOI: 10.1093/humupd/dmz025] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/04/2019] [Accepted: 07/12/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Genomic imprinting is an epigenetic gene regulatory mechanism; disruption of this process during early embryonic development can have major consequences on both fetal and placental development. The periconceptional period and intrauterine life are crucial for determining long-term susceptibility to diseases. Treatments and procedures in assisted reproductive technologies (ART) and adverse in-utero environments may modify the methylation levels of genomic imprinting regions, including insulin-like growth factor 2 (IGF2)/H19, mesoderm-specific transcript (MEST), and paternally expressed gene 10 (PEG10), affecting the development of the fetus. ART, maternal psychological stress, and gestational exposures to chemicals are common stressors suspected to alter global epigenetic patterns including imprinted genes. OBJECTIVE AND RATIONALE Our objective is to highlight the effect of conception mode and maternal psychological stress on fetal development. Specifically, we monitor fetal programming, regulation of imprinted genes, fetal growth, and long-term disease risk, using the imprinted genes IGF2/H19, MEST, and PEG10 as examples. The possible role of environmental chemicals in genomic imprinting is also discussed. SEARCH METHODS A PubMed search of articles published mostly from 2005 to 2019 was conducted using search terms IGF2/H19, MEST, PEG10, imprinted genes, DNA methylation, gene expression, and imprinting disorders (IDs). Studies focusing on maternal prenatal stress, psychological well-being, environmental chemicals, ART, and placental/fetal development were evaluated and included in this review. OUTCOMES IGF2/H19, MEST, and PEG10 imprinted genes have a broad developmental effect on fetal growth and birth weight variation. Their disruption is linked to pregnancy complications, metabolic disorders, cognitive impairment, and cancer. Adverse early environment has a major impact on the developing fetus, affecting mostly growth, the structure, and subsequent function of the hypothalamic-pituitary-adrenal axis and neurodevelopment. Extensive evidence suggests that the gestational environment has an impact on epigenetic patterns including imprinting, which can lead to adverse long-term outcomes in the offspring. Environmental stressors such as maternal prenatal psychological stress have been found to associate with altered DNA methylation patterns in placenta and to affect fetal development. Studies conducted during the past decades have suggested that ART pregnancies are at a higher risk for a number of complications such as birth defects and IDs. ART procedures involve multiple steps that are conducted during critical windows for imprinting establishment and maintenance, necessitating long-term evaluation of children conceived through ART. Exposure to environmental chemicals can affect placental imprinting and fetal growth both in humans and in experimental animals. Therefore, their role in imprinting should be better elucidated, considering the ubiquitous exposure to these chemicals. WIDER IMPLICATIONS Dysregulation of imprinted genes is a plausible mechanism linking stressors such as maternal psychological stress, conception using ART, and chemical exposures with fetal growth. It is expected that a greater understanding of the role of imprinted genes and their regulation in fetal development will provide insights for clinical prevention and management of growth and IDs. In a broader context, evidence connecting impaired imprinted gene function to common diseases such as cancer is increasing. This implies early regulation of imprinting may enable control of long-term human health, reducing the burden of disease in the population in years to come.
Collapse
Affiliation(s)
- Maria Argyraki
- First Department of Obstetrics and Gynecology, Laboratory of Genetics, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia, 56403 Thessaloniki, Greece
| | - Pauliina Damdimopoulou
- Karolinska Institutet, Department of Clinical Sciences, Intervention and Technology, Unit of Obstetrics and Gynecology, K57 Karolinska University Hospital Huddinge, SE-14186 Stockholm, Sweden
| | - Katerina Chatzimeletiou
- First Department of Obstetrics and Gynecology, Unit for Human Reproduction, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia, 56403 Thessaloniki, Greece
| | - Grigoris F Grimbizis
- First Department of Obstetrics and Gynecology, Unit for Human Reproduction, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia, 56403 Thessaloniki, Greece
| | - Basil C Tarlatzis
- First Department of Obstetrics and Gynecology, Unit for Human Reproduction, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia, 56403 Thessaloniki, Greece
| | - Maria Syrrou
- Department of Biology, Laboratory of Biology, School of Health Sciences, University of Ioannina, Dourouti University Campus, 45110, Ioannina, Greece
| | - Alexandros Lambropoulos
- First Department of Obstetrics and Gynecology, Laboratory of Genetics, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia, 56403 Thessaloniki, Greece
| |
Collapse
|
9
|
Chang S, Bartolomei MS. Modeling human epigenetic disorders in mice: Beckwith-Wiedemann syndrome and Silver-Russell syndrome. Dis Model Mech 2020; 13:dmm044123. [PMID: 32424032 PMCID: PMC7272347 DOI: 10.1242/dmm.044123] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Genomic imprinting, a phenomenon in which the two parental alleles are regulated differently, is observed in mammals, marsupials and a few other species, including seed-bearing plants. Dysregulation of genomic imprinting can cause developmental disorders such as Beckwith-Wiedemann syndrome (BWS) and Silver-Russell syndrome (SRS). In this Review, we discuss (1) how various (epi)genetic lesions lead to the dysregulation of clinically relevant imprinted loci, and (2) how such perturbations may contribute to the developmental defects in BWS and SRS. Given that the regulatory mechanisms of most imprinted clusters are well conserved between mice and humans, numerous mouse models of BWS and SRS have been generated. These mouse models are key to understanding how mutations at imprinted loci result in pathological phenotypes in humans, although there are some limitations. This Review focuses on how the biological findings obtained from innovative mouse models explain the clinical features of BWS and SRS.
Collapse
Affiliation(s)
- Suhee Chang
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marisa S Bartolomei
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
10
|
Potabattula R, Dittrich M, Böck J, Haertle L, Müller T, Hahn T, Schorsch M, Hajj NE, Haaf T. Allele-specific methylation of imprinted genes in fetal cord blood is influenced by cis-acting genetic variants and parental factors. Epigenomics 2018; 10:1315-1326. [PMID: 30238782 PMCID: PMC6240887 DOI: 10.2217/epi-2018-0059] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: To examine the effects of genetic variation, parental age and BMI on parental allele-specific methylation of imprinted genes in fetal cord blood samples. Methodology: We have developed SNP genotyping and deep bisulphite sequencing assays for six imprinted genes to determine parental allele-specific methylation patterns in diploid somatic tissues. Results: Multivariate linear regression analyses revealed a negative correlation of paternal age with paternal MEG3 allele methylation in fetal cord blood. Methylation of the maternal PEG3 allele showed a positive correlation with maternal age. Paternal BMI was positively correlated with paternal MEST allele methylation. In addition to parental origin, allele-specific methylation of most imprinted genes was largely dependent on the underlying SNP haplotype. Conclusion: Our study supports the idea that parental factors can have an impact, although of small effect size, on the epigenome of the next generation, providing an additional layer of complexity to phenotypic diversity.
Collapse
Affiliation(s)
- Ramya Potabattula
- Institute of Human Genetics, Julius Maximilians University, 97074 Würzburg, Germany
| | - Marcus Dittrich
- Institute of Human Genetics, Julius Maximilians University, 97074 Würzburg, Germany.,Department of Bioinformatics, Julius Maximilians University, 97074 Würzburg, Germany
| | - Julia Böck
- Institute of Human Genetics, Julius Maximilians University, 97074 Würzburg, Germany
| | - Larissa Haertle
- Institute of Human Genetics, Julius Maximilians University, 97074 Würzburg, Germany
| | - Tobias Müller
- Department of Bioinformatics, Julius Maximilians University, 97074 Würzburg, Germany
| | | | | | - Nady El Hajj
- Institute of Human Genetics, Julius Maximilians University, 97074 Würzburg, Germany
| | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University, 97074 Würzburg, Germany
| |
Collapse
|
11
|
Nakamura A, Muroya K, Ogata-Kawata H, Nakabayashi K, Matsubara K, Ogata T, Kurosawa K, Fukami M, Kagami M. A case of paternal uniparental isodisomy for chromosome 7 associated with overgrowth. J Med Genet 2018; 55:567-570. [DOI: 10.1136/jmedgenet-2017-104986] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/26/2018] [Accepted: 02/05/2018] [Indexed: 12/31/2022]
Abstract
BackgroundPaternal uniparental disomy for chromosome 7 (upd(7)pat) is extremely rare, and only four cases have been previously reported. As these cases were accompanied by autosomal-recessive disorders which are likely to be involved in growth restriction, the relevance of upd(7)pat to the overgrowth phenotype remains unclear. Here we describe one case of upd(7)pat with no additional genetic diseases, which may answer the question.MethodsA 5-year-old Japanese boy presented with a tall stature of unknown causes. To detect the genetic cause of the tall stature, we performed Sanger sequencing, targeted resequencing, comparative genomic hybridisation and single-nucleotide polymorphism (SNP) array analyses, methylation analysis and microsatellite analysis.ResultsWe could not detect pathogenic variants in causative genes for overgrowth syndrome or apparent copy number alterations. DNA methylation analysis revealed hypomethylation at the GRB10, PEG1 and PEG10 differentially methylated regions. SNP array and microsatellite analyses suggested paternal uniparental isodisomy for chromosome 7. Furthermore, we could not identify homozygous mutations of known causative genes for inherited disorders on chromosome 7.ConclusionWe report the first case of upd(7)pat with an overgrowth phenotype.
Collapse
|
12
|
Minchenko OH, Tsymbal DO, Minchenko DO, Kubaychuk OO. Hypoxic regulation of MYBL1, MEST, TCF3, TCF8, GTF2B, GTF2F2 and SNAI2 genes expression in U87 glioma cells upon IRE1 inhibition. UKRAINIAN BIOCHEMICAL JOURNAL 2018; 88:52-62. [PMID: 29235836 DOI: 10.15407/ubj88.06.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We investigated the impact of IRE1/ERN1 (inositol requiring enzyme 1/endoplasmic reticulum to nucleus signaling 1) knockdown on hypoxic regulation of the expression of a subset of proliferation and migration-related genes in U87 glioma cells. It was shown that hypoxia leads to up-regulation of the expression of MEST and SNAI2, to down-regulation – of MYBL1, TCF8 and GTF2F2 genes at the mRNA level in control glioma cells. At the same time hypoxia did not affect the expression of TCF3 and GTF2B transcription factor genes. In turn, inhibition of IRE1 modified the effect of hypoxia on the expression of all studied genes, except MYBL1 and GTF2B. For instance, IRE1 knockdown decreased sensitivity to hypoxia of the expression of MEST, TCF8 and SNAI2 genes and increased sensitivity to hypoxia of GTF2F2 expression. At the same time, IRE1 inhibition introduced sensitivity to hypoxia of the expression of TCF3 gene in glioma cells. The present study demonstrated that the inhibition of IRE1 in glioma cells affected the hypoxic regulation of the expression of studied genes in various directions, though hypoxic conditions did not abolish the effect of IRE1 inhibition on the expression of respective genes. To the contrary, in case of SNAI2, GTF2F2 and MEST hypoxic conditions magnified the effect of IRE1 inhibition on the expression of respective genes in glioma cells.
Collapse
|
13
|
Wang X, Wan L, Weng X, Xie J, Zhang A, Liu Y, Dong M. Alteration in methylation level at differential methylated regions of MEST and DLK1 in fetus of preeclampsia. Hypertens Pregnancy 2017; 37:1-8. [PMID: 29157033 DOI: 10.1080/10641955.2017.1397689] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Offspring born to preeclamptic women are at high risk for metabolic diseases in later life, but the mechanisms are not known. The purposes of the current investigation were to clarify the changes in DNA methylation at MEST and DLK1 DMRs in fetus of preeclampsia and to explore the possible mechanisms behind the high risk of adult diseases in the offspring of preeclampsia. METHODS Fetal lymphocytes were isolated from umbilical cord blood of 78 women with preeclampsia and 95 women with normal pregnancy. Genomic DNA was extracted and then DNA methylation levels of MEST and DLK1 DMRs were determined by MassARRAY quantitative methylation analysis. RESULTS The methylation levels were detected in 20 CpG sites of MEST DMR and 16 sites of DLK1 DMR. Methylation changes were significantly different at CPG1, 3, 4, 7.8, 15, 18.19, and 20 of MEST between preeclampsia and normal pregnancy (P = 0.014, 0.001, <0.001, <0.001, = 0.001, = 0.005, and = 0.003, respectively). Significant differences were also observed at CPG 3 and 9 of DLK1 (P = 0.002 and 0.027, respectively). However, overall methylation at these DMRs were not affected. CONCLUSION We conclude methylation changes at some CpG sites of MEST and DLK DMRs in preeclamptic group. This may be among the mechanisms behind the high risk of adult diseases in the later life of offspring born to preeclamptic pregnancies. ABBREVIATIONS DMR: Differentially Methylated Region; MEST: Mesoderm Specific Transcript.
Collapse
Affiliation(s)
- Xiaoqing Wang
- a Women's Hospital, School of Medicine , Zhejiang University.,b Ningbo Women and Children's Hospital , Ningbo , China
| | - Liuxia Wan
- a Women's Hospital, School of Medicine , Zhejiang University
| | - Xiaoling Weng
- a Women's Hospital, School of Medicine , Zhejiang University
| | - Jiamin Xie
- a Women's Hospital, School of Medicine , Zhejiang University
| | - Aiping Zhang
- c Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University , Shanghai , China
| | - Yun Liu
- d Department of Biochemistry and Molecular Biology , Fudan University Shanghai Medical College , Shanghai , China.,e Department of Biochemistry and Molecular Biology , Key Laboratory of Molecular Medicine, The Ministry of Education, Fudan University Shanghai Medical College
| | - Minyue Dong
- a Women's Hospital, School of Medicine , Zhejiang University
| |
Collapse
|
14
|
Su J, Wang J, Fan X, Fu C, Zhang S, Zhang Y, Qin Z, Li H, Luo J, Li C, Jiang T, Shen Y. Mosaic UPD(7q)mat in a patient with silver Russell syndrome. Mol Cytogenet 2017; 10:36. [PMID: 29075327 PMCID: PMC5645907 DOI: 10.1186/s13039-017-0337-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 10/12/2017] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Silver-Russell syndrome (SRS) is one of the imprinting disorders characterized by prenatal and postnatal growth restriction, relative macrocephaly, body asymmetry and characteristic facial features. ~ 10% of SRS cases are known to be associated with maternal uniparental disomy of chromosome 7 (UPD(7)mat). Mosaic maternal segmental UPD of 7q (UPD(7q)mat) is very rare, had only been described in one case before. CASE PRESENTATION We reported a second case of mosaic segmental UPD involving 7q. The patient presented with dysmorphic features including thin and short stature, triangular face, moderate protruding forehead, relative macrocephaly, fifth toe clinodactyly and irregular teeth, meeting the clinical diagnosed criteria of SRS. This case indicated that ~ 80% of mosaic UPD(7q)mat lead to the manifestation of main phenotypes of Silver-Russell syndrome. CONCLUSIONS Our case support the notion that there are genes control postnatal growth on long arm of chromosome 7 and indicate that ~ 80% of UPD(7q)mat mosaicism level was contributed to the SRS phenotype.
Collapse
Affiliation(s)
- Jiasun Su
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, Guangxi Birth Defects Prevention and Control Institute, No 59, Xiangzhu Road, Nanning, China
| | - Jin Wang
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, Guangxi Birth Defects Prevention and Control Institute, No 59, Xiangzhu Road, Nanning, China
| | - Xin Fan
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, Guangxi Birth Defects Prevention and Control Institute, No 59, Xiangzhu Road, Nanning, China
| | - Chunyun Fu
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, Guangxi Birth Defects Prevention and Control Institute, No 59, Xiangzhu Road, Nanning, China
| | - ShuJie Zhang
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, Guangxi Birth Defects Prevention and Control Institute, No 59, Xiangzhu Road, Nanning, China
| | - Yue Zhang
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, Guangxi Birth Defects Prevention and Control Institute, No 59, Xiangzhu Road, Nanning, China
| | - Zailong Qin
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, Guangxi Birth Defects Prevention and Control Institute, No 59, Xiangzhu Road, Nanning, China
| | - Hongdou Li
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, Guangxi Birth Defects Prevention and Control Institute, No 59, Xiangzhu Road, Nanning, China
| | - Jingsi Luo
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, Guangxi Birth Defects Prevention and Control Institute, No 59, Xiangzhu Road, Nanning, China
| | - Chuan Li
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, Guangxi Birth Defects Prevention and Control Institute, No 59, Xiangzhu Road, Nanning, China
| | - Tingting Jiang
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, Guangxi Birth Defects Prevention and Control Institute, No 59, Xiangzhu Road, Nanning, China
| | - Yiping Shen
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, Guangxi Birth Defects Prevention and Control Institute, No 59, Xiangzhu Road, Nanning, China.,Department of Laboratory Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115 USA
| |
Collapse
|
15
|
Haertle L, Maierhofer A, Böck J, Lehnen H, Böttcher Y, Blüher M, Schorsch M, Potabattula R, El Hajj N, Appenzeller S, Haaf T. Hypermethylation of the non-imprinted maternal MEG3 and paternal MEST alleles is highly variable among normal individuals. PLoS One 2017; 12:e0184030. [PMID: 28854270 PMCID: PMC5576652 DOI: 10.1371/journal.pone.0184030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/16/2017] [Indexed: 01/09/2023] Open
Abstract
Imprinted genes show parent-specific activity (functional haploidy), which makes them particularly vulnerable to epigenetic dysregulation. Here we studied the methylation profiles of oppositely imprinted genes at single DNA molecule resolution by two independent parental allele-specific deep bisulfite sequencing (DBS) techniques. Using Roche (GSJunior) next generation sequencing technology, we analyzed the maternally imprinted MEST promoter and the paternally imprinted MEG3 intergenic (IG) differentially methylated region (DMR) in fetal cord blood, adult blood, and visceral adipose tissue. Epimutations were defined as paternal or maternal alleles with >50% aberrantly (de)methylated CpG sites, showing the wrong methylation imprint. The epimutation rates (range 2–66%) of the paternal MEST and the maternal MEG3 IG DMR allele, which should be completely unmethylated, were significantly higher than those (0–15%) of the maternal MEST and paternal MEG3 alleles, which are expected to be fully methylated. This hypermethylation of the non-imprinted allele (HNA) was independent of parental origin. Very low epimutation rates in sperm suggest that HNA occurred after fertilization. DBS with Illumina (MiSeq) technology confirmed HNA for the MEST promoter and the MEG3 IG DMR, and to a lesser extent, for the paternally imprinted secondary MEG3 promoter and the maternally imprinted PEG3 promoter. HNA leads to biallelic methylation of imprinted genes in a considerable proportion of normal body cells (somatic mosaicism) and is highly variable between individuals. We propose that during development and differentiation maintenance of differential methylation at most imprinting control regions may become to some extent redundant. The accumulation of stochastic and environmentally-induced methylation errors on the non-imprinted allele may increase epigenetic diversity between cells and individuals.
Collapse
Affiliation(s)
- Larissa Haertle
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Anna Maierhofer
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Julia Böck
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Harald Lehnen
- Department of Gynecology and Obstetrics, Municipal Clinics, Mönchengladbach, Germany
| | - Yvonne Böttcher
- Integrated Research and Treatment Center (IFB) Adiposity Diseases, Leipzig, Germany
- Institute of Clinical Medicine, University of Oslo, Lørenskog, Norway
| | - Matthias Blüher
- Integrated Research and Treatment Center (IFB) Adiposity Diseases, Leipzig, Germany
| | | | - Ramya Potabattula
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Nady El Hajj
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Silke Appenzeller
- Core Unit Systems Medicine, Julius Maximilians University, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, Julius Maximilians University, Würzburg, Germany
| | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
- * E-mail:
| |
Collapse
|
16
|
Velker BAM, Denomme MM, Krafty RT, Mann MRW. Maintenance of Mest imprinted methylation in blastocyst-stage mouse embryos is less stable than other imprinted loci following superovulation or embryo culture. ENVIRONMENTAL EPIGENETICS 2017; 3:dvx015. [PMID: 29492315 PMCID: PMC5804554 DOI: 10.1093/eep/dvx015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/07/2017] [Accepted: 07/19/2017] [Indexed: 06/08/2023]
Abstract
Assisted reproductive technologies are fertility treatments used by subfertile couples to conceive their biological child. Although generally considered safe, these pregnancies have been linked to genomic imprinting disorders, including Beckwith-Wiedemann and Silver-Russell Syndromes. Silver-Russell Syndrome is a growth disorder characterized by pre- and post-natal growth retardation. The Mest imprinted domain is one candidate region on chromosome 7 implicated in Silver-Russell Syndrome. We have previously shown that maintenance of imprinted methylation was disrupted by superovulation or embryo culture during pre-implantation mouse development. For superovulation, this disruption did not originate in oogenesis as a methylation acquisition defect. However, in comparison to other genes, Mest exhibits late methylation acquisition kinetics, possibly making Mest more vulnerable to perturbation by environmental insult. In this study, we present a comprehensive evaluation of the effects of superovulation and in vitro culture on genomic imprinting at the Mest gene. Superovulation resulted in disruption of imprinted methylation at the maternal Mest allele in blastocysts with an equal frequency of embryos having methylation errors following low or high hormone treatment. This disruption was not due to a failure of imprinted methylation acquisition at Mest in oocytes. For cultured embryos, both the Fast and Slow culture groups experienced a significant loss of maternal Mest methylation compared to in vivo-derived controls. This loss of methylation was independent of development rates in culture. These results indicate that Mest is more susceptible to imprinted methylation maintenance errors compared to other imprinted genes.
Collapse
Affiliation(s)
- Brenna A. M. Velker
- Department of Obstetrics & Gynecology, University of Western Ontario, Schulich School of Medicine and Dentistry, London, ON, Canada
- Department of Biochemistry, University of Western Ontario, Schulich School of Medicine and Dentistry, London, ON, Canada
- Children’s Health Research Institute, London, ON, Canada
| | - Michelle M. Denomme
- Department of Obstetrics & Gynecology, University of Western Ontario, Schulich School of Medicine and Dentistry, London, ON, Canada
- Department of Biochemistry, University of Western Ontario, Schulich School of Medicine and Dentistry, London, ON, Canada
- Children’s Health Research Institute, London, ON, Canada
- Fertility Laboratories Of Colorado, 10290 Ridgegate Circle, Lonetree, CO 80124 USA
| | - Robert T. Krafty
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mellissa R. W. Mann
- Magee-Womens Research Institute, Pittsburgh, PA, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
17
|
Ji L, Bishayee K, Sadra A, Choi S, Choi W, Moon S, Jho EH, Huh SO. Defective neuronal migration and inhibition of bipolar to multipolar transition of migrating neural cells by Mesoderm-Specific Transcript, Mest, in the developing mouse neocortex. Neuroscience 2017; 355:126-140. [PMID: 28501506 DOI: 10.1016/j.neuroscience.2017.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 05/02/2017] [Accepted: 05/02/2017] [Indexed: 12/22/2022]
Abstract
Brain developmental disorders such as lissencephaly can result from faulty neuronal migration and differentiation during the formation of the mammalian neocortex. The cerebral cortex is a modular structure, where developmentally, newborn neurons are generated as a neuro-epithelial sheet and subsequently differentiate, migrate and organize into their final positions in the cerebral cortical plate via a process involving both tangential and radial migration. The specific role of Mest, an imprinted gene, in neuronal migration has not been previously studied. In this work, we reduced expression of Mest with in utero electroporation of neuronal progenitors in the developing embryonic mouse neocortex. Reduction of Mest levels by shRNA significantly reduced the number of neurons migrating to the cortical plate. Also, Mest-knockdown disrupted the transition of bipolar neurons into multipolar neurons migrating out of the sub-ventricular zone region. The migrating neurons also adopted a more tangential migration pattern upon knockdown of the Mest message, losing their potential to attach to radial glia cells, required for radial migration. The differentiation and migration properties of neurons via Wnt-Akt signaling were affected by Mest changes. In addition, miR-335, encoded in a Mest gene intron, was identified as being responsible for blocking the default tangential migration of the neurons. Our results suggest that Mest and its intron product, miR-335, play important roles in neuronal migration with Mest regulating the morphological transition of primary neurons required in the formation of the mammalian neocortex.
Collapse
Affiliation(s)
- Liting Ji
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon, Gangwon-do, South Korea
| | - Kausik Bishayee
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon, Gangwon-do, South Korea
| | - Ali Sadra
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon, Gangwon-do, South Korea
| | - Seunghyuk Choi
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon, Gangwon-do, South Korea
| | - Wooyul Choi
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon, Gangwon-do, South Korea
| | - Sungho Moon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Eek-Hoon Jho
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Sung-Oh Huh
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon, Gangwon-do, South Korea.
| |
Collapse
|
18
|
Stevens AJ, Kennedy MA. Structural Analysis of G-Quadruplex Formation at the Human MEST Promoter. PLoS One 2017; 12:e0169433. [PMID: 28052120 PMCID: PMC5214457 DOI: 10.1371/journal.pone.0169433] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 12/01/2016] [Indexed: 11/22/2022] Open
Abstract
The promoter region of the imprinted gene MEST contains several motifs capable of forming G-quadruplex (G4) structures, which appear to contribute to consistent allelic dropout during polymerase chain reaction (PCR) analysis of this region. Here, we extend our previous analysis of MEST G4 structures by applying fluorescent footprinting techniques to assess non B-DNA structure and topology in dsDNA from the full MEST promoter region, under conditions that mimic PCR. We demonstrate that the buffer used for PCR provides an extremely favourable milieu for G4 formation, and that cytosine methylation helps maintain G4 structures during PCR. Additionally, we demonstrate G4 formation at motifs not previously identified through bioinformatic analysis of the MEST promoter, and provide nucleotide level resolution for topological reconstruction of these structures. These observations increase our understanding of the mechanisms through which methylation and G4 contribute towards allelic drop-out during PCR.
Collapse
Affiliation(s)
- Aaron J. Stevens
- Department of Pathology, School of Medicine, University of Otago, Christchurch, New Zealand
- * E-mail:
| | - Martin A. Kennedy
- Department of Pathology, School of Medicine, University of Otago, Christchurch, New Zealand
| |
Collapse
|
19
|
Cui X, Jing X, Wu X, Yan M, Li Q, Shen Y, Wang Z. DNA methylation in spermatogenesis and male infertility. Exp Ther Med 2016; 12:1973-1979. [PMID: 27698683 DOI: 10.3892/etm.2016.3569] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/06/2016] [Indexed: 12/12/2022] Open
Abstract
Infertility is a significant problem for human reproduction, with males and females equally affected. However, the molecular mechanisms underlying male infertility remain unclear. Spermatogenesis is a highly complex process involving mitotic cell division, meiosis cell division and spermiogenesis; during this period, unique and extensive chromatin and epigenetic modifications occur to bring about specific epigenetic profiles in spermatozoa. It has recently been suggested that the dysregulation of epigenetic modifications, in particular the methylation of sperm genomic DNA, may serve an important role in the development of numerous diseases. The present study is a comprehensive review on the topic of male infertility, aiming to elucidate the association between sperm genomic DNA methylation and poor semen quality in male infertility. In addition, the current status of the genetic and epigenetic determinants of spermatogenesis in humans is discussed.
Collapse
Affiliation(s)
- Xiangrong Cui
- Reproductive Medicine Center, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, Shanxi 030000, P.R. China; Division of Clinical Microbiology The Center Hospital of Linfen, Linfen, Shanxi 041000, P.R. China
| | - Xuan Jing
- Clinical Laboratory, Shanxi Province People's Hospital, Taiyuan, Shanxi 030001, P.R. China
| | - Xueqing Wu
- Reproductive Medicine Center, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, Shanxi 030000, P.R. China
| | - Meiqin Yan
- Reproductive Medicine Center, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, Shanxi 030000, P.R. China
| | - Qiang Li
- Reproductive Medicine Center, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, Shanxi 030000, P.R. China
| | - Yan Shen
- Reproductive Medicine Center, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, Shanxi 030000, P.R. China
| | - Zhenqiang Wang
- Reproductive Medicine Center, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, Shanxi 030000, P.R. China
| |
Collapse
|
20
|
Qian YY, Huang XL, Liang H, Zhang ZF, Xu JH, Chen JP, Yuan W, He L, Wang L, Miao MH, Du J, Li DK. Effects of maternal folic acid supplementation on gene methylation and being small for gestational age. J Hum Nutr Diet 2016; 29:643-51. [PMID: 27230729 DOI: 10.1111/jhn.12369] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Being small for gestational age (SGA), a foetal growth abnormality, has a long-lasting impact on childhood health. Its aetiology and underlying mechanisms are not well understood. Underlying epigenetic changes of imprinted genes have emerged as a potential pathological pathway because they may be associated with growth, including SGA. As a common methyl donor, folic acid (FA) is essential for DNA methylation, synthesis and repair, and FA supplementation is widely recommended for women planning pregnancy. The present study aimed to investigate the inter-relationships among methylation levels of two imprinted genes [H19 differentially methylated regions (DMRs) and MEST DMRs], maternal FA supplementation and SGA. METHODS We conducted a case-control study. Umbilical cord blood was taken from 39 SGA infants and 49 controls whose birth weights are appropriate for gestational age (AGA). DNA methylation levels of H19 and MEST DMRs were determined by an analysis of mass array quantitative methylation. RESULTS Statistically significantly higher methylation levels were observed at sites 7.8, 9 and 17.18 of H19 (P = 0.030, 0.016 and 0.050, respectively) in the SGA infants compared to the AGA group. In addition, the association was stronger in male births where the mothers took FA around conception at six H19 sites (P = 0.004, 0.005, 0.048, 0.002, 0.021 and 0.005, respectively). CONCLUSIONS Methylation levels at H19 DMRs were higher in SGA infants compared to AGA controls. It appears that the association may be influenced by maternal peri-conception FA supplementation and also be sex-specific.
Collapse
Affiliation(s)
- Y-Y Qian
- Shanghai Medical College of Fudan University, Shanghai, China.,Key Lab. of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, China
| | - X-L Huang
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - H Liang
- Key Lab. of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, China
| | - Z-F Zhang
- Key Lab. of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, China
| | - J-H Xu
- Key Lab. of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, China
| | - J-P Chen
- Key Lab. of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, China
| | - W Yuan
- Key Lab. of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, China
| | - L He
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - L Wang
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - M-H Miao
- Key Lab. of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, China.
| | - J Du
- Key Lab. of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, China.
| | - D-K Li
- Division of Research, Kaiser Permanente, Oakland, CA, USA
| |
Collapse
|
21
|
Stevens AJ, Stuffrein-Roberts S, Cree SL, Gibb A, Miller AL, Doudney K, Aitchison A, Eccles MR, Joyce PR, Filichev VV, Kennedy MA. G-quadruplex structures and CpG methylation cause drop-out of the maternal allele in polymerase chain reaction amplification of the imprinted MEST gene promoter. PLoS One 2014; 9:e113955. [PMID: 25437198 PMCID: PMC4249981 DOI: 10.1371/journal.pone.0113955] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 10/31/2014] [Indexed: 12/03/2022] Open
Abstract
We observed apparent non-Mendelian behaviour of alleles when genotyping a region in a CpG island at the 5′ end of the maternally imprinted human MEST isoform. This region contains three single nucleotide polymorphisms (SNPs) in total linkage disequilibrium, such that only two haplotypes occur in the human population. Only one haplotype was detectable in each subject, never both, despite the use of multiple primers and several genotyping methods. We observed that this region contains motifs capable of forming several G-quadruplex structures. Circular dichroism spectroscopy and native polyacrylamide gel electrophoresis confirmed that at least three G-quadruplexes form in vitro in the presence of potassium ions, and one of these structures has a Tm of greater than 99°C in polymerase chain reaction (PCR) buffer. We demonstrate that it is the methylated maternal allele that is always lost during PCR amplification, and that formation of G-quadruplexes and presence of methylated cytosines both contributed to this phenomenon. This observed parent-of-origin specific allelic drop-out has important implications for analysis of imprinted genes in research and diagnostic settings.
Collapse
Affiliation(s)
- Aaron J. Stevens
- Department of Pathology, University of Otago, Christchurch 8140, New Zealand
| | | | - Simone L. Cree
- Department of Pathology, University of Otago, Christchurch 8140, New Zealand
| | - Andrew Gibb
- Department of Pathology, University of Otago, Christchurch 8140, New Zealand
| | - Allison L. Miller
- Department of Pathology, University of Otago, Christchurch 8140, New Zealand
| | - Kit Doudney
- Department of Pathology, University of Otago, Christchurch 8140, New Zealand
| | - Alan Aitchison
- Department of Pathology, University of Otago, Christchurch 8140, New Zealand
| | - Michael R. Eccles
- Department of Pathology, University of Otago, Dunedin School of Medicine, Dunedin, New Zealand
| | - Peter R. Joyce
- Department of Psychological Medicine, University of Otago, Christchurch 8140, New Zealand
| | | | - Martin A. Kennedy
- Department of Pathology, University of Otago, Christchurch 8140, New Zealand
- * E-mail:
| |
Collapse
|
22
|
Bonora E, Graziano C, Minopoli F, Bacchelli E, Magini P, Diquigiovanni C, Lomartire S, Bianco F, Vargiolu M, Parchi P, Marasco E, Mantovani V, Rampoldi L, Trudu M, Parmeggiani A, Battaglia A, Mazzone L, Tortora G, Maestrini E, Seri M, Romeo G. Maternally inherited genetic variants of CADPS2 are present in autism spectrum disorders and intellectual disability patients. EMBO Mol Med 2014; 6:795-809. [PMID: 24737869 PMCID: PMC4203356 DOI: 10.1002/emmm.201303235] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Intellectual disability (ID) and autism spectrum disorders (ASDs) are complex neuropsychiatric conditions, with overlapping clinical boundaries in many patients. We identified a novel intragenic deletion of maternal origin in two siblings with mild ID and epilepsy in the CADPS2 gene, encoding for a synaptic protein involved in neurotrophin release and interaction with dopamine receptor type 2 (D2DR). Mutation screening of 223 additional patients (187 with ASD and 36 with ID) identified a missense change of maternal origin disrupting CADPS2/D2DR interaction. CADPS2 allelic expression was tested in blood and different adult human brain regions, revealing that the gene was monoallelically expressed in blood and amygdala, and the expressed allele was the one of maternal origin. Cadps2 gene expression performed in mice at different developmental stages was biallelic in the postnatal and adult stages; however, a monoallelic (maternal) expression was detected in the embryonal stage, suggesting that CADPS2 is subjected to tissue- and temporal-specific regulation in human and mice. We suggest that CADPS2 variants may contribute to ID/ASD development, possibly through a parent-of-origin effect.
Collapse
Affiliation(s)
- Elena Bonora
- Unit of Medical Genetics, Department of Medical and Surgical Sciences, S. Orsola-Malpighi Hospital University of Bologna, Bologna, Italy
| | - Claudio Graziano
- Unit of Medical Genetics, Department of Medical and Surgical Sciences, S. Orsola-Malpighi Hospital University of Bologna, Bologna, Italy
| | - Fiorella Minopoli
- Unit of Medical Genetics, Department of Medical and Surgical Sciences, S. Orsola-Malpighi Hospital University of Bologna, Bologna, Italy Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Elena Bacchelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Pamela Magini
- Unit of Medical Genetics, Department of Medical and Surgical Sciences, S. Orsola-Malpighi Hospital University of Bologna, Bologna, Italy
| | - Chiara Diquigiovanni
- Unit of Medical Genetics, Department of Medical and Surgical Sciences, S. Orsola-Malpighi Hospital University of Bologna, Bologna, Italy
| | - Silvia Lomartire
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Francesca Bianco
- Unit of Medical Genetics, Department of Medical and Surgical Sciences, S. Orsola-Malpighi Hospital University of Bologna, Bologna, Italy
| | - Manuela Vargiolu
- Unit of Medical Genetics, Department of Medical and Surgical Sciences, S. Orsola-Malpighi Hospital University of Bologna, Bologna, Italy
| | - Piero Parchi
- Department of Neurology, University of Bologna, Bologna, Italy
| | | | - Vilma Mantovani
- Unit of Medical Genetics, Department of Medical and Surgical Sciences, S. Orsola-Malpighi Hospital University of Bologna, Bologna, Italy CRBA, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Luca Rampoldi
- Molecular Genetics of Renal Disorders Unit, Division of Genetics and Cell Biology San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Trudu
- Molecular Genetics of Renal Disorders Unit, Division of Genetics and Cell Biology San Raffaele Scientific Institute, Milan, Italy
| | | | - Agatino Battaglia
- Stella Maris Clinical Research Institute for Child and Adolescent Neurology and Psychiatry, Calambrone (Pisa), Italy
| | - Luigi Mazzone
- Unit of Child Neuropsychiatry, IRCCS Ospedale Pediatrico Bambino Gesù, Roma, Italy
| | - Giada Tortora
- Unit of Medical Genetics, Department of Medical and Surgical Sciences, S. Orsola-Malpighi Hospital University of Bologna, Bologna, Italy
| | | | - Elena Maestrini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Marco Seri
- Unit of Medical Genetics, Department of Medical and Surgical Sciences, S. Orsola-Malpighi Hospital University of Bologna, Bologna, Italy
| | - Giovanni Romeo
- Unit of Medical Genetics, Department of Medical and Surgical Sciences, S. Orsola-Malpighi Hospital University of Bologna, Bologna, Italy
| |
Collapse
|
23
|
Hannula-Jouppi K, Muurinen M, Lipsanen-Nyman M, Reinius LE, Ezer S, Greco D, Kere J. Differentially methylated regions in maternal and paternal uniparental disomy for chromosome 7. Epigenetics 2013; 9:351-65. [PMID: 24247273 PMCID: PMC4053454 DOI: 10.4161/epi.27160] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
DNA methylation is a hallmark of genomic imprinting and differentially methylated regions (DMRs) are found near and in imprinted genes. Imprinted genes are expressed only from the maternal or paternal allele and their normal balance can be disrupted by uniparental disomy (UPD), the inheritance of both chromosomes of a chromosome pair exclusively from only either the mother or the father. Maternal UPD for chromosome 7 (matUPD7) results in Silver-Russell syndrome (SRS) with typical features and growth retardation, but no gene has been conclusively implicated in SRS. In order to identify novel DMRs and putative imprinted genes on chromosome 7, we analyzed eight matUPD7 patients, a segmental matUPD7q31-qter, a rare patUPD7 case and ten controls on the Infinium HumanMethylation450K BeadChip with 30 017 CpG methylation probes for chromosome 7. Genome-scale analysis showed highly significant clustering of DMRs only on chromosome 7, including the known imprinted loci GRB10, SGCE/PEG10, and PEG/MEST. We found ten novel DMRs on chromosome 7, two DMRs for the predicted imprinted genes HOXA4 and GLI3 and one for the disputed imprinted gene PON1. Quantitative RT-PCR on blood RNA samples comparing matUPD7, patUPD7, and controls showed differential expression for three genes with novel DMRs, HOXA4, GLI3, and SVOPL. Allele specific expression analysis confirmed maternal only expression of SVOPL and imprinting of HOXA4 was supported by monoallelic expression. These results present the first comprehensive map of parent-of-origin specific DMRs on human chromosome 7, suggesting many new imprinted sites.
Collapse
Affiliation(s)
- Katariina Hannula-Jouppi
- Department of Medical Genetics; Haartman Institute; Molecular Neurology Program; Research Program's Unit; Folkhälsan Institute of Genetics; University of Helsinki; Helsinki, Finland; Department of Dermatology and Allergology; Skin and Allergy Hospital; Helsinki University Central Hospital; Helsinki University Hospital; Helsinki, Finland
| | - Mari Muurinen
- Department of Medical Genetics; Haartman Institute; Molecular Neurology Program; Research Program's Unit; Folkhälsan Institute of Genetics; University of Helsinki; Helsinki, Finland
| | - Marita Lipsanen-Nyman
- Children's Hospital; University of Helsinki and Helsinki University Central Hospital; Helsinki University Hospital; Helsinki, Finland
| | - Lovisa E Reinius
- Department of Biosciences and Nutrition; Center for Biosciences; Karolinska Institutet; Stockholm, Sweden
| | - Sini Ezer
- Department of Medical Genetics; Haartman Institute; Molecular Neurology Program; Research Program's Unit; Folkhälsan Institute of Genetics; University of Helsinki; Helsinki, Finland
| | - Dario Greco
- Department of Medical Genetics; Haartman Institute; Molecular Neurology Program; Research Program's Unit; Folkhälsan Institute of Genetics; University of Helsinki; Helsinki, Finland; Department of Biosciences and Nutrition; Center for Biosciences; Karolinska Institutet; Stockholm, Sweden; Unit of Systems Toxicology; Finnish Institute of Occupational Health (FIOH); Helsinki, Finland
| | - Juha Kere
- Department of Medical Genetics; Haartman Institute; Molecular Neurology Program; Research Program's Unit; Folkhälsan Institute of Genetics; University of Helsinki; Helsinki, Finland; Department of Biosciences and Nutrition; Center for Biosciences; Karolinska Institutet; Stockholm, Sweden; Science for Life Laboratory; Karolinska Institutet; Solna, Sweden
| |
Collapse
|
24
|
Das R, Lee YK, Strogantsev R, Jin S, Lim YC, Ng PY, Lin XM, Chng K, Yeo GSH, Ferguson-Smith AC, Ding C. DNMT1 and AIM1 Imprinting in human placenta revealed through a genome-wide screen for allele-specific DNA methylation. BMC Genomics 2013; 14:685. [PMID: 24094292 PMCID: PMC3829101 DOI: 10.1186/1471-2164-14-685] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 09/25/2013] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Genomic imprinting is an epigenetically regulated process wherein genes are expressed in a parent-of-origin specific manner. Many imprinted genes were initially identified in mice; some of these were subsequently shown not to be imprinted in humans. Such discrepancy reflects developmental, morphological and physiological differences between mouse and human tissues. This is particularly relevant for the placenta. Study of genomic imprinting thus needs to be carried out in a species and developmental stage-specific manner. We describe here a new strategy to study allele-specific DNA methylation in the human placenta for the discovery of novel imprinted genes. RESULTS Using this methodology, we confirmed 16 differentially methylated regions (DMRs) associated with known imprinted genes. We chose 28 genomic regions for further testing and identified two imprinted genes (DNMT1 and AIM1). Both genes showed maternal allele-specific methylation and paternal allele-specific transcription. Imprinted expression for AIM1 was conserved in the cynomolgus macaque placenta, but not in other macaque tissues or in the mouse. CONCLUSIONS Our study indicates that while there are many genomic regions with allele-specific methylation in tissues like the placenta, only a small sub-set of them are associated with allele-specific transcription, suggesting alternative functions for such genomic regions. Nonetheless, novel tissue-specific imprinted genes remain to be discovered in humans. Their identification may help us better understand embryonic and fetal development.
Collapse
Affiliation(s)
- Radhika Das
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yew Kok Lee
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Ruslan Strogantsev
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Shengnan Jin
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yen Ching Lim
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Poh Yong Ng
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Xueqin Michelle Lin
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Keefe Chng
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - George SH Yeo
- Department of Maternal Fetal Medicine, K.K. Women’s and Children’s Hospital, Singapore, Singapore
| | - Anne C Ferguson-Smith
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Chunming Ding
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
25
|
Vidal AC, Henry NM, Murphy SK, Oneko O, Nye M, Bartlett JA, Overcash F, Huang Z, Wang F, Mlay P, Obure J, Smith J, Vasquez B, Swai B, Hernandez B, Hoyo C. PEG1/MEST and IGF2 DNA methylation in CIN and in cervical cancer. Clin Transl Oncol 2013; 16:266-72. [PMID: 23775149 PMCID: PMC3924020 DOI: 10.1007/s12094-013-1067-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/04/2013] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Although most invasive cervical cancer (ICC) harbor <20 human papillomavirus (HPV) genotypes, use of HPV screening to predict ICC from HPV has low specificity, resulting in multiple and costly follow-up visits and overtreatment. We examined DNA methylation at regulatory regions of imprinted genes in relation to ICC and its precursor lesions to determine if methylation profiles are associated with progression of HPV-positive lesions to ICC. MATERIALS AND METHODS We enrolled 148 controls, 38 CIN and 48 ICC cases at Kilimanjaro Christian Medical Centre from 2008 to 2009. HPV was genotyped by linear array and HIV-1 serostatus was tested by two rapid HIV tests. DNA methylation was measured by bisulfite pyrosequencing at regions regulating eight imprinted domains. Logistic regression models were used to estimate odd ratios. RESULTS After adjusting for age, HPV infection, parity, hormonal contraceptive use, and HIV-1 serostatus, a 10 % decrease in methylation levels at an intragenic region of IGF2 was associated with higher risk of ICC (OR 2.00, 95 % CI 1.14-3.44) and cervical intraepithelial neoplasia (CIN) (OR 1.51, 95 % CI 1.00-2.50). Methylation levels at the H19 DMR and PEG1/MEST were also associated with ICC risk (OR 1.51, 95 % CI 0.90-2.53, and OR 1.44, 95 % CI 0.90-2.35, respectively). Restricting analyses to women >30 years further strengthened these associations. CONCLUSIONS While the small sample size limits inference, these findings show that altered DNA methylation at imprinted domains including IGF2/H19 and PEG1/MEST may mediate the association between HPV and ICC risk.
Collapse
Affiliation(s)
- A C Vidal
- Department of Obstetrics and Gynecology, Program of Cancer Detection, Prevention and Control, Duke University School of Medicine, P.O. Box 104006, Durham, NC, 27710, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
El Hajj N, Pliushch G, Schneider E, Dittrich M, Müller T, Korenkov M, Aretz M, Zechner U, Lehnen H, Haaf T. Metabolic programming of MEST DNA methylation by intrauterine exposure to gestational diabetes mellitus. Diabetes 2013; 62:1320-8. [PMID: 23209187 PMCID: PMC3609586 DOI: 10.2337/db12-0289] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Epigenetic processes are primary candidates when searching for mechanisms that can stably modulate gene expression and metabolic pathways according to early life conditions. To test the effects of gestational diabetes mellitus (GDM) on the epigenome of the next generation, cord blood and placenta tissue were obtained from 88 newborns of mothers with dietetically treated GDM, 98 with insulin-dependent GDM, and 65 without GDM. Bisulfite pyrosequencing was used to compare the methylation levels of seven imprinted genes involved in prenatal and postnatal growth, four genes involved in energy metabolism, one anti-inflammatory gene, one tumor suppressor gene, one pluripotency gene, and two repetitive DNA families. The maternally imprinted MEST gene, the nonimprinted glucocorticoid receptor NR3C1 gene, and interspersed ALU repeats showed significantly decreased methylation levels (4-7 percentage points for MEST, 1-2 for NR3C1, and one for ALUs) in both GDM groups, compared with controls, in both analyzed tissues. Significantly decreased blood MEST methylation (3 percentage points) also was observed in adults with morbid obesity compared with normal-weight controls. Our results support the idea that intrauterine exposure to GDM has long-lasting effects on the epigenome of the offspring. Specifically, epigenetic malprogramming of MEST may contribute to obesity predisposition throughout life.
Collapse
Affiliation(s)
- Nady El Hajj
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Galyna Pliushch
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Eberhard Schneider
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Marcus Dittrich
- Department of Bioinformatics, Julius Maximilians University, Würzburg, Germany
| | - Tobias Müller
- Department of Bioinformatics, Julius Maximilians University, Würzburg, Germany
| | | | - Melanie Aretz
- Department of Gynecology and Obstetrics, Municipal Clinics, Moenchengladbach, Germany
| | - Ulrich Zechner
- Institute of Human Genetics, University Medical Center, Mainz, Germany
| | - Harald Lehnen
- Department of Gynecology and Obstetrics, Municipal Clinics, Moenchengladbach, Germany
| | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
- Corresponding author: Thomas Haaf,
| |
Collapse
|
27
|
Abstract
There is evidence that expression and methylation of the imprinted paternally expressed gene 1/mesoderm-specific transcript homologue (PEG1/MEST) gene may be affected by assisted reproductive technologies (ARTs) and infertility. In this study, we sought to assess the imprinting status of the MEST gene in a large cohort of in vitro-derived human preimplantation embryos, in order to characterise potentially adverse effects of ART and infertility on this locus in early human development. Embryonic genomic DNA from morula or blastocyst stage embryos was screened for a transcribed AflIII polymorphism in MEST and imprinting analysis was then performed in cDNA libraries derived from these embryos. In 10 heterozygous embryos, MEST expression was monoallelic in seven embryos, predominantly monoallelic in two embryos, and biallelic in one embryo. Screening of cDNA derived from 61 additional human preimplantation embryos, for which DNA for genotyping was unavailable, identified eight embryos with expression originating from both alleles (biallelic or predominantly monoallelic). In some embryos, therefore, the onset of imprinted MEST expression occurs during late preimplantation development. Variability in MEST imprinting was observed in both in vitro fertilization and intracytoplasmic sperm injection-derived embryos. Biallelic or predominantly monoallelic MEST expression was not associated with any one cause of infertility. Characterisation of the main MEST isoforms revealed that isoform 2 was detected in early development and was itself variably imprinted between embryos. To our knowledge, this report constitutes the largest expression study to date of genomic imprinting in human preimplantation embryos and reveals that for some imprinted genes, contrasting imprinting states exist between embryos.
Collapse
|
28
|
MacIsaac JL, Bogutz AB, Morrissy AS, Lefebvre L. Tissue-specific alternative polyadenylation at the imprinted gene Mest regulates allelic usage at Copg2. Nucleic Acids Res 2012; 40:1523-35. [PMID: 22053079 PMCID: PMC3287194 DOI: 10.1093/nar/gkr871] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 09/27/2011] [Accepted: 09/29/2011] [Indexed: 11/24/2022] Open
Abstract
The gene Mest (also known as Peg1) is regulated by genomic imprinting in the mouse and only the paternal allele is active for transcription. MEST is similarly imprinted in humans, where it is a candidate for the growth retardation Silver-Russell syndrome. The MEST protein belongs to an ancient family of hydrolases but its function is still unknown. It is highly conserved in vertebrates although imprinted expression is only observed in marsupials and eutherians, thus a recent evolutionary event. Here we describe the identification of new imprinted RNA products at the Mest locus, longer variants of the RNA, called MestXL, transcribed >10 kb into the downstream antisense gene Copg2. During development MestXL is produced exclusively in the developing central nervous system (CNS) by alternative polyadenylation. Copg2 is biallelically expressed in the embryo except in MestXL-expressing tissues, where we observed preferential expression from the maternal allele. To analyze the function of the MestXL transcripts in Copg2 regulation, we studied the effects of a targeted allele at Mest introducing a truncation in the mRNA. We show that both the formation of the MestXL isoforms and the allelic bias at Copg2 are lost in the CNS of mutants embryos. Our results propose a new mechanism to regulate allelic usage in the mammalian genome, via tissue-specific alternative polyadenylation and transcriptional interference in sense-antisense pairs at imprinted loci.
Collapse
Affiliation(s)
- Julia L. MacIsaac
- Molecular Epigenetics Group, Life Sciences Institute, Department of Medical Genetics, The University of British Columbia, Vancouver, Canada, V6T 1Z3, and Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, Canada, V5Z 1L3
| | - Aaron B. Bogutz
- Molecular Epigenetics Group, Life Sciences Institute, Department of Medical Genetics, The University of British Columbia, Vancouver, Canada, V6T 1Z3, and Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, Canada, V5Z 1L3
| | - A. Sorana Morrissy
- Molecular Epigenetics Group, Life Sciences Institute, Department of Medical Genetics, The University of British Columbia, Vancouver, Canada, V6T 1Z3, and Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, Canada, V5Z 1L3
| | - Louis Lefebvre
- Molecular Epigenetics Group, Life Sciences Institute, Department of Medical Genetics, The University of British Columbia, Vancouver, Canada, V6T 1Z3, and Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, Canada, V5Z 1L3
| |
Collapse
|
29
|
Eggermann T, Spengler S, Begemann M, Binder G, Buiting K, Albrecht B, Spranger S. Deletion of the paternal allele of the imprinted MEST/PEG1 region in a patient with Silver-Russell syndrome features. Clin Genet 2011; 81:298-300. [DOI: 10.1111/j.1399-0004.2011.01719.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Wilkins JF, Úbeda F. Diseases associated with genomic imprinting. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 101:401-45. [PMID: 21507360 DOI: 10.1016/b978-0-12-387685-0.00013-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Genomic imprinting is the phenomenon where the expression of a locus differs between the maternally and paternally inherited alleles. Typically, this manifests as transcriptional silencing of one of the alleles, although many genes are imprinted in a tissue- or isoform-specific manner. Diseases associated with imprinted genes include various cancers, disorders of growth and metabolism, and disorders in neurodevelopment, cognition, and behavior, including certain major psychiatric disorders. In many cases, the disease phenotypes associated with dysfunction at particular imprinted loci can be understood in terms of the evolutionary processes responsible for the origin of imprinting. Imprinted gene expression represents the outcome of an intragenomic evolutionary conflict, where natural selection favors different expression strategies for maternally and paternally inherited alleles. This conflict is reasonably well understood in the context of the early growth effects of imprinted genes, where paternally inherited alleles are selected to place a greater demand on maternal resources than are maternally inherited alleles. Less well understood are the origins of imprinted gene expression in the brain, and their effects on cognition and behavior. This chapter reviews the genetic diseases that are associated with imprinted genes, framed in terms of the evolutionary pressures acting on gene expression at those loci. We begin by reviewing the phenomenon and evolutionary origins of genomic imprinting. We then discuss diseases that are associated with genetic or epigenetic defects at particular imprinted loci, many of which are associated with abnormalities in growth and/or feeding behaviors that can be understood in terms of the asymmetric pressures of natural selection on maternally and paternally inherited alleles. We next described the evidence for imprinted gene effects on adult cognition and behavior, and the possible role of imprinted genes in the etiology of certain major psychiatric disorders. Finally, we conclude with a discussion of how imprinting, and the evolutionary-genetic conflicts that underlie it, may enhance both the frequency and morbidity of certain types of diseases.
Collapse
|
31
|
Chen CP, Su YN, Chern SR, Hwu YM, Lin SP, Hsu CH, Tsai FJ, Wang TY, Wu PC, Lee CC, Chen YT, Chen LF, Wang W. Mosaic Trisomy 7 at Amniocentesis: Prenatal Diagnosis and Molecular Genetic Analyses. Taiwan J Obstet Gynecol 2010; 49:333-40. [DOI: 10.1016/s1028-4559(10)60070-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2010] [Indexed: 10/18/2022] Open
|
32
|
Capo-chichi CD, Smedberg JL, Rula M, Nicolas E, Yeung AT, Adamo RF, Frolov A, Godwin AK, Xu XX. Alteration of Differentiation Potentials by Modulating GATA Transcription Factors in Murine Embryonic Stem Cells. Stem Cells Int 2010; 2010:602068. [PMID: 21048850 PMCID: PMC2956456 DOI: 10.4061/2010/602068] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 12/23/2009] [Accepted: 02/12/2010] [Indexed: 12/29/2022] Open
Abstract
Background. Mouse embryonic stem (ES) cells can be differentiated in vitro by aggregation and/or retinoic acid (RA) treatment. The principal differentiation lineage in vitro is extraembryonic primitive endoderm. Dab2, Laminin, GATA4, GATA5, and GATA6 are expressed in embryonic primitive endoderm and play critical roles in its lineage commitment. Results. We found that in the absence of GATA4 or GATA5, RA-induced primitive endoderm differentiation of ES cells was reduced. GATA4 (-/-) ES cells express higher level of GATA5, GATA6, and hepatocyte nuclear factor 4 alpha marker of visceral endoderm lineage. GATA5 (-/-) ES cells express higher level of alpha fetoprotein marker of early liver development. GATA6 (-/-) ES cells express higher level of GATA5 as well as mesoderm and cardiomyocyte markers which are collagen III alpha-1 and tropomyosin1 alpha. Thus, deletion of GATA6 precluded endoderm differentiation but promoted mesoderm lineages. Conclusions. GATA4, GATA5, and GATA6 each convey a unique gene expression pattern and influences ES cell differentiation. We showed that ES cells can be directed to avoid differentiating into primitive endoderm and to adopt unique lineages in vitro by modulating GATA factors. The finding offers a potential approach to produce desirable cell types from ES cells, useful for regenerative cell therapy.
Collapse
Affiliation(s)
- Callinice D. Capo-chichi
- Miller School of Medicine, University of Miami, 1550 NW 10th Avenue (M877), Miami, FL 33156, USA
| | - Jennifer L. Smedberg
- Department of Medical Science, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Malgorzata Rula
- Department of Medical Science, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Emmanuelle Nicolas
- Department of Medical Science, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Anthony T. Yeung
- Department of Medical Science, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Richard F. Adamo
- Department of Medical Science, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Andrey Frolov
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Andrew K. Godwin
- Department of Medical Science, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Xiang-Xi Xu
- Miller School of Medicine, University of Miami, 1550 NW 10th Avenue (M877), Miami, FL 33156, USA
| |
Collapse
|
33
|
Tveden-Nyborg PY, Alexopoulos NI, Cooney MA, French AJ, Tecirlioglu RT, Holland MK, Thomsen PD, D'Cruz NT. Analysis of the expression of putatively imprinted genes in bovine peri-implantation embryos. Theriogenology 2008; 70:1119-28. [PMID: 18675451 DOI: 10.1016/j.theriogenology.2008.06.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 04/24/2008] [Accepted: 06/07/2008] [Indexed: 10/21/2022]
Abstract
The application of assisted reproductive technologies (ART) has been shown to induce changes in the methylation of the embryonic genome, leading to aberrant gene expression, including that of imprinted genes. Aberrant methylation and gene expression has been linked to the large offspring syndrome (LOS) in bovine embryos resulting in increased embryonic morbidity and mortality. In the bovine, limited numbers of imprinted genes have been studied and studies have primarily been restricted to pre-implantation stages. This study reports original data on the expression pattern of 8 putatively imprinted genes (Ata3, Dlk1, Gnas, Grb10, Magel2, Mest-1, Ndn and Sgce) in bovine peri-implantation embryos. Two embryonic developmental stages were examined, Day 14 and Day 21. The gene expression pattern of single embryos was recorded for in vivo, in vitro produced (IVP) and parthenogenetic embryos. The IVP embryos allow us to estimate the effect of in vitro procedures and the analysis of parthenogenetic embryos provides provisional information on maternal genomic imprinting. Among the 8 genes investigated, only Mest-1 showed differential expression in Day 21 parthenogenetic embryos compared to in vivo and IVP counterparts, indicating maternal imprinting of this gene. In addition, our expression analysis of single embryos revealed a more heterogeneous gene expression in IVP than in in vivo developed embryos, adding further to the hypothesis of transcriptional dysregulation induced by in vitro procedures, either by in vitro maturation, fertilization or culture. In conclusion, effects of genomic imprinting and of in vitro procedures for embryo production may influence the success of bovine embryo implantation.
Collapse
Affiliation(s)
- P Y Tveden-Nyborg
- Dep. of Basic Animal and Veterinary Sciences, Groennegaardsvej 7, DK-1870 Frederiksberg C, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Weber M, Hellmann I, Stadler MB, Ramos L, Pääbo S, Rebhan M, Schübeler D. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet 2007; 39:457-66. [PMID: 17334365 DOI: 10.1038/ng1990] [Citation(s) in RCA: 1571] [Impact Index Per Article: 92.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Accepted: 01/29/2007] [Indexed: 01/11/2023]
Abstract
To gain insight into the function of DNA methylation at cis-regulatory regions and its impact on gene expression, we measured methylation, RNA polymerase occupancy and histone modifications at 16,000 promoters in primary human somatic and germline cells. We find CpG-poor promoters hypermethylated in somatic cells, which does not preclude their activity. This methylation is present in male gametes and results in evolutionary loss of CpG dinucleotides, as measured by divergence between humans and primates. In contrast, strong CpG island promoters are mostly unmethylated, even when inactive. Weak CpG island promoters are distinct, as they are preferential targets for de novo methylation in somatic cells. Notably, most germline-specific genes are methylated in somatic cells, suggesting additional functional selection. These results show that promoter sequence and gene function are major predictors of promoter methylation states. Moreover, we observe that inactive unmethylated CpG island promoters show elevated levels of dimethylation of Lys4 of histone H3, suggesting that this chromatin mark may protect DNA from methylation.
Collapse
Affiliation(s)
- Michael Weber
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
35
|
Tycko B. Imprinted genes in placental growth and obstetric disorders. Cytogenet Genome Res 2006; 113:271-8. [PMID: 16575190 DOI: 10.1159/000090842] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Accepted: 08/27/2005] [Indexed: 01/12/2023] Open
Abstract
Genomic imprinting has a special role in placental biology. Imprinted genes are often strongly expressed in the placenta, and the allelic expression bias due to imprinting is sometimes stronger in this extraembryonic organ than in the embryo and adult. Mutations, epimutations, and uniparental disomies affecting imprinted loci cause placental stunting or overgrowth in mice and humans, and placental neoplasms (complete hydatidiform moles) are androgenetic. Whether imprinted genes might also play a role in the more common medical conditions that affect the placenta, including preeclampsia and intrauterine growth restriction (IUGR), is an important question that is now receiving some attention. Here we review this area and describe recent data indicating altered expression of imprinted genes in the placental response to maternal vascular underperfusion associated with IUGR.
Collapse
Affiliation(s)
- B Tycko
- Institute for Cancer Genetics, Department of Pathology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
36
|
Abu-Amero S, Monk D, Apostolidou S, Stanier P, Moore G. Imprinted genes and their role in human fetal growth. Cytogenet Genome Res 2006; 113:262-70. [PMID: 16575189 DOI: 10.1159/000090841] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Accepted: 07/06/2005] [Indexed: 01/16/2023] Open
Abstract
Growth is defined as the progressive increase in size and is listed as one of the eight main characteristics of life. In human gestation the most rapid growth phase is from 16 to 32 weeks when first there is both cell number and size increase and then from 32 weeks onwards there is continued size increase (Pollack and Divon, 1992). The mechanism of growth in utero is of fundamental interest to clinicians and scientists because of its implications for neonatal health. Growth is multifactorial in origin with both genetics and environment contributing equally large parts. Despite this complexity analysis of the candidate genes involved is possible using simple tissue biopsies at the relevant stages of development. Of particular interest in understanding fetal growth is the analysis of a group of genes that show a parent-of-origin effect known as genomic imprinting. Imprinted genes are not only found in eutherian (placental) and metatherian (marsupial) mammals but surprisingly also in plants. Nevertheless, their evolution in mammals appears to be linked primarily to placentation. It is thought to result from a potential conflict between the parents in terms of the drive to successfully propagate their own separate genes and the mother's added drive for her survival through the pregnancy to reproduce again. This means that the mother wants to restrict fetal growth and the father to enhance it.
Collapse
Affiliation(s)
- S Abu-Amero
- Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College, London Hammersmith Campus, London, UK
| | | | | | | | | |
Collapse
|
37
|
McMinn J, Wei M, Sadovsky Y, Thaker HM, Tycko B. Imprinting of PEG1/MEST Isoform 2 in Human Placenta. Placenta 2006; 27:119-26. [PMID: 16338457 DOI: 10.1016/j.placenta.2004.12.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Revised: 11/30/2004] [Accepted: 12/02/2004] [Indexed: 10/25/2022]
Abstract
The PEG1 gene (a.k.a. MEST) is expressed in human placental trophoblast and endothelium, and data from knockout mice show that this gene regulates placental and fetal growth. Isoform 1 of PEG1 mRNA initiates from exon 1c and produces the long form of the MEST protein. This isoform is imprinted, with expression only from the paternal allele in many human and mouse organs, including placenta. In contrast, PEG1 isoform 2, initiating from exon 1a and producing the short form of MEST protein, is biallelically expressed (non-imprinted) in several non-placental organs. Here we show that PEG1 isoform 2 is in fact imprinted in a large subset of human placentae. A CpG island overlapping PEG1 exon 1a is unmethylated in various fetal and adult non-placental tissues, but is often substantially methylated in the placenta, with the extent of methylation in a large series approximating a normal distribution. Bisulfite conversion/sequencing indicates that the inter-individual differences reflect the relative representation of heavily methylated vs. unmethylated alleles, and RT-PCR/RFLP analysis shows strongly biased allelic expression of PEG1 isoform 2 mRNA in a majority of placentae with a high proportion of methylated alleles. These data highlight PEG1 isoform 2 as a marker for future studies of inter-individual epigenetic variation and its relation to placental and fetal growth in humans.
Collapse
Affiliation(s)
- J McMinn
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
38
|
Hahn Y, Yang SK, Chung JH. Structure and expression of the zebrafish mest gene, an ortholog of mammalian imprinted gene PEG1/MEST. ACTA ACUST UNITED AC 2005; 1731:125-32. [PMID: 16263186 DOI: 10.1016/j.bbaexp.2005.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 09/07/2005] [Accepted: 09/09/2005] [Indexed: 01/14/2023]
Abstract
PEG1/MEST is a paternally expressed gene in placental mammals. Here, we report identification of zebrafish (Danio rerio) gene mest, an ortholog of mammalian PEG1/MEST. Zebrafish mest encodes a polypeptide of 344 amino acids and shows a significant similarity to mammalian orthologs. Zebrafish mest is present as a single copy in the zebrafish genome and is closely linked to copg2 as in mammals. It is notable that 10 of 11 intron positions in mest are conserved among mammalian PEG1/MEST genes, indicating that the genomic organization and linkage between mest and copg2 loci was established in ancient vertebrates. Zebrafish mest is expressed in blastula, segmentation, and larval stages, exhibiting gradually increased expression as the development proceeds. Allelic expression analysis in hybrid larvae shows that both parental alleles are transcribed. We also observed one-codon alternative splicing involving an alternative usage of the two consecutive splice acceptors of intron 1, generating two protein isoforms with different lengths of a single amino acid.
Collapse
Affiliation(s)
- Yoonsoo Hahn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea
| | | | | |
Collapse
|
39
|
Sumi H, Naito E, Dewa K, Fukuda M, Xu HD, Yamanouchi H. Applicability of the parentally imprinted allele (PIA) typing of a VNTR upstream the H19 gene to forensic samples of different tissues. Leg Med (Tokyo) 2005; 7:179-82. [PMID: 15847827 DOI: 10.1016/j.legalmed.2004.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2004] [Revised: 10/20/2004] [Accepted: 10/29/2004] [Indexed: 11/19/2022]
Abstract
The parentally imprinted allele (PIA) typing that we have recently developed determines parental alleles at a VNTR locus in the differentially methylated region upstream of the human H19 gene. The usefulness of this typing was demonstrated by its application to blood samples in paternity cases. However, its applicability to other tissue DNA remains to be tested. DNA samples from fifteen different postmortem tissues such as cerebrum, skeletal muscle and skin were examined, all of which were obtained from three autopsy cases 2-11h after death. DNA was digested with a methylation-sensitive HhaI enzyme and diluted solutions of the digests were subjected to the first PCR amplification, providing amplification of only the paternal H19 methylated allele. Subsequent VNTR typing was carried out for the amplified products to determine which allele was of paternal origin. No tissue-dependent difference was observed and all the samples examined, though degraded, were successfully used for determining the paternal allele. These results substantiate the usefulness of PIA typing in forensic examinations. Its application to two identity cases, a burned male body and a male body with adipocere formation, was also shown.
Collapse
Affiliation(s)
- Hirokazu Sumi
- Division of Legal Medicine, Institute of Medicine and Dentistry, Niigata University Academic Assembly, 1-757 Asahimachidori, Niigata 951-8510, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Li J, Bench AJ, Vassiliou GS, Fourouclas N, Ferguson-Smith AC, Green AR. Imprinting of the human L3MBTL gene, a polycomb family member located in a region of chromosome 20 deleted in human myeloid malignancies. Proc Natl Acad Sci U S A 2004; 101:7341-6. [PMID: 15123827 PMCID: PMC409920 DOI: 10.1073/pnas.0308195101] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
L3MBTL encodes a member of the Polycomb family of proteins, which, together with Trithorax group proteins, is responsible for the coordinated regulation of patterns of gene activity. Members of the Polycomb family also regulate self renewal of normal and malignant hematopoietic stem cells. L3MBTL lies in a region of chromosome 20, deletion of which is associated with myeloid malignancies and represents a good candidate for a 20q target gene. However, mutations of L3MBTL have not been identified in patients with 20q deletions or in cytogenetically normal patients. Here we demonstrate that monoallelic methylation of two CpG islands correlates with transcriptional silencing of L3MBTL, and that L3MBTL transcription occurs from the paternally derived allele in five individuals from two families. Expression of the paternally derived allele was observed in multiple hematopoietic cell types as well as in bone marrow derived mesenchymal cells. Deletions of 20q associated with myeloid malignancies resulted in loss of either the unmethylated or methylated allele. Our results demonstrate that L3MBTL represents a previously undescribed imprinted locus, a vertebrate Polycomb group gene shown to be regulated by this mechanism, and has implications for the pathogenesis of myeloid malignancies associated with 20q deletions.
Collapse
Affiliation(s)
- Juan Li
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 2XY, United Kingdom
| | | | | | | | | | | |
Collapse
|
41
|
Yamada T, Mitsuya K, Kayashima T, Yamasaki K, Ohta T, Yoshiura KI, Matsumoto N, Yamada H, Minakami H, Oshimura M, Niikawa N, Kishino T. Imprinting analysis of 10 genes and/or transcripts in a 1.5-Mb MEST-flanking region at human chromosome 7q32. Genomics 2004; 83:402-12. [PMID: 14962666 DOI: 10.1016/j.ygeno.2003.08.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2003] [Accepted: 08/14/2003] [Indexed: 12/21/2022]
Abstract
MEST is one of the imprinted genes in human. With the assistance of our integration map and the complete sequence in the registry, we mapped a total of 16 genes/transcripts at the 1.5-Mb MEST-flanking region at 7q32. This region has been suggested to form an imprinted gene cluster, because MEST and its three flanking genes/transcripts (MESTIT1, CPA4, and COPG2IT1) were reported to be imprinted, although two (TSGA14 and COPG2) were shown to escape imprinting. In this study, 10 other genes/transcripts were examined for their imprinting status in human fetal tissues. The results indicated that 8 genes/transcripts (NRF1, UBE2H, HSPC216, KIAA0265, FLJ14803, CPA2, CPA1, and DKFZp667F0312) were expressed biallelically. The imprinting status of two (TSGA13 and CPA5) was not conclusive, because of their weak and/or tissue-specific expression and inconstant results. These findings provided evidence that only 4 of the 16 genes/transcripts located to the region show monoallelic expression, while others are not involved in imprinting. Therefore, it is less likely that the MEST-flanking 7q32 region forms a large imprinted domain.
Collapse
Affiliation(s)
- Takahiro Yamada
- Reproductive and Developmental Medicine, Division of Pathophysiological Science, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Grabowski M, Zimprich A, Lorenz-Depiereux B, Kalscheuer V, Asmus F, Gasser T, Meitinger T, Strom TM. The epsilon-sarcoglycan gene (SGCE), mutated in myoclonus-dystonia syndrome, is maternally imprinted. Eur J Hum Genet 2003; 11:138-44. [PMID: 12634861 DOI: 10.1038/sj.ejhg.5200938] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2002] [Revised: 11/11/2002] [Accepted: 11/14/2002] [Indexed: 11/08/2022] Open
Abstract
Myoclonus-dystonia syndrome (MDS) is a non-degenerative neurological disorder that has been described to be inherited in an autosomal dominant mode with incomplete penetrance. MDS is caused by loss of function mutations in the epsilon-sarcoglycan gene. Reinvestigation of MDS pedigrees provided evidence for a maternal imprinting mechanism. As differential methylated regions (DMRs) are a characteristic feature of imprinted genes, we studied the methylation pattern of CpG dinucleotides within the CpG island containing the promoter region and the first exon of the SGCE gene by bisulphite genomic sequencing. Our findings revealed that in peripheral blood leukocytes the maternal allele is methylated, while the paternal allele is unmethylated. We also showed that most likely the maternal allele is completely methylated in brain tissue. Furthermore, CpG dinucleotides in maternal and paternal uniparental disomy 7 (UPD7) lymphoblastoid cell lines show a corresponding parent-of-origin specific methylation pattern. The effect of differential methylation on the expression of the SGCE gene was tested in UPD7 cell lines with only a weak RT-PCR signal observed in matUPD7 and a strong signal in patUPD7. These results provide strong evidence for a maternal imprinting of the SGCE gene. The inheritance pattern in MDS families is in agreement with such an imprinting mechanism with the exception of a few cases. We investigated one affected female that inherited the mutated allele from her mother. Surprisingly, we found the paternal wild type allele expressed whereas the mutated maternal allele was not detectable in peripheral blood cDNA.
Collapse
Affiliation(s)
- Monika Grabowski
- Institute of Human Genetics, GSF National Research Center, D-85764 München-Neuherberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Affiliation(s)
- Michael A Preece
- Biochemistry, Endocrinology and Metabolism Unit, Institute of Child Health, University College London, UK.
| |
Collapse
|
44
|
Abstract
Genomic imprinting in gametogenesis marks a subset of mammalian genes for parent-of-origin-dependent monoallelic expression in the offspring. Embryological and classical genetic experiments in mice that uncovered the existence of genomic imprinting nearly two decades ago produced abnormalities of growth or behavior, without severe developmental malformations. Since then, the identification and manipulation of individual imprinted genes has continued to suggest that the diverse products of these genes are largely devoted to controlling pre- and post-natal growth, as well as brain function and behavior. Here, we review this evidence, and link our discussion to a website (http://www.otago.ac.nz/IGC) containing a comprehensive database of imprinted genes. Ultimately, these data will answer the long-debated question of whether there is a coherent biological rationale for imprinting.
Collapse
Affiliation(s)
- Benjamin Tycko
- Institute for Cancer Genetics, Columbia University, New York, New York, USA.
| | | |
Collapse
|
45
|
Bonora E, Bacchelli E, Levy ER, Blasi F, Marlow A, Monaco AP, Maestrini E. Mutation screening and imprinting analysis of four candidate genes for autism in the 7q32 region. Mol Psychiatry 2002; 7:289-301. [PMID: 11920156 DOI: 10.1038/sj.mp.4001004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2001] [Revised: 09/28/2001] [Accepted: 10/04/2001] [Indexed: 01/09/2023]
Abstract
Genetic studies indicate that chromosome 7q is likely to contain an autism susceptibility locus (AUTS1). We have followed a positional candidate gene approach to identify the relevant gene and report the analysis of four adjacent genes localised to a 800 kb region in 7q32 that contains an imprinted domain: PEG1/MEST, COPG2, CPA1 and CPA5-a previously uncharacterised member of the carboxypeptidase gene family. Screening these genes for DNA changes and association analysis using intragenic single nucleotide polymorphisms (SNPs) provided no evidence for an etiological role in IMGSAC families. We also searched for imprinting mutations potentially implicated in autism: analysis of both DNA methylation and replication timing indicated a normal imprinting regulation of the PEG1/COPG2 domain in blood lymphocytes of all patients tested. The analysis of these four genes strongly suggests that they do not play a major role in autism aetiology, and delineates our strategy to screen additional candidate genes in the AUTS1 locus.
Collapse
Affiliation(s)
- E Bonora
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | | | | | | | | | | |
Collapse
|
46
|
Li T, Vu TH, Lee KO, Yang Y, Nguyen CV, Bui HQ, Zeng ZL, Nguyen BT, Hu JF, Murphy SK, Jirtle RL, Hoffman AR. An imprinted PEG1/MEST antisense expressed predominantly in human testis and in mature spermatozoa. J Biol Chem 2002; 277:13518-27. [PMID: 11821432 DOI: 10.1074/jbc.m200458200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PEG1 (or MEST) is an imprinted gene located on human chromosome 7q32 that is expressed predominantly from the paternal allele. In the mouse, Peg1/Mest is associated with embryonic growth and maternal behavior. Human PEG1 is transcribed from two promoters; the transcript from promoter P1 is derived from both parental alleles, and the transcript from P2 is exclusively from the paternal allele. We characterized the P1 and P2 transcripts in various normal and neoplastic tissues. In the normal tissues, PEG1 was transcribed from both promoters P1 and P2, whereas in six of eight neoplastic tissues, PEG1 was transcribed exclusively from promoter P1. Bisulfite sequencing demonstrated high levels of CpG methylation in the P2 region of DNA from a lung tumor. In the region between P1 and P2, we identified a novel transcript, PEG1-AS, in an antisense orientation to PEG1. PEG1-AS is a spliced transcript and was detected as a strong 2.4-kilobase band on a Northern blot. PEG1-AS and PEG1 P2-sense transcript were expressed exclusively from the paternal allele. Fragments of DNA from within the 1.5-kilobase region between PEG1-AS and the P2 exon were ligated to a pGL3 luciferase reporter vector and transfected into NCI H23 cells. This DNA exhibited strong promoter activity in both the sense and antisense directions, indicating that PEG1-AS and P2 exon share a common promoter region. Treatment of the transfected DNA fragments with CpG methylase abolished the promoter activity. Of interest, PEG1-AS was expressed predominantly in testis and in mature motile spermatozoa, indicating a possible role for this transcript in human sperm physiology and fertilization.
Collapse
Affiliation(s)
- Tao Li
- Medical Service, Veterans Affairs Palo Alto Health Care System and the Department of Medicine, Stanford University School of Medicine, Palo Alto, California 94304, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Hannula K, Lipsanen-Nyman M, Kristo P, Kaitila I, Simola KOJ, Lenko HL, Tapanainen P, Holmberg C, Kere J. Genetic screening for maternal uniparental disomy of chromosome 7 in prenatal and postnatal growth retardation of unknown cause. Pediatrics 2002; 109:441-8. [PMID: 11875139 DOI: 10.1542/peds.109.3.441] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Many short-statured children lack an etiologic explanation for their retarded growth. Recently, uniparental disomy (UPD), the inheritance of both chromosomes of a chromosome pair from only 1 parent, has been associated with short stature for many chromosomes. Silver-Russell syndrome (SRS) represents an extreme syndrome of intrauterine growth retardation (IUGR) and slight dysmorphic signs, and maternal UPD of human chromosome 7 (matUPD7) has been observed in approximately 10% of SRS cases. In addition, matUPD7 has been reported in patients with only slight dysmorphic features and prenatal or postnatal growth retardation. The objectives of this study were to study the role of matUPD7 in growth failure of unknown cause and in cases of SRS, and to evaluate the efficiency of genetic testing for matUPD7 as a diagnostic tool. METHODS DNA samples were studied from 205 children, 92 girls and 113 boys, with short stature of unknown cause and their parents. The patient cohort included 39 cases of SRS, 91 patients with IUGR and subsequent postnatal short stature, and 75 patients with postnatal growth retardation only. MatUPD7 was screened for by genotyping DNA samples from the patient, mother, and father with 13 chromosome-7-specific polymorphic microsatellite markers. RESULTS Six (3%) of 205 matUPD7 cases were observed exclusively among 39 (15%) SRS patients studied. Patients with IUGR and/or postnatal growth retardation and with dysmorphic features did not reveal cases of matUPD7. CONCLUSIONS Our results indicate that matUPD7 cases are predominantly observed among patients meeting the criteria of SRS, and matUPD7 is not a common cause for growth retardation. Genetic screening for cases of matUPD7 among growth-retarded patients should be focused on patients with severe IUGR and features of SRS. In addition, matUPD7 screening is advisable in individuals with cystic fibrosis and other recessive disorders mapped to chromosome 7 who have unusually short stature.
Collapse
Affiliation(s)
- Katariina Hannula
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Tentler D, Brandberg G, Betancur C, Gillberg C, Annerén G, Orsmark C, Green ED, Carlsson B, Dahl N. A balanced reciprocal translocation t(5;7)(q14;q32) associated with autistic disorder: molecular analysis of the chromosome 7 breakpoint. AMERICAN JOURNAL OF MEDICAL GENETICS 2001; 105:729-36. [PMID: 11803521 DOI: 10.1002/ajmg.1607] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Autism is a neuropsychiatric disorder characterized by impairments in social interaction, restricted and stereotypic pattern of interest with onset by 3 years of age. The results of genetic linkage studied for autistic disorder (AD) have suggested a susceptibility locus for the disease on the long arm of chromosome 7. We report a girl with AD and a balanced reciprocal translocation t(5;7)(q14;q32). The mother carries the translocation but do not express the disease. Fluorescent in situ hybridization (FISH) analysis with chromosome 7-specific YAC clones showed that the breakpoint coincides with the candidate region for AD. We identified a PAC clone that spans the translocation breakpoint and the breakpoint was mapped to a 2 kb region. Mutation screening of the genes SSBP and T2R3 located just centromeric to the breakpoint was performed in a set of 29 unrelated autistic sibling pairs who shared at least one chromosome 7 haplotype. We found no sequence variations, which predict amino acid alterations. Two single nucleotide polymorphisms were identified in the T2R3 gene, and associations between allele variants and AD in our population were not found. The methylation pattern of different chromosome 7 regions in the patient's genomic DNA appears normal. Here we report the clinical presentation of the patient with AD and the characterization of the genomic organization across the breakpoint at 7q32. The precise localization of the breakpoint on 7q32 may be relevant for further linkage studies and molecular analysis of AD in this region.
Collapse
Affiliation(s)
- D Tentler
- Department of Genetics and Pathology, Section of Clinical Genetics, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Hitchins MP, Stanier P, Preece MA, Moore GE. Silver-Russell syndrome: a dissection of the genetic aetiology and candidate chromosomal regions. J Med Genet 2001; 38:810-9. [PMID: 11748303 PMCID: PMC1734774 DOI: 10.1136/jmg.38.12.810] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The main features of Silver-Russell syndrome (SRS) are pre- and postnatal growth restriction and a characteristic small, triangular face. SRS is also accompanied by other dysmorphic features including fifth finger clinodactyly and skeletal asymmetry. The disorder is clinically and genetically heterogeneous, and various modes of inheritance and abnormalities involving chromosomes 7, 8, 15, 17, and 18 have been associated with SRS and SRS-like cases. However, only chromosomes 7 and 17 have been consistently implicated in patients with a strict clinical diagnosis of SRS. Two cases of balanced translocations with breakpoints in 17q23.3-q25 and two cases with a hemizygous deletion of the chorionic somatomammatropin gene (CSH1) on 17q24.1 have been associated with SRS, strongly implicating this region. Maternal uniparental disomy for chromosome 7 (mUPD(7)) occurs in up to 10% of SRS patients, with disruption of genomic imprinting underlying the disease status in these cases. Recently, two SRS patients with a maternal duplication of 7p11.2-p13, and a single proband with segmental mUPD for the region 7q31-qter, were described. These key patients define two separate candidate regions for SRS on both the p and q arms of chromosome 7. Both the 7p11.2-p13 and 7q31-qter regions are subject to genomic imprinting and the homologous regions in the mouse are associated with imprinted growth phenotypes. This review provides an overview of the genetics of SRS, and focuses on the newly defined candidate regions on chromosome 7. The analyses of imprinted candidate genes within 7p11.2-p13 and 7q31-qter, and gene candidates on distal 17q, are discussed.
Collapse
Affiliation(s)
- M P Hitchins
- Department of Fetal and Maternal Medicine, Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK.
| | | | | | | |
Collapse
|
50
|
Eggermann T, Mergenthaler S, Eggermann K, Ranke MB, Wollmann HA. Segmental uniparental disomy of 7q31-qter is rare in Silver-Russell syndrome. Clin Genet 2001; 60:395-6. [PMID: 11903344 DOI: 10.1034/j.1399-0004.2001.600514.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|