1
|
Gagnier L, Belancio VP, Mager DL. Mouse germ line mutations due to retrotransposon insertions. Mob DNA 2019; 10:15. [PMID: 31011371 PMCID: PMC6466679 DOI: 10.1186/s13100-019-0157-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/01/2019] [Indexed: 12/24/2022] Open
Abstract
Transposable element (TE) insertions are responsible for a significant fraction of spontaneous germ line mutations reported in inbred mouse strains. This major contribution of TEs to the mutational landscape in mouse contrasts with the situation in human, where their relative contribution as germ line insertional mutagens is much lower. In this focussed review, we provide comprehensive lists of TE-induced mouse mutations, discuss the different TE types involved in these insertional mutations and elaborate on particularly interesting cases. We also discuss differences and similarities between the mutational role of TEs in mice and humans.
Collapse
Affiliation(s)
- Liane Gagnier
- Terry Fox Laboratory, BC Cancer and Department of Medical Genetics, University of British Columbia, V5Z1L3, Vancouver, BC Canada
| | - Victoria P. Belancio
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112 USA
| | - Dixie L. Mager
- Terry Fox Laboratory, BC Cancer and Department of Medical Genetics, University of British Columbia, V5Z1L3, Vancouver, BC Canada
| |
Collapse
|
2
|
Kuramoto T, Nakanishi S, Ochiai M, Nakagama H, Voigt B, Serikawa T. Origins of albino and hooded rats: implications from molecular genetic analysis across modern laboratory rat strains. PLoS One 2012; 7:e43059. [PMID: 22916206 PMCID: PMC3420875 DOI: 10.1371/journal.pone.0043059] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 07/18/2012] [Indexed: 11/24/2022] Open
Abstract
Albino and hooded (or piebald) rats are one of the most frequently used laboratory animals for the past 150 years. Despite this fact, the origin of the albino mutation as well as the genetic basis of the hooded phenotype remained unclear. Recently, the albino mutation has been identified as the Arg299His missense mutation in the Tyrosinase gene and the hooded (H) locus has been mapped to the ∼460-kb region in which only the Kit gene exists. Here, we surveyed 172 laboratory rat strains for the albino mutation and the hooded (h) mutation that we identified by positional cloning approach to investigate possible genetic roots and relationships of albino and hooded rats. All of 117 existing laboratory albino rats shared the same albino missense mutation, indicating they had only one single ancestor. Genetic fine mapping followed by de novo sequencing of BAC inserts covering the H locus revealed that an endogenous retrovirus (ERV) element was inserted into the first intron of the Kit gene where the hooded allele maps. A solitary long terminal repeat (LTR) was found at the same position to the ERV insertion in another allele of the H locus, which causes the so called Irish (hi) phenotype. The ERV and the solitary LTR insertions were completely associated with the hooded and Irish coat patterns, respectively, across all colored rat strains examined. Interestingly, all 117 albino rat strains shared the ERV insertion without any exception, which strongly suggests that the albino mutation had originally occurred in hooded rats.
Collapse
Affiliation(s)
- Takashi Kuramoto
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan.
| | | | | | | | | | | |
Collapse
|
3
|
Aloj G, Giardino G, Valentino L, Maio F, Gallo V, Esposito T, Naddei R, Cirillo E, Pignata C. Severe Combined Immunodeficiences: New and Old Scenarios. Int Rev Immunol 2012; 31:43-65. [DOI: 10.3109/08830185.2011.644607] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
4
|
Mayanil CS, Ichi S, Farnell BM, Boshnjaku V, Tomita T, McLone DG. Maternal intake of folic acid and neural crest stem cells. VITAMINS AND HORMONES 2011; 87:143-73. [PMID: 22127242 DOI: 10.1016/b978-0-12-386015-6.00028-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Maternal folic acid (FA) intake has beneficial effects in preventing neural tube defects and may also play a role in the prevention of adult onset diseases such as Alzheimer's disease, dementia, neuropsychiatric disorders, cardiovascular diseases, and cerebral ischemia. This review will focus on the effects of maternal FA intake on neural crest stem cell proliferation and differentiation. Although FA is generally considered beneficial, it has the potential of promoting cell proliferation at the expense of differentiation. In some situations, this may lead to miscarriage or postnatal developmental abnormalities. Therefore, a blind approach such as "FA for everyone" is not necessarily the best course of action. Ultimately, the best approach for FA supplementation, and potentially other nutritional supplements, will include customized patient genomic profiles for determining dose and duration.
Collapse
Affiliation(s)
- Chandra S Mayanil
- Developmental Biology Program, Children's Memorial Research Center, Department of Pediatric Neurosurgery, Children's Memorial Medical Center and Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | | | | | | | | |
Collapse
|
5
|
Naruse I, Ueta E, Sumino Y, Ogawa M, Ishikiriyama S. Birth defects caused by mutations in human GLI3 and mouse Gli3 genes. Congenit Anom (Kyoto) 2010; 50:1-7. [PMID: 20201963 DOI: 10.1111/j.1741-4520.2009.00266.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ABSTRACT GLI3 is the gene responsible for Greig cephalopolysyndactyly syndrome (GCPS), Pallister-Hall syndrome (PHS) and Postaxial polydactyly type-A (PAP-A). Genetic polydactyly mice such as Pdn/Pdn (Polydactyly Nagoya), Xt(H)/Xt(H) (Extra toes) and Xt(J)/Xt(J) (Extra toes Jackson) are the mouse homolog of GCPS, and Gli3(tmlUrtt)/Gli3(tmlUrt) is produced as the mouse homolog of PHS. In the present review, relationships between mutation points of GLI3 and Gli3, and resulting phenotypes in humans and mice are described. It has been confirmed that mutation in the upstream or within the zinc finger domain of the GLI3 gene induces GCPS; that in the post-zinc finger region including the protease cleavage site induces PHS; and that in the downstream of the GLI3 gene induces PAP-A. A mimicking phenomenon was observed in the mouse homolog. Therefore, human GLI3 and mouse Gli3 genes have a common structure, and it is suggested here that mutations in the same functional regions produce similar phenotypes in human and mice. The most important issue might be that GCPS and PHS exhibit an autosomal dominant trait, but mouse homologs, such as Pdn/Pdn, Xt(H)/Xt(H), Xt(J)/Xt(J) and Gli3(tmlUrt)/Gli3(tmlUrt), are autosomal recessive traits in the manifestation of similar phenotypes to human diseases. It is discussed here how the reduced amounts of the GLI3 protein, or truncated mutant GLI3 protein, disrupt development of the limbs, head and face.
Collapse
|
6
|
Human ClinicalPhenotype Associated with FOXN1 Mutations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009. [DOI: 10.1007/978-1-4419-1599-3_15] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Zhang MC, Furukawa H, Tokunaka K, Saiga K, Date F, Owada Y, Nose M, Ono M. Mast cell hyperplasia in the skin of Dsg4-deficient hypotrichosis mice, which are long-living mutants of lupus-prone mice. Immunogenetics 2008; 60:599-607. [PMID: 18677469 DOI: 10.1007/s00251-008-0320-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 07/07/2008] [Indexed: 11/25/2022]
Abstract
Desmosomal cadherins are essential cell adhesion molecules expressed in the epidermis. We identified a mutation of a cadherin superfamily member, namely, desmoglein 4 (Dsg4), in early onset of death (EOD)( hage ) mice with hypotrichosis. The mutation was induced by the insertion of an early transposon II-beta into intron 8 of Dsg4. Mast cell hyperplasia was observed in the skin of EOD( hage ) mice. The abnormally expanded population of lpr T cells, i.e., CD4(-)CD8(-)B220(+)Thy1.2(+) alphabetaT cells, in the splenocytes of EOD mice was reduced in EOD( hage ) mice. Therefore, it was suspected that the long-living mutant EOD( hage ) mice were selected from lupus-prone EOD mice because of their immunological immaturity. These findings clearly indicate that Dsg4 is an important molecule for the formation of hair follicles and hypothesize that unorganized hyperplastic hair follicles in anagen due to the Dsg4 mutation provide niches for mast cell precursors in the skin.
Collapse
Affiliation(s)
- Ming-Cai Zhang
- Department of Pathology, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Aoba-ku, Sendai, Japan , 980-8575
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Ueta E, Kurome M, Teshima Y, Kodama M, Otsuka Y, Naruse I. Altered signaling pathway in the dysmorphogenesis of telencephalon in the Gli3 depressed mouse embryo, Pdn/Pdn. Congenit Anom (Kyoto) 2008; 48:74-80. [PMID: 18452488 DOI: 10.1111/j.1741-4520.2008.00182.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The responsible gene of genetic polydactyly/arhinencephaly mouse (Pdn/Pdn) is Gli3. Pdn/Pdn exhibits absence of the olfactory bulb, suggesting telencephalic dysmorphogenesis. It has been cleared that a transposon was inserted into intron 3 of the Gli3 gene in the Pdn mouse. Adequate PCR primers in the intron 3 and transposon allowed us to discriminate +/+, Pdn/+ and Pdn/Pdn embryos. After genotyping of the Pdn embryos using genomic DNA from the yolk sac membrane, gene expressions in the embryo proper were analyzed by DNA microarray, real-time PCR and whole-mount in situ hybridization (WISH) methods. DNA microarray detected 368 depressed and 425 over-expressed genes in the Pdn/Pdn mouse embryos on day 9 of gestation. In these genes, six signaling pathway and 20 transcription factor genes were included. From these genes, we further investigated Gli3, Emx2, Wnt8b and Wnt7b gene expressions using real-time PCR and WISH, and depression of these gene expression amounts and altered expression patterns were confirmed. Although alterations of Shh and Fgf8 gene expressions were not detected in the DNA microarray, as these genes have been closed up in the telencephalic morphogenesis, we investigated these gene expressions by real-time PCR and WISH. Shh gene expression amount and pattern were not changed. Alteration of Fgf8 gene expression amount was not detected also in the real-time PCR, but altered expression pattern was detected in the Pdn/Pdn embryos by WISH. From the present data, we suggested that Emx2, Wnt8b, Wnt7b and Fgf8 are the important Gli3 signaling pathway in the morphogenesis of telencephalon.
Collapse
Affiliation(s)
- Etsuko Ueta
- School of Health Science, Faculty of Medicine, Tottori University, Yonago, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Genome-wide assessments reveal extremely high levels of polymorphism of two active families of mouse endogenous retroviral elements. PLoS Genet 2008; 4:e1000007. [PMID: 18454193 PMCID: PMC2265474 DOI: 10.1371/journal.pgen.1000007] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Accepted: 01/15/2008] [Indexed: 11/19/2022] Open
Abstract
Endogenous retroviral elements (ERVs) in mice are significant genomic mutagens, causing ∼10% of all reported spontaneous germ line mutations in laboratory strains. The majority of these mutations are due to insertions of two high copy ERV families, the IAP and ETn/MusD elements. This significant level of ongoing retrotranspositional activity suggests that inbred mice are highly variable in content of these two ERV groups. However, no comprehensive genome-wide studies have been performed to assess their level of polymorphism. Here we compared three test strains, for which sufficient genomic sequence is available, to each other and to the reference C57BL/6J genome and detected very high levels of insertional polymorphism for both ERV families, with an estimated false discovery rate of only 0.4%. Specifically, we found that at least 60% of IAP and 25% of ETn/MusD elements detected in any strain are absent in one or more of the other three strains. The polymorphic nature of a set of 40 ETn/MusD elements found within gene introns was confirmed using genomic PCR on DNA from a panel of mouse strains. For some cases, we detected gene-splicing abnormalities involving the ERV and obtained additional evidence for decreased gene expression in strains carrying the insertion. In total, we identified nearly 700 polymorphic IAP or ETn/MusD ERVs or solitary LTRs that reside in gene introns, providing potential candidates that may contribute to gene expression differences among strains. These extreme levels of polymorphism suggest that ERV insertions play a significant role in genetic drift of mouse lines. The laboratory mouse is the most widely used mammal for biological research. Hundreds of inbred mouse strains have been developed that vary in characteristics such as susceptibility to cancer or other diseases. There is much interest in uncovering differences between strains that result in different traits and, to aid this effort, millions of single nucleotide differences or polymorphisms between strains have been cataloged. To date, there has been less emphasis placed on other sources of genetic variation. In this study, we have conducted a genome-wide analysis to examine the level of polymorphism of mouse endogenous retroviral sequences (ERVs). ERVs are derived from infectious retroviruses that now exist in the genome and are inherited as part of chromosomes. Unlike in humans, genomic insertions of ERVs cause many new mutations in mice but their extent of variation between strains has been difficult to study because of their high copy numbers. By comparing genomic sequences of four common mouse strains, we found very high levels of polymorphism for two large active families of ERVs. Moreover, we documented nearly 700 polymorphic ERVs located within gene introns and found evidence that some of these affect gene transcript levels. This study demonstrates that ERV polymorphisms are a major source of genetic variability among mouse strains and likely contribute to strain-specific traits.
Collapse
|
10
|
Talamas E, Jackson L, Koeberl M, Jackson T, McElwee JL, Hawes NL, Chang B, Jablonski MM, Sidjanin D. Early transposable element insertion in intron 9 of the Hsf4 gene results in autosomal recessive cataracts in lop11 and ldis1 mice. Genomics 2006; 88:44-51. [PMID: 16595169 PMCID: PMC1509100 DOI: 10.1016/j.ygeno.2006.02.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 02/22/2006] [Accepted: 02/22/2006] [Indexed: 01/19/2023]
Abstract
Lens opacity 11 (lop11) is an autosomal recessive mouse cataract mutation that arose spontaneously in the RIIIS/J strain. At 3 weeks of age mice exhibit total cataracts with vacuoles. The lop11 locus was mapped to mouse chromosome 8. Analysis of the mouse genome for the lop11 critical region identified Hsf4 as a candidate gene. Molecular evaluation of Hsf4 revealed an early transposable element (ETn) in intron 9 inserted 61 bp upstream of the intron/exon junction. The same mutation was also identified in a previously mapped cataract mutant, ldis1. The ETn insertion altered splicing and expression of the Hsf4 gene, resulting in the truncated Hsf4 protein. In humans, mutations in HSF4 have been associated with both autosomal dominant and recessive cataracts. The lop11 mouse is an excellent resource for evaluating the role of Hsf4 in transparency of the lens.
Collapse
Affiliation(s)
- Elijah Talamas
- Department of Ophthalmology, Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Lavinia Jackson
- Department of Ophthalmology, Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Matthew Koeberl
- Department of Ophthalmology, Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Todd Jackson
- Department of Ophthalmology, Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - John L. McElwee
- College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | - Bo Chang
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Monica M. Jablonski
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - D.J. Sidjanin
- Department of Ophthalmology, Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- * Corresponding author. Fax: +1 414 456 6690. E-mail address: (D.J. Sidjanin)
| |
Collapse
|
11
|
Helms C, Pelsue S, Cao L, Lamb E, Loffredo B, Taillon-Miller P, Herrin B, Burzenski LM, Gott B, Lyons BL, Keppler D, Shultz LD, Bowcock AM. The Tetratricopeptide repeat domain 7 gene is mutated in flaky skin mice: a model for psoriasis, autoimmunity, and anemia. Exp Biol Med (Maywood) 2005; 230:659-67. [PMID: 16179734 DOI: 10.1177/153537020523000908] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The flaky skin (fsn) mutation in mice causes pleiotropic abnormalities including psoriasiform dermatitis, anemia, hyper-IgE, and anti-dsDNA autoantibodies resembling those detected in systemic lupus erythematosus. The fsn mutation was mapped to an interval of 3.9 kb on chromosome 17 between D17Mit130 and D17Mit162. Resequencing of known and predicted exons and regulatory sequences from this region in fsn/fsn and wild-type mice indicated that the mutation is due to the insertion of an endogenous retrovirus (early transposon class) into intron 14 of the Tetratricopeptide repeat (TPR) domain 7 (Ttc7) gene. The insertion leads to reduced levels of wild-type Ttc7 transcripts in fsn mice and the insertion of an additional exon derived from the retrovirus into the majority of Ttc7 mRNAs. This disrupts one of the TPRs within TTC7 and may affect its interaction with an as-yet unidentified protein partner. The Ttc7 is expressed in multiple types of tissue including skin, kidney, spleen, and thymus, but is most abundant in germinal center B cells and hematopoietic stem cells, suggesting an important role in the development of immune system cells. Its role in immunologic and hematologic disorders should be further investigated.
Collapse
Affiliation(s)
- Cynthia Helms
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Harris MJ, Juriloff DM. Maternal diet alters exencephaly frequency in SELH/Bc strain mouse embryos. ACTA ACUST UNITED AC 2005; 73:532-40. [PMID: 15968625 DOI: 10.1002/bdra.20170] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The SELH/Bc mouse inbred strain, with a high frequency of nonsyndromic, genetically-multifactorial exencephaly, is a model for human cranial neural tube defects (NTDs). Maternal diet affects risk of human NTDs. METHODS Exencephaly frequencies in SELH/Bc embryos were compared in 8 studies in which dams were fed alternative commercial Purina diets (5015 and 5001) or semisynthetic diets, and in several studies in which maternal diet was supplemented with a specific nutrient, either in drinking water or food before and during pregnancy, or by intraperitoneal injection on E7 and/or E8. RESULTS The exencephaly frequency in SELH/Bc embryos was 2- to 8-fold higher when the dams were fed Purina 5015 (averaging 23% exencephaly) or a semisynthetic diet modeled on Purina 5015 (averaging 28%) or NIH-31 standard diet (23%), compared with Purina 5001 (averaging 7%). The exencephaly frequency remained high (41%) on a semisynthetic diet modeled on Purina 5001. The exencephaly frequency was not reduced significantly by maternal supplementation with folic acid, nor with each of zinc, methionine, niacin, brewers' yeast, riboflavin, vitamin B12, or inositol. Nor was it reduced by maternal diets with supplemental methyl donors and cofactors or with reduced fat. CONCLUSIONS The frequency of exencephaly in SELH/Bc embryos is strongly influenced by a specific unidentified aspect of the commercial ration Purina 5001 that prevents 55-85% of exencephaly in SELH/Bc embryos, when directly compared with an alternative commercial ration Purina 5015 or its semisynthetic mimic. This strong maternal diet effect on NTD frequency may point to novel nutritional approaches to prevention of human NTDs.
Collapse
Affiliation(s)
- Muriel J Harris
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada.
| | | |
Collapse
|
13
|
Adriani M, Martinez-Mir A, Fusco F, Busiello R, Frank J, Telese S, Matrecano E, Ursini MV, Christiano AM, Pignata C. Ancestral Founder Mutation of the
Nude
(
FOXN1
) Gene in Congenital Severe Combined Immunodeficiency Associated with Alopecia in Southern Italy Population. Ann Hum Genet 2004; 68:265-8. [PMID: 15180707 DOI: 10.1046/j.1529-8817.2004.00091.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Genetic alterations of the FOXN1 transcription factor, selectively expressed in thymic epithelia and skin, are responsible in both mice and humans for the Nude/SCID phenotype. The first described human FOXN1 mutation was a C792T transition in exon 5 resulting in the nonsense mutation R255X, and was detected in two probands originated from a small community in southern Italy. In this community, four additional children affected with congenital alopecia died in early childhood because of severe infections. In this study, we report on the screening for this mutation in 30% of the village population. This analysis led us to identify 55 heterozygous carriers (6.52%) of the R255X mutation out of 843 inhabitants screened. A genealogical study revealed that these subjects, belonging to 39 families, were linked in an extended 7-generational pedigree comprising 483 individuals. Through the archival database a single ancestral couple, born at the beginning of the 19th century, was identified. To confirm the ancestral origin of the mutation we genotyped two microsatellite markers, D17S2187 and D17S1880, flanking the FOXN1 gene on chromosome 17. The three haplotypes identified, 3/R255X/3, 3/R255X/2 and 3/R255X/1, are consistent with a single ancestral origin for the mutation R255X.
Collapse
Affiliation(s)
- M Adriani
- Department of Pediatrics, "Federico II" University, Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Baust C, Gagnier L, Baillie GJ, Harris MJ, Juriloff DM, Mager DL. Structure and expression of mobile ETnII retroelements and their coding-competent MusD relatives in the mouse. J Virol 2003; 77:11448-58. [PMID: 14557630 PMCID: PMC229353 DOI: 10.1128/jvi.77.21.11448-11458.2003] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ETnII elements are mobile members of the repetitive early transposon family of mouse long terminal repeat (LTR) retroelements and have caused a number of mutations by inserting into genes. ETnII sequences lack retroviral genes, but the recent discovery of related MusD retroviral elements with regions similar to gag, pro, and pol suggests that MusD provides the proteins necessary for ETnII transposition in trans. For this study, we analyzed all ETnII elements in the draft sequence of the C57BL/6J genome and classified them into three subtypes (alpha, beta, and gamma) based on structural differences. We then used database searches and quantitative real-time PCR to determine the copy number and expression of ETnII and MusD elements in various mouse strains. In 7.5-day-old embryos of a mouse strain in which two mutations due to ETnII-beta insertions have been identified (SELH/Bc), we detected a three- to sixfold higher level of ETnII-beta and MusD transcripts than in control strains (C57BL/6J and LM/Bc). The increased ETnII transcription level can in part be attributed to a higher number of ETnII-beta elements, but 70% of the MusD transcripts appear to have been derived from one or a few MusD elements that are not detectable in C57BL/6J mice. This element belongs to a young MusD subgroup with intact open reading frames and identical LTRs, suggesting that the overexpressed element(s) in SELH/Bc mice might provide the proteins for the retrotransposition of ETnII and MusD elements. We also show that ETnII is expressed up to 30-fold more than MusD, which could explain why only ETnII, but not MusD, elements have been positively identified as new insertions.
Collapse
Affiliation(s)
- Corinna Baust
- Terry Fox Laboratory, B. C. Cancer Agency, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Lymphoid organs represent a specialized microenvironment for interaction of stromal and lymphoid cells. In primary lymphoid organs, these interactions are required to establish a self-tolerant repertoire of lymphocytes. While detailed information is available about the genes that control lymphocyte differentiation, little is known about the genes that direct the establishment and differentiation of principal components of such microenvironments. Here, we discuss genetic studies addressing the role of thymic epithelial cells (TECs) during thymopoiesis. We have identified an evolutionarily conserved key regulator of TEC differentiation, Foxn1, that is required for the immigration of prothymocytes into the thymic primordium. Because Foxn1 specifies the prospective endodermal domain that gives rise to thymic epithelial cells, it can be used to identify the evolutionary origins of this specialized cell type. In the course of these studies, we have found that early steps of thymus development in zebrafish are very similar to those in mice. Subsequently, we have used chemical mutagenesis to derive zebrafish lines with aberrant thymus development. Strengths and weaknesses of mouse and zebrafish models are largely complementary such that genetic analysis of mouse and zebrafish mutants may lead to a better understanding of thymus development.
Collapse
Affiliation(s)
- Thomas Boehm
- Department of Developmental Immunology, Max-Planck-Institute of Immunobiology, Freiburg, Germany.
| | | | | |
Collapse
|
16
|
Abstract
The phenotype of the genetic polydactyly/ arhinencephaly mouse (Pdn/Pdn) is similar to Greig cephalopolysyndactyly syndrome (GCPS), whose responsible gene is GLI3. Suppression of Gli3 gene expression has been observed in the Pdn/Pdn and integration of retrotransposon in Gli3 gene in the Pdn mouse has been reported. Thus, the responsible gene for Pdn/Pdn is thought to be Gli3, but the site of mutation within the gene has not been demarcated. In the present study, we demonstrated that 5442 bp of early retrotransposon was inserted into intron 3 of Gli3 gene in the Pdn mouse (Gli3 (Pdn) ). This transposon had almost the same sequence as MMY17106 (EMBL). It had 317-bp long terminal repeat at both ends followed by the identical 6-bp target duplication sequence, GAGACT. Forward and reverse PCR primers were constructed in intron 3 near the insertion point, and a forward primer in the transposon was also constructed. These primers allowed us to discriminate +/+, Pdn/+ and Pdn/Pdn embryos by the PCR products. Morphological determination of the genotypes in the Pdn mouse embryos is impossible before day 12 of gestation. Quick discrimination method of genotypes developed in the present study allows us to investigate the early dysmorphogenetic mechanisms in the brain and limbs in the Pdn/Pdn embryos. Then, the dysmorphogenetic mechanisms in the Pdn/Pdn may be extrapolated to those in GCPS.
Collapse
Affiliation(s)
- Etsuko Ueta
- School of Health Science, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | | | | |
Collapse
|
17
|
Zhang Q, Li W, Novak EK, Karim A, Mishra VS, Kingsmore SF, Roe BA, Suzuki T, Swank RT. The gene for the muted (mu) mouse, a model for Hermansky-Pudlak syndrome, defines a novel protein which regulates vesicle trafficking. Hum Mol Genet 2002; 11:697-706. [PMID: 11912185 PMCID: PMC2847475 DOI: 10.1093/hmg/11.6.697] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The muted (mu) mouse is a model for Hermansky-Pudlak Syndrome (HPS), an inherited disorder of humans causing hypopigmentation, hemorrhaging and early death due to lung abnormalities. The mu gene regulates the synthesis of specialized mammalian organelles such as melanosomes, platelet dense granules and lysosomes. Further, balance defects indicate that it controls the synthesis of otoliths of the inner ear. The mu gene has been identified by a positional/candidate approach involving large mouse interspecific backcrosses. It encodes a novel ubiquitously expressed transcript, specifying a predicted 185 amino acid protein, whose expression is abrogated in the mu allele which contains an insertion of an early transposon (ETn) retrotransposon. Expression is likewise expected to be lost in the mu( J) allele which contains a deletion of a single base pair within the coding region. The presence of structurally aberrant melanosomes within the eyes of mutant mice together with localization of the muted protein within vesicles in both the cell body and dendrites of transfected melan-a melanocytes emphasizes the role of the mu gene in vesicle trafficking. The mu gene is present only in mice and humans among analyzed genomes. As is true for several other recently identified mouse HPS genes, the mu gene is absent in lower eukaryotes. Therefore, the mu gene is a member of the novel gene set that has evolved in higher eukaryotes to regulate the synthesis/function of highly specialized subcellular organelles such as melanosomes and platelet dense granules.
Collapse
Affiliation(s)
| | | | | | | | - Vishnu S. Mishra
- Department of Medicine, University of Florida, Gainesville, FL 32610 USA
| | | | - Bruce A. Roe
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Tamio Suzuki
- Human Medical Genetics Program, University of Colorado, Denver, CO 80262, USA
| | - Richard T. Swank
- To whom correspondence should be addressed. Tel: +1 716 845 3429; Fax: +1 716 845 5908;
| |
Collapse
|
18
|
Abstract
L1 retrotransposons comprise 17% of the human genome. Although most L1s are inactive, some elements remain capable of retrotransposition. L1 elements have a long evolutionary history dating to the beginnings of eukaryotic existence. Although many aspects of their retrotransposition mechanism remain poorly understood, they likely integrate into genomic DNA by a process called target primed reverse transcription. L1s have shaped mammalian genomes through a number of mechanisms. First, they have greatly expanded the genome both by their own retrotransposition and by providing the machinery necessary for the retrotransposition of other mobile elements, such as Alus. Second, they have shuffled non-L1 sequence throughout the genome by a process termed transduction. Third, they have affected gene expression by a number of mechanisms. For instance, they occasionally insert into genes and cause disease both in humans and in mice. L1 elements have proven useful as phylogenetic markers and may find other practical applications in gene discovery following insertional mutagenesis in mice and in the delivery of therapeutic genes.
Collapse
Affiliation(s)
- E M Ostertag
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
19
|
Abstract
The nude mutation has been known for a long time. Nevertheless, the gene responsible for the defect has been identified only recently. It encodes a transcriptional activator of the family of forkhead proteins mainly expressed in thymic epithelium and distinct keratinocyte populations in the epidermis and hair follicles. The present review focuses on the molecular and functional characterization of the nude gene and its product and gives an overview as to its role in skin biology and the first identified target genes in the skin. In addition, evolutionary aspects are highlighted stressing the importance of such investigations for a comprehensive understanding of the nude gene product and the regulation of its expression. Furthermore, these studies give a hint as to when the nude gene has occurred first and how it has developed in molecular and functional terms since then.
Collapse
Affiliation(s)
- T Schlake
- Department of Developmental Immunology, Max-Planck-Institute of Immunobiology, Stuebeweg 51, D-79108 Freiburg, Germany.
| |
Collapse
|
20
|
Mecklenburg L, Nakamura M, Sundberg JP, Paus R. The nude mouse skin phenotype: the role of Foxn1 in hair follicle development and cycling. Exp Mol Pathol 2001; 71:171-8. [PMID: 11599924 DOI: 10.1006/exmp.2001.2386] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The original nude mouse mutation has proven to be an incredibly valuable biomedical tool since its discovery in 1966. Initially its value was as a tool to study the immune system. The immunodeficiency in this mutant mouse made nude mice valuable as hosts for xenografts, primarily for cancer research. More recently, the most obvious clinical feature of this mutant mouse, lack of hair, has been capitalized on to define the role of Foxn1 in normal and pathological skin and hair follicle physiology.
Collapse
Affiliation(s)
- L Mecklenburg
- Department of Dermatology, University Hospital Eppendorf, Hamburg, Germany
| | | | | | | |
Collapse
|
21
|
Peters LL, Lane PW, Andersen SG, Gwynn B, Barker JE, Beutler E. Downeast anemia (dea), a new mouse model of severe nonspherocytic hemolytic anemia caused by hexokinase (HK(1)) deficiency. Blood Cells Mol Dis 2001; 27:850-60. [PMID: 11783948 DOI: 10.1006/bcmd.2001.0454] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A new spontaneous mutation in the A/J inbred mouse strain, downeast anemia (dea), causes severe hemolytic anemia with extensive tissue iron deposition and marked reticulocytosis. The anemia is present at birth and persists throughout life. The defect is inherited as an autosomal recessive and is transferable through bone marrow stem cells. The red cell morphology is consistent with a nonspherocytic hemolytic anemia, suggestive of a red cell enzymopathy. In linkage analysis, dea is nonrecombinant with the hexokinase-1 gene (Hk1) on mouse Chromosome 10. Expression of Hk1 is markedly decreased in dea erythroid tissues, and the transcript produced is larger than normal. Hexokinase enzyme activity is significantly decreased in dea tissues, including red cells, spleen, and kidney. Southern blot analyses revealed approximately 5.5 kb of additional sequence in the 5' portion of the dea Hk1 gene, which was identified by direct sequencing as an early transposon (ETn) insertion in intron 4. ETn insertions disrupt genes in several mouse models by a variety of mechanisms, including aberrant splicing of ETn sequences into the mRNA. We conclude that the primary gene defect in the dea mutation is in Hk1 and that dea is a model of generalized hexokinase deficiency, the first such model identified to date.
Collapse
Affiliation(s)
- L L Peters
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Schorpp M, Wiest W, Egger C, Hammerschmidt M, Schlake T, Boehm T. Genetic dissection of thymus development. Curr Top Microbiol Immunol 2001; 251:119-24. [PMID: 11036766 DOI: 10.1007/978-3-642-57276-0_15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- M Schorpp
- Department of Developmental Immunology, Max-Planck-Institute for Immunobiology, Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Tanaka I, Ishihara H. Enhanced expression of the early retrotransposon in C3H mouse-derived myeloid leukemia cells. Virology 2001; 280:107-14. [PMID: 11162824 DOI: 10.1006/viro.2000.0732] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cells of acute myeloid leukemia (AML) from C3H/He mice express an increased amount of RNA for an endogenous retrovirus-like retrotransposon, intracisternal A-particle element. We analyzed the transcription of other mouse retrotransposons in C3H-derived tumor cells and found that all the AML lines from different mice overexpress early-transposon (ETn) RNA. In contrast, only faint levels of ETn were detected in the cells from other tumors, including hepatoma and lymphoma. The polyadenylation sites of the ETn RNA in the AML cells varied. We also determined the binding site for the nuclear extract of the AML cells in the long terminal repeat sequence of ETn. The overexpression of ETn as a common phenotype of AML cells suggests that myeloid cells with this phenotype are the origin of all the AML cells or that the phenotype is acquired during leukemogenesis.
Collapse
Affiliation(s)
- I Tanaka
- Bioregulation Research Group, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, Chiba, 263-8555, Japan
| | | |
Collapse
|
24
|
Mager DL, Freeman JD. Novel mouse type D endogenous proviruses and ETn elements share long terminal repeat and internal sequences. J Virol 2000; 74:7221-9. [PMID: 10906176 PMCID: PMC112243 DOI: 10.1128/jvi.74.16.7221-7229.2000] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The repetitive ETn (early transposon) family of sequences represents an active "mobile mutagen" in the mouse genome. The presence of long terminal repeats (LTRs) and other diagnostic features indicate that ETns are retrotransposons but they contain no long open reading frames or documented similarity to the genes of known retroviruses or other retroelements. Thus, the mechanisms responsible for the mobility of this family have been unknown. In this study, we used computer searches to detect a small region of previously unrecognized type D retroviral pol homology within ETn elements. This small region was used to isolate two mouse endogenous proviral elements with gag, pro, and pol genes similar to simian type D viruses. This new family of mouse endogenous proviruses, termed MusD, is present in several hundred copies in the genome. Interestingly, the MusD LTRs, 3' internal region, and the 5' region expected to contain the packaging signal are very closely related to members of the ETn subfamily that have recently transposed. Analysis of different mouse strains indicates that MusD elements predate the existence of the mobile subfamily of ETns. These findings indicate that the ETn family was likely created via recombination events resulting in a near complete substitution of MusD coding sequences with unrelated DNA. Furthermore, these results suggest that ETn transcripts retrotranspose using proteins provided by MusD proviruses.
Collapse
Affiliation(s)
- D L Mager
- Terry Fox Laboratory, British Columbia Cancer Agency, and Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.
| | | |
Collapse
|
25
|
Abstract
The nude locus encodes Whn, a transcription factor of the forkhead/winged-helix class. Mutations in Whn cause failure of differentiation of thymic epithelium with a corresponding lack of intrathymic T-cell development; in the skin, differentiation of follicular keratinocytes is disturbed resulting, in the formation of fragile hair shafts. Here, we describe the identification and characterization of a novel nude allele, nu(StL). nu(StL) encodes a truncated Whn transcription factor protein, designated Whn(StL), lacking the activation domain but retaining the characteristic DNA binding domain. In contrast, the previously described Whn(nu) mutant protein lacks both domains. nu(StL)/nu(StL) mice show an alymphoid thymic rudiment and lack of peripheral T cells, similar to nu/nu mice. In the skin, impaired expression of hair keratin genes mHa1, mHa2, mHa3 and mHa4, mHb3, mHb4, mHb5, and mHb6 is observed in a pattern that parallels that of nu/nu mice: both mutant alleles behave as hypomorphs with respect to the expression of these hair keratin genes. However, a significant difference between these two alleles exists for mHa5 expression, which is reduced in nu(StL)/nu(StL) but not in nu/nu mice. We show that the mutant Whn protein in nu/nu mice cannot enter the nucleus, whereas the mutant Whn protein in nu(StL)/nu(StL) mice is present in the nucleus. The antimorphic characteristic of the activation-deficient Whn(StL) protein with respect to mHa5 expression is therefore most likely caused by its non-productive interaction with other proteins at cis-regulatory regions of the mHa5 gene. Our results indicate that the molecular consequences of mutations of the Whn gene can be different and demonstrate an unexpected complexity of transcriptional control mechanisms of hair keratin genes.
Collapse
Affiliation(s)
- M Schorpp
- Department of Developmental Immunology, Max-Planck-Institute of Immunobiology, Freiburg, Germany
| | | | | | | | | |
Collapse
|
26
|
Schlake T, Schorpp M, Maul-Pavicic A, Malashenko AM, Boehm T. Forkhead/winged-helix transcription factor Whn regulates hair keratin gene expression: molecular analysis of the nude skin phenotype. Dev Dyn 2000; 217:368-76. [PMID: 10767081 DOI: 10.1002/(sici)1097-0177(200004)217:4<368::aid-dvdy4>3.0.co;2-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The molecular characteristics of the nude phenotype (alopecia and thymic aplasia) in humans and rodents are unknown. The nude locus encodes Whn, a transcription factor of the forkhead/winged-helix class. Expression of Whn in HeLa cells induced expression of human hair keratin genes Ha3-II and Hb5. Correspondingly, in nude mice, which are homozygous for a loss-of-function mutation of Whn, expression of mouse mHa3 and mHb5 hair keratin genes is severely reduced. Characterization of a previously identified nude allele, nu(Y), revealed a mis-sense mutation (R320C) in the DNA binding domain of Whn. This mutant protein is unable to activate hair keratin gene expression in HeLa cells. When the Whn transcription factor was expressed in two parts, one containing the N-terminal DNA binding domain and the other the C-terminal activation domain, no activation of hair keratin genes in HeLa cells was observed. However, when these two proteins were noncovalently linked by means of synthetic dimerizers, hair keratin gene expression was induced. This finding suggests that target gene activation by Whn depends on the structural integrity and physical proximity of DNA binding and activation domains, providing a molecular framework to explain the loss-of-function phenotypes of all previously characterized nude mutations. Our results implicate Whn as a transcriptional regulator of hair keratin genes and reveal the nude phenotype as the first example of an inherited skin disorder that is caused by loss of expression rather than mutation of keratin genes.
Collapse
Affiliation(s)
- T Schlake
- Department of Developmental Immunology, Max-Planck-Institute for Immunobiology, Freiburg, Germany
| | | | | | | | | |
Collapse
|
27
|
Meier N, Dear TN, Boehm T. Whn and mHa3 are components of the genetic hierarchy controlling hair follicle differentiation. Mech Dev 1999; 89:215-21. [PMID: 10559501 DOI: 10.1016/s0925-4773(99)00218-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The molecular basis of the characteristic hair growth disorder in nude mice that carry a defective Whn transcription factor gene is unknown. A comparison of mRNA populations from wild-type and nude mice back skin by representational difference analysis revealed the absence of acidic hair keratin gene 3 (mHa3) mRNA in mutant mice. Whn and acidic hair keratin genes are co-expressed in hair follicles, nail forming regions and filiform papillae of the tongue: expression of the mHa3 gene is generally detectable about 1 day after Whn mRNA and rapidly ceases in its absence. Whn is strongly expressed during the anagen (growth) phase of the hair cycle in matrix, cortex and outer root sheath; its expression rapidly declines during catagen and is undetectable in telogen phases. In nude mice, low levels of mHa3 expression are maintained in nails and whisker follicles, whereas expression is completely absent in pelage hair follicles and filiform papillae. Thus, the nude phenotype represents the first example of an inherited skin disorder that is associated with the loss of expression rather than structural mutation of keratin genes. The distinct molecular difference between pelage and whisker follicles correlates with the improved mechanical stability of vibrissae in nude mice, implicating mHa3 as an important structural component of the hair shaft.
Collapse
Affiliation(s)
- N Meier
- Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany
| | | | | |
Collapse
|