1
|
Tello JA, Jiang L, Zohar Y, Restifo LL. Drosophila CASK regulates brain size and neuronal morphogenesis, providing a genetic model of postnatal microcephaly suitable for drug discovery. Neural Dev 2023; 18:6. [PMID: 37805506 PMCID: PMC10559581 DOI: 10.1186/s13064-023-00174-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/08/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND CASK-related neurodevelopmental disorders are untreatable. Affected children show variable severity, with microcephaly, intellectual disability (ID), and short stature as common features. X-linked human CASK shows dosage sensitivity with haploinsufficiency in females. CASK protein has multiple domains, binding partners, and proposed functions at synapses and in the nucleus. Human and Drosophila CASK show high amino-acid-sequence similarity in all functional domains. Flies homozygous for a hypomorphic CASK mutation (∆18) have motor and cognitive deficits. A Drosophila genetic model of CASK-related disorders could have great scientific and translational value. METHODS We assessed the effects of CASK loss of function on morphological phenotypes in Drosophila using established genetic, histological, and primary neuronal culture approaches. NeuronMetrics software was used to quantify neurite-arbor morphology. Standard nonparametric statistics methods were supplemented by linear mixed effects modeling in some cases. Microfluidic devices of varied dimensions were fabricated and numerous fluid-flow parameters were used to induce oscillatory stress fields on CNS tissue. Dissociation into viable neurons and neurite outgrowth in vitro were assessed. RESULTS We demonstrated that ∆18 homozygous flies have small brains, small heads, and short bodies. When neurons from developing CASK-mutant CNS were cultured in vitro, they grew small neurite arbors with a distinctive, quantifiable "bushy" morphology that was significantly rescued by transgenic CASK+. As in humans, the bushy phenotype showed dosage-sensitive severity. To overcome the limitations of manual tissue trituration for neuronal culture, we optimized the design and operation of a microfluidic system for standardized, automated dissociation of CNS tissue into individual viable neurons. Neurons from CASK-mutant CNS dissociated in the microfluidic system recapitulate the bushy morphology. Moreover, for any given genotype, device-dissociated neurons grew larger arbors than did manually dissociated neurons. This automated dissociation method is also effective for rodent CNS. CONCLUSIONS These biological and engineering advances set the stage for drug discovery using the Drosophila model of CASK-related disorders. The bushy phenotype provides a cell-based assay for compound screening. Nearly a dozen genes encoding CASK-binding proteins or transcriptional targets also have brain-development mutant phenotypes, including ID. Hence, drugs that improve CASK phenotypes might also benefit children with disorders due to mutant CASK partners.
Collapse
Affiliation(s)
- Judith A Tello
- Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ, 85721, USA
- Department of Neurology, University of Arizona Health Sciences, 1501 N. Campbell Ave, Tucson, AZ, 85724-5023, USA
- Present address: Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, 10010, USA
| | - Linan Jiang
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Yitshak Zohar
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ, 85721, USA
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
- BIO5 Interdisciplinary Research Institute, University of Arizona, Tucson, AZ, 85721, USA
| | - Linda L Restifo
- Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ, 85721, USA.
- Department of Neurology, University of Arizona Health Sciences, 1501 N. Campbell Ave, Tucson, AZ, 85724-5023, USA.
- BIO5 Interdisciplinary Research Institute, University of Arizona, Tucson, AZ, 85721, USA.
- Department of Cellular & Molecular Medicine, University of Arizona Health Sciences, Tucson, AZ, 85724, USA.
| |
Collapse
|
2
|
Dybus A, Kulig H, Grzesiak W, Domke J, Yu YH, Cheng YH. Calcium/Calmodulin-Dependent Serine Protein Kinase ( CASK) Gene Polymorphisms in Pigeons. Animals (Basel) 2023; 13:2070. [PMID: 37443867 DOI: 10.3390/ani13132070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Calcium/calmodulin-dependent serine protein kinase (CASK) is an multidomain protein involved in tissue development and cell signalling. In skeletal muscle, it is involved in the development of neuromuscular junctions. The participation of a pigeon in racing is a great physical effort that causes many changes in the skeletal muscles. Thus, the purpose of the study was to detect the nucleotide sequence variability in the calcium/calmodulin-dependent serine kinase (CASK) gene in domestic pigeons (Columba livia domestica) and assess the potential impact of DNA polymorphisms on the flight performance of pigeons. The research included a total of 517 individuals. DNA was extracted from the blood. A DNA fragment from nucleotides 8689 to 9049 of the CASK (NW_004973256.1 sequence) of six unrelated pigeons were sequenced. One of the detected polymorphic sites (g.8893G > A), located a very close to the start codon, was selected for genotyping in all individuals. The association studies included a total of 311 young homing pigeons that participated in racing competitions. The homing pigeons showed higher frequencies of the AA genotype than non-homing ones (p < 0.05). In rock pigeons only the GG genotype was found. Further research could confirm the functionality of the CASK g.8893G > A SNP in shaping the racing phenotype of pigeons, and the AA genotype could be useful as a selection criterion in pigeon breeding.
Collapse
Affiliation(s)
- Andrzej Dybus
- Department of Genetics, West Pomeranian University of Technology, Aleja Piastów 45, 70-311 Szczecin, Poland
| | - Hanna Kulig
- Department of Genetics, West Pomeranian University of Technology, Aleja Piastów 45, 70-311 Szczecin, Poland
| | - Wilhelm Grzesiak
- Laboratory of Biostatistics, Department of Ruminant Science, West Pomeranian University of Technology, Klemensa Janickiego 29, 71-270 Szczecin, Poland
| | - Justyna Domke
- Department of Genetics, West Pomeranian University of Technology, Aleja Piastów 45, 70-311 Szczecin, Poland
| | - Yu-Hsiang Yu
- Department of Biotechnology and Animal Science, National Ilan University, No.1, Sec. 1, Shennong Rd., Yilan City 26047, Taiwan
| | - Yeong-Hsiang Cheng
- Department of Biotechnology and Animal Science, National Ilan University, No.1, Sec. 1, Shennong Rd., Yilan City 26047, Taiwan
| |
Collapse
|
3
|
Catino G, Genovese S, Di Tommaso S, Orlando V, Petti MT, De Bernardi ML, Dallapiccola B, Novelli A, Ulgheri L, Piscopo C, Alesi V. Reciprocal Xp11.4p11.3 microdeletion/microduplication spanning USP9X, DDX3X, and CASK genes in two patients with syndromic intellectual disability. Am J Med Genet A 2022; 188:1836-1847. [PMID: 35238482 DOI: 10.1002/ajmg.a.62694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 12/13/2022]
Abstract
Only a few patients with deletions or duplications at Xp11.4, bridging USP9X, DDX3X, and CASK genes, have been described so far. Here, we report on a female harboring a de novo Xp11.4p11.3 deletion and a male with an overlapping duplication inherited from an unaffected mother, presenting with syndromic intellectual disability. We discuss the role of USP9X, DDX3X, and CASK genes in human development and describe the effects of Xp11.4 deletion and duplications in female and male patients, respectively.
Collapse
Affiliation(s)
- Giorgia Catino
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Silvia Genovese
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Silvia Di Tommaso
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Valeria Orlando
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Maria Teresa Petti
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | | | - Bruno Dallapiccola
- Genetics and Rare Disease Research Division, Bambino Gesu Children Hospital, IRCCS, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Lucia Ulgheri
- Department of Biomedical Sciences, Clinical Genetics Service, Azienda Ospedaliero-Universitaria, Sassari, Italy
| | - Carmelo Piscopo
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | - Viola Alesi
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| |
Collapse
|
4
|
Mills J, Hanada T, Hase Y, Liscum L, Chishti AH. LDL receptor related protein 1 requires the I 3 domain of discs-large homolog 1/DLG1 for interaction with the kinesin motor protein KIF13B. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118552. [PMID: 31487503 DOI: 10.1016/j.bbamcr.2019.118552] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 07/25/2019] [Accepted: 08/12/2019] [Indexed: 01/01/2023]
Abstract
KIF13B, a kinesin-3 family motor, was originally identified as GAKIN due to its biochemical interaction with human homolog of Drosophila discs-large tumor suppressor (hDLG1). Unlike its homolog KIF13A, KIF13B contains a carboxyl-terminal CAP-Gly domain. To investigate the function of the CAP-Gly domain, we developed a mouse model that expresses a truncated form of KIF13B protein lacking its CAP-Gly domain (KIF13BΔCG), whereas a second mouse model lacks the full-length KIF13A. Here we show that the KIF13BΔCG mice exhibit relatively higher serum cholesterol consistent with the reduced uptake of [3H]CO-LDL in KIF13BΔCG mouse embryo fibroblasts. The plasma level of factor VIII was not significantly elevated in the KIF13BΔCG mice, suggesting that the CAP-Gly domain region of KIF13B selectively regulates LRP1-mediated lipoprotein endocytosis. No elevation of either serum cholesterol or plasma factor VIII was observed in the full length KIF13A null mouse model. The deletion of the CAP-Gly domain region caused subcellular mislocalization of truncated KIF13B concomitant with the mislocalization of LRP1. Mechanistically, the cytoplasmic domain of LRP1 interacts specifically with the alternatively spliced I3 domain of DLG1, which complexes with KIF13B via their GUK-MBS domains, respectively. Importantly, double mutant mice generated by crossing KIF13A null and KIF13BΔCG mice suffer from perinatal lethality showing potential craniofacial defects. Together, this study provides first evidence that the carboxyl-terminal region of KIF13B containing the CAP-Gly domain is important for the LRP1-DLG1-KIF13B complex formation with implications in the regulation of metabolism, cell polarity, and development.
Collapse
Affiliation(s)
- Joslyn Mills
- Graduate Program in Cellular and Molecular Physiology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Toshihiko Hanada
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Yoichi Hase
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Laura Liscum
- Graduate Program in Cellular and Molecular Physiology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA; Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Athar H Chishti
- Graduate Program in Cellular and Molecular Physiology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA; Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
5
|
Lundregan SL, Hagen IJ, Gohli J, Niskanen AK, Kemppainen P, Ringsby TH, Kvalnes T, Pärn H, Rønning B, Holand H, Ranke PS, Båtnes AS, Selvik LK, Lien S, Saether BE, Husby A, Jensen H. Inferences of genetic architecture of bill morphology in house sparrow using a high-density SNP array point to a polygenic basis. Mol Ecol 2018; 27:3498-3514. [DOI: 10.1111/mec.14811] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/15/2018] [Accepted: 06/28/2018] [Indexed: 01/15/2023]
Affiliation(s)
- Sarah L. Lundregan
- Department of Biology; Centre for Biodiversity Dynamics; Norwegian University of Science and Technology; Trondheim Norway
| | - Ingerid J. Hagen
- Department of Biology; Centre for Biodiversity Dynamics; Norwegian University of Science and Technology; Trondheim Norway
- Norwegian Institute for Nature Research; Trondheim Norway
| | - Jostein Gohli
- Department of Biology; Centre for Biodiversity Dynamics; Norwegian University of Science and Technology; Trondheim Norway
- Organismal and Evolutionary Biology Research Programme; University of Helsinki; Helsinki Finland
| | - Alina K. Niskanen
- Department of Biology; Centre for Biodiversity Dynamics; Norwegian University of Science and Technology; Trondheim Norway
- Department of Ecology and Genetics; University of Oulu; Oulu Finland
| | - Petri Kemppainen
- Department of Biology; Centre for Biodiversity Dynamics; Norwegian University of Science and Technology; Trondheim Norway
- Organismal and Evolutionary Biology Research Programme; University of Helsinki; Helsinki Finland
| | - Thor Harald Ringsby
- Department of Biology; Centre for Biodiversity Dynamics; Norwegian University of Science and Technology; Trondheim Norway
| | - Thomas Kvalnes
- Department of Biology; Centre for Biodiversity Dynamics; Norwegian University of Science and Technology; Trondheim Norway
| | - Henrik Pärn
- Department of Biology; Centre for Biodiversity Dynamics; Norwegian University of Science and Technology; Trondheim Norway
| | - Bernt Rønning
- Department of Biology; Centre for Biodiversity Dynamics; Norwegian University of Science and Technology; Trondheim Norway
| | - Håkon Holand
- Department of Biology; Centre for Biodiversity Dynamics; Norwegian University of Science and Technology; Trondheim Norway
| | - Peter S. Ranke
- Department of Biology; Centre for Biodiversity Dynamics; Norwegian University of Science and Technology; Trondheim Norway
| | - Anna S. Båtnes
- Department of Biology; Centre for Biodiversity Dynamics; Norwegian University of Science and Technology; Trondheim Norway
| | - Linn-Karina Selvik
- Department of Biology; Centre for Biodiversity Dynamics; Norwegian University of Science and Technology; Trondheim Norway
| | - Sigbjørn Lien
- Centre for Integrative Genetics; Department of Animal and Aquacultural Sciences; Faculty of Life Sciences; Norwegian University of Life Sciences; Ås Norway
| | - Bernt-Erik Saether
- Department of Biology; Centre for Biodiversity Dynamics; Norwegian University of Science and Technology; Trondheim Norway
| | - Arild Husby
- Department of Biology; Centre for Biodiversity Dynamics; Norwegian University of Science and Technology; Trondheim Norway
- Organismal and Evolutionary Biology Research Programme; University of Helsinki; Helsinki Finland
- Department of Ecology and Genetics; EBC; Uppsala University; Uppsala Sweden
| | - Henrik Jensen
- Department of Biology; Centre for Biodiversity Dynamics; Norwegian University of Science and Technology; Trondheim Norway
| |
Collapse
|
6
|
Huang TN, Hsueh YP. Calcium/calmodulin-dependent serine protein kinase (CASK), a protein implicated in mental retardation and autism-spectrum disorders, interacts with T-Brain-1 (TBR1) to control extinction of associative memory in male mice. J Psychiatry Neurosci 2017; 42:37-47. [PMID: 28234597 PMCID: PMC5373711 DOI: 10.1503/jpn.150359] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Human genetic studies have indicated that mutations in calcium/calmodulin-dependent serine protein kinase (CASK) result in X-linked mental retardation and autism-spectrum disorders. We aimed to establish a mouse model to study how Cask regulates mental ability. METHODS Because Cask encodes a multidomain scaffold protein, a possible strategy to dissect how CASK regulates mental ability and cognition is to disrupt specific protein-protein interactions of CASK in vivo and then investigate the impact of individual specific protein interactions. Previous in vitro analyses indicated that a rat CASK T724A mutation reduces the interaction between CASK and T-brain-1 (TBR1) in transfected COS cells. Because TBR1 is critical for glutamate receptor, ionotropic, N-methyl-D-aspartate receptor subunit 2B (Grin2b) expression and is a causative gene for autism and intellectual disability, we then generated CASK T740A (corresponding to rat CASK T724A) mutant mice using a gene-targeting approach. Immunoblotting, coimmunoprecipitation, histological methods and behavioural assays (including home cage, open field, auditory and contextual fear conditioning and conditioned taste aversion) were applied to investigate expression of CASK and its related proteins, the protein-protein interactions of CASK, and anatomic and behavioural features of CASK T740A mice. RESULTS The CASK T740A mutation attenuated the interaction between CASK and TBR1 in the brain. However, CASK T740A mice were generally healthy, without obvious defects in brain morphology. The most dramatic defect among the mutant mice was in extinction of associative memory, though acquisition was normal. LIMITATIONS The functions of other CASK protein interactions cannot be addressed using CASK T740A mice. CONCLUSION Disruption of the CASK and TBR1 interaction impairs extinction, suggesting the involvement of CASK in cognitive flexibility.
Collapse
Affiliation(s)
| | - Yi-Ping Hsueh
- Correspondence to: Y.P. Hsueh, Institute of Molecular Biology, Academia Sinica, 128, Academia Rd., Sec. 2, Taipei, 11529, Taiwan;
| |
Collapse
|
7
|
|
8
|
Revil T, Jerome-Majewska LA. During embryogenesis, esrp1 expression is restricted to a subset of epithelial cells and is associated with splicing of a number of developmentally important genes. Dev Dyn 2013; 242:281-90. [PMID: 23233200 DOI: 10.1002/dvdy.23918] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2012] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Development of a mature organism from a single cell requires a series of important morphological changes, which is in part regulated by alternative splicing. In this article, we report the expression of Esrp1 during early mouse embryogenesis, a splicing factor implicated in epithelial to mesenchymal transitions. RESULTS By qRT-PCR, we find higher expression of Esrp1 and Esrp2 in placenta compared to the embryos. We also find a correlation between the expression of Esrp1 and alternative splicing of several known target exons. Using in situ RNA hybridization we show that while Esrp1 expression is ubiquitous in embryonic day (E)6.5 mouse embryos, expression becomes restricted to the chorion and definitive endoderm starting at E7.5. Esrp1 expression was consistently restricted to a subset of epithelial cell types in developing embryos from E9.5 to E13.5. CONCLUSIONS Our results suggest that Esrp1 could play an important role in the morphological changes underlying embryogenesis of the placenta and embryo.
Collapse
Affiliation(s)
- Timothée Revil
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
9
|
Márquez-Rosado L, Singh D, Rincón-Arano H, Solan JL, Lampe PD. CASK (LIN2) interacts with Cx43 in wounded skin and their coexpression affects cell migration. J Cell Sci 2012; 125:695-702. [PMID: 22389404 DOI: 10.1242/jcs.084400] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Vertebrate gap junctions are composed of proteins from the connexin family. Co-immunoprecipitation, in vitro binding and far western experiments demonstrate that mammalian CASK (also known as LIN2) directly interacts with Cx43. Immunoprecipitation studies indicate that the CASK mainly interacts with the hypophosphorylated form of Cx43. Functional co-regulation of these proteins was found in MDCK cells migrating into a scratch wound, where expression of either protein individually inhibits migration but their coexpression abrogates this inhibitory effect. Immunofluorescence shows colocalization of Cx43 and CASK in mouse brain astrocytes and in response to wounding in human foreskin. During wounding, CASK is mobilized to the plasma membrane where it colocalizes with Cx43 and CADM1 1 hour after skin explant wounding. Together, these studies indicate that CASK interaction with Cx43 occurs relatively early in the connexin life cycle and imply a plasma membrane targeting role for the interaction that apparently affects cellular processes including cellular migration and wound healing.
Collapse
Affiliation(s)
- Lucrecia Márquez-Rosado
- Molecular Diagnostics Program, Human Biology and Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | | | | | | | | |
Collapse
|
10
|
Saitsu H, Kato M, Osaka H, Moriyama N, Horita H, Nishiyama K, Yoneda Y, Kondo Y, Tsurusaki Y, Doi H, Miyake N, Hayasaka K, Matsumoto N. CASK aberrations in male patients with Ohtahara syndrome and cerebellar hypoplasia. Epilepsia 2012; 53:1441-9. [PMID: 22709267 DOI: 10.1111/j.1528-1167.2012.03548.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
PURPOSE Ohtahara syndrome (OS) is one of the most severe and earliest forms of epilepsy. STXBP1 and ARX mutations have been reported in patients with OS. In this study, we aimed to identify new genes involved in OS by copy number analysis and whole exome sequencing. METHODS Copy number analysis and whole exome sequencing were performed in 34 and 12 patients with OS, respectively. Fluorescence in situ hybridization, quantitative polymerase chain reaction (PCR), and breakpoint-specific and reverse-transcriptase PCR analyses were performed to characterize a deletion. Immunoblotting using lymphoblastoid cells was done to examine expression of CASK protein. KEY FINDINGS Genomic microarray analysis revealed a 111-kb deletion involving exon 2 of CASK at Xp11.4 in a male patient. The deletion was inherited from his mother, who was somatic mosaic for the deletion. Sequencing of the mutant transcript expressed in lymphoblastoid cell lines derived from the patient confirmed the deletion of exon 2 in the mutant transcript with a premature stop codon. Whole exome sequencing identified another male patient who was harboring a c.1A>G mutation in CASK, which occurred de novo. Both patients showed severe cerebellar hypoplasia along with other congenital anomalies such as micrognathia, a high arched palate, and finger anomalies. No CASK protein was detected by immunoblotting in lymphoblastoid cells derived from two patients. SIGNIFICANCE The detected mutations are highly likely to cause the loss of function of the CASK protein in male individuals. CASK mutations have been reported in patients with intellectual disability with microcephaly and pontocerebellar hypoplasia or congenital nystagmus, and those with FG syndrome. Our data expand the clinical spectrum of CASK mutations to include OS with cerebellar hypoplasia and congenital anomalies at the most severe end.
Collapse
Affiliation(s)
- Hirotomo Saitsu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Kanazawa-ku, Yokohama, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Orofacial clefts occur with a frequency of 1 to 2 per 1000 live births. Cleft palate, which accounts for 30% of orofacial clefts, is caused by the failure of the secondary palatal processes--medially directed, oral projections of the paired embryonic maxillary processes--to fuse. Both gene mutations and environmental effects contribute to the complex etiology of this disorder. Although much progress has been made in identifying genes whose mutations are associated with cleft palate, little is known about the mechanisms by which the environment adversely influences gene expression during secondary palate development. An increasing body of evidence, however, implicates epigenetic processes as playing a role in adversely influencing orofacial development. Epigenetics refers to inherited changes in phenotype or gene expression caused by processes other than changes in the underlying DNA sequence. Such processes include, but are not limited to, DNA methylation, microRNA effects, and histone modifications that alter chromatin conformation. In this review, we describe our current understanding of the possible role epigenetics may play during development of the secondary palate. Specifically, we present the salient features of the embryonic palatal methylome and profile the expression of numerous microRNAs that regulate protein-encoding genes crucial to normal orofacial ontogeny.
Collapse
Affiliation(s)
- Ratnam S Seelan
- Department of Molecular, Cellular and Craniofacial Biology, Birth Defects Center, ULSD, University of Louisville, 501 S. Preston Street, Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
12
|
Novel intragenic duplications and mutations of CASK in patients with mental retardation and microcephaly with pontine and cerebellar hypoplasia (MICPCH). Hum Genet 2011; 131:99-110. [DOI: 10.1007/s00439-011-1047-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 06/15/2011] [Indexed: 01/15/2023]
|
13
|
Dasouki MJ, Lushington GH, Hovanes K, Casey J, Gorre M. The 3q29 microdeletion syndrome: report of three new unrelated patients and in silico "RNA binding" analysis of the 3q29 region. Am J Med Genet A 2011; 155A:1654-60. [PMID: 21626679 DOI: 10.1002/ajmg.a.34080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2009] [Accepted: 04/04/2011] [Indexed: 12/17/2022]
Abstract
The human 3q29 microdeletion syndrome is associated with mild facial dysmorphism, developmental delay and variable congenital malformations. We report three new unrelated patients with this syndrome. We also performed in silico RNA binding analysis in silico on the 3q29 critical region genes. Several genes within this genomic region including DLG1 and RNF168 are predicted to bind RNA. While recessive mutations in RNF168 cause RIDDLE syndrome, an immune deficiency and radiosensitivity disorder, the potential impact of heterozygous deletion of RNF168 on patients with the 3q29 deletion syndrome is still unknown.
Collapse
Affiliation(s)
- Majed J Dasouki
- Department of Pediatrics, University of Kansas Medical Center, Kansas City, USA.
| | | | | | | | | |
Collapse
|
14
|
Huang TN, Chang HP, Hsueh YP. CASK phosphorylation by PKA regulates the protein-protein interactions of CASK and expression of the NMDAR2b gene. J Neurochem 2010; 112:1562-73. [PMID: 20067577 DOI: 10.1111/j.1471-4159.2010.06569.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Calcium/calmodulin-dependent serine kinase (CASK), a causative gene in X-linked mental retardation, acts as a multi-domain scaffold protein and interacts with more than 20 cellular proteins in different subcellular regions of neurons. It is of interest, therefore, to explore whether post-translational modification regulates CASK's protein-protein interactions. Here, we provide evidence that CASK is phosphorylated by protein kinase A (PKA), identifying residue S562 in the PSD-95-Dlg-ZO-1 domain and residue T724 in the guanylate kinase domain as PKA sites by an in vitro PKA kinase reaction and site-directed mutagenesis. Although the role of S562 phosphorylation is not clear, T724 phosphorylation up-regulates the interaction between CASK and T-box transcription factor T-brain-1 (Tbr-1). NMDAR2b, a downstream target of the CASK-Tbr-1 complex, was then used to explore the significance of CASK phosphorylation by PKA. In cultured cortical neurons, the PKA pathway stimulates both the protein expression and the promoter activity of NMDAR2b. Deletion of the Tbr-1-binding sites greatly reduces the 3'-5'-cyclic AMP responsiveness of the NMDAR2b promoter, and the CASK T724A mutation does not promote the 3'-5'-cyclic AMP responsiveness of NMDAR2b. In conclusion, our data provide evidence that PKA phosphorylates CASK, regulates the nuclear function of CASK, and consequently modulates NMDAR2b expression.
Collapse
Affiliation(s)
- Tzyy-Nan Huang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | | | | |
Collapse
|
15
|
Hsueh YP. Calcium/calmodulin-dependent serine protein kinase and mental retardation. Ann Neurol 2009; 66:438-43. [PMID: 19847910 DOI: 10.1002/ana.21755] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Calcium/calmodulin-dependent serine protein kinase (CASK) belongs to the membrane-associated guanylate kinase protein family. The members of this protein family function as multiple domain adaptor proteins originally identified at cell junctions and synapses. Insertional mutations or targeted disruption of the CASK gene in mice results in neonatal lethality, indicating an important role for CASK in development. Recently, several reports have also indicated that mutations in the human CASK gene result in X-linked malformations of the brain and mental retardation. At the molecular level, many studies indicate that CASK is critical for synapse formation at both presynaptic and postsynaptic junctions, and in the regulation of gene expression. The known molecular functions of CASK explain, at least partially, mental retardation and brain developmental defects in patients. In this review, recent findings about CASK are summarized and discussed.
Collapse
Affiliation(s)
- Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
16
|
Lozovatsky L, Abayasekara N, Piawah S, Walther Z. CASK deletion in intestinal epithelia causes mislocalization of LIN7C and the DLG1/Scrib polarity complex without affecting cell polarity. Mol Biol Cell 2009; 20:4489-99. [PMID: 19726564 DOI: 10.1091/mbc.e09-04-0280] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
CASK is the mammalian ortholog of LIN2, a component of the LIN2/7/10 protein complex that targets epidermal growth factor receptor (EGFR) to basolateral membranes in Caenorhabditis elegans. A member of the MAGUK family of scaffolding proteins, CASK resides at basolateral membranes in polarized epithelia. Its interaction with LIN7 is evolutionarily conserved. In addition, CASK forms a complex with another MAGUK, the DLG1 tumor suppressor. Although complete knockout of CASK is lethal, the gene is X-linked, enabling us to generate heterozygous female adults that are mosaic for its expression. We also generated intestine-specific CASK knockout mice. Immunofluorescence analysis revealed that in intestine, CASK is not required for epithelial polarity or differentiation but is necessary for the basolateral localization of DLG1 and LIN7C. However, the subcellular distributions of DLG1 and LIN7C are independent of CASK in the stomach. Moreover, CASK and LIN7C show normal localization in dlg1(-/-) intestine. Despite the disappearance of basolateral LIN7C in CASK-deficient intestinal crypts, this epithelium retains normal localization of LIN7A/B, EGFR and ErbB-2. Finally, crypt-to-villus migration rates are unchanged in CASK-deficient intestinal epithelium. Thus, CASK expression and the appropriate localization of DLG1 are not essential for either epithelial polarity or intestinal homeostasis in vivo.
Collapse
Affiliation(s)
- Larissa Lozovatsky
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
17
|
Mutations of CASK cause an X-linked brain malformation phenotype with microcephaly and hypoplasia of the brainstem and cerebellum. Nat Genet 2009; 40:1065-7. [PMID: 19165920 DOI: 10.1038/ng.194] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
CASK is a multi-domain scaffolding protein that interacts with the transcription factor TBR1 and regulates expression of genes involved in cortical development such as RELN. Here we describe a previously unreported X-linked brain malformation syndrome caused by mutations of CASK. All five affected individuals with CASK mutations had congenital or postnatal microcephaly, disproportionate brainstem and cerebellar hypoplasia, and severe mental retardation.
Collapse
|
18
|
Piluso G, D'Amico F, Saccone V, Bismuto E, Rotundo IL, Di Domenico M, Aurino S, Schwartz CE, Neri G, Nigro V. A missense mutation in CASK causes FG syndrome in an Italian family. Am J Hum Genet 2009; 84:162-77. [PMID: 19200522 DOI: 10.1016/j.ajhg.2008.12.018] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 12/19/2008] [Accepted: 12/27/2008] [Indexed: 11/19/2022] Open
Abstract
First described in 1974, FG syndrome (FGS) is an X-linked multiple congenital anomaly/mental retardation (MCA/MR) disorder, characterized by high clinical variability and genetic heterogeneity. Five loci (FGS1-5) have so far been linked to this phenotype on the X chromosome, but only one gene, MED12, has been identified to date. Mutations in this gene account for a restricted number of FGS patients with a more distinctive phenotype, referred to as the Opitz-Kaveggia phenotype. We report here that a p.R28L (c.83G-->T) missense mutation in CASK causes FGS phenotype in an Italian family previously mapped to Xp11.4-p11.3 (FGS4). The identified missense mutation cosegregates with the phenotype in this family and is absent in 1000 control X chromosomes of the same ethnic origin. An extensive analysis of CASK protein functions as well as structural and dynamic studies performed by molecular dynamics (MD) simulation did not reveal significant alterations induced by the p.R28L substitution. However, we observed a partial skipping of the exon 2 of CASK, presumably a consequence of improper recognition of exonic splicing enhancers (ESEs) induced by the c.83G-->T transversion. CASK is a multidomain scaffold protein highly expressed in the central nervous system (CNS) with specific localization to the synapses, where it forms large signaling complexes regulating neurotransmission. We suggest that the observed phenotype is most likely a consequence of an altered CASK expression profile during embryogenesis, brain development, and differentiation.
Collapse
Affiliation(s)
- Giulio Piluso
- Dipartimento di Patologia Generale, Seconda Università degli Studi di Napoli, Napoli 80138, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Weng H, Kim C, Valavanis C, Wang Z, Schwartz LM. Acheron, an novel LA antigen family member, binds to CASK and forms a complex with Id transcription factors. Cell Mol Biol Lett 2008; 14:273-87. [PMID: 19096764 PMCID: PMC6275571 DOI: 10.2478/s11658-008-0046-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 12/10/2008] [Indexed: 01/06/2023] Open
Abstract
Acheron, a Lupus antigen ortholog, was identified as a novel death-associated transcript from the intersegmental muscles of the moth Manduca sexta. Acheron is phylogenetically-conserved and represents a new sub-family of Lupus antigen proteins. Acheron is expressed predominantly in neurons and muscle in vertebrates, and regulates several developmental events including myogenesis, neurogenesis and possibly metastasis. Using Acheron as bait, we performed a yeast two-hybrid screen with a mouse embryo cDNA library and identified CASK-C, a novel CASK/Lin-2 isoform, as an Acheron binding partner. Acheron and CASK-C bind via the C-terminus of Acheron and the CaMKII-like domain of CASK-C. Co-immunoprecipitation assays verify this interaction and demonstrate that Acheron also forms a complex with all members of the Id (inhibitor of differentiation) proteins. Taken together, these data suggest a mechanism by which Acheron may regulate development and pathology.
Collapse
Affiliation(s)
- Haifeng Weng
- Molecular and Cellular Biology Program, Morrill Science Center, University of Massachusetts, Amherst, Massachusetts 01003 USA
- Department of Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115 USA
| | - Chul Kim
- Molecular and Cellular Biology Program, Morrill Science Center, University of Massachusetts, Amherst, Massachusetts 01003 USA
| | - Christos Valavanis
- Department of Biology, Morrill Science Center, University of Massachusetts, Amherst, Massachusetts 01003 USA
- Molecular Pathology and Genetics Division, Department of Pathology, Metaxa Cancer Hospital, Botassi 51, Piraeus, 185 37 Greece
| | - Zhaohui Wang
- Molecular and Cellular Biology Program, Morrill Science Center, University of Massachusetts, Amherst, Massachusetts 01003 USA
| | - Lawrence M. Schwartz
- Molecular and Cellular Biology Program, Morrill Science Center, University of Massachusetts, Amherst, Massachusetts 01003 USA
- Department of Biology, Morrill Science Center, University of Massachusetts, Amherst, Massachusetts 01003 USA
- Pioneer Valley Life Sciences Institute, 3601 Main Street, Springfield, Massachusetts 01199 USA
| |
Collapse
|
20
|
Sanford JL, Mays TA, Varian KD, Wilson JB, Janssen PM, Rafael-Fortney JA. Truncated CASK does not alter skeletal muscle or protein interactors. Muscle Nerve 2008; 38:1116-27. [DOI: 10.1002/mus.20993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
21
|
Ojeh N, Pekovic V, Jahoda C, Määttä A. The MAGUK-family protein CASK is targeted to nuclei of the basal epidermis and controls keratinocyte proliferation. J Cell Sci 2008; 121:2705-17. [DOI: 10.1242/jcs.025643] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Ca2+/calmodulin-associated Ser/Thr kinase (CASK) binds syndecans and other cell-surface proteins through its PDZ domain and has been implicated in synaptic assembly, epithelial polarity and neuronal gene transcription. We show here that CASK regulates proliferation and adhesion of epidermal keratinocytes. CASK is localised in nuclei of basal keratinocytes in newborn rodent skin and developing hair follicles. Induction of differentiation shifts CASK to the cell membrane, whereas in keratinocytes that have been re-stimulated after serum starvation CASK localisation shifts away from membranes upon entry to S phase. Biochemical fractionation demonstrates that CASK has several subnuclear targets and is found in both nucleoplasmic and nucleoskeletal pools. Knockdown of CASK by RNA interference leads to increased proliferation in cultured keratinocytes and in organotypic skin raft cultures. Accelerated cell cycling in CASK knockdown cells is associated with upregulation of Myc and hyperphosphorylation of Rb. Moreover, CASK-knockdown cells show increased hyperproliferative response to KGF and TGFα, and accelerated attachment and spreading to the collagenous matrix. These functions are reflected in wound healing, where CASK is downregulated in migrating and proliferating wound-edge keratinocytes.
Collapse
Affiliation(s)
- Nkemcho Ojeh
- School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, UK
| | - Vanja Pekovic
- School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, UK
| | - Colin Jahoda
- School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, UK
| | - Arto Määttä
- School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, UK
| |
Collapse
|
22
|
Hayashi S, Mizuno S, Migita O, Okuyama T, Makita Y, Hata A, Imoto I, Inazawa J. TheCASKgene harbored in a deletion detected by array-CGH as a potential candidate for a gene causative of X-linked dominant mental retardation. Am J Med Genet A 2008; 146A:2145-51. [DOI: 10.1002/ajmg.a.32433] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Chao HW, Hong CJ, Huang TN, Lin YL, Hsueh YP. SUMOylation of the MAGUK protein CASK regulates dendritic spinogenesis. ACTA ACUST UNITED AC 2008; 182:141-55. [PMID: 18606847 PMCID: PMC2447900 DOI: 10.1083/jcb.200712094] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Membrane-associated guanylate kinase (MAGUK) proteins interact with several synaptogenesis-triggering adhesion molecules. However, direct evidence for the involvement of MAGUK proteins in synapse formation is lacking. In this study, we investigate the function of calcium/calmodulin-dependent serine protein kinase (CASK), a MAGUK protein, in dendritic spine formation by RNA interference. Knockdown of CASK in cultured hippocampal neurons reduces spine density and shrinks dendritic spines. Our analysis of the time course of RNA interference and CASK overexpression experiments further suggests that CASK stabilizes or maintains spine morphology. Experiments using only the CASK PDZ domain or a mutant lacking the protein 4.1–binding site indicate an involvement of CASK in linking transmembrane adhesion molecules and the actin cytoskeleton. We also find that CASK is SUMOylated. Conjugation of small ubiquitin-like modifier 1 (SUMO1) to CASK reduces the interaction between CASK and protein 4.1. Overexpression of a CASK–SUMO1 fusion construct, which mimicks CASK SUMOylation, impairs spine formation. Our study suggests that CASK contributes to spinogenesis and that this is controlled by SUMOylation.
Collapse
Affiliation(s)
- Hsu-Wen Chao
- Graduate Institute of Life Science, National Defense Medical Center, National Yang-Ming University, Taipei 11529, Taiwan
| | | | | | | | | |
Collapse
|
24
|
The etiopathogenesis of cleft lip and cleft palate: usefulness and caveats of mouse models. Curr Top Dev Biol 2008; 84:37-138. [PMID: 19186243 DOI: 10.1016/s0070-2153(08)00602-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cleft lip and cleft palate are frequent human congenital malformations with a complex multifactorial etiology. These orofacial clefts can occur as part of a syndrome involving multiple organs or as isolated clefts without other detectable defects. Both forms of clefting constitute a heavy burden to the affected individuals and their next of kin. Human and mouse facial traits are utterly dissimilar. However, embryonic development of the lip and palate are strikingly similar in both species, making the mouse a model of choice to study their normal and abnormal development. Human epidemiological and genetic studies are clearly important for understanding the etiology of lip and palate clefting. However, our current knowledge about the etiopathogenesis of these malformations has mainly been gathered throughout the years from mouse models, including those with mutagen-, teratogen- and targeted mutation-induced clefts as well as from mice with spontaneous clefts. This review provides a comprehensive description of the numerous mouse models for cleft lip and/or cleft palate. Despite a few weak points, these models have revealed a high order of molecular complexity as well as the stringent spatiotemporal regulations and interactions between key factors which govern the development of these orofacial structures.
Collapse
|
25
|
Atasoy D, Schoch S, Ho A, Nadasy KA, Liu X, Zhang W, Mukherjee K, Nosyreva ED, Fernandez-Chacon R, Missler M, Kavalali ET, Südhof TC. Deletion of CASK in mice is lethal and impairs synaptic function. Proc Natl Acad Sci U S A 2007; 104:2525-30. [PMID: 17287346 PMCID: PMC1892970 DOI: 10.1073/pnas.0611003104] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
CASK is an evolutionarily conserved multidomain protein composed of an N-terminal Ca2+/calmodulin-kinase domain, central PDZ and SH3 domains, and a C-terminal guanylate kinase domain. Many potential activities for CASK have been suggested, including functions in scaffolding the synapse, in organizing ion channels, and in regulating neuronal gene transcription. To better define the physiological importance of CASK, we have now analyzed CASK "knockdown" mice in which CASK expression was suppressed by approximately 70%, and CASK knockout (KO) mice, in which CASK expression was abolished. CASK knockdown mice are viable but smaller than WT mice, whereas CASK KO mice die at first day after birth. CASK KO mice exhibit no major developmental abnormalities apart from a partially penetrant cleft palate syndrome. In CASK-deficient neurons, the levels of the CASK-interacting proteins Mints, Veli/Mals, and neurexins are decreased, whereas the level of neuroligin 1 (which binds to neurexins that in turn bind to CASK) is increased. Neurons lacking CASK display overall normal electrical properties and form ultrastructurally normal synapses. However, glutamatergic spontaneous synaptic release events are increased, and GABAergic synaptic release events are decreased in CASK-deficient neurons. In contrast to spontaneous neurotransmitter release, evoked release exhibited no major changes. Our data suggest that CASK, the only member of the membrane-associated guanylate kinase protein family that contains a Ca2+/calmodulin-dependent kinase domain, is required for mouse survival and performs a selectively essential function without being in itself required for core activities of neurons, such as membrane excitability, Ca2+-triggered presynaptic release, or postsynaptic receptor functions.
Collapse
Affiliation(s)
| | - Susanne Schoch
- Departments of *Neuroscience
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111
| | | | | | | | - Weiqi Zhang
- Center for Physiology and Pathophysiology, Georg August University, D-37073 Göttingen, Germany; and
| | | | | | - Rafael Fernandez-Chacon
- Departments of *Neuroscience
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111
| | - Markus Missler
- Center for Physiology and Pathophysiology, Georg August University, D-37073 Göttingen, Germany; and
- **Department of Anatomy and Molecular Neurobiology, Westfälische Wilhelms University, D-48149 Münster, Germany
| | | | - Thomas C. Südhof
- Departments of *Neuroscience
- Molecular Genetics, and
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111
- To whom correspondence should be addressed at:
Center for Basic Neuroscience, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-9111. E-mail:
| |
Collapse
|
26
|
Gritli-Linde A. Molecular control of secondary palate development. Dev Biol 2006; 301:309-26. [PMID: 16942766 DOI: 10.1016/j.ydbio.2006.07.042] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 07/24/2006] [Accepted: 07/28/2006] [Indexed: 12/17/2022]
Abstract
Compared with the embryonic development of other organs, development of the secondary palate is seemingly simple. However, each step of palatogenesis, from initiation until completion, is subject to a tight molecular control that is governed by epithelial-mesenchymal interactions. The importance of a rigorous molecular regulation of palatogenesis is reflected when loss of function of a single protein generates cleft palate, a frequent malformation with a complex etiology. Genetic studies in humans and targeted mutations in mice have identified numerous factors that play key roles during palatogenesis. This review highlights the current understanding of the molecular and cellular mechanisms involved in normal and abnormal palate development with special respect to recent advances derived from studies of mouse models.
Collapse
Affiliation(s)
- Amel Gritli-Linde
- Department of Oral Biochemistry, Sahlgrenska Academy at Göteborg University, Medicinaregatan 12F, Göteborg, Sweden.
| |
Collapse
|
27
|
Rogelj B, Mitchell JC, Miller CCJ, McLoughlin DM. The X11/Mint family of adaptor proteins. ACTA ACUST UNITED AC 2006; 52:305-15. [PMID: 16764936 DOI: 10.1016/j.brainresrev.2006.04.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 03/27/2006] [Accepted: 04/16/2006] [Indexed: 12/25/2022]
Abstract
The X11 protein family are multidomain proteins composed of a conserved PTB domain and two C-terminal PDZ domains. They are involved in formation of multiprotein complexes and two of the family members, X11alpha and X11beta, are expressed primarily in neurones. Not much is known about the principal function of X11s, but through interactions with other neuronal proteins, they are believed to be involved in regulating neuronal signaling, trafficking and plasticity. Furthermore, they have been shown to modulate processing of APP and accumulation of Abeta, making them potential therapeutic targets for Alzheimer's disease. This article reviews the known interactions of the different X11s and their involvement in Alzheimer's disease.
Collapse
Affiliation(s)
- Boris Rogelj
- King's College London, MRC Centre for Neurodegeneration Research, Department of Neuroscience, Institute of Psychiatry, De Crespigny Park, London SE5 8AF, UK
| | | | | | | |
Collapse
|
28
|
Stiffler MA, Grantcharova VP, Sevecka M, MacBeath G. Uncovering quantitative protein interaction networks for mouse PDZ domains using protein microarrays. J Am Chem Soc 2006; 128:5913-22. [PMID: 16637659 PMCID: PMC2533859 DOI: 10.1021/ja060943h] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
One of the principal challenges in systems biology is to uncover the networks of protein-protein interactions that underlie most biological processes. To date, experimental efforts directed at this problem have largely produced only qualitative networks that are replete with false positives and false negatives. Here, we describe a domain-centered approach--compatible with genome-wide investigations--that enables us to measure the equilibrium dissociation constant (K(D)) of recombinant PDZ domains for fluorescently labeled peptides that represent physiologically relevant binding partners. Using a pilot set of 22 PDZ domains, 4 PDZ domain clusters, and 20 peptides, we define a gold standard dataset by determining the K(D) for all 520 PDZ-peptide combinations using fluorescence polarization. We then show that microarrays of PDZ domains identify interactions of moderate to high affinity (K(D) < or = 10 microM) in a high-throughput format with a false positive rate of 14% and a false negative rate of 14%. By combining the throughput of protein microarrays with the fidelity of fluorescence polarization, our domain/peptide-based strategy yields a quantitative network that faithfully recapitulates 85% of previously reported interactions and uncovers new biophysical interactions, many of which occur between proteins that are co-expressed. From a broader perspective, the selectivity data produced by this effort reveal a strong concordance between protein sequence and protein function, supporting a model in which interaction networks evolve through small steps that do not involve dramatic rewiring of the network.
Collapse
Affiliation(s)
- Michael A. Stiffler
- Department of Chemistry and Chemical Biology Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
| | | | - Mark Sevecka
- Department of Chemistry and Chemical Biology Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
| | - Gavin MacBeath
- Department of Chemistry and Chemical Biology Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
| |
Collapse
|
29
|
Gardner KL, Sanford JL, Mays TA, Rafael-Fortney JA. CASK localizes to nuclei in developing skeletal muscle and motor neuron culture models and is agrin-independent. J Cell Physiol 2006; 206:196-202. [PMID: 15965905 DOI: 10.1002/jcp.20449] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Membrane-associated guanylate kinases (MAGUKs) are cytoplasmic multi-domain proteins that serve as scaffold proteins at cell junctions and synapses. Calmodulin-associated serine/threonine kinase (CASK) stabilizes the integrity of synapses in the brain. Additionally, CASK is capable of acting as a transcriptional co-activator and localizes to neuronal nuclei in the developing brain. We have recently described CASK localization to both the pre- and post-synaptic membranes of the neuromuscular junction (NMJ), where it forms a complex with discs large (Dlg). CASK also localizes to some, but not all nuclei in adult mouse skeletal muscle. To begin to dissect the roles of CASK in the cellular components of the NMJ, we investigated the localization of CASK during differentiation in cell culture models of skeletal muscle and motor neurons. We demonstrate that CASK localizes to the nucleus in undifferentiated myoblasts, but is pre-dominantly in the cytoplasm in differentiated myotubes of the C2C12 myogenic cell line. We also show nuclear localization of both CASK and Dlg in a motor neuron-neuroblastoma hybrid cell line, MN-1, suggesting a role for CASK and Dlg in nuclei of neurons in the peripheral nervous system. Finally, we demonstrate that CASK and Dlg do not co-cluster with acetylcholine receptors in C2C12 myotubes in response to agrin or laminin treatment, suggesting a novel mechanism of recruitment to the NMJ that is independent of acetylcholine receptor and utrophin complexes. These studies delineate important developmental characteristics of CASK and Dlg, and suggest dual roles for these proteins in both the skeletal muscle and motor neuron components of the NMJ.
Collapse
Affiliation(s)
- Katherine L Gardner
- Department of Molecular and Cellular Biochemistry, College of Medicine, The Ohio State University, 410 Hamilton Hall, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
30
|
Olsen O, Moore KA, Nicoll RA, Bredt DS. Synaptic transmission regulated by a presynaptic MALS/Liprin-alpha protein complex. Curr Opin Cell Biol 2006; 18:223-7. [PMID: 16504495 DOI: 10.1016/j.ceb.2006.02.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Accepted: 02/08/2006] [Indexed: 11/18/2022]
Abstract
Neurotransmission requires proper organization of synaptic vesicle pools and rapid release of vesicle contents upon presynaptic depolarization. Genetic studies have begun to reveal a critical role for scaffolding proteins in such processes. Mutations in genes encoding components of the highly conserved MALS/CASK/Mint-1 complex cause presynaptic defects. In all three mutants, neurotransmitter release is reduced in a manner consistent with aberrant vesicle cycling to the readily releasable pool. Recently, liprin-alpha proteins, which define active zone size and morphology, were found to associate with MALS/CASK, suggesting that this complex links the presynaptic release machinery to the active zone, thereby regulating neurotransmitter release.
Collapse
Affiliation(s)
- Olav Olsen
- Departments of Physiology and Cellular & Molecular Pharmacology, University of California-San Francisco, 600 16th Street, San Francisco, CA, USA
| | | | | | | |
Collapse
|
31
|
Olsen O, Moore KA, Fukata M, Kazuta T, Trinidad JC, Kauer FW, Streuli M, Misawa H, Burlingame AL, Nicoll RA, Bredt DS. Neurotransmitter release regulated by a MALS-liprin-alpha presynaptic complex. ACTA ACUST UNITED AC 2005; 170:1127-34. [PMID: 16186258 PMCID: PMC2171538 DOI: 10.1083/jcb.200503011] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Synapses are highly specialized intercellular junctions organized by adhesive and scaffolding molecules that align presynaptic vesicular release with postsynaptic neurotransmitter receptors. The MALS/Veli–CASK–Mint-1 complex of PDZ proteins occurs on both sides of the synapse and has the potential to link transsynaptic adhesion molecules to the cytoskeleton. In this study, we purified the MALS protein complex from brain and found liprin-α as a major component. Liprin proteins organize the presynaptic active zone and regulate neurotransmitter release. Fittingly, mutant mice lacking all three MALS isoforms died perinatally with difficulty breathing and impaired excitatory synaptic transmission. Excitatory postsynaptic currents were dramatically reduced in autaptic cultures from MALS triple knockout mice due to a presynaptic deficit in vesicle cycling. These findings are consistent with a model whereby the MALS–CASK–liprin-α complex recruits components of the synaptic release machinery to adhesive proteins of the active zone.
Collapse
Affiliation(s)
- Olav Olsen
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Eiglmeier K, Wincker P, Cattolico L, Anthouard V, Holm I, Eckenberg R, Quesneville H, Jaillon O, Collins FH, Weissenbach J, Brey PT, Roth CW. Comparative analysis of BAC and whole genome shotgun sequences from an Anopheles gambiae region related to Plasmodium encapsulation. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2005; 35:799-814. [PMID: 15944077 DOI: 10.1016/j.ibmb.2005.02.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Revised: 02/10/2005] [Accepted: 02/15/2005] [Indexed: 05/02/2023]
Abstract
The only natural mechanism of malaria transmission in sub-Saharan Africa is the mosquito, generally Anopheles gambiae. Blocking malaria parasite transmission by stopping the development of Plasmodium in the insect vector would provide a useful alternative to the current methods of malaria control. Toward this end, it is important to understand the molecular basis of the malaria parasite refractory phenotype in An. gambiae mosquito strains. We have selected and sequenced six bacterial artificial chromosome (BAC) clones from the Pen-1 region that is the major quantitative trait locus involved in Plasmodium encapsulation. The sequence and the annotation of five overlapping BAC clones plus one adjacent, but not contiguous clone, totaling 585kb of genomic sequence from the centromeric end of the Pen-1 region of the PEST strain were compared to that of the genome sequence of the same strain produced by the whole genome shotgun technique. This project identified 23 putative mosquito genes plus putative copies of the retrotransposable elements BEL12 and TRANSIBN1_AG in the six BAC clones. Nineteen of the predicted genes are most similar to their Drosophila melanogaster homologs while one is more closely related to vertebrate genes. Comparison of these new BAC sequences plus previously published BAC sequences to the cognate region of the assembled genome sequence identified three retrotransposons present in one sequence version but not the other. One of these elements, Indy, has not been previously described. These observations provide evidence for the recent active transposition of these elements and demonstrate the plasticity of the Anopheles genome. The BAC sequences strongly support the public whole genome shotgun assembly and automatic annotation while also demonstrating the benefit of complementary genome sequences and of human curation. Importantly, the data demonstrate the differences in the genome sequence of an individual mosquito compared to that of a hypothetical, average genome sequence generated by whole genome shotgun assembly.
Collapse
Affiliation(s)
- Karin Eiglmeier
- Biochimie et Biologie Moléculaire des Insectes, CNRS-FRE 2849, Institut Pasteur, 25, rue du Dr. Roux, F-75724 Paris Cedex 15, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Funke L, Dakoji S, Bredt DS. MEMBRANE-ASSOCIATED GUANYLATE KINASES REGULATE ADHESION AND PLASTICITY AT CELL JUNCTIONS. Annu Rev Biochem 2005; 74:219-45. [PMID: 15952887 DOI: 10.1146/annurev.biochem.74.082803.133339] [Citation(s) in RCA: 374] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tissue development, differentiation, and physiology require specialized cellular adhesion and signal transduction at sites of cell-cell contact. Scaffolding proteins that tether adhesion molecules, receptors, and intracellular signaling enzymes organize macromolecular protein complexes at cellular junctions to integrate these functions. One family of such scaffolding proteins is the large group of membrane-associated guanylate kinases (MAGUKs). Genetic studies have highlighted critical roles for MAGUK proteins in the development and physiology of numerous tissues from a variety of metazoan organisms. Mutation of Drosophila discs large (dlg) disrupts epithelial septate junctions and causes overgrowth of imaginal discs. Similarly, mutation of lin-2, a related MAGUK in Caenorhabditis elegans, blocks vulval development, and mutation of the postsynaptic density protein PSD-95 impairs synaptic plasticity in mammalian brain. These diverse roles are explained by recent biochemical and structural analyses of MAGUKs, which demonstrate their capacity to assemble well--efined--yet adaptable--protein complexes at cellular junctions.
Collapse
Affiliation(s)
- Lars Funke
- Department of Physiology, University of California at San Francisco, California 94143, USA.
| | | | | |
Collapse
|
34
|
Qi J, Su Y, Sun R, Zhang F, Luo X, Yang Z, Luo X. CASK inhibits ECV304 cell growth and interacts with Id1. Biochem Biophys Res Commun 2005; 328:517-21. [PMID: 15694377 DOI: 10.1016/j.bbrc.2005.01.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2004] [Indexed: 12/28/2022]
Abstract
Calcium/calmodulin-dependent serine protein kinase (CASK) is generally known as a scaffold protein. Here we show that overexpression of CASK resulted in a reduced rate of cell growth, while inhibition of expression of endogenous CASK via RNA-mediated interference resulted in an increased rate of cell growth in ECV304 cells. To explore the molecular mechanism, we identified a novel CASK-interacting protein, inhibitor of differentiation 1 (Id1) with a yeast two-hybrid screening. Furthermore, endogenous CASK and Id1 proteins were co-precipitated from the lysates of ECV304 cells by immunoprecipitation. Mammalian two-hybrid protein-protein interaction assays indicated that CASK possessed a different binding activity for Id1 and its alternative splicing variant. It is known that Id proteins play important roles in regulation of cell proliferation and differentiation. Thus, we speculate that the regulation of cell growth mediated by CASK may be involved in Id1. Our findings indicate a novel function of CASK, the mechanism that remains to be further investigated.
Collapse
Affiliation(s)
- Jie Qi
- Burn Research Institute, Southwest Hospital, Third Military Medical University, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing 400038, PR China
| | | | | | | | | | | | | |
Collapse
|
35
|
Leonoudakis D, Conti LR, Anderson S, Radeke CM, McGuire LMM, Adams ME, Froehner SC, Yates JR, Vandenberg CA. Protein trafficking and anchoring complexes revealed by proteomic analysis of inward rectifier potassium channel (Kir2.x)-associated proteins. J Biol Chem 2004; 279:22331-46. [PMID: 15024025 DOI: 10.1074/jbc.m400285200] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Inward rectifier potassium (Kir) channels play important roles in the maintenance and control of cell excitability. Both intracellular trafficking and modulation of Kir channel activity are regulated by protein-protein interactions. We adopted a proteomics approach to identify proteins associated with Kir2 channels via the channel C-terminal PDZ binding motif. Detergent-solubilized rat brain and heart extracts were subjected to affinity chromatography using a Kir2.2 C-terminal matrix to purify channel-interacting proteins. Proteins were identified with multidimensional high pressure liquid chromatography coupled with electrospray ionization tandem mass spectrometry, N-terminal microsequencing, and immunoblotting with specific antibodies. We identified eight members of the MAGUK family of proteins (SAP97, PSD-95, Chapsyn-110, SAP102, CASK, Dlg2, Dlg3, and Pals2), two isoforms of Veli (Veli-1 and Veli-3), Mint1, and actin-binding LIM protein (abLIM) as Kir2.2-associated brain proteins. From heart extract purifications, SAP97, CASK, Veli-3, and Mint1 also were found to associate with Kir2 channels. Furthermore, we demonstrate for the first time that components of the dystrophin-associated protein complex, including alpha1-, beta1-, and beta2-syntrophin, dystrophin, and dystrobrevin, interact with Kir2 channels, as demonstrated by immunoaffinity purification and affinity chromatography from skeletal and cardiac muscle and brain. Affinity pull-down experiments revealed that Kir2.1, Kir2.2, Kir2.3, and Kir4.1 all bind to scaffolding proteins but with different affinities for the dystrophin-associated protein complex and SAP97, CASK, and Veli. Immunofluorescent localization studies demonstrated that Kir2.2 co-localizes with syntrophin, dystrophin, and dystrobrevin at skeletal muscle neuromuscular junctions. These results suggest that Kir2 channels associate with protein complexes that may be important to target and traffic channels to specific subcellular locations, as well as anchor and stabilize channels in the plasma membrane.
Collapse
MESH Headings
- Amino Acid Motifs
- Amino Acid Sequence
- Animals
- Blotting, Western
- Brain/embryology
- Brain/metabolism
- COS Cells
- Cell Membrane/metabolism
- Cerebellum/metabolism
- Chromatography, Affinity
- Chromatography, High Pressure Liquid
- DNA, Complementary/metabolism
- Detergents/pharmacology
- Dystrophin-Associated Proteins
- Glutathione Transferase/metabolism
- Guanylate Kinases
- Immunoblotting
- Mass Spectrometry
- Membrane Proteins/chemistry
- Membrane Proteins/metabolism
- Microscopy, Fluorescence
- Models, Biological
- Molecular Sequence Data
- Muscle Proteins/chemistry
- Muscle Proteins/metabolism
- Muscle, Skeletal/metabolism
- Myocardium/metabolism
- Peptides/chemistry
- Potassium Channels, Inwardly Rectifying/chemistry
- Potassium Channels, Inwardly Rectifying/metabolism
- Precipitin Tests
- Protein Isoforms
- Protein Structure, Tertiary
- Protein Transport
- Proteome
- Proteomics/methods
- Rats
- Recombinant Fusion Proteins/metabolism
- Silver Staining
- Spectrometry, Mass, Electrospray Ionization
Collapse
Affiliation(s)
- Dmitri Leonoudakis
- Department of Molecular, Cellular, University of California, Santa Barbara, California 93106, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Sanford JL, Mays TA, Rafael-Fortney JA. CASK and Dlg form a PDZ protein complex at the mammalian neuromuscular junction. Muscle Nerve 2004; 30:164-71. [PMID: 15266631 DOI: 10.1002/mus.20073] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Membrane-associated guanylate kinases (MAGUKs) are modular adapter proteins that serve as scaffolding molecules and anchor channels and receptors via their PDZ (PSD-95, Dlg, Zo-1) domains. Calcium, calmodulin-associated serine/threonine kinase (CASK) is a MAGUK that is critical at synapses in the central nervous system and at cell-cell junctions because of its interactions with channels, receptors, and structural proteins. We show via confocal microscopy that CASK and another MAGUK, Discs Large (Dlg), are present at the mammalian neuromuscular junction in skeletal muscle. Immunoprecipitation data from mouse muscle show that CASK associates with Dlg, providing evidence of a MAGUK protein complex at this synapse. These data indicate that CASK and Dlg may act as a scaffold for organizing receptors and channels at the postsynaptic membrane of the neuromuscular junction.
Collapse
Affiliation(s)
- Jamie L Sanford
- Department of Molecular and Cellular Biochemistry, College of Medicine, Ohio State University, 410 Hamilton Hall, 1645 Neil Ave., Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
37
|
Donaldson MR, Yoon G, Fu YH, Ptacek LJ. Andersen-Tawil syndrome: a model of clinical variability, pleiotropy, and genetic heterogeneity. Ann Med 2004; 36 Suppl 1:92-7. [PMID: 15176430 DOI: 10.1080/17431380410032490] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Due to its varied and variable phenotypes, Andersen-Tawil syndrome (ATS) holds a unique place in the field of channelopathies. Patients with ATS typically present with the triad of periodic paralysis, cardiac arrhythmias, and developmental dysmorphisms. Although penetrance of ATS is high, disease expression and severity are remarkably variable. Mutations in KCNJ2 are the primary cause of ATS with 21 mutations discovered in 30 families. These mutations affect channel function through heterogeneous mechanisms, including reduced PIP2-related channel activation and altered pore function. Aside from KCNJ2-based ATS, the genetic basis of this disease in nearly 40% of cases is unknown. Other ATS genes likely share a common pathway or function with Kir2.1 or facilitate the activity of this ion channel. In this review, we explore hypotheses explaining the pathogenesis, expression, and variability of ATS.
Collapse
Affiliation(s)
- Matthew R Donaldson
- Department of Human Molecular Biology and Genetics, University of Utah, Salt Lake City, USA
| | | | | | | |
Collapse
|
38
|
Humbert P, Russell S, Richardson H. Dlg, Scribble and Lgl in cell polarity, cell proliferation and cancer. Bioessays 2003; 25:542-53. [PMID: 12766944 DOI: 10.1002/bies.10286] [Citation(s) in RCA: 218] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Dlg (Discs large), Scrib (Scribble) and Lgl (Lethal giant larvae) are evolutionarily conserved components of a common genetic pathway that link the seemingly disparate functions of cell polarity and cell proliferation in epithelial cells. dlg, scrib and lgl have been identified as tumour suppressor genes in Drosophila, mutations of which cause similar phenotypes, involving disruption of cell polarity and neoplastic overgrowth of tissues. The molecular mechanisms by which Dlg, Scrib and Lgl proteins regulate cell proliferation are not clear, but there is some evidence that epithelial polarisation is required for this regulation. Dlg, Scrib and Lgl are highly conserved between human and Drosophila, and we discuss evidence that these proteins also play a role in cancer progression in humans.
Collapse
Affiliation(s)
- Patrick Humbert
- Cell Cycle and Cancer Genetics Laboratory, Peter MacCallum Cancer Institute, St. Andrew's Place, East Melbourne, Victoria 3002, Australia
| | | | | |
Collapse
|
39
|
Nourry C, Grant SGN, Borg JP. PDZ domain proteins: plug and play! SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2003; 2003:RE7. [PMID: 12709532 DOI: 10.1126/stke.2003.179.re7] [Citation(s) in RCA: 293] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Protein-protein interactions are key elements in building functional protein complexes. Among the plethora of domains identified during the last 10 years, PDZ domains are one of the most commonly found protein-protein interaction domains in organisms from bacteria to humans. Although they may be the sole protein interaction domain within a cytoplasmic protein, they are most often found in combination with other protein interaction domains (for instance, SH3, PTB, WW) participating in complexes that facilitate signaling or determine the localization of receptors. Diversity of PDZ-containing protein function is provided by the large number of PDZ proteins that Mother Nature has distributed in the genome and implicates this protein family in the wiring of a huge number of molecules in molecular networks from the plasma membrane to the nucleus. Although at first sight their binding specificity appeared rather monotonous, involving only binding to the carboxyl-terminus of various proteins, it is now recognized that PDZ domains interact with greater versatility through PDZ-PDZ domain interaction; they bind to internal peptide sequences and even to lipids. Furthermore, PDZ domain-mediated interactions can sometimes be modulated in a dynamic way through target phosphorylation. In this review, we attempt to describe the structural basis of PDZ domain recognition and to give some functional insights into their role in the scaffolding of protein complexes implicated in normal and pathological biological processes.
Collapse
Affiliation(s)
- Claire Nourry
- U119 INSERM and Institut Paoli-Calmettes, Laboratory of Molecular Pharmacology, 27 Boulevard Leï Roure, 13009 Marseille, France
| | | | | |
Collapse
|
40
|
|
41
|
Carinci F, Pezzetti F, Scapoli L, Martinelli M, Avantaggiato A, Carinci P, Padula E, Baciliero U, Gombos F, Laino G, Rullo R, Cenzi R, Carls F, Tognon M. Recent developments in orofacial cleft genetics. J Craniofac Surg 2003; 14:130-43. [PMID: 12621282 DOI: 10.1097/00001665-200303000-00002] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Nonsyndromic cleft of the lip and/or palate (CLP or orofacial cleft) derives from an embryopathy with consequent failure of the nasal process and/or palatal shelves fusion. This severe birth defect is one of the most common malformations among live births. Nonsyndromic CLP is composed of two separate entities: cleft lip and palate (CL+/-P) and cleft palate only (CPO). Both have a genetic background, and environmental factors probably disclose these malformations. In CL+/-P, several loci have been identified, and, in one case, a specific gene has also been found. In CPO, one gene has been identified, but many more are probably involved. Because of the complexity of the genetics of nonsyndromic CLP as a result of the difference between CL+/-P and CPO, heterogeneity of each group caused by the number of involved genes, type of inheritance, and interaction with environmental factors, we discuss the more sound results obtained with different approaches: epidemiological studies, animal models, human genetic studies, and in vitro studies.
Collapse
Affiliation(s)
- Francesco Carinci
- Maxillofacial Surgery, School of Medicine, Center of Molecular Genetics, CARISBO Foundation, and Institute of Histology and General Embryology, School of Medicine, University of Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Spafford JD, Munno DW, Van Nierop P, Feng ZP, Jarvis SE, Gallin WJ, Smit AB, Zamponi GW, Syed NI. Calcium channel structural determinants of synaptic transmission between identified invertebrate neurons. J Biol Chem 2003; 278:4258-67. [PMID: 12458203 DOI: 10.1074/jbc.m211076200] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report here that unlike what was suggested for many vertebrate neurons, synaptic transmission in Lymnaea stagnalis occurs independent of a physical interaction between presynaptic calcium channels and a functional complement of SNARE proteins. Instead, synaptic transmission in Lymnaea requires the expression of a C-terminal splice variant of the Lymnaea homolog to mammalian N- and P/Q-type calcium channels. We show that the alternately spliced region physically interacts with the scaffolding proteins Mint1 and CASK, and that synaptic transmission is abolished following RNA interference knockdown of CASK or after the injection of peptide sequences designed to disrupt the calcium channel-Mint1 interactions. Our data suggest that Mint1 and CASK may serve to localize the non-L-type channels at the active zone and that synaptic transmission in invertebrate neurons utilizes a mechanism for optimizing calcium entry, which occurs independently of a physical association between calcium channels and SNARE proteins.
Collapse
Affiliation(s)
- J David Spafford
- Department of Molecular and Cellular Neurobiology, Vrije Universiteit, Amsterdam, 108HV Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Glutamate mediates most excitatory synaptic transmission in the brain. Synaptic strength at glutamatergic synapses shows a remarkable degree of use-dependent plasticity and such modifications may represent a physiological correlate to learning and memory. Glutamate receptors and downstream enzymes are organized at synapses by cytoskeletal proteins containing multiple protein-interacting domains. Recent studies demonstrate that these 'scaffolding' proteins within the postsynaptic specialization have the capacity to promote synaptic maturation, influence synapse size, and modulate glutamate receptor function.
Collapse
Affiliation(s)
- Aaron W McGee
- University of California at San Francisco School of Medicine, 513 Parnassus Avenue, San Francisco, California 94143-0444, USA
| | | |
Collapse
|
44
|
Abstract
Members of the postsynaptic density-95 (PSD95)/synapse-associated protein-90 (SAP90) family of scaffolding proteins contain a common set of modular protein interaction motifs including PDZ (postsynaptic density-95/Discs large/zona occludens-1), Src homology 3, and guanylate kinase domains, which regulate signaling and plasticity at excitatory synapses. We report that N-terminal alternative splicing of PSD95 generates an isoform, PSD95beta that contains an additional "L27" motif, which is also present in SAP97. Using yeast two hybrid and coimmunoprecipitation assays, we demonstrate that this N-terminal L27 domain of PSD-95beta, binds to an L27 domain in the membrane-associated guanylate kinase calcium/calmodulin-dependent serine kinase, and to Hrs, an endosomal ATPase that regulates vesicular trafficking. By transfecting heterologous cells and hippocampal neurons, we find that interactions with the L27 domain regulate synaptic clustering of PSD95beta. Disrupting Hrs-regulated early endosomal sorting in hippocampal neurons selectively blocks synaptic clustering of PSD95beta but does not interfere with trafficking of the palmitoylated isoform, PSD95alpha. These studies identify molecular and functional heterogeneity in synaptic PSD95 complexes and reveal critical roles for L27 domain interactions and Hrs regulated vesicular trafficking in postsynaptic protein clustering.
Collapse
|
45
|
CASK participates in alternative tripartite complexes in which Mint 1 competes for binding with caskin 1, a novel CASK-binding protein. J Neurosci 2002. [PMID: 12040031 DOI: 10.1523/jneurosci.22-11-04264.2002] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
CASK, an adaptor protein of the plasma membrane, is composed of an N-terminal calcium/calmodulin-dependent protein (CaM) kinase domain, central PSD-95, Dlg, and ZO-1/2 domain (PDZ) and Src homology 3 (SH3) domains, and a C-terminal guanylate kinase sequence. The CaM kinase domain of CASK binds to Mint 1, and the region between the CaM kinase and PDZ domains interacts with Velis, resulting in a tight tripartite complex. CASK, Velis, and Mint 1 are evolutionarily conserved in Caenorhabditis elegans, in which homologous genes (called lin-2, lin-7, and lin-10) are required for vulva development. We now demonstrate that the N-terminal CaM kinase domain of CASK binds to a novel brain-specific adaptor protein called Caskin 1. Caskin 1 and a closely related isoform, Caskin 2, are multidomain proteins containing six N-terminal ankyrin repeats, a single SH3 domain, and two sterile alpha motif domains followed by a long proline-rich sequence and a short conserved C-terminal domain. Unlike CASK and Mint 1, no Caskin homolog was detected in C. elegans. Immunoprecipitations showed that Caskin 1, like Mint 1, is stably bound to CASK in the brain. Affinity chromatography experiments demonstrated that Caskin 1 coassembles with CASK on the immobilized cytoplasmic tail of neurexin 1, suggesting that CASK and Caskin 1 coat the cytoplasmic tails of neurexins and other cell-surface proteins. Detailed mapping studies revealed that Caskin 1 and Mint 1 bind to the same site on the N-terminal CaM kinase domain of CASK and compete with each other for CASK binding. Our data suggest that in the vertebrate brain, CASK and Velis form alternative tripartite complexes with either Mint 1 or Caskin 1 that may couple CASK to distinct downstream effectors.
Collapse
|
46
|
Lee S, Fan S, Makarova O, Straight S, Margolis B. A novel and conserved protein-protein interaction domain of mammalian Lin-2/CASK binds and recruits SAP97 to the lateral surface of epithelia. Mol Cell Biol 2002; 22:1778-91. [PMID: 11865057 PMCID: PMC135599 DOI: 10.1128/mcb.22.6.1778-1791.2002] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mammalian Lin-2 (mLin-2)/CASK is a membrane-associated guanylate kinase (MAGUK) and contains multidomain modules that mediate protein-protein interactions important for the establishment and maintenance of neuronal and epithelial cell polarization. The importance of mLin-2/CASK in mammalian development is demonstrated by the fact that mutations in mLin-2/CASK or SAP97, another MAGUK protein, lead to cleft palate in mice. We recently identified a new protein-protein interaction domain, called the L27 domain, which is present twice in mLin-2/CASK. In this report, we further define the binding of the L27C domain of mLin-2/CASK to the L27 domain of mLin-7 and identify the binding partner for L27N of mLin-2/CASK. Biochemical analysis reveals that this L27N domain binds to the N terminus of SAP97, a region that was previously reported to be essential for the lateral membrane recruitment of SAP97 in epithelia. Our colocalization studies, using dominant-negative mLin-2/CASK, show that the association with mLin-2/CASK is crucial for lateral localization of SAP97 in MDCK cells. We also report the identification of a novel isoform of Discs Large, a Drosophila melanogaster orthologue of SAP97, which contains a region highly related to the SAP97 N terminus and which binds Camguk, a Drosophila orthologue of mLin-2/CASK. Our data identify evolutionarily conserved protein-protein interaction domains that link mLin-2/CASK to SAP97 and account for their common phenotype when mutated in mice.
Collapse
Affiliation(s)
- Seonok Lee
- Department of Biological Chemistry, Howard Hughes Medical Institute, University of Michigan Medical School, 1150 W. Medical Center Dr., Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
47
|
Lopes C, Gassanova S, Delabar JM, Rachidi M. The CASK/Lin-2 Drosophila homologue, Camguk, could play a role in epithelial patterning and in neuronal targeting. Biochem Biophys Res Commun 2001; 284:1004-10. [PMID: 11409895 DOI: 10.1006/bbrc.2001.5050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Drosophila Camguk (Cmg) is a member of the CAMGUK subfamily of the MAGUK family of proteins which are localized at cell junction and other plasma membrane specialized regions, from worms to mammals. The protein structure of Cmg, as the other CAMGUK proteins, is characterized by only one PDZ domain and an additional CaM kinase domain, similar to CaMKII. While the mammalian ortholog CASKs play an important role in synaptic protein targeting and in synaptic plasticity, the Drosophila Cmg role is unknown. To study its potential role, we reported a detailed analysis of mRNA distribution of the Drosophila cmg gene at cellular and developmental level, during embryonic, larval, pupal and adult stages. The transient cmg transcription in midgut and Malpighian tubules may suggest a potential function in cell junction formation and in epithelial tissue patterning. Interestingly, cmg transcription increases substantially during embryonic neuroblast proliferation, becoming predominant in the developing central nervous system (CNS) during embryonic and postembryonic development stages and in the mature brain. In addition, a high transcriptional level was detected in the eye imaginal discs and in the adult retina, demonstrating a specific and continuous expression of cmg in neuroblasts and photoreceptor neurons, from the onset of cytodifferentiation. Our findings suggest that Cmg could play a potential role in transmembrane protein targeting, particularly in synapses. These observations suggest the existence of a common highly conserved mechanism involved in forming and maintaining proper synaptic protein targeting, which are fundamental features of synaptic plasticity, learning and memory. Through its function, the CaM kinase domain-containing Cmg may be involved in signal transduction cascade. Its potential relation to Calmodulin and CaMKII is discussed.
Collapse
Affiliation(s)
- C Lopes
- Faculté de Médecine Necker, UMR 8602 CNRS, 156 rue de Vaugirard, Paris, 75015, France
| | | | | | | |
Collapse
|
48
|
Caruana G, Bernstein A. Craniofacial dysmorphogenesis including cleft palate in mice with an insertional mutation in the discs large gene. Mol Cell Biol 2001; 21:1475-83. [PMID: 11238884 PMCID: PMC86693 DOI: 10.1128/mcb.21.5.1475-1483.2001] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2000] [Accepted: 11/28/2000] [Indexed: 11/20/2022] Open
Abstract
The discs large (Dlg) protein, or synapse-associated protein 97 (SAP97), is a member of the membrane-associated guanylate kinase family of multidomain scaffolding proteins which recruits transmembrane and signaling molecules to localized plasma membrane sites. Murine dlg is the homologue of the Drosophila dlg tumor suppressor gene. The loss of dlg function in Drosophila disrupts cellular growth control, apicobasal polarity, and cell adhesion of imaginal disc epithelial cells, resulting in embryonic lethality. In this study, we isolated a mutational insertion in the murine dlg locus by gene trapping in totipotent embryonic stem cells. This insertion results in a truncated protein product that contains the N-terminal three PSD-95/DLG/ZO-1 domains of Dlg fused to the LacZ reporter and subsequently lacks the src homology 3 (SH3), protein 4.1 binding, and guanylate kinase (GUK)-like domains. The Dlg-LacZ fusion protein is expressed in epithelial, mesenchymal, neuronal, endothelial, and hematopoietic cells during embryogenesis. Mice homozygous for the dlg mutation exhibit growth retardation in utero, have hypoplasia of the premaxilla and mandible, have a cleft secondary palate, and die perinatally. Consistent with this phenotype, Dlg-LacZ is expressed in mesenchymal and epithelial cells throughout palatal development. Our genetic and phenotypic analysis of dlg mutant mice suggests that protein-protein interactions involving the SH3, protein 4.1 binding, and/or GUK-like domains are essential to the normal function of murine Dlg within craniofacial and palatal morphogenesis.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Blotting, Northern
- Blotting, Western
- Cleft Palate/genetics
- Colon/embryology
- Craniofacial Abnormalities/genetics
- Cytoskeletal Proteins
- Discs Large Homolog 1 Protein
- Drosophila Proteins
- Embryo, Mammalian/metabolism
- Epithelium/metabolism
- Genes, Reporter
- Genotype
- Guanylate Kinases
- Homozygote
- Immunohistochemistry
- Insect Proteins/chemistry
- Insect Proteins/genetics
- Lac Operon
- Lung/embryology
- Membrane Proteins/chemistry
- Mesoderm/metabolism
- Mice
- Mice, Inbred ICR
- Mice, Transgenic
- Microscopy, Electron, Scanning
- Mutation
- Nerve Tissue Proteins/chemistry
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/physiology
- Neuropeptides
- Nucleoside-Phosphate Kinase/chemistry
- Palate/embryology
- Phenotype
- Protein Binding
- Protein Structure, Tertiary
- Stem Cells/metabolism
- Time Factors
- Tumor Suppressor Proteins
- src Homology Domains
Collapse
Affiliation(s)
- G Caruana
- Program in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada M5G 1X5.
| | | |
Collapse
|
49
|
Abstract
The anterior lobe of the pituitary gland is composed of five hormone-producing cell types and develops from Rathke's pouch, an invagination of oral ectoderm. In mice, rapid cell proliferation occurs in the pouch from embryonic day 12.5 (e12.5) to e14.5, preceding the appearance of most hormone transcripts. Cell-type-specific commitment probably occurs prior to e14.5, but cell differentiation can be demonstrated only by detection of hormone transcripts. Although several transcription factors critical for pouch expansion are known, few of their target genes have been identified. To identify putative transcription factor target genes and cell-type-specific markers, we used differential display PCR analysis of RNA prepared from e12.5 and e14.5 Rathke's pouches. We present an expression profile of the developing pituitary gland including 83 transcripts, 40% of which are novel. The tissue distribution, cell specificity, and developmental regulation were determined for a subset of the transcripts.
Collapse
Affiliation(s)
- K R Douglas
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
50
|
Boyd Y, Blair HJ, Cunliffe P, Masson WK, Reed V. A phenotype map of the mouse X chromosome: models for human X-linked disease. Genome Res 2000; 10:277-92. [PMID: 10720569 DOI: 10.1101/gr.10.3.277] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The identification of many of the transcribed genes in man and mouse is being achieved by large scale sequencing of expressed sequence tags (ESTs). Attention is now being turned to elucidating gene function and many laboratories are looking to the mouse as a model system for this phase of the genome project. Mouse mutants have long been used as a means of investigating gene function and disease pathogenesis, and recently, several large mutagenesis programs have been initiated to fulfill the burgeoning demand of functional genomics research. Nevertheless, there is a substantial existing mouse mutant resource that can be used immediately. This review summarizes the available information about the loci encoding X-linked phenotypic mutants and variants, including 40 classical mutants and 40 that have arisen from gene targeting.
Collapse
Affiliation(s)
- Y Boyd
- Medical Research Council (MRC) Mammalian Genetics Unit, Harwell, Oxon OX11 0RD UK.
| | | | | | | | | |
Collapse
|