1
|
From Drosophila to Human: Biological Function of E3 Ligase Godzilla and Its Role in Disease. Cells 2022; 11:cells11030380. [PMID: 35159190 PMCID: PMC8834447 DOI: 10.3390/cells11030380] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/29/2022] Open
Abstract
The ubiquitin–proteasome system is of fundamental importance in all fields of biology due to its impact on proteostasis and in regulating cellular processes. Ubiquitination, a type of protein post-translational modification, involves complex enzymatic machinery, such as E3 ubiquitin ligases. The E3 ligases regulate the covalent attachment of ubiquitin to a target protein and are involved in various cellular mechanisms, including the cell cycle, cell division, endoplasmic reticulum stress, and neurotransmission. Because the E3 ligases regulate so many physiological events, they are also associated with pathologic conditions, such as cancer, neurological disorders, and immune-related diseases. This review focuses specifically on the protease-associated transmembrane-containing the Really Interesting New Gene (RING) subset of E3 ligases. We describe the structure, partners, and physiological functions of the Drosophila Godzilla E3 ligase and its human homologues, RNF13, RNF167, and ZNRF4. Also, we summarize the information that has emerged during the last decade regarding the association of these E3 ligases with pathophysiological conditions, such as cancer, asthma, and rare genetic disorders. We conclude by highlighting the limitations of the current knowledge and pinpointing the unresolved questions relevant to RNF13, RNF167, and ZNRF4 ubiquitin ligases.
Collapse
|
2
|
Oh SD, Park SY, Park JI, Chun SY, Ryu TH, Soh J. The novel, actin-like protein Tact3 is expressed in rodent testicular haploid germ cells. Mol Reprod Dev 2013; 80:988-99. [PMID: 24038581 DOI: 10.1002/mrd.22262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 08/16/2013] [Accepted: 08/28/2013] [Indexed: 11/06/2022]
Abstract
Mouse testis actin-like proteins 1 and 2 (mTact1 and mTact2), which are expressed in murine haploid germ cells, have been described previously. Here, we report the cloning and characterization of a third actin-like protein from rat, rat testis actin-like protein 3 (rTact3). The complete cDNA of the rTact3 gene was approximately 3.7 kb in length, and its corresponding amino acid sequence consisted of 1219 amino acids. The rTact3 gene lacks introns, similar to mTact1 and mTact2. The 356 C-terminal amino acids of rTact3 showed 43% homology with mTact1, whereas the 863 N-terminal amino acids did not show any significant homology. Northern blot analysis revealed that rTact3 mRNA was expressed only in adult rat testes and not during the prepubescent stage. In situ hybridization revealed that rTact3 was expressed exclusively during round and elongated spermatids maturation stages in rat testes. Immunohistochemical experiments using antibodies raised against a synthetic peptide showed that the expression of the rTact3 protein was also restricted in round and elongated spermatids, specifically in the head and acrosome of mature rat sperm. The 5′-flanking region of the mTact3 gene was found to contain a TATA-box motif as well as two putative CREB/c-Jun and five C/EBP motifs. mTact3 promoter activity was enhanced in a dose-dependent manner by the transfection of CREB, c-Jun, or C/EBP in NIH3T3 cells. These results suggest that Tact3 proteins might play an important role in rodent germ-cell development.
Collapse
|
3
|
Neutzner A, Neutzner M, Benischke AS, Ryu SW, Frank S, Youle RJ, Karbowski M. A systematic search for endoplasmic reticulum (ER) membrane-associated RING finger proteins identifies Nixin/ZNRF4 as a regulator of calnexin stability and ER homeostasis. J Biol Chem 2011; 286:8633-8643. [PMID: 21205830 DOI: 10.1074/jbc.m110.197459] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To identify novel regulators of endoplasmic reticulum (ER)-linked protein degradation and ER function, we determined the entire inventory of membrane-spanning RING finger E3 ubiquitin ligases localized to the ER. We identified 24 ER membrane-anchored ubiquitin ligases and found Nixin/ZNRF4 to be central for the regulation of calnexin turnover. Ectopic expression of wild type Nixin induced a dramatic down-regulation of the ER-localized chaperone calnexin that was prevented by inactivation of the Nixin RING domain. Importantly, Nixin physically interacts with calnexin in a glycosylation-independent manner, induces calnexin ubiquitination, and p97-dependent degradation, indicating an ER-associated degradation-like mechanism of calnexin turnover.
Collapse
Affiliation(s)
- Albert Neutzner
- From the Biochemistry Section, Surgical Neurological Branch, NINDS, National Institutes of Health, Bethesda, Maryland 20892,; the Department of Biomedicine, and the University Eye Clinic, University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland,.
| | - Melanie Neutzner
- the Department of Biomedicine, and the University Eye Clinic, University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland,; the Department of Neuropathology, Institute of Pathology, University of Basel, Schönbeinstrasse 40, 4031 Basel, Switzerland
| | - Anne-Sophie Benischke
- the Department of Biomedicine, and the University Eye Clinic, University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Seung-Wook Ryu
- From the Biochemistry Section, Surgical Neurological Branch, NINDS, National Institutes of Health, Bethesda, Maryland 20892,; the Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea, and
| | - Stephan Frank
- the Department of Neuropathology, Institute of Pathology, University of Basel, Schönbeinstrasse 40, 4031 Basel, Switzerland
| | - Richard J Youle
- From the Biochemistry Section, Surgical Neurological Branch, NINDS, National Institutes of Health, Bethesda, Maryland 20892
| | - Mariusz Karbowski
- From the Biochemistry Section, Surgical Neurological Branch, NINDS, National Institutes of Health, Bethesda, Maryland 20892,; the Center for Biomedical Engineering and Technology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201.
| |
Collapse
|
4
|
Jin X, Cheng H, Chen J, Zhu D. RNF13: an emerging RING finger ubiquitin ligase important in cell proliferation. FEBS J 2010; 278:78-84. [PMID: 21078127 DOI: 10.1111/j.1742-4658.2010.07925.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein ubiquitination mediated by ubiquitin ligases plays a very important role in a wide spectrum of biological processes including development and disease pathogenesis. RING finger protein 13 (RNF13) is a recently identified ubiquitin ligase which contains an N-terminal protease-associated domain and a C-terminal RING finger domain separated by a transmembrane region. RNF13 is an evolutionarily conserved protein. Most interestingly, RNF13 expression is developmentally regulated during myogenesis and is upregulated in various human tumors. These data suggest that RNF13, acting as an ubiquitin ligase, might have profound biological functions during development and disease. This minireview summarizes recent work on RNF13 functions related to cell proliferation, differentiation and cancer development.
Collapse
Affiliation(s)
- Xianglan Jin
- National Laboratory of Medical Molecular Biology, Tsinghua University, Beijing, China
| | | | | | | |
Collapse
|
5
|
Hermo L, Pelletier RM, Cyr DG, Smith CE. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 3: developmental changes in spermatid flagellum and cytoplasmic droplet and interaction of sperm with the zona pellucida and egg plasma membrane. Microsc Res Tech 2010; 73:320-63. [PMID: 19941287 DOI: 10.1002/jemt.20784] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Spermiogenesis constitutes the steps involved in the metamorphosis of spermatids into spermatozoa. It involves modification of several organelles in addition to the formation of several structures including the flagellum and cytoplasmic droplet. The flagellum is composed of a neck region and middle, principal, and end pieces. The axoneme composed of nine outer microtubular doublets circularly arranged to form a cylinder around a central pair of microtubules is present throughout the flagellum. The middle and principal pieces each contain specific components such as the mitochondrial sheath and fibrous sheath, respectively, while outer dense fibers are common to both. A plethora of proteins are constituents of each of these structures, with each playing key roles in functions related to the fertility of spermatozoa. At the end of spermiogenesis, a portion of spermatid cytoplasm remains associated with the released spermatozoa, referred to as the cytoplasmic droplet. The latter has as its main feature Golgi saccules, which appear to modify the plasma membrane of spermatozoa as they move down the epididymal duct and hence may be partly involved in male gamete maturation. The end product of spermatogenesis is highly streamlined and motile spermatozoa having a condensed nucleus equipped with an acrosome. Spermatozoa move through the female reproductive tract and eventually penetrate the zona pellucida and bind to the egg plasma membrane. Many proteins have been implicated in the process of fertilization as well as a plethora of proteins involved in the development of spermatids and sperm, and these are high lighted in this review.
Collapse
Affiliation(s)
- Louis Hermo
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada H3A 2B2.
| | | | | | | |
Collapse
|
6
|
Roqueta-Rivera M, Stroud CK, Haschek WM, Akare SJ, Segre M, Brush RS, Agbaga MP, Anderson RE, Hess RA, Nakamura MT. Docosahexaenoic acid supplementation fully restores fertility and spermatogenesis in male delta-6 desaturase-null mice. J Lipid Res 2009; 51:360-7. [PMID: 19690334 DOI: 10.1194/jlr.m001180] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Delta-6 desaturase-null mice ((-/-)) are unable to synthesize highly unsaturated fatty acids (HUFAs): arachidonic acid (AA), docosahexaenoic acid (DHA), and n6-docosapentaenoic acid (DPAn6). The (-/-) males exhibit infertility and arrest of spermatogenesis at late spermiogenesis. To determine which HUFA is essential for spermiogenesis, a diet supplemented with either 0.2% (w/w) AA or DHA was fed to wild-type ((+/+)) and (-/-) males at weaning until 16 weeks of age (n = 3-5). A breeding success rate of DHA-supplemented (-/-) was comparable to (+/+). DHA-fed (-/-) showed normal sperm counts and spermiogenesis. Dietary AA was less effective in restoring fertility, sperm count, and spermiogenesis than DHA. Testis fatty acid analysis showed restored DHA in DHA-fed (-/-), but DPAn6 remained depleted. In AA-fed (-/-), AA was restored at the (+/+) level, and 22:4n6, an AA elongated product, accumulated in testis. Cholesta-3,5-diene was present in testis of (+/+) and DHA-fed (-/-), whereas it diminished in (-/-) and AA-fed (-/-), suggesting impaired sterol metabolism in these groups. Expression of spermiogenesis marker genes was largely normal in all groups. In conclusion, DHA was capable of restoring all observed impairment in male reproduction, whereas 22:4n6 formed from dietary AA may act as an inferior substitute for DHA.
Collapse
Affiliation(s)
- Manuel Roqueta-Rivera
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
A comprehensive framework of E2-RING E3 interactions of the human ubiquitin-proteasome system. Mol Syst Biol 2009; 5:295. [PMID: 19690564 PMCID: PMC2736652 DOI: 10.1038/msb.2009.55] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 07/07/2009] [Indexed: 12/28/2022] Open
Abstract
Covalent attachment of ubiquitin to substrates is crucial to protein degradation, transcription regulation and cell signalling. Highly specific interactions between ubiquitin-conjugating enzymes (E2) and ubiquitin protein E3 ligases fulfil essential roles in this process. We performed a global yeast-two hybrid screen to study the specificity of interactions between catalytic domains of the 35 human E2s with 250 RING-type E3s. Our analysis showed over 300 high-quality interactions, uncovering a large fraction of new E2–E3 pairs. Both within the E2 and the E3 cohorts, several members were identified that are more versatile in their interaction behaviour than others. We also found that the physical interactions of our screen compare well with reported functional E2–E3 pairs in in vitro ubiquitination experiments. For validation we confirmed the interaction of several versatile E2s with E3s in in vitro protein interaction assays and we used mutagenesis to alter the E3 interactions of the E2 specific for K63 linkages, UBE2N(Ubc13), towards the K48-specific UBE2D2(UbcH5B). Our data provide a detailed, genome-wide overview of binary E2–E3 interactions of the human ubiquitination system.
Collapse
|
8
|
Song H, Su D, Lu P, Yang J, Zhang W, Yang Y, Liu Y, Zhang S. Expression and localization of the spermatogenesis-related gene, Znf230, in mouse testis and spermatozoa during postnatal development. BMB Rep 2008; 41:664-9. [PMID: 18823591 DOI: 10.5483/bmbrep.2008.41.9.664] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Znf230, the mouse homologue of the human spermatogenesis-related gene, ZNF230, has been cloned by rapid amplification of cDNA ends (RACE). This gene is expressed predominantly in testis, but its expression in different testicular cells and spermatogenic stages has not been previously analyzed in detail. In the present study, the cellular localization of the Znf230 protein in mouse testis and epididymal spermatozoa was determined by RT-PCR, immunoblotting, immunohistochemistry and immunofluorescence. It is primarily expressed in the nuclei of spermatogonia and subsequently in the acrosome system and the entire tail of developing spermatids and spermatozoa. The results indicate that Znf230 may play an important role in mouse spermatogenesis, including spermatogenic cell proliferation and sperm maturation, as well as motility and fertilization.
Collapse
Affiliation(s)
- Hongxia Song
- Department of Medical Genetics, West China Hospital, Division of Human Morbid Genomics, State Key Laboratory of Biotherapy of Human Diseases, Sichuan University, Chengdu, PR China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Tsai HH, Huang CH, Lin AM, Chen CW. Terminal proteins of Streptomyces chromosome can target DNA into eukaryotic nuclei. Nucleic Acids Res 2008; 36:e62. [PMID: 18480119 PMCID: PMC2425503 DOI: 10.1093/nar/gkm1170] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Streptomyces species are highly abundant soil bacteria that possess linear chromosomes (and linear plasmids). The 5′ ends of these molecules are covalently bound by terminal proteins (TPs), that are important for integrity and replication of the telomeres. There are at least two types of TPs, both of which contain a DNA-binding domain and a classical eukaryotic nuclear localization signal (NLS). Here we show that the NLS motifs on these TPs are highly efficient in targeting the proteins along with covalently bound plasmid DNA into the nuclei of human cells. The TP-mediated nuclear targeting resembles the inter-kingdom gene transfer mediated by Ti plasmids of Agrobacterium tumefaciens, in which a piece of the Ti plasmid DNA is targeted to the plant nuclei by a covalently bound NLS-containing protein. The discovery of the nuclear localization functions of the Streptomyces TPs not only suggests possible inter-kingdom gene exchanges between Streptomyces and eukaryotes in soil but also provides a novel strategy for gene delivery in humans and other eukaryotes.
Collapse
Affiliation(s)
- Hsiu-Hui Tsai
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Shih-Pai, Taipei 112, Taiwan
| | | | | | | |
Collapse
|
10
|
Li N, Sun H, Wu Q, Tao D, Zhang S, Ma Y. Cloning and expression analysis of a novel mouse zinc finger protein gene Znf313 abundantly expressed in testis. BMB Rep 2007; 40:270-6. [PMID: 17394778 DOI: 10.5483/bmbrep.2007.40.2.270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have cloned a novel mouse zinc finger protein gene Znf313 by rapid amplification of cDNA ends (RACE) according to the homologue of human ZNF313 gene. The cDNA is 2,163 base pairs (bp) in length and encodes a 229 amino acids (aa) protein with a C(3)HC(4) ring finger domain and three C(2)H(2) domains. 89% and 93% nucleotide (nt) and aa sequence identity is observed with its human homologue. Revealed by Northern blot and RT-PCR, full mRNA consists of 2.16 kb and widely expresses in tissues as a single transcript, most abundantly in heart, liver, kidney and testis. The expression of Znf313 in testis is detected in all development stages. Western blot analysis also reveals that Znf313 is expressed in the tissues. Immunohistochemical staining and subcellular localization demonstrate that Znf313 is expressed both in the cytoplasm and nucleus whereas predominantly localized in the nucleus. Present data suggests that Znf313 gene might play a fundamental role in gene transcription and regulation in organism and relates to spermatogenesis.
Collapse
Affiliation(s)
- Na Li
- Department of Medical Genetics, West China Hospital; Division of Human Morbid Genomics, State Key Laboratory of Biotherapy of Human Diseases, Sichuan University, Chengdu, 610041, P. R. China
| | | | | | | | | | | |
Collapse
|
11
|
Nagamori I, Yomogida K, Adams PD, Sassone-Corsi P, Nojima H. Transcription Factors, cAMP-responsive Element Modulator (CREM) and Tisp40, Act in Concert in Postmeiotic Transcriptional Regulation. J Biol Chem 2006; 281:15073-81. [PMID: 16595651 DOI: 10.1074/jbc.m602051200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously isolated 80 TISP (transcript induced in spermiogenesis) genes whose transcription is dramatically induced during spermiogenesis. Our analysis here of the expression of these genes in the testis of the cAMP-responsive element modulator (CREM)-null mouse revealed that 54 TISP genes are under the transcriptional regulation of CREM. One CREM-regulated gene is TISP40, which encodes a basic leucine zipper (bZip)-type transcription factor bearing a transmembrane domain that generates the two proteins Tisp40alpha and Tisp40beta. Both of these proteins function by binding to UPRE (unfolded protein-response element) but do not recognize CRE motifs. We show here that Tisp40alpha mRNA is generated under the direct transcriptional regulation of CREM. CREMtau and Tisp40 form a heterodimer, which functions through CRE but not through UPRE. Furthermore, binding ability of CREM to CRE is dramatically up-regulated by forming a heterodimer with Tisp40alphaDeltaTM, a truncated form of Tisp40alpha that lacks the transmembrane domain. We confirmed that Tisp40 and CREM actually bind to the Tisp40 promoter in vivo by chromatin immunoprecipitation assay. Finally, we demonstrate that the Tisp40DeltaTM-CREMtau heterodimer acts as a recruiter of HIRA, a histone chaperone, to CRE. Taken together, we propose that Tisp40 is an important transcriptional regulator during spermiogenesis.
Collapse
Affiliation(s)
- Ippei Nagamori
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Yamadaoka 3-1, Suita City, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
12
|
Nagamori I, Yabuta N, Fujii T, Tanaka H, Yomogida K, Nishimune Y, Nojima H. Tisp40, a spermatid specific bZip transcription factor, functions by binding to the unfolded protein response element via the Rip pathway. Genes Cells 2005; 10:575-94. [PMID: 15938716 DOI: 10.1111/j.1365-2443.2005.00860.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
TISP40, a mouse spermatid-specific gene, encodes a CREB/CREM family transcription factor that is predominantly expressed during spermiogenesis. We report here that TISP40 generates two types of proteins, Tisp40alpha and Tisp40beta, both of which contain a transmembrane domain and localize to the endoplasmic reticulum (ER). In contrast, mutant proteins lacking the transmembrane domain (Tisp40alpha/betaDeltaTM) primarily localize to the nucleus. Endoglycosidase H treatment shows that the C-terminus of Tisp40alpha/beta is glycosylated. Protease experiments demonstrate that Tisp40alpha/beta are Type II transmembrane proteins that are released into the nucleus by a two-step cleavage mechanism called 'regulated intramembrane proteolysis' (Rip). Unlike previously published observations, Tisp40alpha does not bind to the NF-kappaB site; instead, it specifically binds to the unfolded protein response element (UPRE). Luciferase assays reveal that Tisp40betaDeltaTM activates transcription through UPRE. Northern blot analysis shows that Tisp40alpha/betaDeltaTM proteins up-regulate EDEM (ER degradation of enhancing alpha-manosidase-like protein) mRNA. These observations unveil a novel event in mouse spermiogenesis and show that the final stage of transcriptional regulation is controlled by the Rip pathway.
Collapse
Affiliation(s)
- Ippei Nagamori
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Yamadaoka 3-1, Suita City, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Iida H, Yamashita H, Doiguchi M, Kaneko T. Molecular cloning of rat Spergen-3, a spermatogenic cell-specific gene-3, encoding a novel 75-kDa protein bearing EF-hand motifs. ACTA ACUST UNITED AC 2005; 25:885-92. [PMID: 15477360 DOI: 10.1002/j.1939-4640.2004.tb03158.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
By use of differential display in combination with cDNA cloning approach, we isolated a novel rat gene designated as Spergen-3, which has an open reading frame of 2055-length nucleotides encoding a protein of 685 amino acids. Spergen-3 gene is composed of 15 exons and mapped on chromosome 5q36, and its mouse counterpart, which shares 85.5% identity to rat Spergen-3 at the amino acid level, is mapped on chromosome 4E1. Spergen-3 encodes a 75-kDa soluble protein bearing putative 2 EF-hand motifs, proline-repeat, and a putative nuclear localization signal. Of the 2 EF-hand motifs in Spergen-3, the second one seems to match the consensus sequence. Reverse transcription-polymerase chain reaction analysis showed that the expression of Spergen-3 is developmentally up-regulated and that it is exclusively expressed in testis. In situ hybridization revealed that Spergen-3 mRNA was exclusively expressed in haploid spermatids, but its signal was weak or undetectable in spermatogonia, spermatocytes, and Sertoli cells as well as in interstitial cells. We interpreted these data as a potential role of Spergen-3, a new member of EF-hand family, in differentiation of haploid spermatids in testis.
Collapse
Affiliation(s)
- Hiroshi Iida
- Laboratory of Zoology, Graduate School of Agriculture, Kyushu University, Higashiku Hakozaki 6-10-1, Fukuoka 812-8581, Japan.
| | | | | | | |
Collapse
|
14
|
Zhang C, Kitsberg D, Chy H, Zhou Q, Morrison JR. Transposon-mediated generation of targeting vectors for the production of gene knockouts. Nucleic Acids Res 2005; 33:e24. [PMID: 15699181 PMCID: PMC549422 DOI: 10.1093/nar/gni014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vectors used for gene targeting experiments usually consist of a selectable marker flanked by two regions of homology to the targeted gene. In a homologous recombination event, the selectable marker replaces an essential element of the target gene rendering it inactive. Other applications of gene targeting technology include gene replacement (knockins) and conditional vectors which allow for the generation of inducible or tissue-specific gene-targeting events. The assembly of gene-targeting vectors is generally a laborious process requiring considerable technical skill. The procedures presented here report the application of transposons as tools for the construction of targeting vectors. Two mini-Mu transposons were sequentially inserted by in vitro transposition at each side of the region targeted for deletion. One such transposon carries an antibiotic resistance marker suitable for selection in mammalian cells. A deletion is then generated between the two transposons either by LoxP-induced recombination or by restriction digestion followed by ligation. This deletion removes part of both transposons plus the targeted region in between, leaving a transposon carrying the selectable marker flanked by two arms which are homologous to the targeted gene. Targeting vectors constructed using these transposons were electroporated into embryonic stem cells and shown to be effective in gene-targeting events.
Collapse
Affiliation(s)
- Chunfang Zhang
- CopyRat Pty Ltd 27-31 Wright Street, Clayton, Victoria 3168, Australia.
| | | | | | | | | |
Collapse
|
15
|
Iwamoto Y, Kaneko T, Ichinose J, Mōri T, Shibata Y, Toshimori K, Iida H. Molecular cloning of rat Spetex2 family genes mapped on chromosome 15p16, encoding a 23-kilodalton protein associated with the plasma membranes of haploid spermatids. Biol Reprod 2004; 72:284-92. [PMID: 15371276 DOI: 10.1095/biolreprod.104.032516] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
We used differential display in combination with cDNA cloning to isolate a novel rat gene, designated as Spetex2, that has an open reading frame of 582 nucleotides, encoding a protein of 194 amino acids. Spetex2 mRNA was highly expressed in testis and spleen, and its expression in rat testis was developmentally up-regulated. In situ hybridization revealed that Spetex2 mRNA was predominantly expressed in haploid spermatids at steps 1-13 within the seminiferous epithelium. A BLAST search against rat genome databases at the National Center for Biotechnology Information revealed that the Spetex2 gene is composed of four exons and is mapped to at least 18 loci in a cluster on rat chromosome 15p16, indicating that the genes occur as a repeated tandem array over a long stretch of genomic DNA. By immunocytochemical analysis with confocal laser-scanning microscopy, SPETEX2 protein was detected as a dot-like distribution on the cell periphery of haploid spermatids (steps 1-13) but was not observed in other spermatogenic cells. On the basis of these data, we hypothesize that SPETEX2 might be correlated with cell differentiation of spermaytids in rat testis.
Collapse
Affiliation(s)
- Yuka Iwamoto
- Laboratory of Zoology, Graduate School of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Morii E, Ito A, Jippo T, Koma YI, Oboki K, Wakayama T, Iseki S, Lamoreux ML, Kitamura Y. Number of mast cells in the peritoneal cavity of mice: influence of microphthalmia transcription factor through transcription of newly found mast cell adhesion molecule, spermatogenic immunoglobulin superfamily. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 165:491-9. [PMID: 15277223 PMCID: PMC1618581 DOI: 10.1016/s0002-9440(10)63314-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mi (microphthalmia) locus of mice encodes a transcription factor, MITF. B6-tg/tg mice that do not express any MITF have white coats and small eyes. Moreover, the number of mast cells decreased to one-third that of normal control (+/+) mice in the skin of B6-tg/tg mice. No mast cells were detectable in the stomach, mesentery, and peritoneal cavity of B6-tg/tg mice. Cultured mast cells derived from B6-tg/tg mice do not express a mast cell adhesion molecule, spermatogenic immunoglobulin superfamily (SgIGSF). To obtain in vivo evidence for the correlation of nonexpression of SgIGSF with decrease in mast cell number, we used another MITF mutant, B6-mi(vit)/mi(vit) mice that have a mild phenotype, ie, black coat with white patches and eyes of normal size. B6-mi(vit)/mi(vit) mice had a normal number of mast cells in the skin, stomach, and mesentery, but the number of peritoneal mast cells decreased to one-sixth that of +/+ mice. Cultured mast cells and peritoneal mast cells of B6-mi(vit)/mi(vit) mice showed a reduced but apparently detectable level of SgIGSF expression, demonstrating the parallelism between mast cell number and expression level of SgIGSF. The number of peritoneal mast cells appeared to be influenced by MITF through transcription of SgIGSF.
Collapse
Affiliation(s)
- Eiichi Morii
- Department of Pathology, Room C2, Osaka University Medical School, Yamada-oka 2-2, Suita 565-0871, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Qiao Y, Yang JX, Zhang XDL, Liu Y, Zhang JC, Zong SD, Miao SY, Wang LF, Koide SS. Characterization of rtSH3p13 gene encoding a development protein involved in vesicular traffic in spermiogenesis. Cell Res 2004; 14:197-207. [PMID: 15225413 DOI: 10.1038/sj.cr.7290220] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A cDNA, designated as rtSH3p13, was isolated from a rat testis cDNA library. It consists of 1463 bp nuclear acids, which encodes a protein of 312 amino acids and was assigned the GenBank accession number AF227439. The deduced rtSH3p13 protein is a truncated isoform of SH3p13 as a result of mRNA alternative splicing. It is mainly expressed in the rat testis, detected in spermatids at the steps 8-19 of spermiogenesis, and found around the acrosome. During postnatal development, rtSH3p13 appears on day 18 and reaches maximum on day 60. Further experimental results suggested that rtSH3p13 forms a complex with activated epidermal growth factor receptor (EGFR) and interacts with synaptojanin I. Surprisingly, similar to SH3 domain, the V region of rtSH3p13 also inhibits endocytosis in CHO cells. Our results reveal a link between an rtSH3p13-synaptojanin-clathrin complex-mediated formation of pits and the process of spermiogenesis.
Collapse
Affiliation(s)
- Yuan Qiao
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kitamura K, Tanaka H, Nishimune Y. Haprin, a novel haploid germ cell-specific RING finger protein involved in the acrosome reaction. J Biol Chem 2003; 278:44417-23. [PMID: 12917430 DOI: 10.1074/jbc.m304306200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The acrosome reaction (i.e. the exocytosis of the sperm vesicle) is a prerequisite for fertilization, but its molecular mechanism is largely unknown. We have identified a cDNA clone for a gene named haprin, which encodes a haploid germ cell-specific RING finger protein. This protein is a novel member of the RBCC (RING finger, B-box type zinc finger, and coiled-coil domain) motif family that has roles in several cellular processes, such as exocytosis. It is transcribed exclusively in testicular germ cells after meiotic division. Western blot and immunohistochemical analyses showed the molecular weight of Haprin protein to be Mr approximately 82,000. It was localized in the acrosomal region of elongated spermatids and mature sperm and was not present in acrosome-reacted sperm. The specific antibody against the RING finger domain of Haprin inhibited the acrosome reaction in permeabilized sperm. These results indicated that the novel RBCC protein Haprin plays a key role in the acrosome reaction and fertilization.
Collapse
Affiliation(s)
- Kouichi Kitamura
- Department of Science for Laboratory Animal Experimentation, Research Institute for Microbial Disease, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
19
|
Chen HH, Liu TYC, Li H, Choo KB. Use of a common promoter by two juxtaposed and intronless mouse early embryonic genes, Rnf33 and Rnf35: implications in zygotic gene expression. Genomics 2002; 80:140-3. [PMID: 12160726 DOI: 10.1006/geno.2002.6808] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rnf33 and Rnf35 are mouse RING finger protein genes that are transcribed temporally in the preimplantation mouse embryo, predominantly at the two-cell embryonic stage. The genes are juxtaposed in a 20-kb genomic region and are both intronless except for a single intron in the 5' untranslated region (5'-UTR). Based on analysis of the Rnf33/35 genomic sequence and cDNA sequences derived by in silico mining, we found that the Rnf33 and Rnf35 mRNAs are apparently transcribed from the same putative promoter and may be products of alternative splicing of the same pre-mRNA generated through differential 3' cleavage and polyadenylation. We also detected a second variant of Rnf35 in two-cell embryo generated through a second splicing event using an unconventional 5' splice junction. Our observations on the mode of transcription of Rnf33 and Rnf35 are consistent with the hypothesis that transcription of zygotic genes is promiscuous, and that the solo 5'-UTR intron may serve to facilitate efficient translation.
Collapse
Affiliation(s)
- Huang-Hui Chen
- Department of Medical Research and Education, Taipei Veterans General Hospital, Shih Pai, Taipei, Taiwan
| | | | | | | |
Collapse
|
20
|
Lopez P, Vidal F, Martin L, Lopez-Fernandez LA, Rual JF, Rosen BS, Cuzin F, Rassoulzadegan M. Gene control in germinal differentiation: RNF6, a transcription regulatory protein in the mouse sertoli cell. Mol Cell Biol 2002; 22:3488-96. [PMID: 11971979 PMCID: PMC133796 DOI: 10.1128/mcb.22.10.3488-3496.2002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In mouse Sertoli cells, transcription of the Inha gene encoding the alpha subunit of inhibin, which acts locally as a tumor suppressor, is down-regulated in tumors and in normal cells during aging. Previous studies suggested that regulation of Inha transcription involves the binding of a protein(s) to a repeat of the GGGGC motif in the promoter. Expression screening identified a cDNA encoding a protein that binds this sequence. Of the RING-H2 family, it is the mouse homologue of a human protein of unknown function, RNF6. The mouse gene, Rnf6, is predominantly expressed in two interacting cell types of the testis, Sertoli cells and pachytene spermatocytes. In Sertoli cells, it colocalizes with the PML and Daxx proteins in punctate nuclear bodies. In transient and stable transfectants, Rnf6 expression from a heterologous promoter increased the expression of reporter genes driven by the Inha promoter. In a Sertoli tumor cell line in which expression of both Inha and Rnf6 was reduced, reexpression of the latter restored the level of Inha while, concomitantly, the cells reverted to normal growth control in culture.
Collapse
Affiliation(s)
- Pascal Lopez
- Unité 470 de l'Institut National de la Santé et de la Recherche Médicale, Université de Nice, Nice, France
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Fujii T, Tamura K, Masai K, Tanaka H, Nishimune Y, Nojima H. Use of stepwise subtraction to comprehensively isolate mouse genes whose transcription is up-regulated during spermiogenesis. EMBO Rep 2002; 3:367-72. [PMID: 11943763 PMCID: PMC1084061 DOI: 10.1093/embo-reports/kvf073] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2001] [Revised: 02/21/2002] [Accepted: 02/21/2002] [Indexed: 11/14/2022] Open
Abstract
We report the isolation of 153 mouse genes whose expression is dramatically up-regulated during spermiogenesis. We used a novel variation of the subtractive hybridization technique called stepwise subtraction, wherein the subtraction process is systematically repeated in a stepwise manner. We named the genes thus identified as TISP genes (transcript induced in spermiogenesis). The transcription of 80 of these TISP genes is almost completely specific to the testis. This transcription is abruptly turned on after 17 days of age, when the mice enter puberty and spermiogenesis is initiated. Considering that the most advanced cells present at these stages of spermatogenesis are the spermatids, it is likely that we could isolate most of the spermatid-specific genes. DNA sequencing revealed that about half the TISP genes are novel and uncharacterized genes, confirming the utility of the stepwise subtraction approach for gene discovery.
Collapse
Affiliation(s)
- Takayuki Fujii
- Departments of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Chen HH, Liu TYC, Huang CJ, Choo KB. Generation of two homologous and intronless zinc-finger protein genes, zfp352 and zfp353, with different expression patterns by retrotransposition. Genomics 2002; 79:18-23. [PMID: 11827453 DOI: 10.1006/geno.2001.6664] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously reported a mouse zinc-finger protein gene, Zfp352 (formerly 2czf48), that is expressed in early mouse embryos. Here, we report the genomic structure of Zfp352 and its lung-specific homolog, Zfp353. The two genes map on different chromosomes at 4C6 and 8B3.1. Both genes are intronless, except for the presence of a single 4.6-kb intron in the 5' untranslated region of Zfp352. The genes use different RNA start sites located 1.2 kb apart within the 5' homologous region. LINE1 sequences are structurally associated with the genes and form an integral part of Zfp353 transcripts, suggesting previous retrotransposition events. We propose a model of evolution of the genes. The main feature of the model is the presence of a fortuitous upstream promoter and an intron in the first retrotransposition site, creating a pre-Zfp352 gene with a 5' untranslated region intron. A second retrotransposition event copying from the pre-Zfp352 retroposon and removing the fortuitous intron resulted in the intronless Zfp353 at a different chromosomal location and with a different mode of expression. The model may be applicable to other genes with a similar structure with a single intron in the 5' untranslated region. The exact role of LINE1 in the retrotransposition events remains to be elucidated.
Collapse
Affiliation(s)
- Huang-Hui Chen
- Recombinant DNA Laboratory, Department of Medical Research and Education, Veterans General Hospital-Taipei, Shih Pai, Taipei, Taiwan 11217
| | | | | | | |
Collapse
|
23
|
Cai Y, Gao Y, Sheng Q, Miao S, Cui X, Wang L, Zong S, Koide SS. Characterization and potential function of a novel testis-specific nucleoporin BS-63. Mol Reprod Dev 2002; 61:126-34. [PMID: 11774384 DOI: 10.1002/mrd.1139] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A 1933 bp cDNA fragment, coding a truncated testis-specific novel nucleoporin, was isolated from a human testis lambdaZAPII cDNA library, designated as BS-63 and assigned GenBank accession number: U64675. By applying the methods of rapid amplification of cDNA ends (5' RACE) and PCR, a full-length BS-63 cDNA composed of 5475 bp was obtained. BS-63 cDNA contained an open reading frame consisting of 1765 codons and XFXFG or GLFG repetitive sequence motifs. These repetitive motifs are structural characteristic of nucleoporins. BS-63 cDNA has high homology with Nup358/Ran BP2. A 1599 bp fragment, corresponding to the C-terminus of BS-63 cDNA, was prepared and expressed in E. coli BL21(DE3). The recombinant product was purified by affinity chromatography and SDS-PAGE and polyclonal antibodies raised. In rat testis section, the BS-63 protein was localized at the sites of nuclear pores in spermatids by immuno-gold transmission electron microscopy and on the nuclear membrane of Triton X-treated sperm by colloidal silver immuno-gold scanning electron microscopy. The recombinant BS-63 protein can be phosphorylated in vitro with PKC and p34(cdc2). A yeast two-hybrid system was used to screen a mouse testis cDNA library to identify proteins capable of interacting with BS-63. Using the 1.6 kb cDNA fragment as bait, the following interacting proteins were identified: Ran, transportin (karyopherin beta2), two proteins related to the nucleocytoplasmic transporter and aF10 protein. The latter protein is a putative transcriptor containing a cysteine-rich N-terminus, a LAP/PHD finger, a leucine zipper domain and a glutamine-rich C-terminus. Also it is highly expressed in murine testis and is located in the cell nucleus and cytoplasm. The interaction of BS-63 with aF10 (696-1001aa) was validated by surface plasmon resonance and by affinity precipitation combined with Western blot. aF10 (696-1001aa) interacted in vitro with BS-63 extracted from rat testis germ cells. It is hypothesized that BS-63 is a testis-specific nucleoporin and possibly acts as a docking site and a cotransporter of Ran and transportin. The complex performs the task of a carrier system in transporting aF10 into the nucleus of germ cells during spermiogenesis.
Collapse
Affiliation(s)
- Ying Cai
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Dong Dan San Tiao, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Zhang S, Qiu W, Wu H, Zhang G, Huang M, Xiao C, Yang J, Kamp C, Huang X, Huellen K, Yue Y, Pan A, Lebo R, Milunsky A, Vogt PH. The shorter zinc finger protein ZNF230 gene message is transcribed in fertile male testes and may be related to human spermatogenesis. Biochem J 2001; 359:721-7. [PMID: 11672448 PMCID: PMC1222195 DOI: 10.1042/0264-6021:3590721] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The zinc finger gene family represents one of the largest in the mammalian genome, with several of these genes reported to be involved in spermatogenesis. A newly discovered gene has been identified that is expressed abundantly in the testicular tissue of fertile men as determined by mRNA differential display. The gene encodes a C(3)HC(4)-type zinc finger protein motif (ring finger motif) consistent with a role in pre-meiotic or post-meiotic sperm development. The gene was named ZNF230 and mapped to the short arm of chromosome 11 (11p15). ZNF230 has two transcripts, of 1 kb and 4.4 kb in length. The shorter 1 kb transcript was only detected in testicular tissue whereas the longer 4.4 kb transcript was not detected in testis but was found in several other tissues. The lack of detectable ZNF230 expression in azoospermic patients by reverse transcriptase-mediated PCR analysis is interpreted to mean that this gene is involved in maintaining normal human male fertility.
Collapse
Affiliation(s)
- S Zhang
- Department of Medical Genetics, West China Hospital and Key Laboratory of Morbid Genomics and Forensic Medicine of Sichuan, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Shyu HW, Hsu SH, Hsieh-Li HM, Li H. A novel member of the RBCC family, Trif, expressed specifically in the spermatids of mouse testis. Mech Dev 2001; 108:213-6. [PMID: 11578878 DOI: 10.1016/s0925-4773(01)00485-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Members of the RING finger family are implicated in a variety of functions such as signal transduction, transcriptional regulation and other developmental processes. Using degenerate oligonucleotide primers corresponding to the RING domain, we isolated a novel RING finger gene from the mouse testis cDNA library, which was about 1.8 kb and was termed Trif (testis-specific ring finger). This deduced protein contains an N-terminal RING-finger, a B-box, and a C-terminal B-30.2-like domain, which make the Trif protein a member of the RING finger-B-box-coil-coil family. Northern blot analysis of adult multiple tissues indicated that Trif is expressed predominantly in the testis. Further analysis detected Trif transcripts in the testis from day 20 of the postnatal stage. In situ hybridization indicated that Trif is expressed in the round spermatids of the seminiferous tubules. These expression data suggest that Trif may play an important role in the regulation of spermatogenesis.
Collapse
Affiliation(s)
- H W Shyu
- Institute of Life Science, National Defense University, Taipei, Taiwan, ROC
| | | | | | | |
Collapse
|
26
|
Nakamoto K, Ito A, Watabe K, Koma Y, Asada H, Yoshikawa K, Shinomura Y, Matsuzawa Y, Nojima H, Kitamura Y. Increased expression of a nucleolar Nop5/Sik family member in metastatic melanoma cells: evidence for its role in nucleolar sizing and function. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 159:1363-74. [PMID: 11583964 PMCID: PMC1850506 DOI: 10.1016/s0002-9440(10)62523-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/03/2001] [Indexed: 01/12/2023]
Abstract
F10 and BL6 cells of B16 mouse melanoma cells are metastatic after intravenous injection, but only BL6 cells can metastasize to lungs after subcutaneous injection. Differences in gene expression between the two cell lines were examined, and a greater expression of the Sik-similar protein (Sik-SP) gene was found in BL6 cells. Structurally, Sik-SP belongs to the nucleolar Nop5/Sik family whose members play central roles in ribosome biogenesis; however, the function of Sik-SP has not been examined. Cytology with green fluorescent protein-fused proteins showed that Sik-SP was localized to the nucleolus. To examine whether Sik-SP is involved in ribosome biogenesis, two parameters were measured: magnitude of ribosomal RNA synthesis per nucleus and magnitude of protein production from the same amount of mRNA of an exogenous luciferase gene. Both values and, in addition, nucleolar size were larger in COS-7 monkey kidney cells overexpressing Sik-SP and BL6 cells than in mock-transfected COS-7 and F10 cells, respectively. Sik-SP seemed to promote ribosome biogenesis in the nucleolus. Furthermore, the expression of Sik-SP seemed to confer a greater cell growth response to serum, because such a response was greater in BL6 cells and F10 cells overexpressing Sik-SP than in untreated and mock-transfected F10 cells. Sik-SP may render melanoma cells more competent to survive through augmenting the activity of nucleolus.
Collapse
Affiliation(s)
- K Nakamoto
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ohuchi J, Arai T, Kon Y, Asano A, Yamauchi H, Watanabe T. Characterization of a novel gene, sperm-tail-associated protein (Stap), in mouse post-meiotic testicular germ cells. Mol Reprod Dev 2001; 59:350-8. [PMID: 11468771 DOI: 10.1002/mrd.1041] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
During mammalian spermatogenesis, many specific molecules show the dynamics of expression and elimination, corresponding with the morphological differentiation of germ cells. We have isolated a novel cDNA designated F77 from mouse testis by cDNA subtractive hybridization between normal and sterile mice, using the C57BL/6 congenic strain for the hybrid sterilityhyphen;3 lpar;Hsthyphen;3rpar; allele from Mus spretus. The full-length F77 mRNA was 3.4 kb and showed significant nonmatching with entries in the databases. F77 was mapped at a proximal position between D8Mit212 and D8Mit138 on mouse chromosome 8, in which no corresponding genes related to its nucleotide sequence were found. F77 mRNA was not detected in any other organs except the testis of adult fertile mice. F77 protein was only seen in normal adult testis and epididymis. In contrast to normal C57BL/6 mice, F77 mRNA and protein were not seen in germ cell-deficient Kit(W)/Kit(Wv) mice. By in situ hybridization, F77 mRNA was detected mainly at round spermatids in the sexually mature testis, and immunohistochemical analysis revealed that F77 protein was located at the tail of elongated spermatids. We are proposing the name, sperm-tail-associated protein (Stap), for the gene encoding F77 cDNA. Mol. Reprod. Dev. 59: 350-358, 2001.
Collapse
Affiliation(s)
- J Ohuchi
- Laboratory of Experimental Animal Science, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Okada S, Sone T, Fujisawa M, Nakayama S, Takenaka M, Ishizaki K, Kono K, Shimizu-Ueda Y, Hanajiri T, Yamato KT, Fukuzawa H, Brennicke A, Ohyama K. The Y chromosome in the liverwort Marchantia polymorpha has accumulated unique repeat sequences harboring a male-specific gene. Proc Natl Acad Sci U S A 2001; 98:9454-9. [PMID: 11481501 PMCID: PMC55442 DOI: 10.1073/pnas.171304798] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2001] [Accepted: 06/15/2001] [Indexed: 11/18/2022] Open
Abstract
The haploid liverwort Marchantia polymorpha has heteromorphic sex chromosomes, an X chromosome in the female and a Y chromosome in the male. We here report on the repetitive structure of the liverwort Y chromosome through the analysis of male-specific P1-derived artificial chromosome (PAC) clones, pMM4G7 and pMM23-130F12. Several chromosome-specific sequence elements of approximately 70 to 400 nt are combined into larger arrangements, which in turn are assembled into extensive Y chromosome-specific stretches. These repeat sequences contribute 2-3 Mb to the Y chromosome based on the observations of three different approaches: fluorescence in situ hybridization, dot blot hybridization, and the frequency of clones containing the repeat sequences in the genomic library. A novel Y chromosome-specific gene family was found embedded among these repeat sequences. This gene family encodes a putative protein with a RING finger motif and is expressed specifically in male sexual organs. To our knowledge, there have been no other reports for an active Y chromosome-specific gene in plants. The chromosome-specific repeat sequences possibly contribute to determining the identity of the Y chromosome in M. polymorpha as well as to maintaining genes required for male functions, as in mammals such as human.
Collapse
Affiliation(s)
- S Okada
- Laboratory of Plant Molecular Biology, Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kurita A, Takizawa T, Takayama T, Totsukawa K, Matsubara S, Shibahara H, Orgebin-Crist MC, Sendo F, Shinkai Y, Araki Y. Identification, cloning, and initial characterization of a novel mouse testicular germ cell-specific antigen. Biol Reprod 2001; 64:935-45. [PMID: 11207211 DOI: 10.1095/biolreprod64.3.935] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
A monoclonal antibody, designated TES101, was raised by immunizing BALB/c mice with an allogenic mouse testicular homogenate followed by immunohistochemical selection as the initial screening method. By searching the expressed sequence tag (EST) database with the N-terminal amino acid sequence of TES101 reactive protein, we found that the predicted amino acid sequence encoded by a mouse testicular EST clone matched the TES101 protein sequence. Sequence analysis of the clone revealed no homologous molecule in the DNA/protein database. Based on data obtained from N-terminal amino acid analysis of the TES101 protein, the derived amino acid sequence contained a signal peptide region of 25 amino acids and a mature protein region of 225 amino acids, which translated into a protein with a molecular weight of 24 093. Northern blot analysis showed that mRNA of the TES101 protein was found in testis but not in any other mouse tissues examined. Western blot analysis revealed that TES101 reacted with a 38-kDa band on SDS-PAGE under nonreducing conditions, and this reactivity was abrogated under reducing conditions. Immunoelectron microscopic studies demonstrated that the molecule was predominantly located on the plasma membrane of spermatocytes and spermatids but not in Sertoli cells or interstitial cells, including Leydig cells. Thus, the TES101 protein is a novel molecule present primarily on the surface of developing male germ cells. TES101 protein may play a role in the processes underlying male germ cell formation.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/immunology
- Antigens/genetics
- Antigens/immunology
- Antigens, Surface/genetics
- Antigens, Surface/immunology
- Base Sequence
- Blotting, Northern
- Blotting, Western
- Cloning, Molecular
- Electrophoresis, Polyacrylamide Gel
- Expressed Sequence Tags
- Female
- GPI-Linked Proteins
- Immunohistochemistry
- Male
- Mice
- Mice, Inbred BALB C
- Microscopy, Fluorescence
- Microscopy, Immunoelectron
- Molecular Sequence Data
- Sequence Analysis, DNA
- Sequence Analysis, Protein
- Sertoli Cells/chemistry
- Spermatogenesis/immunology
- Testis/immunology
- Testis/metabolism
Collapse
Affiliation(s)
- A Kurita
- Department of Immunology & Parasitology, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Watabe K, Ito A, Asada H, Endo Y, Kobayashi T, Nakamoto K, Itami S, Takao S, Shinomura Y, Aikou T, Yoshikawa K, Matsuzawa Y, Kitamura Y, Nojima H. Structure, expression and chromosome mapping of MLZE, a novel gene which is preferentially expressed in metastatic melanoma cells. Jpn J Cancer Res 2001; 92:140-51. [PMID: 11223543 PMCID: PMC5926699 DOI: 10.1111/j.1349-7006.2001.tb01076.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
We isolated a novel gene, termed MLZE, from a B16-BL6 cDNA library after subtraction of B16-F10 mRNA. Expression levels of mouse MLZE (mMLZE) increased in accordance with metastatic ability of B16 melanoma sublines. Human homolog of mMlze (hMlze) contained one leucine zipper structure and two potential nuclear localizing signals. Northern blot analysis of multiple human tissues showed that hMLZE was expressed primarily in trachea and spleen. We mapped the hMLZE gene (by fluorescence in situ hybridization) to 8q24.1 - 2, which contains the c-myc gene and is often amplified in malignant melanoma. Immunohistochemistry revealed that the number of hMlze-positive cases was significantly larger in Clark levels III, IV and V melanomas (6 / 11 = 55%) than in Clark levels I and II melanomas (2 / 15 = 13%). In two cases of hMlze-positive melanomas, the strength of hMlze staining increased substantially in the deep component of the tumor. Considering that melanomas above Clark level II are more metastatic than those below Clark level III, these findings suggested that MLZE is one of the genes whose expression is upregulated during the course of acquisition of metastatic potential in melanoma cells.
Collapse
Affiliation(s)
- K Watabe
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Koga M, Tanaka H, Yomogida K, Nozaki M, Tsuchida J, Ohta H, Nakamura Y, Masai K, Yoshimura Y, Yamanaka M, Iguchi N, Nojima H, Matsumiya K, Okuyama A, Nishimune Y. Isolation and characterization of a haploid germ cell-specific novel complementary deoxyribonucleic acid; testis-specific homologue of succinyl CoA:3-Oxo acid CoA transferase. Biol Reprod 2000; 63:1601-9. [PMID: 11090426 DOI: 10.1095/biolreprod63.6.1601] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
We have isolated a cDNA clone encoding a mouse haploid germ cell-specific protein from a subtracted cDNA library. Sequence analysis of the cDNA revealed high homology with pig and human heart succinyl CoA:3-oxo acid CoA transferase (EC 2.8.3.5), which is a key enzyme for energy metabolism of ketone bodies. The deduced protein consists of 520 amino acid residues, including glutamate 344, known to be the catalytic residue in the active site of pig heart CoA transferase and the expected mitochondrial targeting sequence enriched with Arg, Leu, and Ser in the N-terminal region. Thus, we termed this gene scot-t (testis-specific succinyl CoA:3-oxo acid CoA transferase). Northern blot analysis, in situ hybridization, and Western blot analysis demonstrated a unique expression pattern of the mRNA with rapid translation exclusively in late spermatids. The scot-t protein was detected first in elongated spermatids at step 8 or 9 as faint signals and gradually accumulated during spermiogenesis. It was also detected in the midpiece of spermatozoa by immunohistochemistry. The results suggest that the scot-t protein plays important roles in the energy metabolism of spermatozoa.
Collapse
Affiliation(s)
- M Koga
- Department of Science for Laboratory Animal Experimentation, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Yabuta N, Fujii T, Copeland NG, Gilbert DJ, Jenkins NA, Nishiguchi H, Endo Y, Toji S, Tanaka H, Nishimune Y, Nojima H. Structure, expression, and chromosome mapping of LATS2, a mammalian homologue of the Drosophila tumor suppressor gene lats/warts. Genomics 2000; 63:263-70. [PMID: 10673337 DOI: 10.1006/geno.1999.6065] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have cloned and characterized LATS2, a novel mammalian homologue of the Drosophila tumor suppressor gene lats/warts. Northern blot analysis showed ubiquitous expression of mouse LATS2 (MmLATS2) mRNA, whereas expression of human LATS2 (HsLATS2) mRNA was enhanced in skeletal muscle and heart. Immunoblotting analysis of fractionated cell lysates showed HsLats2 to be a nuclear protein. We mapped the MmLATS2 gene to mouse chromosome 14 by interspecific backcross analysis. We also mapped the HsLATS2 gene (by fluorescence in situ hybridization) to the 13q11-q12 region, in which a loss of heterozygosity has been frequently observed in many primary cancers and to which the tumor suppressor genes RB and BRCA2 have also been mapped.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Chromosome Mapping
- Chromosomes, Human, Pair 13/genetics
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Drosophila/genetics
- Drosophila Proteins
- Gene Expression
- Genes, Insect
- Genes, Tumor Suppressor
- Humans
- In Situ Hybridization, Fluorescence
- Mice
- Molecular Sequence Data
- Phylogeny
- Protein Kinases/genetics
- Protein Serine-Threonine Kinases/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Homology, Amino Acid
- Tumor Suppressor Proteins
Collapse
Affiliation(s)
- N Yabuta
- Department of Molecular Genetics, Department of Science for Laboratory Animal Experimentation, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Iguchi N, Tanaka H, Fujii T, Tamura K, Kaneko Y, Nojima H, Nishimune Y. Molecular cloning of haploid germ cell-specific tektin cDNA and analysis of the protein in mouse testis. FEBS Lett 1999; 456:315-21. [PMID: 10456331 DOI: 10.1016/s0014-5793(99)00967-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Tektins are a class of proteins that form filamentous polymers in the walls of ciliary and flagellar microtubules. We report here the molecular cloning of a new member of the tektin family, tektin-t, identified from a mouse haploid germ cell-specific cDNA library. Tektin-t mRNA encodes a protein of 430 deduced amino acids possessing RSNVELCRD, the conserved sequence of tektin family proteins. Western blotting showed a single band having a molecular weight of 86 kDa in the mouse testis. Immunohistochemistry of the testis showed that tektin-t is localized in the flagella of elongating spermatids from developmental step 15 to maturity.
Collapse
Affiliation(s)
- N Iguchi
- Department of Science for Laboratory Animal Experimentation, Research Institute for Microbial Diseases, Osaka University, Suita City, Japan
| | | | | | | | | | | | | |
Collapse
|