1
|
Sigurpalsdottir BD, Stefansson OA, Holley G, Beyter D, Zink F, Hardarson MÞ, Sverrisson SÞ, Kristinsdottir N, Magnusdottir DN, Magnusson OÞ, Gudbjartsson DF, Halldorsson BV, Stefansson K. A comparison of methods for detecting DNA methylation from long-read sequencing of human genomes. Genome Biol 2024; 25:69. [PMID: 38468278 PMCID: PMC10929077 DOI: 10.1186/s13059-024-03207-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/28/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Long-read sequencing can enable the detection of base modifications, such as CpG methylation, in single molecules of DNA. The most commonly used methods for long-read sequencing are nanopore developed by Oxford Nanopore Technologies (ONT) and single molecule real-time (SMRT) sequencing developed by Pacific Bioscience (PacBio). In this study, we systematically compare the performance of CpG methylation detection from long-read sequencing. RESULTS We demonstrate that CpG methylation detection from 7179 nanopore-sequenced DNA samples is highly accurate and consistent with 132 oxidative bisulfite-sequenced (oxBS) samples, isolated from the same blood draws. We introduce quality filters for CpGs that further enhance the accuracy of CpG methylation detection from nanopore-sequenced DNA, while removing at most 30% of CpGs. We evaluate the per-site performance of CpG methylation detection across different genomic features and CpG methylation rates and demonstrate how the latest R10.4 flowcell chemistry and base-calling algorithms improve methylation detection from nanopore sequencing. Additionally, we show how the methylation detection of 50 SMRT-sequenced genomes compares to nanopore sequencing and oxBS. CONCLUSIONS This study provides the first systematic comparison of CpG methylation detection tools for long-read sequencing methods. We compare two commonly used computational methods for the detection of CpG methylation in a large number of nanopore genomes, including samples sequenced using the latest R10.4 nanopore flowcell chemistry and 50 SMRT sequenced samples. We provide insights into the strengths and limitations of each sequencing method as well as recommendations for standardization and evaluation of tools designed for genome-scale modified base detection using long-read sequencing.
Collapse
Affiliation(s)
- Brynja D Sigurpalsdottir
- deCODE Genetics/Amgen Inc., Sturlugata 8, Reykjavík, Iceland.
- School of Technology, Reykjavík University, Reykjavík, Iceland.
| | | | | | - Doruk Beyter
- deCODE Genetics/Amgen Inc., Sturlugata 8, Reykjavík, Iceland
| | - Florian Zink
- deCODE Genetics/Amgen Inc., Sturlugata 8, Reykjavík, Iceland
| | - Marteinn Þ Hardarson
- deCODE Genetics/Amgen Inc., Sturlugata 8, Reykjavík, Iceland
- School of Technology, Reykjavík University, Reykjavík, Iceland
| | | | | | | | | | - Daniel F Gudbjartsson
- deCODE Genetics/Amgen Inc., Sturlugata 8, Reykjavík, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavík, Iceland
| | - Bjarni V Halldorsson
- deCODE Genetics/Amgen Inc., Sturlugata 8, Reykjavík, Iceland.
- School of Technology, Reykjavík University, Reykjavík, Iceland.
| | - Kari Stefansson
- deCODE Genetics/Amgen Inc., Sturlugata 8, Reykjavík, Iceland
- Faculty of Medicine, School of Health Science, University of Iceland, Reykjavík, Iceland
| |
Collapse
|
2
|
Moon Y, Kim I, Chang S, Park B, Lee S, Yoo S, Chae S, Hwang D, Park H. Hypoxia regulates allele-specific histone modification of the imprinted H19 gene. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194643. [DOI: 10.1016/j.bbagrm.2020.194643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/29/2020] [Accepted: 10/02/2020] [Indexed: 01/20/2023]
|
3
|
Yamaguchi Y, Tayama C, Tomikawa J, Akaishi R, Kamura H, Matsuoka K, Wake N, Minakami H, Kato K, Yamada T, Nakabayashi K, Hata K. Placenta-specific epimutation at H19-DMR among common pregnancy complications: its frequency and effect on the expression patterns of H19 and IGF2. Clin Epigenetics 2019; 11:113. [PMID: 31370882 PMCID: PMC6676526 DOI: 10.1186/s13148-019-0712-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 07/22/2019] [Indexed: 12/17/2022] Open
Abstract
Background H19 and IGF2 genes are imprinted and involved in regulating fetal and placental growth. The H19 differentially methylated region (DMR) is paternally methylated and maternally unmethylated and regulates the imprinted expression of H19 and IGF2. Epimutation at the H19-DMR in humans results in congenital growth disorders, Beckwith-Wiedemann and Silver-Russell syndromes, when erroneously its maternal allele becomes methylated and its paternal allele becomes unmethylated, respectively. Although H19 and IGF2 have been assessed for their involvement in pregnancy complications including fetal growth restriction (FGR) and pregnancy-induced hypertension (PIH)/hypertensive disorder of pregnancy (HDP) intensively in the last decade, it is still not established whether epimutation at the H19-DMR in the placenta results in pathogenic conditions in pregnancy. We aimed to assess the frequency of H19-DMR epimutation and its effects on the allelic expression patterns of H19 and IGF2 genes among normal and abnormal pregnancy cases. Results We enrolled two independently collected sets of placenta samples from normal pregnancies as controls and common pregnancy complications, FGR and PIH (HDP). The first set consisted of 39 controls and 140 FGR and/or PIH cases, and the second set consisted of 29 controls and 62 cases. For these samples, we initially screened for DNA methylation changes at H19-DMR and IGF2-DMRs by combined bisulfite restriction analysis, and further analyzed cases with methylation changes for their allelic methylation and expression patterns. We identified one case each of FGR and PIH showing hypomethylation of H19-DMR and IGF2-DMRs only in the placenta, but not in cord blood, from the first case/control set. For the PIH case, we were able to determine the allelic expression pattern of H19 to be biallelically expressed and the H19/IGF2 expression ratio to be highly elevated compared to controls. We also identified a PIH case with hypomethylation at H19-DMR and IGF2-DMRs in the placenta from the second case/control set. Conclusions Placental epimutation at H19-DMR was observed among common pregnancy complication cases at the frequency of 1.5% (3 out of 202 cases examined), but not in 68 normal pregnancy cases examined. Alteration of H19/IGF2 expression patterns due to hypomethylation of H19-DMR may have been involved in the pathogenesis of pregnancy complications in these cases. Electronic supplementary material The online version of this article (10.1186/s13148-019-0712-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuko Yamaguchi
- Department of Maternal-Fetal Biology, Research Institute, National Center for Child Health and Development, Tokyo, 157-8535, Japan.,Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Chiharu Tayama
- Department of Maternal-Fetal Biology, Research Institute, National Center for Child Health and Development, Tokyo, 157-8535, Japan
| | - Junko Tomikawa
- Department of Maternal-Fetal Biology, Research Institute, National Center for Child Health and Development, Tokyo, 157-8535, Japan
| | - Rina Akaishi
- Center of Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, 157-8535, Japan
| | - Hiromi Kamura
- Department of Maternal-Fetal Biology, Research Institute, National Center for Child Health and Development, Tokyo, 157-8535, Japan
| | - Kentaro Matsuoka
- Department of Pathology, National Center for Child Health and Development, Tokyo, 157-8535, Japan.,Present Address: Department of Pathology, Dokkyo Medical University, Saitama Medical Center, Koshigaya, Japan
| | - Norio Wake
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Hisanori Minakami
- Department of Obstetrics and Gynecology, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Kiyoko Kato
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Takahiro Yamada
- Clinical Genetics Unit, Kyoto University Hospital, Kyoto, 606-8507, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, Research Institute, National Center for Child Health and Development, Tokyo, 157-8535, Japan.
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, Research Institute, National Center for Child Health and Development, Tokyo, 157-8535, Japan.
| |
Collapse
|
4
|
Petry CJ, Koulman A, Lu L, Jenkins B, Furse S, Prentice P, Matthews L, Hughes IA, Acerini CL, Ong KK, Dunger DB. Associations between the maternal circulating lipid profile in pregnancy and fetal imprinted gene alleles: a cohort study. Reprod Biol Endocrinol 2018; 16:82. [PMID: 30157874 PMCID: PMC6116391 DOI: 10.1186/s12958-018-0399-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/13/2018] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Imprinted genes, which are expressed in a parent of origin-specific manner, are thought to mediate the genetic priorities of each parent in pregnancy. Recently we reported that some fetal imprinted gene variants are associated with maternal glucose concentrations and blood pressures in pregnancy. We suggest that the conflict between the effects of paternal and maternal transmitted genes starts at conception and may already be evident in measures of maternal metabolism in early pregnancy, before gestational diabetes is manifest. METHODS Lipid fractions in maternal non-fasting serum collected around week 15 of pregnancy were profiled using direct infusion mass spectrometry in a subset Discovery Cohort (n = 200) of women from the Cambridge Baby Growth Study using direct infusion mass spectrometry. Associations between 151 haplotype-tag fetal polymorphisms in 16 imprinted genes and lipids were determined using partial least squares discriminant analysis. Variable importance in projection scores were used to identify those lipid species that contribute most to the underlying variation in the lipid profile and the concentrations of these species tested for associations with fetal imprinted gene alleles using linear regression. In an internal Validation Cohort (n = 567 women from the same cohort) the lipid fraction was profiled using liquid chromatography-mass spectrometry and tested for associations with the same fetal imprinted gene variants as above, followed by meta-analysis of associations from the Discovery and Validation Cohorts. RESULTS The most significant associations were between a monounsaturated triglyceride (44:1) and both paternally-transmitted fetal H19 rs7950932 (R = 0.14, p = 2.9 × 10- 3, n = 386) and maternally-transmitted fetal FAM99A rs7131362 (R = 0.18, p = 6.2 × 10- 3, n = 351; association with maternal-untransmitted allele R = 0.08, p = 0.07, n = 328). This same triglyceride isoform was also associated with subsequent week 28 fasting glucose concentrations (R = 0.09, p = 9.9 × 10- 3, n = 673) and homeostasis model assessment of insulin resistance (R = 0.09, p = 0.01, n = 664). CONCLUSIONS Fetal imprinted genes may influence maternal circulating clinically relevant triglyceride concentrations early in pregnancy.
Collapse
Affiliation(s)
- Clive J Petry
- Department of Paediatrics, University of Cambridge, Box 116, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Albert Koulman
- Medical Research Council Human Nutrition Research, Cambridge, UK
- The Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Liangjian Lu
- Department of Paediatrics, University of Cambridge, Box 116, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0QQ, UK
- Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore, Singapore
| | - Benjamin Jenkins
- Medical Research Council Human Nutrition Research, Cambridge, UK
| | - Samuel Furse
- The Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Philippa Prentice
- Department of Paediatrics, University of Cambridge, Box 116, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0QQ, UK
| | - Lee Matthews
- Medical Research Council Human Nutrition Research, Cambridge, UK
| | - Ieuan A Hughes
- Department of Paediatrics, University of Cambridge, Box 116, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0QQ, UK
| | - Carlo L Acerini
- Department of Paediatrics, University of Cambridge, Box 116, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0QQ, UK
| | - Ken K Ong
- Department of Paediatrics, University of Cambridge, Box 116, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0QQ, UK
- The Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - David B Dunger
- Department of Paediatrics, University of Cambridge, Box 116, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0QQ, UK
- The Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Schagdarsurengin U, Lammert A, Schunk N, Sheridan D, Gattenloehner S, Steger K, Wagenlehner F, Dansranjavin T. Impairment of IGF2 gene expression in prostate cancer is triggered by epigenetic dysregulation of IGF2-DMR0 and its interaction with KLF4. Cell Commun Signal 2017; 15:40. [PMID: 29017567 PMCID: PMC5633889 DOI: 10.1186/s12964-017-0197-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/05/2017] [Indexed: 01/29/2023] Open
Abstract
Background Human cancer cells often exhibit impaired IGF2 expression and the underlying mechanisms are multifaceted and complex. Besides the well-known imprinting control region IGF2/H19-ICR, the involvement of a differentially methylated region in the promoter P0 of IGF2 gene (IGF2-DMR0) has been suggested. Here, we evaluate several mechanisms potentially leading to up- and/or down-regulation of IGF2 expression in prostate cancer and present a novel role of Kruppel-like factor 4 (KLF4) as a transcriptional regulator of IGF2 binding in IGF2-DMR0. Methods Putative binding sites for transcription factors were identified in IGF2-DMR0 using JASPAR CORE database. Gene expressions were analyzed by RT-qPCR in prostate carcinoma and adjacent benign prostate hyperplasia samples obtained by radical prostatectomy (86 RP-PCa and 47 RP-BPH) and BPH obtained by transurethral prostate resection (13 TUR-BPH). Pyrosequencing and qMSP were used for DNA methylation studies in IGF2-DMR0, IGF2/H19-ICR and Glutathione-S-transferase-P1 (GSTP1) promoter. Loss of imprinting (LOI) was analyzed by RFLP. Copy number variation (CNV) test was performed using qBiomarker CNV PCR Assay. KLF4-binding and histone-modifications were analyzed by ChIP-qPCR in prostate cancer cell lines exhibiting differentially methylated IGF2-DMR0 (LNCaP hypomethylated and DU145 hypermethylated). KLF4 protein was analyzed by western blot. Statistical associations of gene expression to methylation, IGF2 LOI and CNV were calculated by Mann-Whitney-U-test. Correlations between gene expression and methylation levels were evaluated by Spearman’s-Rank-Correlation-test. Results We found a significant reduction of IGF2 expression in the majority of RP-PCa and RP-BPH in comparison to TUR-BPH. Analyzing potential molecular reasons, we found in RP-PCa and RP-BPH in comparison to TUR-BPH a significant hypomethylation of IGF2-DMR0, which coincided with hypermethylation of GSTP1-promoter, a prominent marker of prostate tumors. In contrast, IGF2 LOI and CNV did not associate significantly with up- and/or down-regulation of IGF2 expression in prostate tumors. By analyzing IGF2-DMR0, we detected a consensus sequence for KLF4 with a z-score of 7.6. Interestingly, we found that KLF4 binds to hypomethylated (17%) IGF2-DMR0 enriched with H3K9me3 and H3K27me3 (LNCaP), but does not bind under hypermethylated (85%) and H3K4me3-enriched conditions (DU145). KLF4 expression was detected in TUR-BPH as well as in RP-BPH and RP-PCa and showed a highly significant correlation to IGF2 expression. Conclusions Our study demonstrated that in human prostate cancer the impairment of IGF2 expression is accompanied by hypomethylation of IGF2-DMR0. We revealed that KLF4 is a putative transcriptional regulator of IGF2, which binds in IGF2-DMR0 in dependence of the prevailing epigenetic state in this region. Herewith we provide complementary new insights into IGF2 dysregulation mechanisms as a critical process in prostate tumorigenesis.
Collapse
Affiliation(s)
- Undraga Schagdarsurengin
- Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Rudolf-Buchheim-Str. 7, 35392, Giessen, Germany.,Epigenetics of Urogenital System, Justus-Liebig-University Giessen, Schubertstr. 81, 35392, Giessen, Germany
| | - Angela Lammert
- Department of Signal Transduction of Cellular Motility, Internal Medicine V, Justus-Liebig-University Giessen, Aulweg 128, 35392, Giessen, Germany
| | - Natalie Schunk
- Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Rudolf-Buchheim-Str. 7, 35392, Giessen, Germany
| | - Diana Sheridan
- Institute of Pathology, Justus-Liebig-University Giessen, Langhansstr. 10, 35392, Giessen, Germany
| | - Stefan Gattenloehner
- Institute of Pathology, Justus-Liebig-University Giessen, Langhansstr. 10, 35392, Giessen, Germany
| | - Klaus Steger
- Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Rudolf-Buchheim-Str. 7, 35392, Giessen, Germany.,Molecular Andrology, Justus-Liebig-University Giessen, Schubertstr. 81, 35392, Giessen, Germany
| | - Florian Wagenlehner
- Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Rudolf-Buchheim-Str. 7, 35392, Giessen, Germany
| | - Temuujin Dansranjavin
- Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Rudolf-Buchheim-Str. 7, 35392, Giessen, Germany.
| |
Collapse
|
6
|
|
7
|
Kaut O, Sharma A, Schmitt I, Wüllner U. DNA methylation of imprinted loci of autosomal chromosomes and IGF2 is not affected in Parkinson’s disease patients’ peripheral blood mononuclear cells. Neurol Res 2017; 39:281-284. [DOI: 10.1080/01616412.2017.1279424] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Oliver Kaut
- Department of Neurology, University of Bonn, Bonn, Germany
| | - Amit Sharma
- Department of Neurology, University of Bonn, Bonn, Germany
| | - Ina Schmitt
- Department of Neurology, University of Bonn, Bonn, Germany
| | - Ullrich Wüllner
- Department of Neurology, University of Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| |
Collapse
|
8
|
Piyasena C, Reynolds RM, Khulan B, Seckl JR, Menon G, Drake AJ. Placental 5-methylcytosine and 5-hydroxymethylcytosine patterns associate with size at birth. Epigenetics 2016; 10:692-7. [PMID: 26091021 PMCID: PMC4623028 DOI: 10.1080/15592294.2015.1062963] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Altered placental function as a consequence of aberrant imprinted gene expression may be one mechanism mediating the association between low birth weight and increased cardiometabolic disease risk. Imprinted gene expression is regulated by epigenetic mechanisms, particularly DNA methylation (5mC) at differentially methylated regions (DMRs). While 5-hydroxymethylcytosine (5hmC) is also present at DMRs, many techniques do not distinguish between 5mC and 5hmC. Using human placental samples, we show that the expression of the imprinted gene CDKN1C associates with birth weight. Using specific techniques to map 5mC and 5hmC at DMRs controlling the expression of CDKN1C and the imprinted gene IGF2, we show that 5mC enrichment at KvDMR and DMR0, and 5hmC enrichment within the H19 gene body, associate positively with birth weight. Importantly, the presence of 5hmC at imprinted DMRs may complicate the interpretation of DNA methylation studies in placenta; future studies should consider using techniques that distinguish between, and permit quantification of, both modifications.
Collapse
Affiliation(s)
- Chinthika Piyasena
- a University/British Heart Foundation Center for Cardiovascular Science; University of Edinburgh; The Queen's Medical Research Institute ; Edinburgh , UK
| | | | | | | | | | | |
Collapse
|
9
|
Moore GE, Ishida M, Demetriou C, Al-Olabi L, Leon LJ, Thomas AC, Abu-Amero S, Frost JM, Stafford JL, Chaoqun Y, Duncan AJ, Baigel R, Brimioulle M, Iglesias-Platas I, Apostolidou S, Aggarwal R, Whittaker JC, Syngelaki A, Nicolaides KH, Regan L, Monk D, Stanier P. The role and interaction of imprinted genes in human fetal growth. Philos Trans R Soc Lond B Biol Sci 2016; 370:20140074. [PMID: 25602077 PMCID: PMC4305174 DOI: 10.1098/rstb.2014.0074] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Identifying the genetic input for fetal growth will help to understand common, serious complications of pregnancy such as fetal growth restriction. Genomic imprinting is an epigenetic process that silences one parental allele, resulting in monoallelic expression. Imprinted genes are important in mammalian fetal growth and development. Evidence has emerged showing that genes that are paternally expressed promote fetal growth, whereas maternally expressed genes suppress growth. We have assessed whether the expression levels of key imprinted genes correlate with fetal growth parameters during pregnancy, either early in gestation, using chorionic villus samples (CVS), or in term placenta. We have found that the expression of paternally expressing insulin-like growth factor 2 (IGF2), its receptor IGF2R, and the IGF2/IGF1R ratio in CVS tissues significantly correlate with crown–rump length and birthweight, whereas term placenta expression shows no correlation. For the maternally expressing pleckstrin homology-like domain family A, member 2 (PHLDA2), there is no correlation early in pregnancy in CVS but a highly significant negative relationship in term placenta. Analysis of the control of imprinted expression of PHLDA2 gave rise to a maternally and compounded grand-maternally controlled genetic effect with a birthweight increase of 93/155 g, respectively, when one copy of the PHLDA2 promoter variant is inherited. Expression of the growth factor receptor-bound protein 10 (GRB10) in term placenta is significantly negatively correlated with head circumference. Analysis of the paternally expressing delta-like 1 homologue (DLK1) shows that the paternal transmission of type 1 diabetes protective G allele of rs941576 single nucleotide polymorphism (SNP) results in significantly reduced birth weight (−132 g). In conclusion, we have found that the expression of key imprinted genes show a strong correlation with fetal growth and that for both genetic and genomics data analyses, it is important not to overlook parent-of-origin effects.
Collapse
Affiliation(s)
- Gudrun E Moore
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Miho Ishida
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Charalambos Demetriou
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Lara Al-Olabi
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Lydia J Leon
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Anna C Thomas
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Sayeda Abu-Amero
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Jennifer M Frost
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Jaime L Stafford
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Yao Chaoqun
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Andrew J Duncan
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Rachel Baigel
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Marina Brimioulle
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Isabel Iglesias-Platas
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Sophia Apostolidou
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Reena Aggarwal
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - John C Whittaker
- Noncommunicable Disease Epidemiology Unit, London School of Hygiene and Tropical Medicine, University of London, London WC1E 7HT, UK
| | - Argyro Syngelaki
- Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, London SE5 9RS, UK
| | - Kypros H Nicolaides
- Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, London SE5 9RS, UK
| | - Lesley Regan
- Department of Obstetrics and Gynaecology, Imperial College London, St Mary's Campus, London W2 1NY, UK
| | - David Monk
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Philip Stanier
- Genetics and Epigenetics in Health and Diseases Section, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, UK
| |
Collapse
|
10
|
Krzeminski P, Sarasquete ME, Misiewicz-Krzeminska I, Corral R, Corchete LA, Martín AA, García-Sanz R, San Miguel JF, Gutiérrez NC. Insights into epigenetic regulation of microRNA-155 expression in multiple myeloma. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:353-66. [PMID: 25497370 DOI: 10.1016/j.bbagrm.2014.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 11/07/2014] [Accepted: 12/02/2014] [Indexed: 11/28/2022]
Abstract
CONTEXT MiR-155 plays a critical role in the development of B-cell malignancies. Previous studies have shown a deregulation of miR-155 in specific cytogenetic subtypes of multiple myeloma (MM). However, the mechanisms that regulate miR-155 expression in MM are not fully understood. OBJECTIVE In the present study, we explored the regulation of miRNA-155 in MM by DNA methylation mechanisms and the impact of miR-155 expression in survival of MM patients. METHOD Primary samples were obtained from 95 patients with newly diagnosed myeloma. Methylation was analyzed by Methylation Specific PCR, sequencing of bisulfite treated DNA and luciferase assay. RESULTS qRT-PCR analysis revealed that miR-155 was differentially expressed in MM and its upregulation was associated with longer survival. DNA methylation of CpG island present in the first exon of miR-155 host gene was associated with its low expression in MM cell lines and patient samples. Our results showed for the first time that in vitro methylation of part of the promoter and first exon abrogated the miR-155 expression. We further showed that miR-155 expression in MM cell lines was increased by demethylating 5-aza-dC treatment and decreased by RNA-directed DNA methylation. Additionally, we found that LPS "immunological challenge" was insufficient to induce miR-155 expression in MM cell lines with methylated DNA around transcription start site (TSS). CONCLUSION This study provides evidence that DNA methylation contributes to miR-155 expression in myeloma cells. Interestingly, the survival data showed an association between miR-155 expression and outcome of MM.
Collapse
Affiliation(s)
- Patryk Krzeminski
- Servicio de Hematología, Hospital Universitario, IBSAL, IBMCC (USAL-CSIC), Salamanca, Spain.
| | - María E Sarasquete
- Servicio de Hematología, Hospital Universitario, IBSAL, IBMCC (USAL-CSIC), Salamanca, Spain
| | - Irena Misiewicz-Krzeminska
- Servicio de Hematología, Hospital Universitario, IBSAL, IBMCC (USAL-CSIC), Salamanca, Spain; National Medicines Institute, Warsaw, Poland
| | - Rocío Corral
- Servicio de Hematología, Hospital Universitario, IBSAL, IBMCC (USAL-CSIC), Salamanca, Spain
| | - Luis A Corchete
- Servicio de Hematología, Hospital Universitario, IBSAL, IBMCC (USAL-CSIC), Salamanca, Spain
| | - Ana A Martín
- Servicio de Hematología, Hospital Universitario, IBSAL, IBMCC (USAL-CSIC), Salamanca, Spain
| | - Ramón García-Sanz
- Servicio de Hematología, Hospital Universitario, IBSAL, IBMCC (USAL-CSIC), Salamanca, Spain
| | - Jesús F San Miguel
- Clínica Universidad de Navarra, Centro de Investigación Médica Aplicada, Pamplona, Navarra, Spain
| | - Norma C Gutiérrez
- Servicio de Hematología, Hospital Universitario, IBSAL, IBMCC (USAL-CSIC), Salamanca, Spain.
| |
Collapse
|
11
|
Gagne A, Hochman A, Qureshi M, Tong C, Arbon J, McDaniel K, Davis TL. Analysis of DNA methylation acquisition at the imprinted Dlk1 locus reveals asymmetry at CpG dyads. Epigenetics Chromatin 2014; 7:9. [PMID: 24904690 PMCID: PMC4045959 DOI: 10.1186/1756-8935-7-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 05/20/2014] [Indexed: 12/27/2022] Open
Abstract
Background Differential distribution of DNA methylation on the parental alleles of imprinted genes distinguishes the alleles from each other and dictates their parent of origin-specific expression patterns. While differential DNA methylation at primary imprinting control regions is inherited via the gametes, additional allele-specific DNA methylation is acquired at secondary sites during embryonic development and plays a role in the maintenance of genomic imprinting. The precise mechanisms by which this somatic DNA methylation is established at secondary sites are not well defined and may vary as methylation acquisition at these sites occurs at different times for genes in different imprinting clusters. Results In this study, we show that there is also variability in the timing of somatic DNA methylation acquisition at multiple sites within a single imprinting cluster. Paternal allele-specific DNA methylation is initially acquired at similar stages of post-implantation development at the linked Dlk1 and Gtl2 differentially methylated regions (DMRs). In contrast, unlike the Gtl2-DMR, the maternal Dlk1-DMR acquires DNA methylation in adult tissues. Conclusions These data suggest that the acquisition of DNA methylation across the Dlk1/Gtl2 imprinting cluster is variable. We further found that the Dlk1 differentially methylated region displays low DNA methylation fidelity, as evidenced by the presence of hemimethylation at approximately one-third of the methylated CpG dyads. We hypothesize that the maintenance of DNA methylation may be less efficient at secondary differentially methylated sites than at primary imprinting control regions.
Collapse
Affiliation(s)
- Alyssa Gagne
- Department of Biology, Bryn Mawr College, 101 N. Merion Avenue, Bryn Mawr, PA 19010-2899, USA
| | - Abigail Hochman
- Department of Biology, Bryn Mawr College, 101 N. Merion Avenue, Bryn Mawr, PA 19010-2899, USA
| | - Mahvish Qureshi
- Department of Biology, Bryn Mawr College, 101 N. Merion Avenue, Bryn Mawr, PA 19010-2899, USA
| | - Celia Tong
- Department of Biology, Bryn Mawr College, 101 N. Merion Avenue, Bryn Mawr, PA 19010-2899, USA
| | - Jessica Arbon
- Department of Biology, Bryn Mawr College, 101 N. Merion Avenue, Bryn Mawr, PA 19010-2899, USA
| | - Kayla McDaniel
- Department of Biology, Bryn Mawr College, 101 N. Merion Avenue, Bryn Mawr, PA 19010-2899, USA
| | - Tamara L Davis
- Department of Biology, Bryn Mawr College, 101 N. Merion Avenue, Bryn Mawr, PA 19010-2899, USA
| |
Collapse
|
12
|
Barua S, Kuizon S, Chadman KK, Flory MJ, Brown WT, Junaid MA. Single-base resolution of mouse offspring brain methylome reveals epigenome modifications caused by gestational folic acid. Epigenetics Chromatin 2014; 7:3. [PMID: 24484737 PMCID: PMC3928622 DOI: 10.1186/1756-8935-7-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 01/07/2014] [Indexed: 12/29/2022] Open
Abstract
Background Epigenetic modifications, such as cytosine methylation in CpG-rich regions, regulate multiple functions in mammalian development. Maternal nutrients affecting one-carbon metabolism during gestation can exert long-term effects on the health of the progeny. Using C57BL/6 J mice, we investigated whether the amount of ingested maternal folic acid (FA) during gestation impacted DNA methylation in the offspring’s cerebral hemispheres. Reduced representation bisulfite sequencing at single-base resolution was performed to analyze genome-wide DNA methylation profiles. Results We identified widespread differences in the methylation patterns of CpG and non-CpG sites of key developmental genes, including imprinted and candidate autism susceptibility genes (P <0.05). Such differential methylation of the CpG and non-CpG sites may use different mechanisms to alter gene expressions. Quantitative real time reverse transcription-polymerase chain reaction confirmed altered expression of several genes. Conclusions These finding demonstrate that high maternal FA during gestation induces substantial alteration in methylation pattern and gene expression of several genes in the cerebral hemispheres of the offspring, and such changes may influence the overall development. Our findings provide a foundation for future studies to explore the influence of gestational FA on genetic/epigenetic susceptibility to altered development and disease in offspring.
Collapse
Affiliation(s)
| | | | | | | | | | - Mohammed A Junaid
- Department of Developmental Biochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA.
| |
Collapse
|
13
|
Thilly WG, Gostjeva EV, Koledova VV, Zukerberg LR, Chung D, Fomina JN, Darroudi F, Stollar BD. Metakaryotic stem cell nuclei use pangenomic dsRNA/DNA intermediates in genome replication and segregation. Organogenesis 2014; 10:44-52. [PMID: 24418910 PMCID: PMC4049894 DOI: 10.4161/org.27684] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bell shaped nuclei of metakaryotic cells double their DNA content during and after symmetric and asymmetric amitotic fissions rather than in the separate, pre-mitotic S-phase of eukaryotic cells. A parsimonious hypothesis was tested that the two anti-parallel strands of each chromatid DNA helix were first segregated as ssDNA-containing complexes into sister nuclei then copied to recreate a dsDNA genome. Metakaryotic nuclei that were treated during amitosis with RNase A and stained with acridine orange or fluorescent antibody to ssDNA revealed large amounts of ssDNA. Without RNase treatment metakaryotic nuclei in amitosis stained strongly with an antibody complex specific to dsRNA/DNA. Images of amitotic figures co-stained with dsRNA/DNA antibody and DAPI indicated that the entire interphase dsDNA genome (B-form helices) was transformed into two dsRNA/DNA genomes (A-form helices) that were segregated in the daughter cell nuclei then retransformed into dsDNA. As this process segregates DNA strands of opposite polarity in sister cells it hypothetically offers a sequential switching mechanism within the diverging stem cell lineages of development.
Collapse
Affiliation(s)
- William G Thilly
- Laboratory in Metakaryotic Biology; Department of Biological Engineering; Massachusetts Institute of Technology; Cambridge, MA USA
| | - Elena V Gostjeva
- Laboratory in Metakaryotic Biology; Department of Biological Engineering; Massachusetts Institute of Technology; Cambridge, MA USA
| | - Vera V Koledova
- Laboratory in Metakaryotic Biology; Department of Biological Engineering; Massachusetts Institute of Technology; Cambridge, MA USA
| | | | - Daniel Chung
- Gastorointestinal Unit; Massachusetts General Hospital; Boston, MA USA
| | - Janna N Fomina
- Department of Toxicogenetics; Leiden University Medical Centre; Leiden, The Netherlands
| | - Firouz Darroudi
- Department of Toxicogenetics; Leiden University Medical Centre; Leiden, The Netherlands
| | - B David Stollar
- Department of Developmental, Molecular and Chemical Biology; Tufts University School of Medicine; Boston, MA USA
| |
Collapse
|
14
|
Abstract
Cancer is a disease that results from the successive accumulation of genetic and epigenetic alterations. Despite intense study, many unanswered questions about the nature of the contribution of epigenetic changes to carcinogenesis remain. In this review, we describe principles of epigenetics as they relate to our current understanding of carcinogenesis. There are a number of in vivo models of specific pathways of carcinogenesis that are very useful for the characterization of epigenetic mechanisms that link environmental exposures or genetic susceptibility and cancer progression. Because epigenetic alterations are thought to be reversible, they offer great promise for treatment of cancer. The use of animal models to evaluate the effects of decitabine and zebularine has elucidated the mechanisms of action and indicated the potential for these types of treatment. Ultimately, the greatest challenge lies in the integration of laboratory and epidemiologic data to best prevent and treat this deadly disease.
Collapse
Affiliation(s)
| | - Shami Virani
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor 48109, USA
| | | | | | | |
Collapse
|
15
|
Herzog E, Galvez J, Roks A, Stolk L, Verbiest M, Eilers P, Cornelissen J, Steegers E, Steegers-Theunissen R. Tissue-specific DNA methylation profiles in newborns. Clin Epigenetics 2013; 5:8. [PMID: 23724794 PMCID: PMC3684550 DOI: 10.1186/1868-7083-5-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/24/2013] [Indexed: 12/30/2022] Open
Abstract
Background Epidemiological studies demonstrate that foetal growth restriction and low birth weight affect long-term health. Derangements in tissue-specific epigenetic programming of foetal and placental tissues are a suggested underlying mechanism of which DNA methylation is best understood. DNA methylation has been mostly investigated in DNA from white blood cells. To improve baseline understanding of tissue-specific DNA methylation, we examined variation in DNA methylation profiles of the imprinted foetal growth genes IGF2 and H19 in three different tissues from the same newborn obtained at the same time. Findings We obtained DNA from umbilical cord blood mononuclear cells (MNC; CD34+ and CD34–, n = 6), foetal side of the placenta (n = 5) and umbilical cord Wharton jelly (n = 5). DNA methylation of the IGF2 differentially methylated region (DMR) and H19 DMR was measured using quantitative mass spectrometry. Analysis of variance testing showed no statistical difference between total mean methylation of CD34+ and CD34– MNC. Further comparisons were made with the pooled total MNC fraction. Mean IGF2 DMR methylation of Wharton jelly was 1.3 times higher (P = 0.001) than mean methylation of the pooled MNC. Placental mean methylation was 0.8 times lower (P <0.001) and Wharton jelly 0.9 times lower (P <0.001) than the pooled MNC of H19 DMR. Conclusion The total MNC fraction is a rather homogeneous cell population for methylation studies of imprinted genes in umbilical cord blood white blood cells, but may not always reflect the methylation levels of IGF2 and H19 in other organs.
Collapse
Affiliation(s)
- Emilie Herzog
- Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Centre Rotterdam, dr, Molewaterplein 50, Rotterdam, GE 3015, the Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Couvert P, Carrié A, Tezenas du Montcel S, Vaysse J, Sutton A, Barget N, Trinchet JC, Beaugrand M, Ganne N, Giral P, Chelly J. Insulin-like growth factor 2 gene methylation in peripheral blood mononuclear cells of patients with hepatitis C related cirrhosis or hepatocellular carcinoma. Clin Res Hepatol Gastroenterol 2012; 36:345-51. [PMID: 22902352 DOI: 10.1016/j.clinre.2012.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 06/26/2012] [Indexed: 02/04/2023]
Abstract
UNLABELLED Igf2 gene specific hypomethylation has been demonstrated in hepatocellular carcinoma (HCC) cells and in non-tumoral liver samples from patients with HCV-related cirrhosis who further developed HCC. In patients with colorectal cancers, Igf2 hypomethylation is found in peripheral blood mononuclear cells (PBMC) even prior to the occurrence of cancer. AIM To compare Igf2 methylation in PBMC from healthy donors and patients with HCV-related cirrhosis without or with history of HCC. PATIENTS AND METHODS After DNA extraction from frozen PBMC samples of 52 healthy blood donors and 121 patients with HCV-related cirrhosis either without (n=59) or with past or present HCC (n=62), and sodium bisulfite treatment, unbiased PCR amplification and Denaturing High Performance Liquid Chromatography (DHPLC) analysis were used for methylation analysis at the differentially methylated region 2 of Igf2. Methylation profiles were classified in three groups (unmethylated, U; methylated, M; and intermediate, UM) according to the proportions of M and U alleles, blindly to clinical data. In addition, 677C-T mutation of Methylenetetrahydrofolate Reductase (MTHFR) was investigated by fluorescent probes. RESULTS Prevalences of U, UM and M Igf2 profiles were: 8%, 65% and 27% in blood donors, 0%, 81% and 19% in patients with HCV-related cirrhosis without HCC, 71%, 29% and 0% in patients with HCC (P<0.0001). Igf2 methylation profile was independent from gender, age, body mass index, and presence of 677C-T mutation of MTHFR. CONCLUSION These observations suggest a decrease of Igf2 methylation from cirrhosis to HCC in patients with HCV infection, which may be an additional risk factor for HCC.
Collapse
Affiliation(s)
- Philippe Couvert
- Inserm U939, Dyslipidemia, Inflammation and Atherosclerosis in metabolic diseases, 75013 Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ding GL, Wang FF, Shu J, Tian S, Jiang Y, Zhang D, Wang N, Luo Q, Zhang Y, Jin F, Leung PC, Sheng JZ, Huang HF. Transgenerational glucose intolerance with Igf2/H19 epigenetic alterations in mouse islet induced by intrauterine hyperglycemia. Diabetes 2012; 61:1133-42. [PMID: 22447856 PMCID: PMC3331740 DOI: 10.2337/db11-1314] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gestational diabetes mellitus (GDM) has been shown to be associated with high risk of diabetes in offspring. However, the mechanisms involved and the possibilities of transgenerational transmission are still unclear. We intercrossed male and female adult control and first-generation offspring of GDM (F1-GDM) mice to obtain the second-generation (F2) offspring in four groups: C♂-C♀, C♂-GDM♀, GDM♂-C♀, and GDM♂-GDM♀. We found that birth weight significantly increased in F2 offspring through the paternal line with impaired glucose tolerance (IGT). Regardless of birth from F1-GDM with or without IGT, high risk of IGT appeared as early as 3 weeks in F2 offspring and progressed through both parental lineages, especial the paternal line. IGT in male offspring was more obvious than that in females, with parental characteristics and sex-specific transmission. In both F1 and F2 offspring of GDM, the expression of imprinted genes Igf2 and H19 was downregulated in pancreatic islets, caused by abnormal methylation status of the differentially methylated region, which may be one of the mechanisms for impaired islet ultrastructure and function. Furthermore, altered Igf2 and H19 gene expression was found in sperm of adult F1-GDM, regardless of the presence of IGT, indicating that changes of epigenetics in germ cells contributed to transgenerational transmission.
Collapse
Affiliation(s)
- Guo-Lian Ding
- Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fang-Fang Wang
- Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Shu
- Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shen Tian
- Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ying Jiang
- Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dan Zhang
- Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ning Wang
- Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qiong Luo
- Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yu Zhang
- Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fan Jin
- Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Peter C.K. Leung
- Department of Obstetrics and Gynecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jian-Zhong Sheng
- Department of Pathophysiology, School of Medicine, Zhejiang University, Hangzhou, China
| | - He-Feng Huang
- Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, Hangzhou, China
- Corresponding author: He-Feng Huang, , or Jian-Zhong Sheng,
| |
Collapse
|
18
|
Miroglio A, Jammes H, Tost J, Ponger L, Gut IG, El Abdalaoui H, Coste J, Chaussade S, Arimondo PB, Lamarque D, Dandolo L. Specific hypomethylated CpGs at the IGF2 locus act as an epigenetic biomarker for familial adenomatous polyposis colorectal cancer. Epigenomics 2012; 2:365-75. [PMID: 22121898 DOI: 10.2217/epi.10.24] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
AIMS The identification of specific biomarkers for colorectal cancer is of primary importance for early diagnosis. The aim of this study was to evaluate if methylation changes at the IGF2/H19 locus could be predictive for individuals at high risk for developing sporadic or hereditary colorectal cancer. MATERIALS & METHODS Quantitative methylation analysis using pyrosequencing was performed on three differentially methylated regions (DMRs): IGF2 DMR0 and DMR2 and the H19 DMR in DNA samples from sporadic colorectal cancer (n = 26), familial adenomatous polyposis (n = 35) and hereditary nonpolyposis colorectal cancer (n = 19) patients. RESULTS We report in this article for the first time, that in sporadic colorectal cancer tumor DNA both the IGF2 DMR0 and DMR2 are hypomethylated, while the H19 DMR retains its monoallelic methylation pattern. In lymphocyte DNA, a striking hypomethylation of nine contiguous correlated CpGs was found in the IGF2 DMR2 but only in familial adenomatous polyposis patients. CONCLUSION Methylation alterations at the IGF2 locus are more extensive than previously reported and DMR2 hypomethylation in lymphocyte DNA might be a specific epigenetic biomarker for familial adenomatous polyposis patients.
Collapse
Affiliation(s)
- Audrey Miroglio
- Department of Genetics & Development, Institut Cochin, 24, rue Fbg St Jacques, Inserm U567, CNRS UMR 8104, University Paris Descartes, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Tsai AG, Chen DM, Lin M, Hsieh JCF, Okitsu CY, Taghva A, Shibata D, Hsieh CL. Heterogeneity and randomness of DNA methylation patterns in human embryonic stem cells. DNA Cell Biol 2012; 31:893-907. [PMID: 22277069 DOI: 10.1089/dna.2011.1477] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
DNA methylation has been proposed to be important in many biological processes and is the subject of intense study. Traditional bisulfite genomic sequencing allows detailed high-resolution methylation pattern analysis of each molecule with haplotype information across a few hundred bases at each locus, but lacks the capacity to gather voluminous data. Although recent technological developments are aimed at assessing DNA methylation patterns in a high-throughput manner across the genome, the haplotype information cannot be accurately assembled when the sequencing reads are short or when each hybridization target only includes one or two cytosine-phosphate-guanine (CpG) sites. Whether a distinct and nonrandom DNA methylation pattern is present at a given locus is difficult to discern without the haplotype information, and the DNA methylation patterns are much less apparent because the data are often obtained only as methylation frequencies at each CpG site with some of these methods. It would facilitate the interpretation of data obtained from high-throughput bisulfite sequencing if the loci with nonrandom DNA methylation patterns could be distinguished from those that are randomly methylated. In this study, we carried out traditional genomic bisulfite sequencing using the normal diploid human embryonic stem (hES) cell lines, and utilized Hamming distance analysis to evaluate the existence of a distinct and nonrandom DNA methylation pattern at each locus studied. Our findings suggest that Hamming distance is a simple, quick, and useful tool to identify loci with nonrandom DNA methylation patterns and may be utilized to discern links between biological changes and DNA methylation patterns in the high-throughput bisulfite sequencing data sets.
Collapse
Affiliation(s)
- Albert G Tsai
- Department of Biochemistry and Molecular Biology, Norris Cancer Center, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Serman L, Dodig D. Impact of DNA methylation on trophoblast function. Clin Epigenetics 2011; 3:7. [PMID: 22414254 PMCID: PMC3303467 DOI: 10.1186/1868-7083-3-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 11/01/2011] [Indexed: 12/21/2022] Open
Abstract
The influence of epigenetics is evident in many fields of medicine today. This is also true in placentology, where versatile epigenetic mechanisms that regulate expression of genes have shown to have important influence on trophoblast implantation and placentation. Such gene regulation can be established in different ways and on different molecular levels, the most common being the DNA methylation. DNA methylation has been shown today as an important predictive component in assessing clinical prognosis of certain malignant tumors; in addition, it opens up new possibilities for non-invasive prenatal diagnosis utilizing cell-free fetal DNA methods. By using a well known demethylating agent 5-azacytidine in pregnant rat model, we have been able to change gene expression and, consequently, the processes of trophoblast differentiation and placental development. In this review, we describe how changes in gene methylation effect trophoblast development and placentation and offer our perspective on use of trophoblast epigenetic research for better understanding of not only placenta development but cancer cell growth and invasion as well.
Collapse
Affiliation(s)
- L Serman
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia.
| | | |
Collapse
|
21
|
Tierling S, Souren NY, Reither S, Zang KD, Meng-Hentschel J, Leitner D, Oehl-Jaschkowitz B, Walter J. DNA methylation studies on imprinted loci in a male monozygotic twin pair discordant for Beckwith-Wiedemann syndrome. Clin Genet 2011; 79:546-53. [PMID: 20618351 DOI: 10.1111/j.1399-0004.2010.01482.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Beckwith–Wiedemann syndrome (BWS) is one of the most prevalent congenital disorders predominantly caused by epigenetic alterations. Here we present an extensive case study of a monozygotic monochorionic male twin pair discordant for BWS. Our analysis allows to correlate BWS symptoms, like a protruding tongue, indented ears and transient neonatal hypoglycaemia, to an abnormal methylation at the KvDMR1. DNAs extracted from peripheral blood, skin fibroblasts, saliva and buccal swab of both twins, their sister and parents were analysed at 11 differentially methylated regions (DMRs) including all four relevant DMRs of the BWS region. The KvDMR1 was exclusively found to be hypomethylated in all cell types of the affected BWS twin, while the unaffected twin and the relatives showed normal methylation in fibroblasts, buccal swab and saliva DNA. Interestingly, the twins share a common blood-specific hypomethylation phenotype most probably caused by a feto-fetal transfusion between both twins. Because microsatellite analysis furthermore revealed a normal biparental karyotype for chromosome 11, our results point to an exclusive correlation of the observed BWS symptoms to locally restricted epimutations at the KvDMR1 of the maternal chromosome.
Collapse
Affiliation(s)
- S Tierling
- Universität des Saarlandes, FR8.3 Biowissenschaften, Genetik/Epigenetik, Saarbrücken, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Azzi S, Steunou V, Rousseau A, Rossignol S, Thibaud N, Danton F, Le Jule M, Gicquel C, Le Bouc Y, Netchine I. Allele-specific methylated multiplex real-time quantitative PCR (ASMM RTQ-PCR), a powerful method for diagnosing loss of imprinting of the 11p15 region in Russell Silver and Beckwith Wiedemann syndromes. Hum Mutat 2011; 32:249-58. [PMID: 21280150 DOI: 10.1002/humu.21403] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Many human syndromes involve a loss of imprinting (LOI) due to a loss (LOM) or a gain of DNA methylation (GOM). Most LOI occur as mosaics and can therefore be difficult to detect with conventional methods. The human imprinted 11p15 region is crucial for the control of fetal growth, and LOI at this locus is associated with two clinical disorders with opposite phenotypes: Beckwith-Wiedemann syndrome (BWS), characterized by fetal overgrowth and a high risk of tumors, and Russell-Silver syndrome (RSS), characterized by intrauterine and postnatal growth restriction. Until recently, we have been using Southern blotting for the diagnosis of RSS and BWS. We describe here a powerful quantitative technique, allele-specific methylated multiplex real-time quantitative PCR (ASMM RTQ-PCR), for the diagnosis of these two complex disorders. We first checked the specificity of the probes and primers used for ASMM RTQ-PCR. We then carried out statistical validation for this method, on both retrospective and prospective populations of patients. This analysis demonstrated that ASMM RTQ-PCR is more sensitive than Southern blotting for detecting low degree of LOI. Moreover, ASMM RTQ-PCR is a very rapid, reliable, simple, safe, and cost effective method.
Collapse
Affiliation(s)
- Salah Azzi
- APHP, Hôpital Armand Trousseau, Laboratoire d'Explorations Fonctionnelles Endocriniennes, INSERM UMR-S938 Team 4, Université Pierre et Marie Curie-Paris 6, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Fuso A, Ferraguti G, Grandoni F, Ruggeri R, Scarpa S, Strom R, Lucarelli M. Early demethylation of non-CpG, CpC-rich, elements in the myogenin 5'-flanking region: a priming effect on the spreading of active demethylation. Cell Cycle 2010; 9:3965-76. [PMID: 20935518 DOI: 10.4161/cc.9.19.13193] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The dynamic changes and structural patterns of DNA methylation of genes without CpG islands are poorly characterized. The relevance of CpG to the non-CpG methylation equilibrium in transcriptional repression is unknown. In this work, we analyzed the DNA methylation pattern of the 5'-flanking of the myogenin gene, a positive regulator of muscle differentiation with no CpG island and low CpG density, in both C2C12 muscle satellite cells and embryonic muscle. Embryonic brain was studied as a non-expressing tissue. High levels of both CpG and non-CpG methylation were observed in non-expressing experimental conditions. Both CpG and non-CpG methylation rapidly dropped during muscle differentiation and myogenin transcriptional activation, with an active demethylation dynamics. Non-CpG demethylation occurred more rapidly than CpG demethylation. Demethylation spread from initially highly methylated short CpC-rich elements to a virtually unmethylated status. These short elements have a high CpC content and density, share some motifs and largely coincide with putative recognition sequences of some differentiation-related transcription factors. Our findings point to a dynamically controlled equilibrium between CpG and non-CpG active demethylation in the transcriptional control of tissue-specific genes. The short CpC-rich elements are new structural features of the methylation machinery, whose functions may include priming the complete demethylation of a transcriptionally crucial DNA region.
Collapse
Affiliation(s)
- Andrea Fuso
- Department of Surgery P. Valdoni, Sapienza University of Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
24
|
Li J, Neumann I, Volkmer I, Staege MS. Down-regulation of achaete-scute complex homolog 1 (ASCL1) in neuroblastoma cells induces up-regulation of insulin-like growth factor 2 (IGF2). Mol Biol Rep 2010; 38:1515-21. [PMID: 20842449 DOI: 10.1007/s11033-010-0259-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 09/02/2010] [Indexed: 10/19/2022]
Abstract
Neuroblastoma (NB) is the most common extra-cranial solid pediatric tumor. The prognosis of patients with NB has been improved during the last decades. However, treatment results for patients with advanced tumor stages are still unsatisfying. NB cells are characterized by a high tendency for spontaneous or induced differentiation. During differentiation, down-regulation of the basic helix-loop-helix transcription factor achaete-scute complex homolog 1 (ASCL1) has been observed but the consequences of ASCL1 down-regulation have not been elucidated. We used RNA interference to knock-down ASCL1 in NB cells. DNA microarray analysis was used for the identification of ASCL1-regulated genes. Furthermore, conventional and quantitative reverse transcription-polymerase chain reaction (RT-PCR) was used for validation of ASCL1-regulated genes. Down-regulation of ASCL1 influenced the expression of several genes. After down-regulation of ASCL1, we observed very high expression of insulin-like growth factor 2 (IGF2), a factor that is known to be induced during differentiation of NB cells. RT-PCR indicated up-regulation of multiple IGF2 transcript variants after ASCL1 knock-down. Our data suggest that the ASCL1-pathway is responsible for the up-regulation of IGF2 during NB differentiation.
Collapse
Affiliation(s)
- Jialing Li
- Department of Pediatrics, Martin-Luther-University Halle-Wittenberg, Ernst Grube Str 40, 06097 Halle, Germany
| | | | | | | |
Collapse
|
25
|
Comparison of bisulfite sequencing PCR with pyrosequencing for measuring differences in DNA methylation. Anal Biochem 2010; 397:96-106. [DOI: 10.1016/j.ab.2009.10.021] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 10/02/2009] [Accepted: 10/09/2009] [Indexed: 10/20/2022]
|
26
|
Vu TH, Nguyen AH, Hoffman AR. Loss of IGF2 imprinting is associated with abrogation of long-range intrachromosomal interactions in human cancer cells. Hum Mol Genet 2009; 19:901-19. [PMID: 20015958 DOI: 10.1093/hmg/ddp558] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Nuclear architecture and chromatin geography are important factors in the regulation of gene expression, as these components may play a vital epigenetic role both in normal physiology as well as in the initiation and progression of malignancies. Using a modification of the chromosome conformation capture (3C) technique, we examined long-range chromatin interactions of the imprinted human IGF2 gene. We demonstrate that numerous intrachromosomal interactions occur along both parental alleles in normal tissues, where the IGF2 is paternally expressed, as well as in normal liver where gene expression is biallelic. Long-range and allele-specific interactions occur between the IGF2/H19 imprinting control region-1 (ICR1) and ICR2, a region which regulates an imprinted gene cluster nearly a megabase distant from IGF2. Loss of genomic imprinting is a common epigenetic event in cancer, and long-range interactions have not been examined in malignant cells. In cancer cell lines in which IGF2 imprinting is maintained (MOI), essentially all of the 3C interactions seen in normal cells were preserved. However, in cells in which IGF2 imprinting was lost (LOI), nearly all of the long-range chromatin interactions involving IGF2 were abrogated. A three-dimensional computer model depicts the physical interactions between the IGF2 promoter and ICR1 in MOI cells, while the model of LOI lung cancer cells is flattened with few long-range interactions. This dramatic change in the three-dimension configuration of the chromatin at the IGF2 locus in LOI cancer cells suggests that the loss of imprinting may lead to a variety of changes in gene expression in addition to changes in IGF2 transcription.
Collapse
Affiliation(s)
- Thanh H Vu
- VA Palo Alto Health Care System and Stanford University, Palo Alto, CA 94301, USA
| | | | | |
Collapse
|
27
|
Abstract
Background Insulin is a critical component of metabolic control, and as such, insulin gene expression has been the focus of extensive study. DNA sequences that regulate transcription of the insulin gene and the majority of regulatory factors have already been identified. However, only recently have other components of insulin gene expression been investigated, and in this study we examine the role of DNA methylation in the regulation of mouse and human insulin gene expression. Methodology/Principal Findings Genomic DNA samples from several tissues were bisulfite-treated and sequenced which revealed that cytosine-guanosine dinucleotide (CpG) sites in both the mouse Ins2 and human INS promoters are uniquely demethylated in insulin-producing pancreatic beta cells. Methylation of these CpG sites suppressed insulin promoter-driven reporter gene activity by almost 90% and specific methylation of the CpG site in the cAMP responsive element (CRE) in the promoter alone suppressed insulin promoter activity by 50%. Methylation did not directly inhibit factor binding to the CRE in vitro, but inhibited ATF2 and CREB binding in vivo and conversely increased the binding of methyl CpG binding protein 2 (MeCP2). Examination of the Ins2 gene in mouse embryonic stem cell cultures revealed that it is fully methylated and becomes demethylated as the cells differentiate into insulin-expressing cells in vitro. Conclusions/Significance Our findings suggest that insulin promoter CpG demethylation may play a crucial role in beta cell maturation and tissue-specific insulin gene expression.
Collapse
|
28
|
Nakayashiki N, Takamiya M, Shimamoto K, Aoki Y, Hashiyada M. Investigation of the methylation status around parent-of-origin detectable SNPs in imprinted genes. Forensic Sci Int Genet 2009; 3:227-32. [DOI: 10.1016/j.fsigen.2009.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2008] [Revised: 01/28/2009] [Accepted: 02/09/2009] [Indexed: 11/24/2022]
|
29
|
Li L, Xie J, Zhang M, Wang S. Homocysteine harasses the imprinting expression of IGF2 and H19 by demethylation of differentially methylated region between IGF2/H19 genes. Acta Biochim Biophys Sin (Shanghai) 2009; 41:464-71. [PMID: 19499149 DOI: 10.1093/abbs/gmp033] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Homocysteine (Hcy) can induce proliferation of vascular smooth muscle cells (VSMCs), which is a key event in the genesis of the lesions of atherosclerosis. Insulinlike growth factor 2 (IGF2) and H19 are two important regulating molecules of cell proliferation. The role of Hcy in the proliferation of smooth muscle cell by regulating IGF2 and H19 has not been shown or analyzed so far. This study aims to investigate the potential impact of Hcy on gene imprinting of IGF2 and H19. Cultured human umbilical VSMCs were treated with different concentrations of Hcy. The DNA methylation status of VSMCs was assayed by nested methylationspecific polymerase chain reaction (PCR). The mRNA levels of H19, IGF2, and CCCTC-binding factor (CTCF) were detected by reverse transcription PCR, and the protein expression of IGF2 by Western blotting. The results showed that the Hcy treatment resulted in hypomethylation of the sixth CTCF-binding site upstream of H19 of VSMCs. The expression of H19 was increased, whereas the IGF2 mRNA and protein were decreased, the CTCF expression increased with the increase in Hcy concentration. These data indicated that Hcy could induce hypomethylation of the sixth CTCF-binding sites upstream of H19, which is an important regulating area for the imprinting expression of IGF2 and H19. The increased CTCF expression may be a potential mechanism for the demethylation modification of DNA, which resulted from the Hcy treatment.
Collapse
Affiliation(s)
- Lijuan Li
- Department of Pathophysiology, West China School of Preclinic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | | | | | | |
Collapse
|
30
|
Novak Kujundzić R, Grbesa I, Ivkić M, Katdare M, Gall-Troselj K. Curcumin downregulates H19 gene transcription in tumor cells. J Cell Biochem 2008; 104:1781-92. [PMID: 18348204 DOI: 10.1002/jcb.21742] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Curcumin (diferuloymethane), a natural compound used in traditional medicine, exerts an antiproliferative effect on various tumor cell lines by an incompletely understood mechanism. It has been shown that low doses of curcumin downregulate DNA topoisomerase II alpha (TOP2A) which is upregulated in many malignances. The activity of TOP2A is required for RNA polymerase II transcription on chromatin templates. Recently, it has been reported that CTCF, a multifunctional transcription factor, recruits the largest subunit of RNA polymerase II (LS Pol II) to its target sites genome-wide. This recruitment of LS Pol II is more pronounced in proliferating cells than in fully differentiated cells. As expression of imprinted genes is often altered in tumors, we investigated the potential effect of curcumin treatment on transcription of the imprinted H19 gene, located distally from the CTCF binding site, in human tumor cell lines HCT 116, SW 620, HeLa, Cal 27, Hep-2 and Detroit 562. Transcription of TOP2A and concomitantly H19 was supressed in all tumor cell lines tested. Monoallelic IGF2 expression was maintained in curcumin-treated cancer cells, indicating the involvement of mechanism/s other than disturbance of CTCF insulator function at the IGF2/H19 locus. Curcumin did not alter H19 gene transcription in primary cell cultures derived from normal human tissues.
Collapse
Affiliation(s)
- Renata Novak Kujundzić
- Division of Molecular Medicine, Ruder Bosković Institute, Bijenicka 54, 10000 Zagreb, Croatia.
| | | | | | | | | |
Collapse
|
31
|
Cruz NTD, Wilson KJ, Cooney MA, Tecirlioglu RT, Lagutina I, Galli C, Holland MK, French AJ. Putative imprinted gene expression in uniparental bovine embryo models. Reprod Fertil Dev 2008; 20:589-97. [PMID: 18577356 DOI: 10.1071/rd08024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 04/07/2008] [Indexed: 12/11/2022] Open
Abstract
Altered patterns of gene expression and the imprinted status of genes have a profound effect on cell physiology and can markedly alter embryonic and fetal development. Failure to maintain correct imprinting patterns can lead to abnormal growth and behavioural problems, or to early pregnancy loss. Recently, it has been reported that the Igf2R and Grb10 genes are biallelically expressed in sheep blastocysts, but monoallelically expressed at Day 21 of development. The present study investigated the imprinting status of 17 genes in in vivo, parthenogenetic and androgenetic bovine blastocysts in order to determine the prevalence of this unique phenomenon. Specifically, the putatively imprinted genes Ata3, Impact, L3Mbtl, Magel2, Mkrn3, Peg3, Snrpn, Ube3a and Zac1 were investigated for the first time in bovine in vitro fertilised embryos. Ata3 was the only gene not detected. The results of the present study revealed that all genes, except Xist, failed to display monoallelic expression patterns in bovine embryos and support recent results reported for ovine embryos. Collectively, the data suggest that monoallelic expression may not be required for most imprinted genes during preimplantation development, especially in ruminants. The research also suggests that monoallelic expression of genes may develop in a gene- and time-dependent manner.
Collapse
Affiliation(s)
- Nancy T D' Cruz
- Monash Institute of Medical Research, Monash University, Clayton, Vic. 3168, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Yamazawa K, Kagami M, Fukami M, Matsubara K, Ogata T. Monozygotic female twins discordant for Silver-Russell syndrome and hypomethylation of the H19-DMR. J Hum Genet 2008; 53:950-955. [PMID: 18709478 DOI: 10.1007/s10038-008-0329-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 07/14/2008] [Indexed: 01/09/2023]
Abstract
Silver-Russell syndrome (SRS) is characterized by growth failure and dysmorphic features, and is frequently caused by hypomethylation of the paternally derived H19-DMR (epimutation). We observed 5 8/12-year-old female twins discordant for SRS. One twin exhibited SRS-compatible features, such as pre- and postnatal growth failure, relative macrocephaly, triangular face, left hemihypotrophy, and bilateral fifth finger clinodactyly, whereas the other twin showed apparently normal phenotype. Microsatellite analysis for 26 loci on multiple chromosomes showed monozygosity. Methylation analysis for the H19-DMR indicated epimutation in roughly half of cells in the affected twin and normal patterns in the unaffected twin and the parents. X-inactivation analysis revealed random X-inactivation with a nearly identical pattern between the twins. The discordant methylation pattern of the H19-DMR may primarily be due to a failure to maintain the DNA methyltransferase-1-dependent methylation imprint around the pre-implantation S phase, because such failure would result in the production of two different cell clones, one with normally methylated DMR and the other with demethylated DMR, leading to the separation of cells with different characters and resultant twinning.
Collapse
Affiliation(s)
- Kazuki Yamazawa
- Department of Endocrinology and Metabolism, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan.
- Department of Pediatrics, Keio University School of Medicine, Tokyo, 160-8582, Japan.
| | - Masayo Kagami
- Department of Endocrinology and Metabolism, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Maki Fukami
- Department of Endocrinology and Metabolism, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Keiko Matsubara
- Department of Endocrinology and Metabolism, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Tsutomu Ogata
- Department of Endocrinology and Metabolism, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| |
Collapse
|
33
|
Han DW, Im YB, Do JT, Gupta MK, Uhm SJ, Kim JH, Schöler HR, Lee HT. Methylation status of putative differentially methylated regions of porcine IGF2 and H19. Mol Reprod Dev 2008; 75:777-84. [PMID: 18247333 DOI: 10.1002/mrd.20802] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This study was designed to identify the putative differentially methylated regions (DMRs) of the porcine imprinted genes insulin-like growth factor 2 and H19 (IGF2-H19), and to assess the genomic imprinting status of IGF2-H19 by identifying the methylation patterns of these regions in germ cells, and in tissues from porcine fetuses, an adult pig, as well as cloned offspring produced by somatic cell nuclear transfer (SCNT). Porcine IGF2-H19 DMRs exhibit a normal monoallelic methylation pattern (i.e., either the paternally- or the maternally derived allele is methylated) similar to the pattern observed for the same genes in the human and mice genomes. Examination of the methylation patterns of the IGF2-H19 DMRs revealed that the zinc finger protein binding sites CTCF1 and 2 did not exhibit differential methylation in both control and cloned offspring. In contrast, the CTCF3 and DMR2 loci of the IGF2 gene showed abnormal methylation in cloned offspring, but a normal differential or moderate methylation pattern in tissues from control offspring and an adult pig. Our data thus suggest that regulation of genomic imprinting at the porcine IGF2-H19 loci is conserved among species, and that the abnormal methylation pattern in the regulatory elements of imprinted genes may lead to an alteration in the coordinated expression of genes required for successful reprogramming, which, in consequence, may contribute to the low efficiency of porcine genome reprogramming induced by nuclear transfer.
Collapse
Affiliation(s)
- Dong Wook Han
- Bio-Organ Research Center, Department of Animal Biotechnology, Konkuk University, 1, Hwayang-dong, Gwangjin-Gu, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Molecular and clinical findings and their correlations in Silver-Russell syndrome: implications for a positive role of IGF2 in growth determination and differential imprinting regulation of the IGF2–H19 domain in bodies and placentas. J Mol Med (Berl) 2008; 86:1171-81. [DOI: 10.1007/s00109-008-0377-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 05/08/2008] [Accepted: 05/30/2008] [Indexed: 01/15/2023]
|
35
|
Huang D, Lin X, Chen H, Yang Q, Jie Y, Zhai X, Yin H. Parentally imprinted allele (PIA) typing in the differentially methylated region upstream of the human H19 gene. Forensic Sci Int Genet 2008; 2:286-91. [PMID: 19083838 DOI: 10.1016/j.fsigen.2008.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2007] [Revised: 03/12/2008] [Accepted: 03/27/2008] [Indexed: 10/22/2022]
Abstract
The H19 gene is a paternally imprinted gene located on chromosome 11p15.5. In this study, the H19FR1 and H19FR2 haplotype polymorphisms including four and three SNPs, respectively, upstream of the H19 gene according to the GenBank sequence (accession no. AF125183) were investigated. Five haplotypes and nine genotypes were detected for H19FR1 in the Chinese Han population by means of PCR and subsequent denaturing gradient gel electrophoresis (DGGE). The power of discrimination (Dp), polymorphism information content (PIC) and probability of paternity exclusion (PE) were estimated to be 0.803, 0.58 and 0.322, respectively. For the H19FR2, two haplotypes and three genotyes were observed, and the Dp, PIC and PE were 0.626, 0.37 and 0.162, respectively. Sequencing results showed that only two of the four reported SNPs, a7342g and g7547a, were detected in H19FR1 in the Chinese Han population, and two new SNPs, g7351c and a7357g, were found. In the H19FR2 region, only one of the three reported SNPs, a8097g, was detected. Based on the methylation status of the genomic DNA, selective detection of the parental alleles for H19FRs was examined by using two types of enzymes, the methylation-sensitive restriction enzyme (msRE) HpaII or HhaI and McrBC. Genomic DNA digested by either HpaII or HhaI, revealed a single band derived from the paternal allele, as a result of cleavage of unmethylated recognition sites on the maternal allele. On the contrary, the use of McrBC, which can digest a methylated paternal sequence, resulted in exclusively amplifying the maternal allele. This parentally imprinted allele (PIA) typing method could be one of the useful techniques for discriminating the parental origin of alleles.
Collapse
Affiliation(s)
- Daixin Huang
- Faculty of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| | | | | | | | | | | | | |
Collapse
|
36
|
Houshdaran S, Cortessis VK, Siegmund K, Yang A, Laird PW, Sokol RZ. Widespread epigenetic abnormalities suggest a broad DNA methylation erasure defect in abnormal human sperm. PLoS One 2007; 2:e1289. [PMID: 18074014 PMCID: PMC2100168 DOI: 10.1371/journal.pone.0001289] [Citation(s) in RCA: 224] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 10/28/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Male-factor infertility is a common condition, and etiology is unknown for a high proportion of cases. Abnormal epigenetic programming of the germline is proposed as a possible mechanism compromising spermatogenesis of some men currently diagnosed with idiopathic infertility. During germ cell maturation and gametogenesis, cells of the germ line undergo extensive epigenetic reprogramming. This process involves widespread erasure of somatic-like patterns of DNA methylation followed by establishment of sex-specific patterns by de novo DNA methylation. Incomplete reprogramming of the male germ line could, in theory, result in both altered sperm DNA methylation and compromised spermatogenesis. METHODOLOGY/PRINCIPAL FINDING We determined concentration, motility and morphology of sperm in semen samples collected by male members of couples attending an infertility clinic. Using MethyLight and Illumina assays we measured methylation of DNA isolated from purified sperm from the same samples. Methylation at numerous sequences was elevated in DNA from poor quality sperm. CONCLUSIONS This is the first report of a broad epigenetic defect associated with abnormal semen parameters. Our results suggest that the underlying mechanism for these epigenetic changes may be improper erasure of DNA methylation during epigenetic reprogramming of the male germ line.
Collapse
Affiliation(s)
- Sahar Houshdaran
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Victoria K. Cortessis
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Kimberly Siegmund
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Allen Yang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Peter W. Laird
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Rebecca Z. Sokol
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
37
|
Heijmans BT, Kremer D, Tobi EW, Boomsma DI, Slagboom PE. Heritable rather than age-related environmental and stochastic factors dominate variation in DNA methylation of the human IGF2/H19 locus. Hum Mol Genet 2007; 16:547-54. [PMID: 17339271 DOI: 10.1093/hmg/ddm010] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Epigenetic variation may significantly contribute to the risk of common disease. Currently, little is known about the extent and causes of epigenetic variation. Here, we investigated the contribution of heritable influences and the combined effect of environmental and stochastic factors to variation in DNA methylation of the IGF2/H19 locus. Moreover, we tested whether this locus was subject to age-related degeneration of epigenetic patterns as was previously suggested for global methylation. We measured methylation of the H19 and IGF2 differentially methylated regions (DMRs) in 196 adolescent and 176 middle-aged twins using a recently developed mass spectrometry-based method. We observed substantial variation in DNA methylation across individuals, underscoring that DNA methylation is a quantitative trait. Analysis of data in monozygotic and dizygotic twins revealed that a significant part of this variation could be attributed to heritable factors. The heritability of methylation of individual CpG sites varied between 20 and 74% for the H19 DMR and was even higher, between 57 and 97%, for the IGF2 DMR. Remarkably, the combined influence of environmental and stochastic factors on DNA methylation was not greater in middle-age than in adolescence, suggesting a limited role for age-related degeneration of methylation patterns at this locus. Single nucleotide polymorphisms in the IGF2/H19 locus were significantly associated with DNA methylation of the IGF2 DMR (P = 0.004). A preliminary analysis suggested an association between H19 DMR methylation and body size (P < 0.05). Our study shows that variation in DNA methylation of the IGF2/H19 locus is mainly determined by heritable factors and single nucleotide polymorphisms (SNPs) in cis, rather than the cumulative effect of environmental and stochastic factors occurring with age.
Collapse
Affiliation(s)
- Bastiaan T Heijmans
- Molecular Epidemiology Section, Leiden University Medical Centre, Leiden 2333 ZC, The Netherlands.
| | | | | | | | | |
Collapse
|
38
|
Laprise SL, Gray MR. Covalent genomic DNA modification patterns revealed by denaturing gradient gel blots. Gene 2006; 391:45-52. [PMID: 17276628 PMCID: PMC1924925 DOI: 10.1016/j.gene.2006.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 11/10/2006] [Accepted: 12/01/2006] [Indexed: 10/23/2022]
Abstract
Several approaches are used to survey genomic DNA methylation patterns, including Southern blot, PCR, and microarray strategies. All of these methods are based on the use of methylation-sensitive isoschizomer restriction enzyme pairs and/or sodium bisulfite treatment of genomic DNA. They have many limitations, including PCR bias, lack of comprehensive assessment of methylated sites, labor-intensive protocols, and/or the need for expensive equipment. Since the presence of 5-methylcytosine alters the melting properties of DNA molecules, denaturing gradient gel blots (DGG blots), a gene scanning technique which detects differences in DNA fragments based on differential melting behavior, were used to examine genomic modification patterns in normal tissues. Variations in melting behavior, observed as restriction fragment melting polymorphisms (RFMPs), were detected in various tissues from single individuals in all human and mouse genes tested, suggesting the presence of widespread differential cell type-specific DNA modification. Additional DGG blot experiments comparing genomic DNA to unmethylated cloned DNA suggested that the melting variants were most likely caused by DNA methylation differences. The results suggest that the use of DGG blots can provide a comprehensive and rapid method for comparing complex in vivo DNA modification patterns in normal adult somatic cells.
Collapse
Affiliation(s)
- Shari L Laprise
- Math/Science Division, Babson College, Forest Street, Babson Park, MA 02457, USA.
| | | |
Collapse
|
39
|
Mackay DJG, Boonen SE, Clayton-Smith J, Goodship J, Hahnemann JMD, Kant SG, Njølstad PR, Robin NH, Robinson DO, Siebert R, Shield JPH, White HE, Temple IK. A maternal hypomethylation syndrome presenting as transient neonatal diabetes mellitus. Hum Genet 2006; 120:262-9. [PMID: 16816970 DOI: 10.1007/s00439-006-0205-2] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2006] [Revised: 05/05/2006] [Accepted: 05/08/2006] [Indexed: 12/14/2022]
Abstract
The expression of imprinted genes is mediated by allele-specific epigenetic modification of genomic DNA and chromatin, including parent of origin-specific DNA methylation. Dysregulation of these genes causes a range of disorders affecting pre- and post-natal growth and neurological function. We investigated a cohort of 12 patients with transient neonatal diabetes whose disease was caused by loss of maternal methylation at the TNDM locus. We found that six of these patients showed a spectrum of methylation loss, mosaic with respect to the extent of the methylation loss, the tissues affected and the genetic loci involved. Five maternally methylated loci were affected, while one maternally methylated and two paternally methylated loci were spared. These patients had higher birth weight and were more phenotypically diverse than other TNDM patients with different aetiologies, presumably reflecting the influence of dysregulation of multiple imprinted genes. We propose the existence of a maternal hypomethylation syndrome, and therefore suggest that any patient with methylation loss at one maternally-methylated locus may also manifest methylation loss at other loci, potentially complicating or even confounding the clinical presentation.
Collapse
Affiliation(s)
- D J G Mackay
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury, SP2 8BJ, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Sandovici I, Kassovska-Bratinova S, Vaughan JE, Stewart R, Leppert M, Sapienza C. Human imprinted chromosomal regions are historical hot-spots of recombination. PLoS Genet 2006; 2:e101. [PMID: 16839189 PMCID: PMC1487178 DOI: 10.1371/journal.pgen.0020101] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Accepted: 05/22/2006] [Indexed: 01/10/2023] Open
Abstract
Human recombination rates vary along the chromosomes as well as between the two sexes. There is growing evidence that epigenetic factors may have an important influence on recombination rates, as well as on crossover position. Using both public database analysis and wet-bench approaches, we revisited the relationship between increased rates of meiotic recombination and genome imprinting. We constructed metric linkage disequilibrium (LD) maps for all human chromosomal regions known to contain one or more imprinted genes. We show that imprinted regions contain significantly more LD units (LDU) and have significantly more haplotype blocks of smaller sizes than flanking nonimprinted regions. There is also an excess of hot-spots of recombination at imprinted regions, and this is likely to do with the presence of imprinted genes, per se. These findings indicate that imprinted chromosomal regions are historical “hot-spots” of recombination. We also demonstrate, by direct segregation analysis at the 11p15.5 imprinted region, that there is remarkable agreement between sites of meiotic recombination and steps in LD maps. Although the increase in LDU/Megabase at imprinted regions is not associated with any significant enrichment for any particular sequence class, major sequence determinants of recombination rates seem to differ between imprinted and control regions. Interestingly, fine-mapping of recombination events within the most male meiosis–specific recombination hot-spot of Chromosome 11p15.5 indicates that many events may occur within or directly adjacent to regions that are differentially methylated in somatic cells. Taken together, these findings support the involvement of a combination of specific DNA sequences and epigenetic factors as major determinants of hot-spots of recombination at imprinted chromosomal regions. Now that the finished reference sequence of the human genome is available, focus has shifted towards understanding fundamental aspects of its functions. Meiotic recombination between maternal and paternal chromosomes serves an important mechanistic and evolutionary role in the transmission of the genome. Although significant progress has been made towards fine-mapping meiotic recombination events along human chromosomes, the characterization of factors that influence the position and frequency of crossovers remains a challenge. These authors have used data generated by the International HapMap Project as well as experimental analysis of a collection of three-generation Centre d'Etude du Polymorphisme Humain (CEPH) families, to show that chromosomal regions containing imprinted genes (i.e., genes transcribed only from one allele in a parent-of-origin–specific manner) exhibit higher rates of meiotic recombination than nonimprinted chromosomal regions. This characteristic is common for all major human populations. The major sequence determinants of recombination rates are likely to be different at imprinted and nonimprinted regions. Moreover, epigenetic modifications associated with imprinted regions may play an important role in increasing the frequency of meiotic crossovers and determining their position. Taken together these results suggest that a complex series of factors control meiotic recombination in the human.
Collapse
Affiliation(s)
- Ionel Sandovici
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Sacha Kassovska-Bratinova
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Joe E Vaughan
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Rae Stewart
- College of Science and Technology, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Mark Leppert
- Eccles Institute of Human Genetics, and Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Carmen Sapienza
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
41
|
Monk D, Sanches R, Arnaud P, Apostolidou S, Hills FA, Abu-Amero S, Murrell A, Friess H, Reik W, Stanier P, Constância M, Moore GE. Imprinting of IGF2 P0 transcript and novel alternatively spliced INS-IGF2 isoforms show differences between mouse and human. Hum Mol Genet 2006; 15:1259-69. [PMID: 16531418 DOI: 10.1093/hmg/ddl041] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Genomic imprinting is limited to a subset of genes that play critical roles in fetal growth, development and behaviour. One of the most studied imprinted genes encodes insulin-like growth factor 2, and aberrant imprinting and DNA methylation of this gene is associated with the growth disorders Beckwith-Wiedemann and Silver-Russell syndromes and many human cancers. Specific isoforms of this gene have been shown to be essential for normal placental function, as mice carrying paternal null alleles for the Igf2-P0 transcript are growth restricted at birth. We report here the identification of three novel human transcripts from the IGF2 locus. One is equivalent to the mouse Igf2-P0 transcript, whereas the two others (INSIGF long and short) originate from the upstream INS gene that alternatively splices to downstream IGF2 exons. In order to elucidate the molecular mechanisms involved in the complex imprinting of these novel IGF2 transcripts, both the allele-specific expression and methylation for all the IGF2 promoters including P0 and the INSIGF transcripts were analysed in human tissues. Similar to the mouse, the human IGF2-P0 transcript is paternally expressed; however, its expression is not limited to placenta. This expression correlates with tissue-specific promoter methylation on the maternal allele. The two novel INSIGF transcripts reported here use the INS promoter and show highly restricted tissue expression profiles including the pancreas. As previously reported for INS in the yolk sac, we demonstrate complex, tissue-specific imprinting of these transcripts. The finding of additional transcripts within this locus will have important implications for IGF2 regulation in both cancer and metabolism.
Collapse
Affiliation(s)
- D Monk
- Institute of Reproductive and Developmental Biology, Imperial College London, London W12 0NN, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kawakami T, Zhang C, Okada Y, Okamoto K. Erasure of methylation imprint at the promoter and CTCF-binding site upstream of H19 in human testicular germ cell tumors of adolescents indicate their fetal germ cell origin. Oncogene 2006; 25:3225-36. [PMID: 16434968 DOI: 10.1038/sj.onc.1209362] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Genome-wide epigenetic modification plays a crucial role in regulating genome functions at critical stages of development. In particular, DNA methylation is known to be reprogrammed on a genome-wide level in germ cells and in preimplantation embryos, although it is relatively stable in somatic cells. In this reprogramming process, the genome becomes demethylated, and methylated de novo during later stages of development. Reprogramming of DNA methylation in male germ cells has not been fully investigated. Testicular germ cell tumors (TGCTs) possess a pluripotential nature and display protean histology from germ cells to embryonal and somatic cell differentiation. These properties make TGCT a unique model for studying germ cell development and gametogenesis in respect of DNA reprogramming. In order to obtain an insight into the epigenetic dynamics of TGCTs, we conducted a comprehensive analysis of differential methylated regions (DMRs) on H19 and IGF2 in TGCTs compared with testicular malignant lymphomas. In the present study, we show that methylation imprint at the promoter and CTCF-binding site upstream of H19 was completely erased in both seiminomatous and non-seminomatous TGCTs, whereas differential methylation was observed in testicular lymphomas. The erasure of methylation imprint was also observed in TGCTs with malignant transformation. We found biallelic unmethylation at the promoter and the CTCF-binding site upstream of H19 is required, but not sufficient for the biallelic expression of H19 in TGCTs. These data suggest that factors other than methylation contribute to transcriptional regulation of imprinted genes in TGCTs. The present data have shown that TGCTs carry distinctive epigenetic profiles at the core-imprinting domain of H19/IGF2 from other neoplasms of somatic cell origin. The data also suggest that both seminomatous and non-seminomatous TGCTs carry methylation profiles similar to fetal germ cells, but not adult germ cells, indicating the origin of TGCTs as fetal germ cells.
Collapse
Affiliation(s)
- T Kawakami
- Department of Urology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | | | | | | |
Collapse
|
43
|
Waterland RA, Lin JR, Smith CA, Jirtle RL. Post-weaning diet affects genomic imprinting at the insulin-like growth factor 2 (Igf2) locus. Hum Mol Genet 2006; 15:705-16. [PMID: 16421170 DOI: 10.1093/hmg/ddi484] [Citation(s) in RCA: 216] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
IGF2 loss of imprinting (LOI) is fairly prevalent and implicated in the pathogenesis of human cancer and developmental disease; however, the causes of this phenomenon are largely unknown. We determined whether the post-weaning diet of mice affects allelic expression and CpG methylation of Igf2. C57BL/6JxCast/EiJ F1 hybrid mice were weaned onto (1) a standard natural ingredient control diet, (2) a synthetic control diet or (3) a synthetic methyl-donor-deficient diet lacking folic acid, vitamin B(12), methionine and choline. Maternal Igf2 expression in kidney was negligible at birth, but increased to approximately 10% of total expression after 60 days on the natural control diet. By 60 days post-weaning, both synthetic diets caused significant LOI of Igf2 relative to animals weaned onto the natural control diet. Total Igf2 expression was significantly reduced in these groups, however, indicating that the increase in relative maternal Igf2 expression was caused by specific down-regulation of the paternal allele. The LOI induced by the synthetic-deficient diet persisted during a subsequent 100-day 'recuperation' period on natural ingredient diet. There were no group differences in overall or allele-specific CpG methylation in the H19 differentially methylated region (DMR), Igf2 DMR0 or Igf2 DMR1. At 30 and 60 days post-weaning, however, the paternal allele of Igf2 DMR2 was hypermethylated in the kidneys of mice on the control synthetic diet. These results indicate that post-weaning diet can permanently affect expression of Igf2, suggesting that childhood diet could contribute to IGF2 LOI in humans.
Collapse
Affiliation(s)
- Robert A Waterland
- Departments of Pediatrics and Molecular and Human Genetics, Baylor College of Medicine, USDA Children's Nutrition Research Center, Houston, TX 77030-2600, USA.
| | | | | | | |
Collapse
|
44
|
Ehrich M, Nelson MR, Stanssens P, Zabeau M, Liloglou T, Xinarianos G, Cantor CR, Field JK, van den Boom D. Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry. Proc Natl Acad Sci U S A 2005; 102:15785-90. [PMID: 16243968 PMCID: PMC1276092 DOI: 10.1073/pnas.0507816102] [Citation(s) in RCA: 650] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Methylation is one of the major epigenetic processes pivotal to our understanding of carcinogenesis. It is now widely accepted that there is a relationship between DNA methylation, chromatin structure, and human malignancies. DNA methylation is potentially an important clinical marker in cancer molecular diagnostics. Understanding epigenetic modifications in their biological context involves several aspects of DNA methylation analysis. These aspects include the de novo discovery of differentially methylated genes, the analysis of methylation patterns, and the determination of differences in the degree of methylation. Here we present a previously uncharacterized method for high-throughput DNA methylation analysis that utilizes MALDI-TOF mass spectrometry (MS) analysis of base-specifically cleaved amplification products. We use the IGF2/H19 region to show that a single base-specific cleavage reaction is sufficient to discover methylation sites and to determine methylation ratios within a selected target region. A combination of cleavage reactions enables the complete evaluation of all relevant aspects of DNA methylation, with most CpGs represented in multiple reactions. We successfully applied this technology under high-throughput conditions to quantitatively assess methylation differences between normal and neoplastic lung cancer tissue samples from 48 patients in 47 genes and demonstrate that the quantitative methylation results allow accurate classification of samples according to their histopathology.
Collapse
Affiliation(s)
- Mathias Ehrich
- SEQUENOM, Inc., 3595 John Hopkins Court, San Diego, CA 92121, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Inoue S, Oishi M. Effects of methylation of non-CpG sequence in the promoter region on the expression of human synaptotagmin XI (syt11). Gene 2005; 348:123-34. [PMID: 15777718 DOI: 10.1016/j.gene.2004.12.044] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Revised: 11/26/2004] [Accepted: 12/27/2004] [Indexed: 10/25/2022]
Abstract
We have studied the effects of methylation of the promoter region on the expression of human synaptotagmin XI (syt11), a gene implicated in the onset of schizophrenia. Sequence analysis showed that cytosine residues not in the CpG sequence, but still within the promoter region of the gene, are partially methylated. The methylated cytosine residues are located in the mRNA-coding (minus) strand of the promoter region (mCmCTTmCTTmCmC). Gel mobility shift assays showed that when the cytosine residues are methylated, the binding activity of an Sp family protein, a transcription factor, to the region is significantly reduced. Furthermore, transient transcription assays using artificially methylated promoter sequences showed that methylation did reduce the expression of the reporter gene. The biological significance of the finding is discussed in respect to the effect of methylation of non-CpG sequences in promoter regions on gene expression.
Collapse
Affiliation(s)
- Shinichi Inoue
- Kazusa Research Institute, 2-6-7, Kazusa-kamatari, Kisarazu, Chiba 292-0818, Japan.
| | | |
Collapse
|
46
|
Fu VX, Schwarze SR, Kenowski ML, Leblanc S, Svaren J, Jarrard DF. A Loss of Insulin-like Growth Factor-2 Imprinting Is Modulated by CCCTC-binding Factor Down-regulation at Senescence in Human Epithelial Cells. J Biol Chem 2004; 279:52218-26. [PMID: 15471867 DOI: 10.1074/jbc.m405015200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The imprinted insulin-like growth factor-2 (IGF2) gene is an auto/paracrine growth factor expressed only from the paternal allele in adult tissues. In tissues susceptible to aging-related cancers, including the prostate, a relaxation of IGF2 imprinting is found, suggesting a permissive role for epigenetic alterations in cancer development. To determine whether IGF2 imprinting is altered in cellular aging and senescence, human prostate epithelial and urothelial cells were passaged serially in culture to senescence. Allelic analyses using an IGF2 polymorphism demonstrated a complete conversion of the IGF2 imprint status from monoallelic to biallelic, in which the development of senescence was associated with a 10-fold increase in IGF2 expression. As a mechanism, a 2-fold decrease in the binding of the enhancer-blocking element CCCTC-binding factor (CTCF) within the intergenic IGF2-H19 region was found to underlie this switch to biallelic IGF2 expression in senescent cells. This decrease in CTCF binding was associated with reduced CTCF expression in senescent cells. No de novo increases in methylation at the IGF2 CTCF binding site were seen. The forced down-regulation of CTCF expression using small interfering RNA in imprinted prostate cell lines resulted in an increase in IGF2 expression and a relaxation of imprinting. Our data suggest a novel mechanism for IGF2 imprinting regulation, that is, the reduction of CTCF expression in the control of IGF2 imprinting. We also demonstrate that altered imprinting patterns contribute to changes in gene expression in aging cells.
Collapse
Affiliation(s)
- Vivian X Fu
- Department of Surgery, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin 53792, USA
| | | | | | | | | | | |
Collapse
|
47
|
Yang Y, Hu JF, Ulaner GA, Li T, Yao X, Vu TH, Hoffman AR. Epigenetic regulation of Igf2/H19 imprinting at CTCF insulator binding sites. J Cell Biochem 2004; 90:1038-55. [PMID: 14624463 DOI: 10.1002/jcb.10684] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mouse insulin-like growth factor II (Igf2) and H19 genes are located adjacent to each other on chromosome 7q11-13 and are reciprocally imprinted. It is believed that the allelic expression of these two genes is regulated by the binding of CTCF insulators to four parent-specific DNA methylation sites in an imprinting control center (ICR) located between these two genes. Although monoallelically expressed in peripheral tissues, Igf2 is biallelically transcribed in the CNS. In this study, we examined the allelic DNA methylation and CTCF binding in the Igf2/H19 imprinting center in CNS, hypothesizing that the aberrant CTCF binding as one of the mechanisms leads to biallelic expression of Igf2 in CNS. Using hybrid F1 mice (M. spretus males x C57BL/6 females), we showed that in CNS, CTCF binding sites in the ICR were methylated exclusively on the paternal allele, and CTCF bound only to the unmethylated maternal allele, showing no differences from the imprinted peripheral tissues. Among three other epigenetic modifications examined, histone H3 lysine 9 methylation correlated well with Igf2 allelic expression in CNS. These results suggest that CTCF binding to the ICR alone is not sufficient to insulate the Igf2 maternal promoter and to regulate the allelic expression of the gene in the CNS, thus challenging the aberrant CTCF binding as a common mechanism for lack of Igf2 imprinting in CNS. Further studies should be focused on the identification of factors that are involved in histone methylation and CTCF-associated factors that may be needed to coordinate Igf2 imprinting.
Collapse
Affiliation(s)
- Youwen Yang
- Medical Service, VA Palo Alto Health Care System, and Division of Endocrinology, Department of Medicine, Stanford University, Palo Alto, California 94304, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Ulaner GA, Yang Y, Hu JF, Li T, Vu TH, Hoffman AR. CTCF binding at the insulin-like growth factor-II (IGF2)/H19 imprinting control region is insufficient to regulate IGF2/H19 expression in human tissues. Endocrinology 2003; 144:4420-6. [PMID: 12960026 DOI: 10.1210/en.2003-0681] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The adjacent IGF2 and H19 genes are imprinted in most normal mouse and human tissues, but imprinting is often lost in tumors. Mouse models suggest that parental-allele specific CCCTC-binding factor (CTCF) binding at the IGF2/H19 imprinting control region (ICR) regulates the expression of these two genes. Using chromatin immunoprecipitation and PCR, we show that in several normal and neoplastic human tissues, CTCF consistently binds unmethylated ICR elements, but CTCF binding does not result in predictable gene expression. In the fetal brain, CTCF binding is monoallelic and specific for the unmethylated ICR, yet IGF2/H19 expression is biallelic. In osteosarcoma tumors, aberrant methylation of the IGF2/H19 ICR results in equally aberrant CTCF binding, yet expression of these genes does not correlate with CTCF binding. This is the first description of chromatin immunoprecipitation for CTCF binding at the human IGF2/H19 ICR, and the results demonstrate that CTCF binding at the IGF2/H19 ICR is insufficient to regulate the expression of IGF2/H19 in many human tissues.
Collapse
Affiliation(s)
- Gary A Ulaner
- Medical Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304, USA
| | | | | | | | | | | |
Collapse
|
49
|
Murphy SK, Wylie AA, Coveler KJ, Cotter PD, Papenhausen PR, Sutton VR, Shaffer LG, Jirtle RL. Epigenetic detection of human chromosome 14 uniparental disomy. Hum Mutat 2003; 22:92-7. [PMID: 12815599 DOI: 10.1002/humu.10237] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The recent demonstration of genomic imprinting of DLK1 and MEG3 on human chromosome 14q32 indicates that these genes might contribute to the discordant phenotypes associated with uniparental disomy (UPD) of chromosome 14. Regulation of imprinted expression of DLK1 and MEG3 involves a differentially methylated region (DMR) that encompasses the MEG3 promoter. We exploited the normal differential methylation of the DLK1/MEG3 region to develop a rapid diagnostic PCR assay based upon an individual's epigenetic profile. We used methylation-specific multiplex PCR in a retrospective analysis to amplify divergent lengths of the methylated and unmethylated MEG3 DMR in a single reaction and accurately identified normal, maternal UPD14, and paternal UPD14 in bisulfite converted DNA samples. This approach, which is based solely on differential epigenetic profiles, may be generally applicable for rapidly and economically screening for other imprinting defects associated with uniparental disomy, determining loss of heterozygosity of imprinted tumor suppressor genes, and identifying gene-specific hypermethylation events associated with neoplastic progression.
Collapse
Affiliation(s)
- S K Murphy
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Yao X, Hu JF, Daniels M, Shiran H, Zhou X, Yan H, Lu H, Zeng Z, Wang Q, Li T, Hoffman AR. A methylated oligonucleotide inhibits IGF2 expression and enhances survival in a model of hepatocellular carcinoma. J Clin Invest 2003. [PMID: 12531883 DOI: 10.1172/jci200315109] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
IGF-II is a mitogenic peptide that has been implicated in hepatocellular oncogenesis. Since the silencing of gene expression is frequently associated with cytosine methylation at cytosine-guanine (CpG) dinucleotides, we designed a methylated oligonucleotide (MON1) complementary to a region encompassing IGF2 promoter P4 in an attempt to induce DNA methylation at that locus and diminish IGF2 mRNA levels. MON1 specifically inhibited IGF2 mRNA accumulation in vitro, whereas an oligonucleotide (ON1) with the same sequence but with nonmethylated cytosines had no effect on IGF2 mRNA abundance. MON1 treatment led to the specific induction of de novo DNA methylation in the region of IGF2 promoter hP4. Cells from a human hepatocellular carcinoma (HCC) cell line, Hep 3B, were implanted into the livers of nude mice, resulting in the growth of large tumors. Animals treated with MON1 had markedly prolonged survival as compared with those animals treated with saline or a truncated methylated oligonucleotide that did not alter IGF2 mRNA levels in vitro. This study demonstrates that a methylated sense oligonucleotide can be used to induce epigenetic changes in the IGF2 gene and that inhibition of IGF2 mRNA accumulation may lead to enhanced survival in a model of HCC.
Collapse
Affiliation(s)
- Xiaoming Yao
- Medical Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|