1
|
Dong Y, Yue T, Wang X, Huo Q, Li W, Zhang S, Zhao Y, Li D. MS4A3 regulates hematopoietic myeloid differentiation through ROS/TGF-β/p38MAPK pathway. Int Immunopharmacol 2024; 143:113578. [PMID: 39532018 DOI: 10.1016/j.intimp.2024.113578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
The hematopoietic homeostasis relies on the intricate regulation of hematopoietic stem cells during their proliferation and differentiation. Myeloid differentiation disorders can lead to chronic myeloid leukemia and acute myeloid leukemia. Previous studies have shown increased expression of MS4A3 in myeloid cells, suggesting that MS4A3 may play a critical role in hematopoietic myeloid differentiation. However, the underlying mechanism and its role in hematopoietic myeloid differentiation require further elucidation. In this study, using K562 cell lines with MS4A3 over-expression (oeMS4A3) and MS4A3 knockdown (shMS4A3), we demonstrated that the overexpression of MS4A3 resulted in an augmented skewing towards myeloid differentiation and cell cycle arrest at G0/G1. In addition, inhibition of ROS, TGF-β, and p38MAPK in oeMS4A3 K562 cells attenuated the skewing of myeloid differentiation. Furthermore, in vivo experiments revealed a slight myeloid differentiation suppression tendency in MS4A3 knockout mice. Taken together, we show that MS4A3 overexpression promote myeloid differentiation skewing through the activation of the ROS/p38MAPK/TGFβ pathway. This study underscored the role of MS4A3 in the hematopoietic myeloid differentiation.
Collapse
Affiliation(s)
- Yinping Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Tongpeng Yue
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Xinyue Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Qidong Huo
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Wenxuan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Shiyi Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Yu Zhao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Deguan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
2
|
Gao M, Wang M, Zhou S, Hou J, He W, Shu Y, Wang X. Machine learning-based prognostic model of lactylation-related genes for predicting prognosis and immune infiltration in patients with lung adenocarcinoma. Cancer Cell Int 2024; 24:400. [PMID: 39696439 DOI: 10.1186/s12935-024-03592-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Histone lactylation is a novel epigenetic modification that is involved in a variety of critical biological regulations. However, the role of lactylation-related genes in lung adenocarcinoma has yet to be investigated. METHODS RNA-seq data and clinical information of LUAD were downloaded from TCGA and GEO datasets. Unsupervised consistent cluster analysis was performed to identify differentially expressed genes (DEGs) between the two clusters, and risk prediction models were constructed by Cox regression analysis and LASSO analysis. Kaplan-Meier (KM) survival analysis, ROC curves and nomograms were used to validate the accuracy of the models. We also explored the differences in risk scores in terms of immune cell infiltration, immune cell function, TMB, TIDE, and anticancer drug sensitivity. In addition, single-cell clustering and trajectory analysis were performed to further understand the significance of lactylation-related genes. We further analyzed lactate content and glucose uptake in lung adenocarcinoma cells and tissues. Changes in LUAD cell function after knockdown of lactate dehydrogenase (LDHA) by CCK-8, colony formation and transwell assays. Finally, we analyzed the expression of KRT81 in LUAD tissues and cell lines using qRT-PCR, WB, and IHC. Changes in KRT81 function in LUAD cells were detected by CCK-8, colony formation, wound healing, transwell, and flow cytometry. A nude mouse xenograft model and a KrasLSL-G12D in situ lung adenocarcinoma mouse model were used to elucidate the role of KRT81 in LUAD. RESULTS After identifying 26 lactylation-associated DEGs, we constructed 10 lactylation-associated lung adenocarcinoma prognostic models with prognostic value for LUAD patients. A high score indicates a poor prognosis. There were significant differences between the high-risk and low-risk groups in the phenotypes of immune cell infiltration rate, immune cell function, gene mutation frequency, and anticancer drug sensitivity. TMB and TIDE scores were higher in high-risk score patients than in low-risk score patients. MS4A1 was predominantly expressed in B-cell clusters and was identified to play a key role in B-cell differentiation. We further found that lactate content was abnormally elevated in lung adenocarcinoma cells and cancer tissues, and glucose uptake by lung adenocarcinoma cells was significantly increased. Down-regulation of LDHA inhibits tumor cell proliferation, migration and invasion. Finally, we verified that the model gene KRT81 is highly expressed in LUAD tissues and cell lines. Knockdown of KRT81 inhibited cell proliferation, migration, and invasion, leading to cell cycle arrest in the G0/G1 phase and increased apoptosis. KRT81 may play a tumorigenic role in LUAD through the EMT and PI3K/AKT pathways. In vivo, KRT81 knockdown inhibited tumor growth. CONCLUSION We successfully constructed a new prognostic model for lactylation-related genes. Lactate content and glucose uptake are significantly higher in lung adenocarcinoma cells and cancer tissues. In addition, KRT81 was validated at cellular and animal levels as a possible new target for the treatment of LUAD, and this study provides a new perspective for the individualized treatment of LUAD.
Collapse
Affiliation(s)
- Mingjun Gao
- Dalian Medical University, Dalian, 116000, China
- Yangzhou Clinical Medical College, Dalian Medical University, Yangzhou, 225001, China
| | - Mengmeng Wang
- Dalian Medical University, Dalian, 116000, China
- Yangzhou Clinical Medical College, Dalian Medical University, Yangzhou, 225001, China
| | - Siding Zhou
- Department of Emergency, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Jiaqi Hou
- Dalian Medical University, Dalian, 116000, China
- Yangzhou Clinical Medical College, Dalian Medical University, Yangzhou, 225001, China
| | - Wenbo He
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Yusheng Shu
- Yangzhou Clinical Medical College, Dalian Medical University, Yangzhou, 225001, China.
- Clinical Medical College, Yangzhou University, Yangzhou, China.
- Department of Thoracic Surgery, Northern Jiangsu People's Hospital, Northern Jiangsu People's Hospital Affliated to Yangzhou University, No. 98 Nantong West Road, Yangzhou, 225001, Jiangsu, China.
| | - Xiaolin Wang
- Yangzhou Clinical Medical College, Dalian Medical University, Yangzhou, 225001, China.
- Clinical Medical College, Yangzhou University, Yangzhou, China.
- Department of Thoracic Surgery, Northern Jiangsu People's Hospital, Northern Jiangsu People's Hospital Affliated to Yangzhou University, No. 98 Nantong West Road, Yangzhou, 225001, Jiangsu, China.
| |
Collapse
|
3
|
Luo X, Luo B, Fei L, Zhang Q, Liang X, Chen Y, Zhou X. MS4A superfamily molecules in tumors, Alzheimer's and autoimmune diseases. Front Immunol 2024; 15:1481494. [PMID: 39717774 PMCID: PMC11663944 DOI: 10.3389/fimmu.2024.1481494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/12/2024] [Indexed: 12/25/2024] Open
Abstract
MS4A (membrane-spanning 4-domain, subfamily A) molecules are categorized into tetraspanins, which possess four-transmembrane structures. To date, eighteen MS4A members have been identified in humans, whereas twenty-three different molecules have been identified in mice. MS4A proteins are selectively expressed on the surfaces of various immune cells, such as B cells (MS4A1), mast cells (MS4A2), macrophages (MS4A4A), Foxp3+CD4+ regulatory T cells (MS4A4B), and type 3 innate lymphoid cells (TMEM176A and TMEM176B). Early research confirmed that most MS4A molecules function as ion channels that regulate the transport of calcium ions. Recent studies have revealed that some MS4A proteins also function as chaperones that interact with various immune molecules, such as pattern recognition receptors and/or immunoglobulin receptors, to form immune complexes and transmit downstream signals, leading to cell activation, growth, and development. Evidence from preclinical animal models and human genetic studies suggests that the MS4A superfamily plays critical roles in the pathogenesis of various diseases, including cancer, infection, allergies, neurodegenerative diseases and autoimmune diseases. We review recent progress in this field and focus on elucidating the molecular mechanisms by which different MS4A molecules regulate the progression of tumors, Alzheimer's disease, and autoimmune diseases. Therefore, in-depth research into MS4A superfamily members may clarify their ability to act as candidate biomarkers and therapeutic targets for these diseases. Eighteen distinct members of the MS4A (membrane-spanning four-domain subfamily A) superfamily of four-transmembrane proteins have been identified in humans, whereas the MS4A genes are translated into twenty-three different molecules in mice. These proteins are selectively expressed on the surface of various immune cells, such as B cells (MS4A1), macrophages (MS4A4A), mast cells (MS4A2), Foxp3+CD4+ regulatory T cells (MS4A4B), type 3 innate lymphoid cells (TMEM176A and TMEM176B) and colonic epithelial cells (MS4A12). Functionally, most MS4A molecules function as ion channels that regulate the flow of calcium ions [Ca2+] across cell membranes. Recent studies have revealed that some MS4A proteins also act as molecular chaperones and interact with various types of immune receptors, including pattern recognition receptors (PRRs) and immunoglobulin receptors (IgRs), to form signaling complexes, thereby modulating intracellular signaling and cellular activity. Evidence from preclinical animal models and human genetic studies suggests that MS4A proteins play critical roles in various diseases (2). Therefore, we reviewed the recent progress in understanding the role of the MS4A superfamily in diseases, particularly in elucidating its function as a candidate biomarker and therapeutic target for cancer.
Collapse
Affiliation(s)
- Xuejiao Luo
- Department of Dermatology, The Affiliated Hospital of the Non-Commissioned Officer (NCO) School, The Army Medical University, Shijiazhuang, Hebei, China
| | - Bin Luo
- Institute of Immunology, Department of Basic Medicine, The Army Military Medical University, Chongqing, China
| | - Lei Fei
- Institute of Immunology, Department of Basic Medicine, The Army Military Medical University, Chongqing, China
| | - Qinggao Zhang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Xinyu Liang
- Department of Otolaryngology, The Second Affiliated Hospital of the Army Military Medical University, Chongqing, China
| | - Yongwen Chen
- Institute of Immunology, Department of Basic Medicine, The Army Military Medical University, Chongqing, China
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Xueqin Zhou
- Department of Otolaryngology, The Second Affiliated Hospital of the Army Military Medical University, Chongqing, China
| |
Collapse
|
4
|
Hu Y, Wan S, Luo Y, Li Y, Wu T, Deng W, Jiang C, Jiang S, Zhang Y, Liu N, Yang Z, Chen F, Li B, Qu K. Benchmarking algorithms for single-cell multi-omics prediction and integration. Nat Methods 2024; 21:2182-2194. [PMID: 39322753 DOI: 10.1038/s41592-024-02429-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/19/2024] [Indexed: 09/27/2024]
Abstract
The development of single-cell multi-omics technology has greatly enhanced our understanding of biology, and in parallel, numerous algorithms have been proposed to predict the protein abundance and/or chromatin accessibility of cells from single-cell transcriptomic information and to integrate various types of single-cell multi-omics data. However, few studies have systematically compared and evaluated the performance of these algorithms. Here, we present a benchmark study of 14 protein abundance/chromatin accessibility prediction algorithms and 18 single-cell multi-omics integration algorithms using 47 single-cell multi-omics datasets. Our benchmark study showed overall totalVI and scArches outperformed the other algorithms for predicting protein abundance, and LS_Lab was the top-performing algorithm for the prediction of chromatin accessibility in most cases. Seurat, MOJITOO and scAI emerge as leading algorithms for vertical integration, whereas totalVI and UINMF excel beyond their counterparts in both horizontal and mosaic integration scenarios. Additionally, we provide a pipeline to assist researchers in selecting the optimal multi-omics prediction and integration algorithm.
Collapse
Affiliation(s)
- Yinlei Hu
- Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
- School of Mathematical Science, University of Science and Technology of China, Hefei, China
| | - Siyuan Wan
- Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
- School of Artificial Intelligence and Data Science, University of Science and Technology of China, Hefei, China
| | - Yuanhanyu Luo
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
- National Institute of Biological Sciences, Beijing, China
| | - Yuanzhe Li
- Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
- School of Artificial Intelligence and Data Science, University of Science and Technology of China, Hefei, China
| | - Tong Wu
- National Institute of Biological Sciences, Beijing, China
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Wentao Deng
- Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Chen Jiang
- Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Shan Jiang
- National Institute of Biological Sciences, Beijing, China
| | - Yueping Zhang
- School of Artificial Intelligence and Data Science, University of Science and Technology of China, Hefei, China
| | - Nianping Liu
- School of Biomedical Engineering, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China
| | - Zongcheng Yang
- Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Falai Chen
- School of Mathematical Science, University of Science and Technology of China, Hefei, China.
- School of Artificial Intelligence and Data Science, University of Science and Technology of China, Hefei, China.
| | - Bin Li
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
- National Institute of Biological Sciences, Beijing, China.
| | - Kun Qu
- Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China.
- School of Artificial Intelligence and Data Science, University of Science and Technology of China, Hefei, China.
- School of Biomedical Engineering, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China.
| |
Collapse
|
5
|
Susa KJ, Kruse AC, Blacklow SC. Tetraspanins: structure, dynamics, and principles of partner-protein recognition. Trends Cell Biol 2024; 34:509-522. [PMID: 37783654 PMCID: PMC10980598 DOI: 10.1016/j.tcb.2023.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/18/2023] [Accepted: 09/07/2023] [Indexed: 10/04/2023]
Abstract
Tetraspanins are a large, highly conserved family of four-pass transmembrane (TM) proteins that play critical roles in a variety of essential cellular functions, including cell migration, protein trafficking, maintenance of membrane integrity, and regulation of signal transduction. Tetraspanins carry out these biological functions primarily by interacting with partner proteins. Here, we summarize significant advances that have revealed fundamental principles underpinning structure-function relationships in tetraspanins. We first review the structural features of tetraspanin ectodomains and full-length apoproteins, and then discuss how recent structural studies of tetraspanin complexes have revealed plasticity in partner-protein recognition that enables tetraspanins to bind to remarkably different protein families, viral proteins, and antibody fragments. Finally, we discuss major questions and challenges that remain in studying tetraspanin complexes.
Collapse
Affiliation(s)
- Katherine J Susa
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA.
| | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Stephen C Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
6
|
Calvillo-Rodríguez KM, Lorenzo-Anota HY, Rodríguez-Padilla C, Martínez-Torres AC, Scott-Algara D. Immunotherapies inducing immunogenic cell death in cancer: insight of the innate immune system. Front Immunol 2023; 14:1294434. [PMID: 38077402 PMCID: PMC10701401 DOI: 10.3389/fimmu.2023.1294434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/01/2023] [Indexed: 12/18/2023] Open
Abstract
Cancer immunotherapies include monoclonal antibodies, cytokines, oncolytic viruses, cellular therapies, and other biological and synthetic immunomodulators. These are traditionally studied for their effect on the immune system's role in eliminating cancer cells. However, some of these therapies have the unique ability to directly induce cytotoxicity in cancer cells by inducing immunogenic cell death (ICD). Unlike general immune stimulation, ICD triggers specific therapy-induced cell death pathways, based on the release of damage-associated molecular patterns (DAMPs) from dying tumour cells. These activate innate pattern recognition receptors (PRRs) and subsequent adaptive immune responses, offering the promise of sustained anticancer drug efficacy and durable antitumour immune memory. Exploring how onco-immunotherapies can trigger ICD, enhances our understanding of their mechanisms and potential for combination strategies. This review explores the complexities of these immunotherapeutic approaches that induce ICD, highlighting their implications for the innate immune system, addressing challenges in cancer treatment, and emphasising the pivotal role of ICD in contemporary cancer research.
Collapse
Affiliation(s)
- Kenny Misael Calvillo-Rodríguez
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico
| | - Helen Yarimet Lorenzo-Anota
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico
- The Institute for Obesity Research, Tecnológico de Monterrey, Monterrey, NL, Mexico
| | - Cristina Rodríguez-Padilla
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico
| | - Ana Carolina Martínez-Torres
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico
| | - Daniel Scott-Algara
- Département d'Immunologie, Unité de Biologie Cellulaire des Lymphocytes, Pasteur Institute, Paris, France
| |
Collapse
|
7
|
Wright M, Smed MK, Nelson JL, Olsen J, Hetland ML, Jewell NP, Zoffmann V, Jawaheer D. Pre-pregnancy gene expression signatures are associated with subsequent improvement/worsening of rheumatoid arthritis during pregnancy. Arthritis Res Ther 2023; 25:191. [PMID: 37794420 PMCID: PMC10548620 DOI: 10.1186/s13075-023-03169-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/12/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND While many women with rheumatoid arthritis (RA) improve during pregnancy and others worsen, there are no biomarkers to predict this improvement or worsening. In our unique RA pregnancy cohort that includes a pre-pregnancy baseline, we have examined pre-pregnancy gene co-expression networks to identify differences between women with RA who subsequently improve during pregnancy and those who worsen. METHODS Blood samples were collected before pregnancy (T0) from 19 women with RA and 13 healthy women enrolled in our prospective pregnancy cohort. RA improvement/worsening between T0 and 3rd trimester was assessed by changes in the Clinical Disease Activity Index (CDAI). Pre-pregnancy expression profiles were examined by RNA sequencing and differential gene expression analysis. Weighted gene co-expression network analysis (WGCNA) was used to identify co-expression modules correlated with the improvement/worsening of RA during pregnancy and to assess their functional relevance. RESULTS Of the 19 women with RA, 14 improved during pregnancy (RAimproved) while 5 worsened (RAworsened). At the T0 baseline, however, the mean CDAI was similar between the two groups. WGCNA identified one co-expression module related to B cell function that was significantly correlated with the worsening of RA during pregnancy and was significantly enriched in genes differentially expressed between the RAimproved and RAworsened groups. A neutrophil-related expression signature was also identified in the RAimproved group at the T0 baseline. CONCLUSION The pre-pregnancy gene expression signatures identified represent potential biomarkers to predict the subsequent improvement/worsening of RA during pregnancy, which has important implications for the personalized treatment of RA during pregnancy.
Collapse
Affiliation(s)
- Matthew Wright
- Children's Hospital Oakland Research Institute, Oakland, CA, USA
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | | | - J Lee Nelson
- Fred Hutchinson Cancer Center, Seattle, WA, USA
- University of Washington, Seattle, WA, USA
| | - Jørn Olsen
- University of California Los Angeles, Los Angeles, CA, USA
- Aarhus University Hospital, Aarhus, Denmark
| | - Merete Lund Hetland
- DANBIO Registry and Copenhagen Centre for Arthritis Research, Centre for Rheumatology and Spine Diseases, Rigshospitalet, Glostrup, Denmark
- University of Copenhagen, Copenhagen, Denmark
| | | | - Vibeke Zoffmann
- Juliane Marie Centeret, Rigshospitalet, Copenhagen, Denmark
- University of Copenhagen, Copenhagen, Denmark
| | - Damini Jawaheer
- Children's Hospital Oakland Research Institute, Oakland, CA, USA.
- Division of Rheumatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
8
|
Zheng Z, Li H, Yang R, Guo H. Role of the membrane-spanning 4A gene family in lung adenocarcinoma. Front Genet 2023; 14:1162787. [PMID: 37533433 PMCID: PMC10390740 DOI: 10.3389/fgene.2023.1162787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/28/2023] [Indexed: 08/04/2023] Open
Abstract
Lung adenocarcinoma, which is the second most prevalent cancer in the world, has a poor prognosis and a low 5-year survival rate. The MS4A protein family is crucial to disease development and progression, particularly for cancers, allergies, metabolic disorders, autoimmune diseases, infections, and neurodegenerative disorders. However, its involvement in lung adenocarcinoma remains unclear. In this study, we found that 11 MS4A family genes were upregulated or downregulated in lung adenocarcinoma. Furthermore, we described the genetic variation landscape of the MS4A family in lung adenocarcinoma. Notably, through functional enrichment analysis, we discovered that the MS4A family is involved in the immune response regulatory signaling pathway and the immune response regulatory cell surface receptor signaling pathway. According to the Kaplan-Meier curve, patients with lung adenocarcinoma having poor expression of MS4A2, MS4A7, MS4A14, and MS4A15 had a low overall survival rate. These four prognostic genes are substantially associated with immune-infiltrating cells, and a prognosis model incorporating them may more accurately predict the overall survival rate of patients with lung adenocarcinoma than current models. The findings of this study may offer creative suggestions and recommendations for the identification and management of lung adenocarcinoma.
Collapse
|
9
|
Besin V, Martriano Humardani F, Thalia Mulyanata L. Neurogenomics of Alzheimer's Disease (AD): An Asian Population Review. Clin Chim Acta 2023; 546:117389. [PMID: 37211175 DOI: 10.1016/j.cca.2023.117389] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 05/23/2023]
Abstract
Alzheimer's disease (AD) is on the rise worldwide. Generally, AD is considered neurodegenerative when the production and clearance of amyloid-β (Aβ) are imbalanced. Recent research on genome-wide association studies (GWAS) has been explosive; GWAS indicates a relationship between single nucleotide polymorphism (SNP) and AD. GWAS also reveals ethnic differences between Caucasians and Asians. This indicates that pathogenesis between ethnic groups is distinct. According to current scientific knowledge, AD is a disease with a complex pathogenesis that includes impaired neuronal cholesterol regulation, immunity regulation, neurotransmitters regulation, Aβ clearance, Aβ production, and vascular regulation. Here, we demonstrate the pathogenesis of AD in an Asian population and the SNP risk of AD for future AD screening before onset. According to our knowledge, this is the first review of Alzheimer's disease to demonstrate the pathogenesis of AD based on SNP in an Asian population.
Collapse
Affiliation(s)
- Valentinus Besin
- Faculty of Medicine, University of Surabaya, Surabaya 60292, Indonesia.
| | - Farizky Martriano Humardani
- Faculty of Medicine, University of Surabaya, Surabaya 60292, Indonesia; Magister in Biomedical Science Program, Faculty of Medicine Universitas Brawijaya, Malang 65112, Indonesia
| | | |
Collapse
|
10
|
Bitting K, Hedgespeth B, Ehrhardt-Humbert LC, Arthur GK, Schubert AG, Bradding P, Tilley SL, Cruse G. Identification of redundancy between human FcεRIβ and MS4A6A proteins points toward additional complex mechanisms for FcεRI trafficking and signaling. Allergy 2023; 78:1204-1217. [PMID: 36424895 PMCID: PMC10159887 DOI: 10.1111/all.15595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 10/19/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Allergic diseases are triggered by signaling through the high-affinity IgE receptor, FcεRI. In both mast cells (MCs) and basophils, FcεRI is a tetrameric receptor complex comprising a ligand-binding α subunit (FcεRIα), a tetraspan β subunit (FcεRIβ, MS4A2) responsible for trafficking and signal amplification, and a signal transducing dimer of single transmembrane γ subunits (FcεRIγ). However, FcεRI also exists as presumed trimeric complexes that lack FcεRIβ and are expressed on several cell types outside the MC and basophil lineages. Despite known differences between humans and mice in the presence of the trimeric FcεRI complex, questions remain as to how it traffics and whether it signals in the absence of FcεRIβ. We have previously reported that targeting FcεRIβ with exon-skipping oligonucleotides eliminates IgE-mediated degranulation in mouse MCs, but equivalent targeting in human MCs was not effective at reducing degranulation. RESULTS Here, we report that the FcεRIβ-like protein MS4A6A exists in human MCs and compensates for FcεRIβ in FcεRI trafficking and signaling. Human MS4A6A promotes surface expression of FcεRI complexes and facilitates degranulation. MS4A6A and FcεRIβ are encoded by highly related genes within the MS4A gene family that cluster within the human gene loci 11q12-q13, a region linked to allergy and asthma susceptibility. CONCLUSIONS Our data suggest the presence of either FcεRIβ or MS4A6A is sufficient for degranulation, indicating that MS4A6A could be an elusive FcεRIβ-like protein in human MCs that performs compensatory functions in allergic disease.
Collapse
Affiliation(s)
- Katie Bitting
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, NC State University. Raleigh, NC 27607, USA
| | - Barry Hedgespeth
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, NC State University. Raleigh, NC 27607, USA
| | - Lauren C. Ehrhardt-Humbert
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, NC State University. Raleigh, NC 27607, USA
| | - Greer K. Arthur
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, NC State University. Raleigh, NC 27607, USA
| | - Alicia G. Schubert
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, NC State University. Raleigh, NC 27607, USA
| | - Peter Bradding
- Department of Respiratory Sciences, University of Leicester, Glenfield Hospital, Leicester, LE3 9QP, UK
| | - Stephen L. Tilley
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Glenn Cruse
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, NC State University. Raleigh, NC 27607, USA
| |
Collapse
|
11
|
Immanuel T, Li J, Green TN, Bogdanova A, Kalev-Zylinska ML. Deregulated calcium signaling in blood cancer: Underlying mechanisms and therapeutic potential. Front Oncol 2022; 12:1010506. [PMID: 36330491 PMCID: PMC9623116 DOI: 10.3389/fonc.2022.1010506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/21/2022] [Indexed: 02/05/2023] Open
Abstract
Intracellular calcium signaling regulates diverse physiological and pathological processes. In solid tumors, changes to calcium channels and effectors via mutations or changes in expression affect all cancer hallmarks. Such changes often disrupt transport of calcium ions (Ca2+) in the endoplasmic reticulum (ER) or mitochondria, impacting apoptosis. Evidence rapidly accumulates that this is similar in blood cancer. Principles of intracellular Ca2+ signaling are outlined in the introduction. We describe different Ca2+-toolkit components and summarize the unique relationship between extracellular Ca2+ in the endosteal niche and hematopoietic stem cells. The foundational data on Ca2+ homeostasis in red blood cells is discussed, with the demonstration of changes in red blood cell disorders. This leads to the role of Ca2+ in neoplastic erythropoiesis. Then we expand onto the neoplastic impact of deregulated plasma membrane Ca2+ channels, ER Ca2+ channels, Ca2+ pumps and exchangers, as well as Ca2+ sensor and effector proteins across all types of hematologic neoplasms. This includes an overview of genetic variants in the Ca2+-toolkit encoding genes in lymphoid and myeloid cancers as recorded in publically available cancer databases. The data we compiled demonstrate that multiple Ca2+ homeostatic mechanisms and Ca2+ responsive pathways are altered in hematologic cancers. Some of these alterations may have genetic basis but this requires further investigation. Most changes in the Ca2+-toolkit do not appear to define/associate with specific disease entities but may influence disease grade, prognosis, treatment response, and certain complications. Further elucidation of the underlying mechanisms may lead to novel treatments, with the aim to tailor drugs to different patterns of deregulation. To our knowledge this is the first review of its type in the published literature. We hope that the evidence we compiled increases awareness of the calcium signaling deregulation in hematologic neoplasms and triggers more clinical studies to help advance this field.
Collapse
Affiliation(s)
- Tracey Immanuel
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Jixia Li
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Department of Laboratory Medicine, School of Medicine, Foshan University, Foshan City, China
| | - Taryn N. Green
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland
| | - Maggie L. Kalev-Zylinska
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Haematology Laboratory, Department of Pathology and Laboratory Medicine, Auckland City Hospital, Auckland, New Zealand
| |
Collapse
|
12
|
Sakashita E, Nagatani K, Endo H, Minota S. Serum level of IFNβ distinguishes early from late relapses after biologics withdrawal in rheumatoid arthritis. Sci Rep 2022; 12:16547. [PMID: 36192530 PMCID: PMC9529916 DOI: 10.1038/s41598-022-21160-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/23/2022] [Indexed: 11/14/2022] Open
Abstract
Since the advent of biological disease modifying anti-rheumatic drugs (bDMARDs) in the treatment of rheumatoid arthritis (RA), most RA patients receiving such drugs have achieved remission at the expense of cost and infection risk. After bDMARDs are withdrawn, a substantial proportion of patients would have relapses even if they were in complete remission. In our previous report, relapse prediction could be made at the time of bDMARD withdrawal by measuring the serum levels of five cytokines. We report herein that, among 73 cytokines examined, serum levels of only interferon β (IFNβ) at the time of bDMARD withdrawal could predict early relapse (within 5 months) in patients who were categorized to relapse by the five cytokines in our previous report, with a cut-off value of 3.38 in log2 and AUC of 0.833. High serum levels of IFNβ in the early-relapse group remained high until actual relapse occurred. Therefore, patients who relapse early might be biochemically different from those who relapse late or do not relapse at all. We recommend that patients who are predicted to relapse early continue bDMARDs even if they are in complete remission. This finding contributes to shared decision-making regarding how and when bDMARDs should be discontinued.
Collapse
Affiliation(s)
- Eiji Sakashita
- Department of Biochemistry, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Katsuya Nagatani
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 3290498, Japan
| | - Hitoshi Endo
- Department of Biochemistry, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Seiji Minota
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 3290498, Japan.
| |
Collapse
|
13
|
Tsao LC, Force J, Hartman ZC. Mechanisms of Therapeutic Antitumor Monoclonal Antibodies. Cancer Res 2021; 81:4641-4651. [PMID: 34145037 PMCID: PMC8448950 DOI: 10.1158/0008-5472.can-21-1109] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/24/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022]
Abstract
Monoclonal antibodies (mAb) are a major component of cancer therapy. In this review, we summarize the different therapeutic mAbs that have been successfully developed against various tumor-expressed antigens and examine our current understanding of their different mechanisms of antitumor action. These mechanisms of action (MOA) largely center on the stimulation of different innate immune effector processes, which appear to be principally responsible for the efficacy of most unconjugated mAb therapies against cancer. This is evident in studies of mAbs targeting antigens for hematologic cancers, with emerging data also demonstrating the critical nature of innate immune-mediated mechanisms in the efficacy of anti-HER2 mAbs against solid HER2+ cancers. Although HER2-targeted mAbs were originally described as inhibitors of HER2-mediated signaling, multiple studies have since demonstrated these mAbs function largely through their engagement with Fc receptors to activate innate immune effector functions as well as complement activity. Next-generation mAbs are capitalizing on these MOAs through improvements to enhance Fc-activity, although regulation of these mechanisms may vary in different tumor microenvironments. In addition, novel antibody-drug conjugates have emerged as an important means to activate different MOAs. Although many unknowns remain, an improved understanding of these immunologic MOAs will be essential for the future of mAb therapy and cancer immunotherapy.
Collapse
Affiliation(s)
- Li-Chung Tsao
- Department of Surgery, Duke University, Durham, North Carolina
| | - Jeremy Force
- Department of Medicine, Duke University, Durham, North Carolina
| | - Zachary C Hartman
- Department of Surgery, Duke University, Durham, North Carolina.
- Department of Pathology, Duke University, Durham, North Carolina
| |
Collapse
|
14
|
Mattiola I, Mantovani A, Locati M. The tetraspan MS4A family in homeostasis, immunity, and disease. Trends Immunol 2021; 42:764-781. [PMID: 34384709 DOI: 10.1016/j.it.2021.07.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 01/20/2023]
Abstract
The membrane-spanning 4A (MS4A) family includes 18 members with a tetraspan structure in humans. They are differentially and selectively expressed in immunocompetent cells, such as B cells (CD20/MS4A1) and macrophages (MS4A4A), and associate with, and modulate the signaling activity of, different classes of immunoreceptor, including pattern recognition receptors (PRRs) and Ig receptors. Evidence from preclinical models and genetic evidence from humans suggest that members of the MS4A family have key roles in different pathological settings, including cancer, infectious diseases, and neurodegeneration. Therefore, MS4A family members might serve as candidate biomarkers and therapeutic targets for various conditions.
Collapse
Affiliation(s)
- Irene Mattiola
- Humanitas Clinical and Research Center IRCCS, Rozzano, Italy; Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charitè - Universitätsmedizin Berlin, Germany; Berlin Institute of Health, Berlin, Germany; Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, Berlin, Germany.
| | - Alberto Mantovani
- Humanitas Clinical and Research Center IRCCS, Rozzano, Italy; Department of Biomedical Sciences, Humanitas University, Rozzano, Italy; The William Harvey Research Institute, Queen Mary University of London, London, UK.
| | - Massimo Locati
- Humanitas Clinical and Research Center IRCCS, Rozzano, Italy; Department of Medical Biotechnologies and Translation Medicine, University of Milan, Italy.
| |
Collapse
|
15
|
Silva-Gomes R, Mapelli SN, Boutet MA, Mattiola I, Sironi M, Grizzi F, Colombo F, Supino D, Carnevale S, Pasqualini F, Stravalaci M, Porte R, Gianatti A, Pitzalis C, Locati M, Oliveira MJ, Bottazzi B, Mantovani A. Differential expression and regulation of MS4A family members in myeloid cells in physiological and pathological conditions. J Leukoc Biol 2021; 111:817-836. [PMID: 34346525 PMCID: PMC9290968 DOI: 10.1002/jlb.2a0421-200r] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The MS4A gene family encodes 18 tetraspanin-like proteins, most of which with unknown function. MS4A1 (CD20), MS4A2 (FcεRIβ), MS4A3 (HTm4), and MS4A4A play important roles in immunity, whereas expression and function of other members of the family are unknown. The present investigation was designed to obtain an expression fingerprint of MS4A family members, using bioinformatics analysis of public databases, RT-PCR, and protein analysis when possible. MS4A3, MS4A4A, MS4A4E, MS4A6A, MS4A7, and MS4A14 were expressed by myeloid cells. MS4A6A and MS4A14 were expressed in circulating monocytes and decreased during monocyte-to-Mϕ differentiation in parallel with an increase in MS4A4A expression. Analysis of gene expression regulation revealed a strong induction of MS4A4A, MS4A6A, MS4A7, and MS4A4E by glucocorticoid hormones. Consistently with in vitro findings, MS4A4A and MS4A7 were expressed in tissue Mϕs from COVID-19 and rheumatoid arthritis patients. Interestingly, MS4A3, selectively expressed in myeloid precursors, was found to be a marker of immature circulating neutrophils, a cellular population associated to COVID-19 severe disease. The results reported here show that members of the MS4A family are differentially expressed and regulated during myelomonocytic differentiation, and call for assessment of their functional role and value as therapeutic targets.
Collapse
Affiliation(s)
- Rita Silva-Gomes
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.,IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.,ICBAS-Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde and Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | | | - Marie-Astrid Boutet
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Regenerative Medicine and Skeleton, RMeS, Inserm UMR 1229, Oniris, CHU Nantes, Université de Nantes, Nantes, France
| | - Irene Mattiola
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Mucosal and Developmental Immunology, Berlin, Germany
| | - Marina Sironi
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Fabio Grizzi
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Domenico Supino
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Silvia Carnevale
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Fabio Pasqualini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | | | - Rémi Porte
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.,Infinity, Université Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Andrea Gianatti
- Unit of Pathology, Azienda Ospedaliera Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Constantino Pitzalis
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Massimo Locati
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Maria José Oliveira
- ICBAS-Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde and Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,Department of Pathology and Oncology, Faculty of Medicine, University of Porto, Porto, Portugal
| | | | - Alberto Mantovani
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.,IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.,Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
16
|
Han JW, Heo W, Lee D, Kang C, Kim HY, Jun I, So I, Hur H, Lee MG, Jung M, Kim JY. Plasma Membrane Localized GCaMP-MS4A12 by Orai1 Co-Expression Shows Thapsigargin- and Ca 2+-Dependent Fluorescence Increases. Mol Cells 2021; 44:223-232. [PMID: 33935043 PMCID: PMC8112172 DOI: 10.14348/molcells.2021.2031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 11/27/2022] Open
Abstract
Uniquely expressed in the colon, MS4A12 exhibits store-operated Ca2+ entry (SOCE) activity. However, compared to MS4A1 (CD20), a Ca2+ channel and ideal target for successful leukaemia immunotherapy, MS4A12 has rarely been studied. In this study, we investigated the involvement of MS4A12 in Ca2+ influx and expression changes in MS4A12 in human colonic malignancy. Fluorescence of GCaMP-fused MS4A12 (GCaMP-M12) was evaluated to analyse MS4A12 activity in Ca2+ influx. Plasma membrane expression of GCaMP-M12 was achieved by homo- or hetero-complex formation with no-tagged MS4A12 (nt-M12) or Orai1, respectively. GCaMP-M12 fluorescence in plasma membrane increased only after thapsigargin-induced depletion of endoplasmic reticulum Ca2+ stores, and this fluorescence was inhibited by typical SOCE inhibitors and siRNA for Orai1. Furthermore, GCaMP-MS4A12 and Orai1 co-transfection elicited greater plasma membrane fluorescence than GCaMP-M12 co-transfected with nt-M12. Interestingly, the fluorescence of GCaMP-M12 was decreased by STIM1 over-expression, while increased by siRNA for STIM1 in the presence of thapsigargin and extracellular Ca2+. Moreover, immunoprecipitation assay revealed that Orai1 co-expression decreased protein interactions between MS4A12 and STIM1. In human colon tissue, MS4A12 was expressed in the apical region of the colonic epithelium, although its expression was dramatically decreased in colon cancer tissues. In conclusion, we propose that MS4A12 contributes to SOCE through complex formation with Orai1, but does not cooperate with STIM1. Additionally, we discovered that MS4A12 is expressed in the apical membrane of the colonic epithelium and that its expression is decreased with cancer progression.
Collapse
Affiliation(s)
- Jung Woo Han
- Department of Pharmacology and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 03080, Korea
| | - Woon Heo
- Department of Pharmacology and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 03080, Korea
| | - Donghyuk Lee
- Department of Pharmacology and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 03080, Korea
| | - Choeun Kang
- Department of Pharmacology and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 03080, Korea
| | - Hye-Yeon Kim
- Department of Pharmacology and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 03080, Korea
| | - Ikhyun Jun
- The Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Insuk So
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Hyuk Hur
- Department of Surgery, Yonsei University College of Medicine, Seoul 03080, Korea
| | - Min Goo Lee
- Department of Pharmacology and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 03080, Korea
| | - Minkyu Jung
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03080, Korea
| | - Joo Young Kim
- Department of Pharmacology and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
17
|
Mudd TW, Lu C, Klement JD, Liu K. MS4A1 expression and function in T cells in the colorectal cancer tumor microenvironment. Cell Immunol 2020; 360:104260. [PMID: 33352466 DOI: 10.1016/j.cellimm.2020.104260] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 01/26/2023]
Abstract
The majority of human colorectal cancer remains resistant to immune checkpoint inhibitor (ICI) immunotherapy, but the underlying mechanism is incompletely understood. We report here that MS4A1, the gene encoding B cell surface marker CD20, is significantly downregulated in human colorectal carcinoma. Furthermore, MS4A1 expression level in colorectal carcinoma is positively correlated with patient survival. Analysis of scRNA-Seq dataset from public database revealed that MS4A1 is also expressed in subsets of T cells. A CD8+CD20+ subset of T cells exists in the neighboring non-neoplastic colon but disappears in tumor in human colorectal carcinoma. Furthermore, analysis of a published nivolumab treatment dataset indicated that nivolumab-bound T cells from human patients during anti-PD-1 immunotherapy exhibit significantly higher MS4A1 expression. Our findings indicate that CD8+CD20+ T subset functions in host cancer immunosurveillance and tumor microenvironment suppresses this T subset through a PD-L1-dependent mechanism.
Collapse
Affiliation(s)
- T William Mudd
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
| | - Chunwan Lu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; Georgia Cancer Center, Medical College of Georgia, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - John D Klement
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; Georgia Cancer Center, Medical College of Georgia, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; Georgia Cancer Center, Medical College of Georgia, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA.
| |
Collapse
|
18
|
Kumar A, Planchais C, Fronzes R, Mouquet H, Reyes N. Binding mechanisms of therapeutic antibodies to human CD20. Science 2020; 369:793-799. [DOI: 10.1126/science.abb8008] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/22/2020] [Indexed: 12/25/2022]
Abstract
Monoclonal antibodies (mAbs) targeting human antigen CD20 (cluster of
differentiation 20) constitute important immunotherapies for the treatment
of B cell malignancies and autoimmune diseases. Type I and II therapeutic
mAbs differ in B cell binding properties and cytotoxic effects, reflecting
differential interaction mechanisms with CD20. Here we present 3.7- to
4.7-angstrom cryo–electron microscopy structures of full-length CD20 in
complexes with prototypical type I rituximab and ofatumumab and type II
obinutuzumab. The structures and binding thermodynamics demonstrate that
upon binding to CD20, type II mAbs form terminal complexes that preclude
recruitment of additional mAbs and complement components, whereas type I
complexes act as molecular seeds to increase mAb local concentration for
efficient complement activation. Among type I mAbs, ofatumumab complexes
display optimal geometry for complement recruitment. The uncovered
mechanisms should aid rational design of next-generation immunotherapies
targeting CD20.
Collapse
Affiliation(s)
- Anand Kumar
- Membrane Protein Mechanisms Unit, Institut Pasteur, 75015 Paris, France
- Membrane Protein Mechanisms Group, European Institute of Chemistry and Biology, University of Bordeaux, 33607 Pessac, France
- CNRS UMR 5234 Fundamental Microbiology and Pathogenicity, Bordeaux, France
| | - Cyril Planchais
- Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, Paris, France
- INSERM U1222, Paris, France
| | - Rémi Fronzes
- CNRS UMR 5234 Fundamental Microbiology and Pathogenicity, Bordeaux, France
- Structure and Function of Bacterial Nanomachines Group, European Institute of Chemistry and Biology, University of Bordeaux, 33607 Pessac, France
| | - Hugo Mouquet
- Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, Paris, France
- INSERM U1222, Paris, France
| | - Nicolas Reyes
- Membrane Protein Mechanisms Unit, Institut Pasteur, 75015 Paris, France
- Membrane Protein Mechanisms Group, European Institute of Chemistry and Biology, University of Bordeaux, 33607 Pessac, France
- CNRS UMR 5234 Fundamental Microbiology and Pathogenicity, Bordeaux, France
| |
Collapse
|
19
|
Patients with systemic lupus erythematosus show increased proportions of CD19 +CD20 - B cells and secretion of related autoantibodies. Clin Rheumatol 2020; 40:151-165. [PMID: 32542581 DOI: 10.1007/s10067-020-05220-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/12/2020] [Accepted: 06/02/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND At present, anti-CD20 monoclonal antibody treatments targeting systemic lupus erythematosus (SLE) are complex, variable, and often have disappointing outcomes. High levels of programmed cell death-1 (PD-1) and its ligands (PD-L1, PD-L2) or CD80/CD86 on B cell surfaces are markers of increased B cell activity. However, their expression levels on CD19+CD20+/- B cells and their clinical significance for SLE dynamics have not been carefully investigated. METHODS Flow cytometry was used to detect the expression levels of PD-1, PD-L1, PD-L2, CD80, and CD86 on CD19+CD20+/- B cells in peripheral blood from SLE patients and healthy controls (HCs). The amount of anti-dsDNA and immunoglobin G (IgG) secreted by CD19+CD20+/- B cells was measured by enzyme-linked immunosorbent assay. RESULTS CD19+CD20- B cell frequency was significantly higher in SLE patients than in HCs (P < 0.001), and was positively correlated with disease activity. In SLE patients, frequencies of PD-1, PD-L1, PD-L2, and CD86 on CD19+CD20- B cells were significantly higher than CD19+CD20+ B cells (P ≤ 0.002) and were significantly correlated with individual laboratory and clinically based parameters (P < 0.05). In vitro tests, we found that the levels of anti-dsDNA and IgG secreted by CD19+CD20- B cells from patients with SLE were significantly higher than the HC group (P < 0.05). CONCLUSIONS We found abnormal frequency of CD19+CD20- B cells and increased expression of surface markers on these cells from SLE patients. And the CD19+CD20- B cells had the ability to proliferate and secrete anti-dsDNA and IgG. Additionally, our results suggested that CD19+CD20- B cells from SLE patients may be the activated B cells and caused poor efficacy of rituximab. Key Points • CD19+CD20- B cell frequencies were significantly higher in SLE patients. • Frequencies of PD-1 and its ligands on CD19+CD20- B cells increased significantly in SLE patients. • CD19+CD20- B cells in SLE patients had the ability to secrete anti-dsDNA and IgG. • CD19+CD20- B cells in SLE patients may be the activated B cells and caused poor efficacy of rituximab.
Collapse
|
20
|
Novel biomarkers of a peripheral blood interferon signature associated with drug-naïve early arthritis patients distinguish persistent from self-limiting disease course. Sci Rep 2020; 10:8830. [PMID: 32483203 PMCID: PMC7264129 DOI: 10.1038/s41598-020-63757-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/27/2020] [Indexed: 12/26/2022] Open
Abstract
We profiled gene expression signatures to distinguish rheumatoid arthritis (RA) from non-inflammatory arthralgia (NIA), self-limiting arthritis (SLA), and undifferentiated arthritis (UA) as compared to healthy controls as novel potential biomarkers for therapeutic responsiveness. Global gene expression profiles of PBMCs from 43 drug-naïve patients presenting with joint symptoms were evaluated and differentially expressed genes identified by comparative analysis with 24 healthy volunteers. Patients were assessed at presentation with follow up at 6 and 12 months. Gene ontology and network pathway analysis were performed using DAVID Bioinformatics Resources v6.7. Gene expression profiles were also determined after disease-modifying anti-rheumatic drug (DMARD) treatment in the inflammatory arthritis groups (i.e. RA and UA) and confirmed by qRT-PCR. Receiver operating characteristic (ROC) curves analysis and Area Under the Curve (AUC) estimation were performed to assess the diagnostic value of candidate gene expression signatures. A type I interferon (IFN) gene signature distinguished DMARD-naïve patients who will subsequently develop persistent inflammatory arthritis (i.e. RA and UA) from those with NIA. In patients with RA, the IFN signature is characterised by up-regulation of SIGLEC1 (p = 0.00597) and MS4A4A (p = 0.00000904). We also identified, EPHB2 (p = 0.000542) and PDZK1IP1 (p = 0.0206) with RA-specific gene expression profiles and elevated expression of the ST6GALNAC1 (p = 0.0023) gene in UA. ROC and AUC risk score analysis suggested that MSA4A (AUC: 0.894, 0.644, 0.720), PDZK1IP1 (AUC: 0.785, 0.806, 0.977), and EPHB2 (AUC: 0.794, 0.723, 0.620) at 0, 6, and 12 months follow-up can accurately discriminate patients with RA from healthy controls and may have practical value for RA diagnosis. In patients with early inflammatory arthritis, ST6GALNAC1 is a potential biomarker for UA as compared with healthy controls whereas EPHB2, MS4A4A, and particularly PDZK1IP1 may discriminate RA patients. SIGLEC1 may also be a useful marker of disease activity in UA.
Collapse
|
21
|
Arthur GK, Ehrhardt-Humbert LC, Snider DB, Jania C, Tilley SL, Metcalfe DD, Cruse G. The FcεRIβ homologue, MS4A4A, promotes FcεRI signal transduction and store-operated Ca 2+ entry in human mast cells. Cell Signal 2020; 71:109617. [PMID: 32240745 DOI: 10.1016/j.cellsig.2020.109617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023]
Abstract
Members of the membrane spanning 4A (MS4A) gene family are clustered around 11q12-13, a region linked to allergy and asthma susceptibility. Other than the known functions of FcεRIβ (MS4A2) and CD20 (MS4A1) in mast cell and B cell signaling, respectively, functional studies for the remaining MS4A proteins are lacking. We thus explored whether MS4A4A, a mast cell expressed homologue of FcεRIβ, has related functions to FcεRIβ in FcεRI signaling. We establish in this study that MS4A4A promotes phosphorylation of PLCγ1, calcium flux and degranulation in response to IgE-mediated crosslinking of FcεRI. We previously demonstrated that MS4A4A promotes recruitment of KIT into caveolin-1-enriched microdomains and signaling through PLCγ1. Caveolin-1 itself is an important regulator of IgE-dependent store-operated Ca2+ entry (SOCE) and promotes expression of the store-operated Ca2+ channel pore-forming unit, Orai1. We thus further report that MS4A4A functions through interaction with caveolin-1 and recruitment of FcεRI and KIT into lipid rafts. In addition to proximal FcεRI signaling, we similarly show that MS4A4A regulates Orai1-mediated calcium entry downstream of calcium release from stores. Both MS4A4A and Orai1 had limited effects with compound 48/80 stimulation, demonstrating some degree of selectivity of both proteins to FcεRI receptor signaling over Mas-related G Protein coupled receptor X2 signaling. Overall, our data are consistent with the conclusion that MS4A4A performs a related function to the homologous FcεRIβ to promote PLCγ1 signaling, SOCE, and degranulation through FcεRI in human mast cells and thus represents a new target in the regulation of IgE-mediated mast cell activation.
Collapse
Affiliation(s)
- Greer K Arthur
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, NC State University. Raleigh, NC 27607, USA
| | - Lauren C Ehrhardt-Humbert
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, NC State University. Raleigh, NC 27607, USA
| | - Douglas B Snider
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, NC State University. Raleigh, NC 27607, USA; Comparative Medicine Institute, College of Veterinary Medicine, NC State University. Raleigh, NC 27607, USA
| | - Corey Jania
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stephen L Tilley
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dean D Metcalfe
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Glenn Cruse
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, NC State University. Raleigh, NC 27607, USA; Comparative Medicine Institute, College of Veterinary Medicine, NC State University. Raleigh, NC 27607, USA.
| |
Collapse
|
22
|
Alzheimer’s Disease Genetics: Review of Novel Loci Associated with Disease. CURRENT GENETIC MEDICINE REPORTS 2020. [DOI: 10.1007/s40142-020-00182-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
DePaula-Silva AB, Gorbea C, Doty DJ, Libbey JE, Sanchez JMS, Hanak TJ, Cazalla D, Fujinami RS. Differential transcriptional profiles identify microglial- and macrophage-specific gene markers expressed during virus-induced neuroinflammation. J Neuroinflammation 2019; 16:152. [PMID: 31325960 PMCID: PMC6642742 DOI: 10.1186/s12974-019-1545-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/10/2019] [Indexed: 01/09/2023] Open
Abstract
Background In the healthy central nervous system (CNS), microglia are found in a homeostatic state and peripheral macrophages are absent from the brain. Microglia play key roles in maintaining CNS homeostasis and acting as first responders to infection and inflammation, and peripheral macrophages infiltrate the CNS during neuroinflammation. Due to their distinct origins and functions, discrimination between these cell populations is essential to the comprehension of neuroinflammatory disorders. Studies comparing the gene profiles of microglia and peripheral macrophages, or macrophages in vitro-derived from bone marrow, under non-infectious conditions of the CNS, have revealed valuable microglial-specific genes. However, studies comparing gene profiles between CNS-infiltrating macrophages and microglia, when both are isolated from the CNS during viral-induced neuroinflammation, are lacking. Methods We isolated, via flow cytometry, microglia and infiltrating macrophages from the brains of Theiler’s murine encephalomyelitis virus-infected C57BL/6 J mice and used RNA-Seq, followed by validation with qPCR, to examine the differential transcriptional profiles of these cells. We utilized primary literature defining subcellular localization to determine whether or not particular proteins extracted from the transcriptional profiles were expressed at the cell surface. The surface expression and cellular specificity of triggering receptor expressed on myeloid cells 1 (TREM-1) protein were examined via flow cytometry. We also examined the immune response gene profile within the transcriptional profiles of these isolated microglia and infiltrating macrophages. Results We have identified and validated new microglial- and macrophage-specific genes, encoding cell surface proteins, expressed at the peak of neuroinflammation. TREM-1 protein was confirmed to be expressed by infiltrating macrophages, not microglia, at the peak of neuroinflammation. We also identified both unique and redundant immune functions, through examination of the immune response gene profiles, of microglia and infiltrating macrophages during neurotropic viral infection. Conclusions The differential expression of cell surface-specific genes during neuroinflammation can potentially be used to discriminate between microglia and macrophages as well as provide a resource that can be further utilized to target and manipulate specific cell responses during neuroinflammation. Electronic supplementary material The online version of this article (10.1186/s12974-019-1545-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ana Beatriz DePaula-Silva
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT, 84112, USA
| | - Carlos Gorbea
- Department of Biochemistry, University of Utah, 15 North Medical Drive East, 4100 EEJMRB, Salt Lake City, UT, 84112, USA
| | - Daniel J Doty
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT, 84112, USA
| | - Jane E Libbey
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT, 84112, USA
| | - John Michael S Sanchez
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT, 84112, USA
| | - Tyler J Hanak
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT, 84112, USA
| | - Demián Cazalla
- Department of Biochemistry, University of Utah, 15 North Medical Drive East, 4100 EEJMRB, Salt Lake City, UT, 84112, USA
| | - Robert S Fujinami
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
24
|
The macrophage tetraspan MS4A4A enhances dectin-1-dependent NK cell-mediated resistance to metastasis. Nat Immunol 2019; 20:1012-1022. [PMID: 31263276 DOI: 10.1038/s41590-019-0417-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 05/02/2019] [Indexed: 12/14/2022]
Abstract
The plasma membrane tetraspan molecule MS4A4A is selectively expressed by macrophage-lineage cells, but its function is unknown. Here we report that MS4A4A was restricted to murine and human mononuclear phagocytes and was induced during monocyte-to-macrophage differentiation in the presence of interleukin 4 or dexamethasone. Human MS4A4A was co-expressed with M2/M2-like molecules in subsets of normal tissue-resident macrophages, infiltrating macrophages from inflamed synovium and tumor-associated macrophages. MS4A4A interacted and colocalized with the β-glucan receptor dectin-1 in lipid rafts. In response to dectin-1 ligands, Ms4a4a-deficient macrophages showed defective signaling and defective production of effector molecules. In experimental models of tumor progression and metastasis, Ms4a4a deficiency in macrophages had no impact on primary tumor growth, but was essential for dectin-1-mediated activation of macrophages and natural killer (NK) cell-mediated metastasis control. Thus, MS4A4A is a tetraspan molecule selectively expressed in macrophages during differentiation and polarization, essential for dectin-1-dependent activation of NK cell-mediated resistance to metastasis.
Collapse
|
25
|
Huang T, Huang X, Shi B, Liang X, Luo J, Yao M. Relationship among MS4A8 expression, its variants, and the immune response in a porcine model of Salmonella. CANADIAN JOURNAL OF ANIMAL SCIENCE 2018. [DOI: 10.1139/cjas-2017-0037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Salmonella colonization often establishes carrier status in infected animals, which decreases their performance. Salmonella-carrying pigs shed large amounts of bacteria in their feces, and thus they have a negative economic impact on the swine industry. The MS4A8 gene (membrane-spanning 4-domains A8) was significantly activated, by up to 119-fold, in peripheral blood after Salmonella inoculation of pigs. The present study analyzed the correlation of peripheral blood expression level and a genetic variant of porcine MS4A8 with Salmonella-infection traits. The result indicated that MS4A8 expression levels correlated significantly with Salmonella shedding counts. Both the expression of MS4A8 and fecal shedding counts correlated with leukocytes, lymphocytes, monocytes, segmented neutrophils, and banded neutrophils. A novel single nucleotide polymorphism of porcine MS4A8 (nonsynonymous, Val > Ala) was associated with Salmonella shedding counts and average daily gain (ADG) of body weight. The TT genotype had higher fecal shedding counts, leukocyte counts, and lymphocyte counts than the TC and CC genotypes. The CC genotype had higher level of ADG than the TC and TT genotype (p < 0.05). Those results indicated that MS4A8 is intriguing and could be used as a prospective genetic marker for Salmonella susceptibility.
Collapse
Affiliation(s)
- Tinghua Huang
- College of Animal Science, Yangtze University, Jingzhou, Hubei 434025, People’s Republic of China
- College of Animal Science, Yangtze University, Jingzhou, Hubei 434025, People’s Republic of China
| | - Xiali Huang
- College of Animal Science, Yangtze University, Jingzhou, Hubei 434025, People’s Republic of China
- College of Animal Science, Yangtze University, Jingzhou, Hubei 434025, People’s Republic of China
| | - Bomei Shi
- College of Animal Science, Yangtze University, Jingzhou, Hubei 434025, People’s Republic of China
- College of Animal Science, Yangtze University, Jingzhou, Hubei 434025, People’s Republic of China
| | - Xiongyan Liang
- College of Animal Science, Yangtze University, Jingzhou, Hubei 434025, People’s Republic of China
- College of Animal Science, Yangtze University, Jingzhou, Hubei 434025, People’s Republic of China
| | - Jingbo Luo
- College of Animal Science, Yangtze University, Jingzhou, Hubei 434025, People’s Republic of China
- College of Animal Science, Yangtze University, Jingzhou, Hubei 434025, People’s Republic of China
| | - Min Yao
- College of Animal Science, Yangtze University, Jingzhou, Hubei 434025, People’s Republic of China
- College of Animal Science, Yangtze University, Jingzhou, Hubei 434025, People’s Republic of China
| |
Collapse
|
26
|
The applications of anti-CD20 antibodies to treat various B cells disorders. Biomed Pharmacother 2018; 109:2415-2426. [PMID: 30551501 DOI: 10.1016/j.biopha.2018.11.121] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 11/09/2018] [Accepted: 11/25/2018] [Indexed: 12/29/2022] Open
Abstract
B-lymphocyte antigen CD20 (called CD20) is known as an activated-glycosylated phosphoprotein which is expressed on the surface of all B-cells. CD20 is involved in the regulation of trans-membrane Ca2+ conductance and also play critical roles in cell-cycle progression during human B cell proliferation and activation. The appearance of monoclonal antibody (mAb) technology provided an effective field for targeted therapy in treatment of a variety of diseases such as cancer, and autoimmune diseases. Anti-CD20 is one of important antibodies which could be employed in treatment of several diseases. Increasing evidences revealed that efficacy of different anti-CD20 antibodies is implicated by their function. Hence, evaluation of anti-CD20 antibodies function could provide and introduce new anti-CD20 based therapies. In the present study, we summarized several applications of anti-CD20 antibodies in various immune related disorders including B-CLL (B-cell chronic lymphocytic leukemia), rheumatoid arthritis (RA), multiple sclerosis (MS) and melanoma.
Collapse
|
27
|
Arlauckas SP, Garren SB, Garris CS, Kohler RH, Oh J, Pittet MJ, Weissleder R. Arg1 expression defines immunosuppressive subsets of tumor-associated macrophages. Am J Cancer Res 2018; 8:5842-5854. [PMID: 30613266 PMCID: PMC6299430 DOI: 10.7150/thno.26888] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/15/2018] [Indexed: 12/20/2022] Open
Abstract
Tumor-associated macrophages (TAM) have attracted attention as they can modulate key cancer-related activities, yet TAM represent a heterogenous group of cells that remain incompletely characterized. In growing tumors, TAM are often referred to as M2-like macrophages, which are cells that display immunosuppressive and tumorigenic functions and express the enzyme arginase 1 (Arg1). Methods: Here we combined high resolution intravital imaging with single cell RNA seq to uncover the topography and molecular profiles of immunosuppressive macrophages in mice. We further assessed how immunotherapeutic interventions impact these cells directly in vivo. Results: We show that: i) Arg1+ macrophages are more abundant in tumors compared to other organs; ii) there exist two morphologically distinct subsets of Arg1 TAM defined by previously unknown markers (Gbp2b, Bst1, Sgk1, Pmepa1, Ms4a7); iii) anti-Programmed Cell Death-1 (aPD-1) therapy decreases the number of Arg1+ TAM while increasing Arg1- TAM; iv) accordingly, pharmacological inhibition of arginase 1 does not synergize with aPD-1 therapy. Conclusion: Overall, this research shows how powerful complementary single cell analytical approaches can be used to improve our understanding of drug action in vivo.
Collapse
|
28
|
Soe ZN, Allsup D. The use of ofatumumab in the treatment of B-cell malignancies. Future Oncol 2017; 13:2611-2628. [DOI: 10.2217/fon-2017-0275] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ofatumumab has been extensively studied in the treatment of B-cell malignancies. Currently, it has been approved for the treatment of chronic lymphocytic leukemia in a number of different situations. However, there is still no compelling evidence confirming the superiority of ofatumumab over rituximab in vivo. In this article, we summarize the currently available clinical data supporting the use of ofatumumab in the treatment of B-cell malignancies. The clinical studies were searched from clinicaltrials.gov with the key words ofatumumab, HuMax-CD20. Out of 115 trials available, studies for B-cell malignancies were selected, followed by selection of completed studies with results and active ongoing studies. The results from completed studies were thoroughly analyzed and active ongoing studies were listed in tables.
Collapse
Affiliation(s)
- Zar Ni Soe
- Department of Haematology, Hull & East Yorkshire Hospitals NHS Trust, Hull, East Yorkshire, England, UK
| | - David Allsup
- Department of Haematology, Hull & East Yorkshire Hospitals NHS Trust, Hull, East Yorkshire, England, UK
| |
Collapse
|
29
|
A hypermorphic antioxidant response element is associated with increased MS4A6A expression and Alzheimer's disease. Redox Biol 2017; 14:686-693. [PMID: 29179108 PMCID: PMC5705802 DOI: 10.1016/j.redox.2017.10.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/18/2017] [Accepted: 10/25/2017] [Indexed: 12/17/2022] Open
Abstract
Late onset Alzheimer's disease (AD) is a multifactorial disorder, with AD risk influenced by both environmental and genetic factors. Recent genome-wide association studies (GWAS) have identified genetic loci associated with increased risk of developing AD. The MS4A (membrane-spanning 4-domains subfamily A) gene cluster is one of the most significant loci associated with AD risk, and MS4A6A expression is correlated with AD pathology. We identified a single nucleotide polymorphism, rs667897, at the MS4A locus that creates an antioxidant response element and links MS4A6A expression to the stress responsive Cap-n-Collar (CNC) transcription factors NRF1 (encoded by NFE2L1) and NRF2 (encoded by NFE2L2). The risk allele of rs667897 generates a strong CNC binding sequence that is activated by proteostatic stress in an NRF1-dependent manner, and is associated with increased expression of the gene MS4A6A. Together, these findings suggest that the cytoprotective CNC regulatory network aberrantly activates MS4A6A expression and increases AD risk in a subset of the population.
Collapse
|
30
|
Kaneko T, Toshimori K, Iida H. Subcellular localization of MS4A13 isoform 2 in mouse spermatozoa. Reproduction 2017; 154:843-857. [PMID: 28971897 DOI: 10.1530/rep-17-0477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/11/2017] [Accepted: 10/02/2017] [Indexed: 01/02/2023]
Abstract
To identify upregulated genes during the development of spermatozoa, we performed PCR-selected subtraction analysis of testes RNA samples from 10-day-old and 12-week-old shrews. A transcript, highly homologous to two mouse transcripts, Ms4a13-1 and Ms4a13-2, was differentially regulated. Ms4a13-2, but not Ms4a13-1, was shown to be primarily expressed in mouse testes in an age-dependent manner. Ms4a13-2 cDNA contains an open-reading frame of 522 nucleotides, encoding a protein of 174 amino acids, with predicted molecular mass, 19,345 Da. MS4A13-2 protein was expressed along the periphery of nuclei of round and elongated spermatids (steps 3-16) in adult mouse testes, and in the equatorial region of the heads of fresh mature mouse spermatozoa. In addition, MS4A13-2 was found to localize to the outer acrosomal membrane in the equatorial region of heads in fresh spermatozoa. In acrosome-reacted spermatozoa, the MS4A13-2 expression extended to the entire sperm head including the postacrosomal region and acrosomal cap. MS4A family proteins are known to facilitate intracellular protein-protein interactions as ion channel/adaptor proteins by oligomerization, and have important regulatory roles in cellular growth, survival and activation. We report that the MS4A family member, MS4A13-2, may form oligomers in sperm membranes, which may be involved in an interaction with the zona pellucida or cumulus during fertilization.
Collapse
Affiliation(s)
- Takane Kaneko
- Laboratory of ZoologyGraduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Kiyotaka Toshimori
- Future Medicine Research Center and Department of Reproductive Biology and MedicineGraduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroshi Iida
- Laboratory of ZoologyGraduate School of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
31
|
Genetics of Alzheimer's disease: From pathogenesis to clinical usage. J Clin Neurosci 2017; 45:1-8. [PMID: 28869135 DOI: 10.1016/j.jocn.2017.06.074] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/19/2017] [Indexed: 01/27/2023]
Abstract
Alzheimer's disease (AD) is the most common type of dementia and has caused a major global health concern. Understanding the etiology of AD can be beneficial for the diagnosis and intervention of this disease. Genetics plays a vital role in the pathogenesis of AD. Research methods in genetics such as the linkage analysis, study of candidate genes, genome-wide association study (GWAS), and next-generation sequencing (NGS) technology help us map the genetic information in AD, which can not only provide a new insight into the pathogenesis of AD but also be beneficial for early targeted intervention of AD. This review summarizes the pathogenesis as well as the diagnostic and therapeutic value of genetics in AD.
Collapse
|
32
|
Sanyal R, Polyak MJ, Zuccolo J, Puri M, Deng L, Roberts L, Zuba A, Storek J, Luider JM, Sundberg EM, Mansoor A, Baigorri E, Chu MP, Belch AR, Pilarski LM, Deans JP. MS4A4A: a novel cell surface marker for M2 macrophages and plasma cells. Immunol Cell Biol 2017; 95:611-619. [PMID: 28303902 DOI: 10.1038/icb.2017.18] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/24/2017] [Accepted: 03/13/2017] [Indexed: 01/05/2023]
Abstract
MS4A4A is a member of the membrane-spanning, four domain family, subfamily A (MS4A) that includes CD20 (MS4A1), FcRβ (MS4A2) and Htm4 (MS4A3). Like the first three members of this family, transcription of MS4A4A appears to be limited to hematopoietic cells. To evaluate expression of the MS4A4A protein in hematopoietic cell lineages and subsets we generated monoclonal antibodies against extracellular epitopes for use in flow cytometry. In human peripheral blood we found that MS4A4A is expressed at the plasma membrane in monocytes but not in granulocytes or lymphocytes. In vitro differentiation of monocytes demonstrated that MS4A4A is expressed in immature but not activated dendritic cells, and in macrophages generated in the presence of interleukin-4 ('alternatively activated' or M2 macrophages) but not by interferon-γ and lipopolysaccharide ('classically' activated or M1 macrophages). MS4A4A was expressed in the U937 monocytic cell line only after differentiation. In normal bone marrow, MS4A4A was expressed in mature monocytes but was undetected, or detected at only a low level, in myeloid/monocytic precursors, as well as their malignant counterparts in patients with various subtypes of myeloid leukemia. Although MS4A4A was not expressed in healthy B lymphocytes, it was highly expressed in normal plasma cells, CD138+ cells from multiple myeloma patients, and bone marrow B cells from a patient with mantle cell lymphoma. These findings suggest immunotherapeutic potential for MS4A4A antibodies in targeting alternatively activated macrophages such as tumor-associated macrophages, and in the treatment of multiple myeloma and mantle cell lymphoma.
Collapse
Affiliation(s)
- Ratna Sanyal
- Department of Biochemistry and Molecular Biology, and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Maria J Polyak
- Department of Biochemistry and Molecular Biology, and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan Zuccolo
- Department of Biochemistry and Molecular Biology, and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Mandip Puri
- Department of Biochemistry and Molecular Biology, and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Lili Deng
- Department of Biochemistry and Molecular Biology, and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Luc Roberts
- Department of Biochemistry and Molecular Biology, and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Ania Zuba
- Department of Biochemistry and Molecular Biology, and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Jan Storek
- Departments of Medicine and Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Joanne M Luider
- Calgary Laboratory Services, Foothills Medical Centre, Calgary, Alberta, Canada
| | - Ellen M Sundberg
- Calgary Laboratory Services, Foothills Medical Centre, Calgary, Alberta, Canada
| | - Adnan Mansoor
- Calgary Laboratory Services, Foothills Medical Centre, Calgary, Alberta, Canada.,Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Eva Baigorri
- Department of Oncology, University of Alberta and Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Michael P Chu
- Department of Oncology, University of Alberta and Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Andrew R Belch
- Department of Oncology, University of Alberta and Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Linda M Pilarski
- Department of Oncology, University of Alberta and Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Julie P Deans
- Department of Biochemistry and Molecular Biology, and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
33
|
Gagez AL, Duroux-Richard I, Leprêtre S, Orsini-Piocelle F, Letestu R, De Guibert S, Tuaillon E, Leblond V, Khalifa O, Gouilleux-Gruart V, Banos A, Tournilhac O, Dupuis J, Jorgensen C, Cartron G, Apparailly F. miR-125b and miR-532-3p predict the efficiency of rituximab-mediated lymphodepletion in chronic lymphocytic leukemia patients. A French Innovative Leukemia Organization study. Haematologica 2017; 102:746-754. [PMID: 28126961 PMCID: PMC5395115 DOI: 10.3324/haematol.2016.153189] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 01/23/2017] [Indexed: 12/22/2022] Open
Abstract
The underlying in vivo mechanisms of rituximab action remain incompletely understood in chronic lymphocytic leukemia. Recent data suggest that circulating micro-ribonucleic acids correlate with chronic lymphocytic leukemia progression and response to rituximab. Our study aimed at identifying circulating micro-ribonucleic acids that predict response to rituximab monotherapy in chronic lymphocytic leukemia patients. Using a hierarchical clustering of micro-ribonucleic acid expression profiles discriminating 10 untreated patients with low or high lymphocyte counts, we found 26 micro-ribonucleic acids significantly deregulated. Using individual real-time reverse transcription polymerase chain reaction, the expression levels of micro-ribonucleic acids representative of these two clusters were further validated in a larger cohort (n=61). MiR-125b and miR-532-3p were inversely correlated with rituximab-induced lymphodepletion (P=0.020 and P=0.001, respectively) and with the CD20 expression on CD19+ cells (P=0.0007 and P<0.0001, respectively). In silico analyses of genes putatively targeted by both micro-ribonucleic acids revealed a central role of the interleukin-10 pathway and CD20 (MS4A1) family members. Interestingly, both micro-ribonucleic acids were negatively correlated with MS4A1 expression, while they were positively correlated with MS4A3 and MSA47 Our results identify novel circulating predictive biomarkers for rituximab-mediated lymphodepletion efficacy in chronic lymphocytic leukemia, and suggest a novel molecular mechanism responsible for the rituximab mode of action that bridges miR-125b and miR-532-3p and CD20 family members. (clinicaltrials.gov Identifier: 01370772).
Collapse
Affiliation(s)
- Anne-Laure Gagez
- CNRS UMR 5235, University of Montpellier, France.,Department of Clinical Hematology, University Hospital Montpellier, France
| | - Isabelle Duroux-Richard
- INSERM, U1183, Institute of Regenerative Medicine and Biotherapy, University Hospital Montpellier, France
| | | | | | - Rémi Letestu
- Department of Biological Hematology, APHP, GHUPSSD, Avicenne Hospital, Bobigny, France
| | - Sophie De Guibert
- Department of Clinical Hematology, Pontchaillou Hospital, Rennes, France
| | - Edouard Tuaillon
- Department of Bacteriology-Virology, University Hospital Montpellier, France
| | - Véronique Leblond
- Department of Hematology, La Pitié Salpétrière Hospital, Paris, France
| | - Olfa Khalifa
- INSERM, U1183, Institute of Regenerative Medicine and Biotherapy, University Hospital Montpellier, France
| | | | - Anne Banos
- Department of Hematology, Cote Basque Hospital, Bayonne, France
| | - Olivier Tournilhac
- Department of Clinical Hematology, University Hospital Estaing, Clermont-Ferrand, France
| | - Jehan Dupuis
- Unit of Lymphoid Hematologic Malignancies, Henri Mondor Hospital, Créteil, France
| | - Christian Jorgensen
- INSERM, U1183, Institute of Regenerative Medicine and Biotherapy, University Hospital Montpellier, France.,Clinical department for Osteoarticular Diseases, University Hospital Lapeyronie, Montpellier, France
| | - Guillaume Cartron
- CNRS UMR 5235, University of Montpellier, France .,Department of Clinical Hematology, University Hospital Montpellier, France
| | - Florence Apparailly
- INSERM, U1183, Institute of Regenerative Medicine and Biotherapy, University Hospital Montpellier, France.,Clinical department for Osteoarticular Diseases, University Hospital Lapeyronie, Montpellier, France
| |
Collapse
|
34
|
Exon skipping of FcεRIβ eliminates expression of the high-affinity IgE receptor in mast cells with therapeutic potential for allergy. Proc Natl Acad Sci U S A 2016; 113:14115-14120. [PMID: 27872312 DOI: 10.1073/pnas.1608520113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Allergic diseases are driven by activation of mast cells and release of mediators in response to IgE-directed antigens. However, there are no drugs currently available that can specifically down-regulate mast cell function in vivo when chronically administered. Here, we describe an innovative approach for targeting mast cells in vitro and in vivo using antisense oligonucleotide-mediated exon skipping of the β-subunit of the high-affinity IgE receptor (FcεRIβ) to eliminate surface high-affinity IgE receptor (FcεRI) expression and function, rendering mast cells unresponsive to IgE-mediated activation. As FcεRIβ expression is restricted to mast cells and basophils, this approach would selectively target these cell types. Given the success of exon skipping in clinical trials to treat genetic diseases such as Duchenne muscular dystrophy, we propose that exon skipping of FcεRIβ is a potential approach for mast cell-specific treatment of allergic diseases.
Collapse
|
35
|
Abstract
Mast cells (MCs) play a central role in tissue homoeostasis, sensing the local environment through numerous innate cell surface receptors. This enables them to respond rapidly to perceived tissue insults with a view to initiating a co-ordinated programme of inflammation and repair. However, when the tissue insult is chronic, the ongoing release of multiple pro-inflammatory mediators, proteases, cytokines and chemokines leads to tissue damage and remodelling. In asthma, there is strong evidence of ongoing MC activation, and their mediators and cell-cell signals are capable of regulating many facets of asthma pathophysiology. This article reviews the evidence behind this.
Collapse
Affiliation(s)
- P Bradding
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, UK
| | - G Arthur
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, UK
| |
Collapse
|
36
|
Yokoi S, Sakai H, Uchida A, Uemura Y, Sato K, Tsuruoka Y, Nishio Y, Matsunawa M, Suzuki Y, Isobe Y, Kato M, Inoue Y, Hoshikawa M, Miura I. Cytogenetic Study and Analysis of Protein Expression in Plasma Cell Myeloma with t(11;14)(q13;q32): Absence of BCL6 and SOX11, and Infrequent Expression of CD20 and PAX5. J Clin Exp Hematop 2016; 55:137-43. [PMID: 26763361 DOI: 10.3960/jslrt.55.137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The t(11;14)(q13;q32) translocation is the most common chromosomal translocation in plasma cell myeloma (PCM), but the cytogenetic and immunophenotypic features of PCM with t(11;14)(q13;q32) remain to be fully elucidated. To address the issue, we retrospectively analyzed 21 newly diagnosed PCM patients with the t(11;14)(q13;q32) translocation in our institute. CD20 is a B-cell-specific transmembrane protein that is the topic of much focus as a potential target in immunotherapy. We observed a low incidence of CD20 expression (2 of 21 patients, 11%), although the expression of CD20 was previously reported to be associated with t(11;14)(q13;q32). PAX5 is an essential transcriptional factor involved in B-cell development and commitment, and is down-regulated upon plasma cell differentiation. We observed one patient (6%) with expression of PAX5. The expression of CD19, CD56, and CD138 was detected in one (0.7%), nine (60%), and 13 patients (87%), respectively. Cyclin D1, CD38, and BCL2 were detected in all patients; on the other hand, neither BCL6 nor SOX11 was detected in any of the evaluated patients. Abnormalities of chromosome 13 were detected in six patients (38%), but deletion of TP53 was not observed in any of the evaluated patients. Our results suggest the absence of BCL6 and SOX11 expression, and infrequent expression of CD20, PAX5, and CD56 in PCM with t(11;14)(q13;q32), in contrast to the findings of earlier reports.
Collapse
Affiliation(s)
- Satoshi Yokoi
- Department of Pathology and Laboratory Medicine, Showa University School of Medicine
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Butler LM, Hallström BM, Fagerberg L, Pontén F, Uhlén M, Renné T, Odeberg J. Analysis of Body-wide Unfractionated Tissue Data to Identify a Core Human Endothelial Transcriptome. Cell Syst 2016; 3:287-301.e3. [PMID: 27641958 DOI: 10.1016/j.cels.2016.08.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/23/2016] [Accepted: 08/03/2016] [Indexed: 12/11/2022]
Abstract
Endothelial cells line blood vessels and regulate hemostasis, inflammation, and blood pressure. Proteins critical for these specialized functions tend to be predominantly expressed in endothelial cells across vascular beds. Here, we present a systems approach to identify a panel of human endothelial-enriched genes using global, body-wide transcriptomics data from 124 tissue samples from 32 organs. We identified known and unknown endothelial-enriched gene transcripts and used antibody-based profiling to confirm expression across vascular beds. The majority of identified transcripts could be detected in cultured endothelial cells from various vascular beds, and we observed maintenance of relative expression in early passage cells. In summary, we describe a widely applicable method to determine cell-type-specific transcriptome profiles in a whole-organism context, based on differential abundance across tissues. We identify potential vascular drug targets or endothelial biomarkers and highlight candidates for functional studies to increase understanding of the endothelium in health and disease.
Collapse
Affiliation(s)
- Lynn Marie Butler
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; Clinical Chemistry and Blood Coagulation, Department of Molecular Medicine and Surgery, Karolinska Institute, 171 76 Stockholm, Sweden.
| | - Björn Mikael Hallström
- Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology (KTH), 171 21 Stockholm, Sweden
| | - Linn Fagerberg
- Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology (KTH), 171 21 Stockholm, Sweden
| | - Fredrik Pontén
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology (KTH), 171 21 Stockholm, Sweden
| | - Thomas Renné
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; Clinical Chemistry and Blood Coagulation, Department of Molecular Medicine and Surgery, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Jacob Odeberg
- Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology (KTH), 171 21 Stockholm, Sweden; Coagulation Unit, Centre for Hematology, Karolinska University Hospital, 171 76 Stockholm, Sweden
| |
Collapse
|
38
|
Kajiwara Y, McKenzie A, Dorr N, Gama Sosa MA, Elder G, Schmeidler J, Dickstein DL, Bozdagi O, Zhang B, Buxbaum JD. The human-specific CASP4 gene product contributes to Alzheimer-related synaptic and behavioural deficits. Hum Mol Genet 2016; 25:4315-4327. [PMID: 27516385 DOI: 10.1093/hmg/ddw265] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/09/2016] [Accepted: 07/28/2016] [Indexed: 12/13/2022] Open
Abstract
Recent studies have indicated that innate immune signalling molecules are involved in late-onset Alzheimer's disease (LOAD) risk. Amyloid beta (Aβ) accumulates in AD brain, and has been proposed to act as a trigger of innate immune responses. Caspase-4 is an important part of the innate immune response. We recently characterized transgenic mice carrying human CASP4, and observed that the mice manifested profound innate immune responses to lipopolysaccharide (LPS). Since these inflammatory processes are important in the aetiology of AD, we have now analysed the correlation of expression of caspase-4 in human brain with AD risk genes, and studied caspase-4 effects on AD-related phenotypes in APPswe/PS1deltaE9 (APP/PS1) mice. We observed that the expression of caspase-4 was strongly correlated with AD risk genes including TYROBP, TREM2, CR1, PSEN1, MS4A4A and MS4A6A in LOAD brains. Caspase-4 expression was upregulated in CASP4/APP/PS1 mice in a region-specific manner, including hippocampus and prefrontal cortex. In APP/PS1 mice, caspase-4 expression led to impairments in the reversal phase of a Barnes maze task and in hippocampal synaptic plasticity, without affecting soluble or aggregated Aβ levels. Caspase-4 was expressed predominantly in microglial cells, and in the presence of CASP4, more microglia were clustered around amyloid plaques. Furthermore, our data indicated that caspase-4 modulates microglial cells in a manner that increases proinflammatory processes. We propose that microglial caspase-4 expression contributes to the cognitive impairments in AD, and that further study of caspase-4 will enhance our understanding of AD pathogenesis and may lead to novel therapeutic targets in AD.
Collapse
Affiliation(s)
| | - Andrew McKenzie
- Department of Genetics and Genomic Sciences.,Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, USA
| | | | | | - Gregory Elder
- Department of Psychiatry.,Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA.,Department of Neurology
| | | | - Dara L Dickstein
- Department of Neuroscience.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Bin Zhang
- Department of Genetics and Genomic Sciences.,Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Joseph D Buxbaum
- Department of Psychiatry .,Department of Genetics and Genomic Sciences.,Department of Neuroscience.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
39
|
Ghani M, Sato C, Kakhki EG, Gibbs JR, Traynor B, St George-Hyslop P, Rogaeva E. Mutation analysis of the MS4A and TREM gene clusters in a case-control Alzheimer's disease data set. Neurobiol Aging 2016; 42:217.e7-217.e13. [PMID: 27084067 DOI: 10.1016/j.neurobiolaging.2016.03.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/10/2016] [Accepted: 03/13/2016] [Indexed: 11/28/2022]
Abstract
Genome wide association studies have identified an association between Alzheimer's disease (AD) and common polymorphisms in the MS4A and TREM loci (each containing a cluster of homologous genes) and should be thoroughly investigated for the presence of potentially functional variations. We conducted a mutation analysis by next generation sequencing of 15 genes within the MS4A and TREM gene clusters; and catalogued rare coding variants detected in a North American data set of 210 cases and 233 controls. Investigation of the 5 homologues genes in the TREM locus revealed potentially damaging rare variants in TREM2, TREML1, TREML2, and TREML4. In agreement with a previous report, we observed a significant enrichment of TREM2-damaging missense substitutions in cases (N = 9; 4.2%) compared with controls (N=2; 0.9%; p = 0.010; after Yates' correction p = 0.022). Among known AD-associated TREM2 substitutions, we detected p.R47H, p.D87N, and p.H157Y affecting both TREM2 isoforms (NM_018965 and NM_001271821). In addition, we identified 2 cases with novel TREM2 variants (p.L205P and p.G219C), which mapped only to the isoform NM_001271821 at the C-terminus. Investigation of the MS4A gene cluster revealed that potentially damaging missense substitutions and loss-of-function variants were twice as frequent in controls (N = 19; 8.2%) than cases (N = 9; 4.3%), generating a nominally significant result (p = 0.047; after Yates' correction p = 0.07). Validation of our observation in large data sets might address the question whether such variants could contribute to the protective effect of the minor alleles of Genome wide association study-significant single nucleotide polymorphisms at the MS4A locus.
Collapse
Affiliation(s)
- Mahdi Ghani
- Tanz Centre for Research in Neurodegenerative Diseases, and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Christine Sato
- Tanz Centre for Research in Neurodegenerative Diseases, and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Erfan Ghani Kakhki
- Tanz Centre for Research in Neurodegenerative Diseases, and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - J Raphael Gibbs
- Computational Biology Core, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Bryan Traynor
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Peter St George-Hyslop
- Tanz Centre for Research in Neurodegenerative Diseases, and Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, and Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
40
|
Abstract
Late-onset Alzheimer's disease (AD), a highly prevalent neurodegenerative disorder characterized by progressive deterioration in cognition, function and behavior terminating in incapacity and death, is a clinically and pathologically heterogeneous disease with a substantial heritable component. During the past 5 years, the technological developments in next-generation high-throughput genome technologies have led to the identification of more than 20 novel susceptibility loci for AD, and have implicated specific pathways in the disease, in particular intracellular trafficking/endocytosis, inflammation and immune response and lipid metabolism. These observations have significantly advanced our understanding of underlying pathogenic mechanisms and potential therapeutic targets. This review article summarizes these recent advances in AD genomics and discusses the value of identified susceptibility loci for diagnosis and prognosis of AD.
Collapse
|
41
|
Cuajungco MP, Silva J, Habibi A, Valadez JA. The mucolipin-2 (TRPML2) ion channel: a tissue-specific protein crucial to normal cell function. Pflugers Arch 2015; 468:177-92. [PMID: 26336837 DOI: 10.1007/s00424-015-1732-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 08/25/2015] [Accepted: 08/27/2015] [Indexed: 12/26/2022]
Abstract
The discovery of the TRPML subfamily of ion channels has created an exciting niche in the fields of membrane trafficking, signal transduction, autophagy, and metal homeostasis. The TRPML protein subfamily consists of three members, TRPML1, TRPML2, and TRPML3, which are encoded by MCOLN1, MCOLN2, and MCOLN3 genes, respectively. They are non-selective cation channels with six predicted transmembrane domains and intracellular amino- and carboxyl-terminus regions. They localize to the plasma membrane, endosomes, and lysosomes of cells. TRPML1 is associated with the human lysosomal storage disease known as mucolipidosis type IV (MLIV), but TRPML2 and TRPML3 have not been linked with a human disease. Although TRPML1 is expressed in many tissues, TRPML3 is expressed in a varied but limited set of tissues, while TRPML2 has a more limited expression pattern where it is mostly detected in lymphoid and myeloid tissues. This review focuses on TRPML2 because it appears to play an important, yet unrecognized role in the immune system. While the evidence has been mostly indirect, we present and discuss relevant data that strengthen the connection of TRPML2 with cellular immunity. We also discuss the functional redundancy between the TRPML proteins, and how such features could be exploited as a potential therapeutic strategy for MLIV disease. We present evidence that TRPML2 expression may complement certain phenotypic alterations in MLIV cells and briefly examine the challenges of functional complementation. In conclusion, the function of TRPML2 still remains obscure, but emerging data show that it may serve a critical role in immune cell development and inflammatory responses.
Collapse
Affiliation(s)
- Math P Cuajungco
- Department of Biological Science, California State University Fullerton, 800 N. State College Blvd., Fullerton, CA, 92831, USA. .,Center for Applied Biotechnology Studies, California State University Fullerton, Fullerton, CA, 92831, USA.
| | - Joshua Silva
- Department of Biological Science, California State University Fullerton, 800 N. State College Blvd., Fullerton, CA, 92831, USA
| | - Ania Habibi
- Department of Biological Science, California State University Fullerton, 800 N. State College Blvd., Fullerton, CA, 92831, USA
| | - Jessica A Valadez
- Department of Biological Science, California State University Fullerton, 800 N. State College Blvd., Fullerton, CA, 92831, USA
| |
Collapse
|
42
|
Houlahan KE, Prokopec SD, Sun RX, Moffat ID, Lindén J, Lensu S, Okey AB, Pohjanvirta R, Boutros PC. Transcriptional profiling of rat white adipose tissue response to 2,3,7,8-tetrachlorodibenzo-ρ-dioxin. Toxicol Appl Pharmacol 2015; 288:223-31. [PMID: 26232522 DOI: 10.1016/j.taap.2015.07.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/18/2015] [Accepted: 07/21/2015] [Indexed: 12/21/2022]
Abstract
Polychlorinated dibenzodioxins are environmental contaminants commonly produced as a by-product of industrial processes. The most potent of these, 2,3,7,8-tetrachlorodibenzo-ρ-dioxin (TCDD), is highly lipophilic, leading to bioaccumulation. White adipose tissue (WAT) is a major site for energy storage, and is one of the organs in which TCDD accumulates. In laboratory animals, exposure to TCDD causes numerous metabolic abnormalities, including a wasting syndrome. We therefore investigated the molecular effects of TCDD exposure on WAT by profiling the transcriptomic response of WAT to 100μg/kg of TCDD at 1 or 4days in TCDD-sensitive Long-Evans (Turku/AB; L-E) rats. A comparative analysis was conducted simultaneously in identically treated TCDD-resistant Han/Wistar (Kuopio; H/W) rats one day after exposure to the same dose. We sought to identify transcriptomic changes coinciding with the onset of toxicity, while gaining additional insight into later responses. More transcriptional responses to TCDD were observed at 4days than at 1day post-exposure, suggesting WAT shows mostly secondary responses. Two classic AHR-regulated genes, Cyp1a1 and Nqo1, were significantly induced by TCDD in both strains, while several genes involved in the immune response, including Ms4a7 and F13a1 were altered in L-E rats alone. We compared genes affected by TCDD in rat WAT and human adipose cells, and observed little overlap. Interestingly, very few genes involved in lipid metabolism exhibited altered expression levels despite the pronounced lipid mobilization from peripheral fat pads by TCDD in L-E rats. Of these genes, the lipolysis-associated Lpin1 was induced slightly over 2-fold in L-E rat WAT on day 4.
Collapse
Affiliation(s)
- Kathleen E Houlahan
- Informatics and Bio-Computing Program, Ontario Institute for Cancer Research, Toronto, Canada
| | - Stephenie D Prokopec
- Informatics and Bio-Computing Program, Ontario Institute for Cancer Research, Toronto, Canada
| | - Ren X Sun
- Informatics and Bio-Computing Program, Ontario Institute for Cancer Research, Toronto, Canada
| | - Ivy D Moffat
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Canada
| | - Jere Lindén
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Sanna Lensu
- Department of Biology of Physical Activity, University of Jyväskylä, Jyväskylä, Finland; Department of Environmental Health, National Institute for Health and Welfare, Kuopio, Finland
| | - Allan B Okey
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Canada
| | - Raimo Pohjanvirta
- Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland.
| | - Paul C Boutros
- Informatics and Bio-Computing Program, Ontario Institute for Cancer Research, Toronto, Canada; Department of Pharmacology & Toxicology, University of Toronto, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada.
| |
Collapse
|
43
|
Abstract
The past two decades of research into the pathogenesis of Alzheimer disease (AD) have been driven largely by the amyloid hypothesis; the neuroinflammation that is associated with AD has been assumed to be merely a response to pathophysiological events. However, new data from preclinical and clinical studies have established that immune system-mediated actions in fact contribute to and drive AD pathogenesis. These insights have suggested both novel and well-defined potential therapeutic targets for AD, including microglia and several cytokines. In addition, as inflammation in AD primarily concerns the innate immune system - unlike in 'typical' neuroinflammatory diseases such as multiple sclerosis and encephalitides - the concept of neuroinflammation in AD may need refinement.
Collapse
|
44
|
Mast cells in airway diseases and interstitial lung disease. Eur J Pharmacol 2015; 778:125-38. [PMID: 25959386 DOI: 10.1016/j.ejphar.2015.04.046] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 04/01/2015] [Accepted: 04/07/2015] [Indexed: 12/31/2022]
Abstract
Mast cells are major effector cells of inflammation and there is strong evidence that mast cells play a significant role in asthma pathophysiology. There is also a growing body of evidence that mast cells contribute to other inflammatory and fibrotic lung diseases such as chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. This review discusses the role that mast cells play in airway diseases and highlights how mast cell microlocalisation within specific lung compartments and their cellular interactions are likely to be critical for their effector function in disease.
Collapse
|
45
|
Heneka MT, Golenbock DT, Latz E. Innate immunity in Alzheimer's disease. Nat Immunol 2015; 16:229-36. [PMID: 25689443 DOI: 10.1038/ni.3102] [Citation(s) in RCA: 562] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/13/2015] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is the world's most common dementing illness, affecting over 150 million patients. Classically AD has been viewed as a neurodegenerative disease of the elderly, characterized by the extracellular deposition of misfolded amyloid-β (Aβ) peptide and the intracellular formation of neurofibrillary tangles. Only recently has neuroinflammation emerged as an important component of AD pathology. Experimental, genetic and epidemiological data now indicate a crucial role for activation of the innate immune system as a disease-promoting factor. The sustained formation and deposition of Aβ aggregates causes chronic activation of the immune system and disturbance of microglial clearance functions. Here we review advances in the molecular understanding of the inflammatory response in AD that point to novel therapeutic approaches for the treatment of this devastating disease.
Collapse
Affiliation(s)
- Michael T Heneka
- 1] Clinical Neuroscience, Department of Neurology, University of Bonn, Bonn, Germany. [2] Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA. [3] German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Douglas T Golenbock
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Eicke Latz
- 1] Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA. [2] German Center for Neurodegenerative Diseases, Bonn, Germany. [3] Institute of Innate Immunology, University of Bonn, Bonn, Germany
| |
Collapse
|
46
|
Tatebayashi K, Yamamoto K, Nagoya M, Takayama T, Nishimura A, Sakurai M, Momma T, Saito H. Osmosensing and scaffolding functions of the oligomeric four-transmembrane domain osmosensor Sho1. Nat Commun 2015; 6:6975. [PMID: 25898136 PMCID: PMC4411306 DOI: 10.1038/ncomms7975] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 03/18/2015] [Indexed: 11/09/2022] Open
Abstract
The yeast high osmolarity glycerol (HOG) pathway activates the Hog1 MAP kinase, which coordinates adaptation to high osmolarity conditions. Here we demonstrate that the four-transmembrane (TM) domain protein Sho1 is an osmosensor in the HKR1 sub-branch of the HOG pathway. Crosslinking studies indicate that Sho1 forms planar oligomers of the dimers-of-trimers architecture by dimerizing at the TM1/TM4 interface and trimerizing at the TM2/TM3 interface. High external osmolarity induces structural changes in the Sho1 TM domains and Sho1 binding to the cytoplasmic adaptor protein Ste50, which leads to Hog1 activation. Besides its osmosensing function, the Sho1 oligomer serves as a scaffold. By binding to the TM proteins Opy2 and Hkr1 at the TM1/TM4 and TM2/TM3 interface, respectively, Sho1 forms a multi-component signalling complex that is essential for Hog1 activation. Our results illuminate how the four TM domains of Sho1 dictate the oligomer structure as well as its osmosensing and scaffolding functions.
Collapse
Affiliation(s)
- Kazuo Tatebayashi
- Division of Molecular Cell Signaling, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Katsuyoshi Yamamoto
- Division of Molecular Cell Signaling, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Miho Nagoya
- Division of Molecular Cell Signaling, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Tomomi Takayama
- Division of Molecular Cell Signaling, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Akiko Nishimura
- Division of Molecular Cell Signaling, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Megumi Sakurai
- Division of Molecular Cell Signaling, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takashi Momma
- Division of Molecular Cell Signaling, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Haruo Saito
- Division of Molecular Cell Signaling, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
47
|
The MS4A family: counting past 1, 2 and 3. Immunol Cell Biol 2015; 94:11-23. [PMID: 25835430 DOI: 10.1038/icb.2015.48] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/27/2015] [Accepted: 03/28/2015] [Indexed: 02/01/2023]
Abstract
The MS4A (membrane-spanning 4-domain family, subfamily A) family of proteins contains some well-known members including MS4A1 (CD20), MS4A2 (FcɛRIβ) and MS4A3 (HTm4). These three MS4A family members are expressed on the cell surface of specific leukocyte subsets and have been well characterized as having key roles in regulating cell activation, growth and development. However, beyond MS4A1-3 there are a large number of related molecules (18 to date in humans) where our understanding of their biological roles is at a relatively nascent stage. This review examines the larger MS4A family focusing on their structure, expression, regulation and characterized and/or emerging biological roles. Our own work on one family member MS4A8B, and its possible role in epithelial cell regulation, is also highlighted.
Collapse
|
48
|
Cruse G, Beaven MA, Music SC, Bradding P, Gilfillan AM, Metcalfe DD. The CD20 homologue MS4A4 directs trafficking of KIT toward clathrin-independent endocytosis pathways and thus regulates receptor signaling and recycling. Mol Biol Cell 2015; 26:1711-27. [PMID: 25717186 PMCID: PMC4436782 DOI: 10.1091/mbc.e14-07-1221] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 02/18/2015] [Indexed: 01/29/2023] Open
Abstract
MS4A4 traffics through endocytic recycling pathways and stabilizes surface KIT expression by regulating endocytosis and recycling. Silencing MS4A4 reduces KIT recruitment to lipid raft microdomains and PLCg1 signaling while promoting AKT signaling, cell migration, and proliferation. This study is the first to describe functions for human MS4A4. MS4A family members differentially regulate the cell cycle, and aberrant, or loss of, expression of MS4A family proteins has been observed in colon and lung cancer. However, the precise functions of MS4A family proteins and their mechanistic interactions remain unsolved. Here we report that MS4A4 facilitates trafficking of the receptor tyrosine kinase KIT through endocytic recycling rather than degradation pathways by a mechanism that involves recruitment of KIT to caveolin-1–enriched microdomains. Silencing of MS4A4 in human mast cells altered ligand-induced KIT endocytosis pathways and reduced receptor recycling to the cell surface, thus promoting KIT signaling in the endosomes while reducing that in the plasma membrane, as exemplified by Akt and PLCγ1 phosphorylation, respectively. The altered endocytic trafficking of KIT also resulted in an increase in SCF-induced mast cell proliferation and migration, which may reflect altered signaling in these cells. Our data reveal a novel function for MS4A family proteins in regulating trafficking and signaling, which could have implications in both proliferative and immunological diseases.
Collapse
Affiliation(s)
- Glenn Cruse
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Michael A Beaven
- Laboratory of Molecular Immunology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Stephen C Music
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Peter Bradding
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Glenfield Hospital, Leicester LE3 9QP, United Kingdom
| | - Alasdair M Gilfillan
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Dean D Metcalfe
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
49
|
Abstract
The triggering of innate immune mechanisms is emerging as a crucial component of major neurodegenerative diseases. Microglia and other cell types in the brain can be activated in response to misfolded proteins or aberrantly localized nucleic acids. This diverts microglia from their physiological and beneficial functions, and leads to their sustained release of pro-inflammatory mediators. In this Review, we discuss how the activation of innate immune signalling pathways - in particular, the NOD-, LRR- and pyrin domain-containing 3 (NLRP3) inflammasome - by aberrant host proteins may be a common step in the development of diverse neurodegenerative disorders. During chronic activation of microglia, the sustained exposure of neurons to pro-inflammatory mediators can cause neuronal dysfunction and contribute to cell death. As chronic neuroinflammation is observed at relatively early stages of neurodegenerative disease, targeting the mechanisms that drive this process may be useful for diagnostic and therapeutic purposes.
Collapse
|
50
|
Seminal plasma proteins of adult boars and correlations with sperm parameters. Theriogenology 2014; 82:697-707. [DOI: 10.1016/j.theriogenology.2014.05.024] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 05/28/2014] [Accepted: 05/28/2014] [Indexed: 01/31/2023]
|