1
|
Li L, Xu Q, Tang C. RGS proteins and their roles in cancer: friend or foe? Cancer Cell Int 2023; 23:81. [PMID: 37118788 PMCID: PMC10148553 DOI: 10.1186/s12935-023-02932-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023] Open
Abstract
As negative modulators of G-protein-coupled receptors (GPCRs) signaling, regulators of G protein signaling (RGS) proteins facilitate various downstream cellular signalings through regulating kinds of heterotrimeric G proteins by stimulating the guanosine triphosphatase (GTPase) activity of G-protein α (Gα) subunits. The expression of RGS proteins is dynamically and precisely mediated by several different mechanisms including epigenetic regulation, transcriptional regulation -and post-translational regulation. Emerging evidence has shown that RGS proteins act as important mediators in controlling essential cellular processes including cell proliferation, survival -and death via regulating downstream cellular signaling activities, indicating that RGS proteins are fundamentally involved in sustaining normal physiological functions and dysregulation of RGS proteins (such as aberrant expression of RGS proteins) is closely associated with pathologies of many diseases such as cancer. In this review, we summarize the molecular mechanisms governing the expression of RGS proteins, and further discuss the relationship of RGS proteins and cancer.
Collapse
Affiliation(s)
- Lin Li
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Rd., Hangzhou, 310052, People's Republic of China
- Department of Urology, Third Affiliated Hospital of the Second Military Medical University, Shanghai, 201805, China
| | - Qiang Xu
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Rd., Hangzhou, 310052, People's Republic of China
| | - Chao Tang
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Rd., Hangzhou, 310052, People's Republic of China.
| |
Collapse
|
2
|
RASAL1 and ROS1 Gene Variants in Hereditary Breast Cancer. Cancers (Basel) 2020; 12:cancers12092539. [PMID: 32906649 PMCID: PMC7563829 DOI: 10.3390/cancers12092539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/27/2020] [Accepted: 09/03/2020] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Breast cancer is the second leading cause of death in women. Identifying novel genetic factors conferring BC predisposition is crucial to predict who is at increased risk of developing the disease, allowing for early detection and therapy, and optimized patient management. We identified germline pathogenic variants in familial breast cancer patients in ROS1 and RASAL1 genes. Further analysis in independent patient group will help understanding the role of these novel genes in breast cancer predisposition. Abstract Breast cancer (BC) is the second leading cause of death in women. BC patients with family history or clinical features suggestive of inherited predisposition are candidate to genetic testing to determine whether a hereditary cancer syndrome is present. We aimed to identify new predisposing variants in familial BC patients using next-generation sequencing approaches. We performed whole exome sequencing (WES) in first-degree cousin pairs affected by hereditary BC negative at the BRCA1/2 (BReast CAncer gene 1/2) testing. Targeted analysis, for the genes resulting mutated via WES, was performed in additional 131 independent patients with a suspected hereditary predisposition (negative at the BRCA1/2 testing). We retrieved sequencing data for the mutated genes from WES of 197 Italian unrelated controls to perform a case-controls collapsing analysis. We found damaging variants in NPL (N-Acetylneuraminate Pyruvate Lyase), POLN (DNA Polymerase Nu), RASAL1 (RAS Protein Activator Like 1) and ROS1 (ROS Proto-Oncogene 1, Receptor Tyrosine Kinase), shared by the corresponding cousin pairs. We demonstrated that the splice site alterations identified in NPL and ROS1 (in two different pairs, respectively) impaired the formation of the correct transcripts. Target analysis in additional patients identified novel and rare damaging variants in RASAL1 and ROS1, with a significant allele frequency increase in cases. Moreover, ROS1 achieved a significantly higher proportion of variants among cases in comparison to our internal control database of Italian subjects (p = 0.0401). Our findings indicate that germline variants in ROS1 and RASAL1 might confer susceptibility to BC.
Collapse
|
3
|
Jiang Y, Chen S, Wang X, Liu M, Iacono WG, Hewitt JK, Hokanson JE, Krauter K, Laakso M, Li KW, Lutz SM, McGue M, Pandit A, Zajac GJ, Boehnke M, Abecasis GR, Vrieze SI, Jiang B, Zhan X, Liu DJ. Association Analysis and Meta-Analysis of Multi-Allelic Variants for Large-Scale Sequence Data. Genes (Basel) 2020; 11:genes11050586. [PMID: 32466134 PMCID: PMC7288273 DOI: 10.3390/genes11050586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 11/16/2022] Open
Abstract
There is great interest in understanding the impact of rare variants in human diseases using large sequence datasets. In deep sequence datasets of >10,000 samples, ~10% of the variant sites are observed to be multi-allelic. Many of the multi-allelic variants have been shown to be functional and disease-relevant. Proper analysis of multi-allelic variants is critical to the success of a sequencing study, but existing methods do not properly handle multi-allelic variants and can produce highly misleading association results. We discuss practical issues and methods to encode multi-allelic sites, conduct single-variant and gene-level association analyses, and perform meta-analysis for multi-allelic variants. We evaluated these methods through extensive simulations and the study of a large meta-analysis of ~18,000 samples on the cigarettes-per-day phenotype. We showed that our joint modeling approach provided an unbiased estimate of genetic effects, greatly improved the power of single-variant association tests among methods that can properly estimate allele effects, and enhanced gene-level tests over existing approaches. Software packages implementing these methods are available online.
Collapse
Affiliation(s)
- Yu Jiang
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA 17033, USA; (Y.J.); (X.W.); (D.J.L.)
| | - Sai Chen
- Illumina Inc., 5200 Illuminay Way, San Diego, CA 92122, USA;
| | - Xingyan Wang
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA 17033, USA; (Y.J.); (X.W.); (D.J.L.)
| | - Mengzhen Liu
- Department of Psychology, University of Minnesota, Minneapolis, MN 55454, USA; (M.L.); (M.M.); (S.I.V.)
| | - William G. Iacono
- Department of Psychiatry, University of Minnesota, Minneapolis, MN 55454, USA;
| | - John K. Hewitt
- Institute for Behavioral Genetics, University of Colorado Boulder, Aurora, CO 80045, USA; (J.K.H.); (K.K.)
| | - John E. Hokanson
- Department of Epidemiology, School of Public Health, University of Colorado Denver, Aurora, CO 80045, USA;
| | - Kenneth Krauter
- Institute for Behavioral Genetics, University of Colorado Boulder, Aurora, CO 80045, USA; (J.K.H.); (K.K.)
| | - Markku Laakso
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, 70211 Kuopio, Finland;
| | - Kevin W. Li
- Center of Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA; (K.W.L.); (A.P.); (G.J.M.Z.); (M.B.); (G.R.A.)
| | - Sharon M. Lutz
- Department of Biostatistics and Informatics, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Matthew McGue
- Department of Psychology, University of Minnesota, Minneapolis, MN 55454, USA; (M.L.); (M.M.); (S.I.V.)
| | - Anita Pandit
- Center of Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA; (K.W.L.); (A.P.); (G.J.M.Z.); (M.B.); (G.R.A.)
| | - Gregory J.M. Zajac
- Center of Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA; (K.W.L.); (A.P.); (G.J.M.Z.); (M.B.); (G.R.A.)
| | - Michael Boehnke
- Center of Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA; (K.W.L.); (A.P.); (G.J.M.Z.); (M.B.); (G.R.A.)
| | - Goncalo R. Abecasis
- Center of Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA; (K.W.L.); (A.P.); (G.J.M.Z.); (M.B.); (G.R.A.)
| | - Scott I. Vrieze
- Department of Psychology, University of Minnesota, Minneapolis, MN 55454, USA; (M.L.); (M.M.); (S.I.V.)
| | - Bibo Jiang
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA 17033, USA; (Y.J.); (X.W.); (D.J.L.)
- Correspondence: (B.J.); (X.Z.)
| | - Xiaowei Zhan
- Department of Clinical Science, Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence: (B.J.); (X.Z.)
| | - Dajiang J. Liu
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA 17033, USA; (Y.J.); (X.W.); (D.J.L.)
| |
Collapse
|
4
|
Sammut SJ, Feichtinger J, Stuart N, Wakeman JA, Larcombe L, McFarlane RJ. A novel cohort of cancer-testis biomarker genes revealed through meta-analysis of clinical data sets. Oncoscience 2014; 1:349-359. [PMID: 25594029 PMCID: PMC4278308 DOI: 10.18632/oncoscience.37] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 05/06/2014] [Indexed: 12/12/2022] Open
Abstract
The identification of cancer-specific biomolecules is of fundamental importance to the development of diagnostic and/or prognostic markers, which may also serve as therapeutic targets. Some antigenic proteins are only normally present in male gametogenic tissues in the testis and not in normal somatic cells. When these proteins are aberrantly produced in cancer they are referred to as cancer/testis (CT) antigens (CTAs). Some CTA genes have been proven to encode immunogenic proteins that have been used as successful immunotherapy targets for various forms of cancer and have been implicated as drug targets. Here, a targeted in silico analysis of cancer expressed sequence tag (EST) data sets resulted in the identification of a significant number of novel CT genes. The expression profiles of these genes were validated in a range of normal and cancerous cell types. Subsequent meta-analysis of gene expression microarray data sets demonstrates that these genes are clinically relevant as cancer-specific biomarkers, which could pave the way for the discovery of new therapies and/or diagnostic/prognostic monitoring technologies.
Collapse
Affiliation(s)
| | - Julia Feichtinger
- Institute for Knowledge Discovery, Graz University of Technology, Austria.,Core Facility Bioinformatics, Austrian Centre of Industrial Biotechnology, Austria
| | | | - Jane A Wakeman
- North West Cancer Research Institute, Bangor University, Bangor, UK
| | - Lee Larcombe
- North West Cancer Research Institute, Bangor University, Bangor, UK
| | - Ramsay J McFarlane
- North West Cancer Research Institute, Bangor University, Bangor, UK.,NISCHR Cancer Genetics Biomedical Research Unit
| |
Collapse
|
5
|
Liu M, Shi X, Bi Y, Qi L, Guo X, Wang L, Zhou Z, Sha J. SHCBP1L, a conserved protein in mammals, is predominantly expressed in male germ cells and maintains spindle stability during meiosis in testis. Mol Hum Reprod 2014; 20:463-75. [PMID: 24557841 DOI: 10.1093/molehr/gau014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Male subfertility due to falling sperm counts has become an increasing problem over a short timescale (50-70 years). Recently, bioinformatics analysis of the human testis proteome has revealed the existence of human-testicular-predominantly-expressed-proteins, which are highly associated with spermatogenesis, although the functions of many of these proteins are still unknown. To understand the function of one of these proteins, SHCBP1L (1700012A16RIKEN), a knockout mouse was produced in which this gene was removed. Using this model, we showed that SHCBP1L binds to another protein, HSPA2, and maintains stability of the spindle. We showed that this complex was not present in knockout mice and that an abnormal number of spermatocytes were held in the early stages of meiosis. Many of these cells were undergoing programmed cell-death, or apoptosis, which is highly unusual for cells during the early stages of meiosis. We also found that proteins very similar to SHCBP1L exist in many other mammals. This led us to propose that SHCBP1L plays an important role in spermatogenesis in mammals.
Collapse
Affiliation(s)
- Mingxi Liu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Xiaodan Shi
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Ye Bi
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Lin Qi
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Lei Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Zuomin Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Jiahao Sha
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| |
Collapse
|
6
|
LI HONGQI, FENG ZHIQIANG, WU WEIZHANG, LI JING, ZHANG JINQIAN, XIA TINGYI. SIRT3 regulates cell proliferation and apoptosis related to energy metabolism in non-small cell lung cancer cells through deacetylation of NMNAT2. Int J Oncol 2013; 43:1420-30. [PMID: 24042441 PMCID: PMC3823398 DOI: 10.3892/ijo.2013.2103] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/04/2013] [Indexed: 11/06/2022] Open
Abstract
Lung cancer is the leading cause of death worldwide and associated with dismal prognoses. As a major mitochondrial deacetylase, SIRT3 regulates the activity of enzymes to coordinate global shifts in cellular metabolism and has important implications for tumor growth. Its role as a tumor suppressor or an oncogene in lung cancer is unclear, especially in non-small cell lung carcinoma (NSCLC). To identify the mechanism of SIRT3-interacting proteins, we performed a yeast two-hybrid screen using a human lung cDNA library. One of the positive clones encoded the full-length cDNA of the nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) gene and the interaction between SIRT3 and NMNAT2 was identified. The interaction on growth, proliferation, apoptosis of NSCLC cell lines, and energy metabolism related to SIRT3 were investigated. Screening from the library resulted in NMNAT2 gene. We found that NMNAT2 interacts with SIRT3 both in vitro and in vivo; SIRT3 binds to NMNAT2 deacetylating it. Downregulation of SIRT3 inhibited acetylation of NMNAT2 and NAD+ synthesis activity of the enzyme. Low expression of SIRT3 significantly inhibited mitotic entry, growth and proliferation of NSCLC cell lines and promoted apoptosis, which was related to energy metabolism involving in the interaction between SIRT3 and NMNAT2. Taken together, our results strongly suggest that the binding of SIRT3 with NMNAT2 is a novel regulator of cell proliferation and apoptosis in NSCLC cell lines, implicating the interaction between SIRT3 and NMNAT2, energy metabolism associated with SIRT3.
Collapse
Affiliation(s)
- HONGQI LI
- Department of Radiation Oncology, Air Force General Hospital, Beijing 100142
- Department of Radiation Oncology, Daping Hospital, The Third Military Medical University, Chongqing 400030
| | - ZHIQIANG FENG
- Department of Radiation Oncology, Air Force General Hospital, Beijing 100142
| | - WEIZHANG WU
- Department of Radiation Oncology, Air Force General Hospital, Beijing 100142
| | - JING LI
- Department of Radiation Oncology, Air Force General Hospital, Beijing 100142
| | - JINQIAN ZHANG
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015
| | - TINGYI XIA
- Department of Radiation Oncology, Air Force General Hospital, Beijing 100142
- Department of Radiation Oncology, The General Hospital of Chinese People’s Liberation Army, Beijing 100853,
P.R. China
| |
Collapse
|
7
|
Di Stefano M, Conforti L. Diversification of NAD biological role: the importance of location. FEBS J 2013; 280:4711-28. [PMID: 23848828 DOI: 10.1111/febs.12433] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 07/08/2013] [Indexed: 02/03/2023]
Abstract
Over 100 years after its first discovery, several new aspects of the biology of the redox co-factor NAD are rapidly emerging. NAD, as well as its precursors, its derivatives, and its metabolic enzymes, have been recently shown to play a determinant role in a variety of biological functions, from the classical role in oxidative phosphorylation and redox reactions to a role in regulation of gene transcription, lifespan and cell death, from a role in neurotransmission to a role in axon degeneration, and from a function in regulation of glucose homeostasis to that of control of circadian rhythm. It is also becoming clear that this variety of specialized functions is regulated by the fine subcellular localization of NAD, its related nucleotides and its metabolic enzymatic machinery. Here we describe the known NAD biosynthetic and catabolic pathways, and review evidence supporting a specialized role for NAD metabolism in a subcellular compartment-dependent manner.
Collapse
Affiliation(s)
- Michele Di Stefano
- School of Biomedical Sciences, University of Nottingham Medical School, Queen's Medical Centre, UK
| | | |
Collapse
|
8
|
From notochord formation to hereditary chordoma: the many roles of Brachyury. BIOMED RESEARCH INTERNATIONAL 2013; 2013:826435. [PMID: 23662285 PMCID: PMC3626178 DOI: 10.1155/2013/826435] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/22/2013] [Indexed: 12/25/2022]
Abstract
Chordoma is a rare, but often malignant, bone cancer that preferentially affects the axial skeleton and the skull base. These tumors are both sporadic and hereditary and appear to occur more frequently after the fourth decade of life; however, modern technologies have increased the detection of pediatric chordomas. Chordomas originate from remnants of the notochord, the main embryonic axial structure that precedes the backbone, and share with notochord cells both histological features and the expression of characteristic genes. One such gene is Brachyury, which encodes for a sequence-specific transcription factor. Known for decades as a main regulator of notochord formation, Brachyury has recently gained interest as a biomarker and causative agent of chordoma, and therefore as a promising therapeutic target. Here, we review the main characteristics of chordoma, the molecular markers, and the clinical approaches currently available for the early detection and possible treatment of this cancer. In particular, we report on the current knowledge of the role of Brachyury and of its possible mechanisms of action in both notochord formation and chordoma etiogenesis.
Collapse
|
9
|
Marsh DJ, Hahn MA, Howell VM, Gill AJ. Molecular diagnosis of primary hyperparathyroidism in familial cancer syndromes. ACTA ACUST UNITED AC 2013; 1:377-92. [PMID: 23489357 DOI: 10.1517/17530059.1.3.377] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In the last few years, causative genes have been identified for most of the familial hyperparathyroidism conditions. Germline mutations in the tumour suppressors multiple endocrine neoplasia type 1 (MEN1) and hyperparathyroidism 2 (HRPT2) provide a molecular diagnosis of multiple endocrine neoplasia type 1 and hyperparathyroidism jaw tumour syndrome, respectively. Germline mutations in the proto-oncogene RET (rearranged during transfection) provide a molecular diagnosis of multiple endocrine neoplasia type 2. Germline mutations of both MEN1 and, less frequently HRPT2, have been found in familial isolated hyperparathyroidism. A molecular diagnosis can now be incorporated into the management of patients with these conditions, however, the ease of diagnostics and value of genetic information in the context of clinical screening and early surgical intervention varies between these disorders. This review focuses on familial hyperparathyroidism and its known causative genes in the setting of neoplastic syndromes, with particular discussion of recent developments in the molecular diagnosis of parathyroid carcinoma.
Collapse
Affiliation(s)
- Deborah J Marsh
- University of Sydney, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW 2065, Australia +61 2 9926 8486 ; +61 2 9926 8484 ;
| | | | | | | |
Collapse
|
10
|
Lozano JC, Vergé V, Schatt P, Juengel JL, Peaucellier G. Evolution of cyclin B3 shows an abrupt three-fold size increase, due to the extension of a single exon in placental mammals, allowing for new protein-protein interactions. Mol Biol Evol 2012; 29:3855-71. [PMID: 22826462 DOI: 10.1093/molbev/mss189] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cyclin B3 evolution has the unique peculiarity of an abrupt 3-fold increase of the protein size in the mammalian lineage due to the extension of a single exon. We have analyzed the evolution of the gene to define the modalities of this event and the possible consequences on the function of the protein. Database searches can trace the appearance of the gene to the origin of metazoans. Most introns were already present in early metazoans, and the intron-exon structure as well as the protein size were fairly conserved in invertebrates and nonmammalian vertebrates. Although intron gains are considered as rare events, we identified two cases, one at the prochordate-chordate transition and one in murids, resulting from different mechanisms. At the emergence of mammals, the gene was relocated from chromosome 6 of platypus to the X chromosome in marsupials, but the exon extension occurred only in placental mammals. A repetitive structure of 18 amino acids, of uncertain origin, is detectable in the 3,000-nt mammalian exon-encoded sequence, suggesting an extension by multiple internal duplications, some of which are still detectable in the primate lineage. Structure prediction programs suggest that the repetitive structure has no associated three-dimensional structure but rather a tendency for disorder. Splice variant isoforms were detected in several mammalian species but without conserved pattern, notably excluding the constant coexistence of premammalian-like transcripts, without the extension. The yeast two-hybrid method revealed that, in human, the extension allowed new interactions with ten unrelated proteins, most of them with specific three-dimensional structures involved in protein-protein interactions, and some highly expressed in testis, as is cyclin B3. The interactions with activator of cAMP-responsive element modulator in testis (ACT), germ cell-less homolog 1, and chromosome 1 open reading frame 14 remain to be verified in vivo since they may not be expressed at the same stages of spermatogenesis as cyclin B3.
Collapse
|
11
|
Towns WL, Begley TJ. Transfer RNA methytransferases and their corresponding modifications in budding yeast and humans: activities, predications, and potential roles in human health. DNA Cell Biol 2012; 31:434-54. [PMID: 22191691 PMCID: PMC3322404 DOI: 10.1089/dna.2011.1437] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 11/07/2011] [Accepted: 11/11/2011] [Indexed: 12/13/2022] Open
Abstract
Throughout the kingdoms of life, transfer RNA (tRNA) undergoes over 100 enzyme-catalyzed, methyl-based modifications. Although a majority of the methylations are conserved from bacteria to mammals, the functions of a number of these modifications are unknown. Many of the proteins responsible for tRNA methylation, named tRNA methyltransferases (Trms), have been characterized in Saccharomyces cerevisiae. In contrast, only a few human Trms have been characterized. A BLAST search for human homologs of each S. cerevisiae Trm revealed a total of 34 human proteins matching our search criteria for an S. cerevisiae Trm homolog candidate. We have compiled a database cataloging basic information about each human and yeast Trm. Every S. cerevisiae Trm has at least one human homolog, while several Trms have multiple candidates. A search of cancer cell versus normal cell mRNA expression studies submitted to Oncomine found that 30 of the homolog genes display a significant change in mRNA expression levels in at least one data set. While 6 of the 34 human homolog candidates have confirmed tRNA methylation activity, the other candidates remain uncharacterized. We believe that our database will serve as a resource for investigating the role of human Trms in cellular stress signaling.
Collapse
Affiliation(s)
- William L. Towns
- College of Nanoscale Science and Engineering, University at Albany, Albany, New York
| | - Thomas J. Begley
- College of Nanoscale Science and Engineering, University at Albany, Albany, New York
- RNA Institute, University at Albany, Rensselaer, New York
- Cancer Research Center, University at Albany, Rensselaer, New York
| |
Collapse
|
12
|
Dai J, Gu J, Lu C, Lin J, Stewart D, Chang D, Roth JA, Wu X. Genetic variations in the regulator of G-protein signaling genes are associated with survival in late-stage non-small cell lung cancer. PLoS One 2011; 6:e21120. [PMID: 21698121 PMCID: PMC3117866 DOI: 10.1371/journal.pone.0021120] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 05/19/2011] [Indexed: 01/08/2023] Open
Abstract
The regulator of G-protein signaling (RGS) pathway plays an important role in signaling transduction, cellular activities, and carcinogenesis. We hypothesized that genetic variations in RGS gene family may be associated with the response of late-stage non-small cell lung cancer (NSCLC) patients to chemotherapy or chemoradiotherapy. We selected 95 tagging single nucleotide polymorphisms (SNPs) in 17 RGS genes and genotyped them in 598 late-stage NSCLC patients. Thirteen SNPs were significantly associated with overall survival. Among them, rs2749786 of RGS12 was most significant. Stratified analysis by chemotherapy or chemoradiation further identified SNPs that were associated with overall survival in subgroups. Rs2816312 of RGS1 and rs6689169 of RGS7 were most significant in chemotherapy group and chemoradiotherapy group, respectively. A significant cumulative effect was observed when these SNPs were combined. Survival tree analyses identified potential interactions between rs944343, rs2816312, and rs1122794 in affecting survival time in patients treated with chemotherapy, while the genotype of rs6429264 affected survival in chemoradiation-treated patients. To our knowledge, this is the first study to reveal the importance of RGS gene family in the survival of late-stage NSCLC patients.
Collapse
Affiliation(s)
- Jingyao Dai
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Charles Lu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Jie Lin
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - David Stewart
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - David Chang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Jack A. Roth
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
13
|
Mayer PR, Huang N, Dewey CM, Dries DR, Zhang H, Yu G. Expression, localization, and biochemical characterization of nicotinamide mononucleotide adenylyltransferase 2. J Biol Chem 2010; 285:40387-96. [PMID: 20943658 PMCID: PMC3001018 DOI: 10.1074/jbc.m110.178913] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 10/10/2010] [Indexed: 12/11/2022] Open
Abstract
Nicotinamide mononucleotide (NMN) adenylyltransferase 2 (Nmnat2) catalyzes the synthesis of NAD from NMN and ATP. The Nmnat2 transcript is expressed predominately in the brain; we report here that Nmnat2 is a low abundance protein expressed in neurons. Previous studies indicate that Nmnat2 localizes to Golgi. As Nmnat2 is not predicted to contain a signal sequence, lipid-binding domain, or transmembrane domain, we investigated the nature of this interaction. These experiments reveal that Nmnat2 is palmitoylated in vitro, and this modification is required for membrane association. Surprisingly, exogenous Nmnat2 is toxic to neurons, indicating that protein levels must be tightly regulated. To analyze Nmnat2 localization in neurons (previous experiments relied on exogenous expression in HeLa cells), mouse brains were fractionated, showing that Nmnat2 is enriched in numerous membrane compartments including synaptic terminals. In HeLa cells, in addition to Golgi, Nmnat2 localizes to Rab7-containing late endosomes. These studies show that Nmnat2 is a neuronal protein peripherally attached to membranes via palmitoylation and suggest that Nmnat2 is transported to synaptic terminals via an endosomal pathway.
Collapse
Affiliation(s)
| | - Nian Huang
- Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | | | | | - Hong Zhang
- Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Gang Yu
- From the Departments of Neuroscience and
| |
Collapse
|
14
|
Wang J, Lippman SM, Lee JJ, Yang H, Khuri FR, Kim E, Lin J, Chang DW, Lotan R, Hong WK, Wu X. Genetic variations in regulator of G-protein signaling genes as susceptibility loci for second primary tumor/recurrence in head and neck squamous cell carcinoma. Carcinogenesis 2010; 31:1755-61. [PMID: 20627871 DOI: 10.1093/carcin/bgq138] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Curatively treated patients with early-stage head and neck squamous cell carcinoma (HNSCC) are at high risks for second primary tumor (SPT) and recurrence. The regulator of G-protein signaling (RGS) is important in essential signaling transduction and cellular activities. We hypothesize that genetic variations of RGS may modulate the risk of SPT/recurrence in patients with early-stage HNSCC. In a nested case-control study, we evaluated 98 single-nucleotide polymorphisms (SNPs) in 17 RGS genes for the risk of SPT/recurrence among 450 HNSCC patients. Eight SNPs showed significant associations with the risk of SPT/recurrence, with the most significant one of rs2179653, which is located in the 5'-flanking region of RGS2 gene. Under a recessive genetic model, the homozygous variant genotype of this SNP was associated with 2.95-fold [95% confidence interval (CI): 1.52-5.74] increased risk of SPT/recurrence. This association remained significant after the adjustment for multiple comparisons. Cumulative effects analysis revealed that the risk increased significantly with the increasing numbers of unfavorable genotypes. Compared with subjects carrying 0-2 unfavorable genotypes, the hazard ratios (95% CIs) for those carrying 3 or 4+ were 1.73 (1.10-2.70) and 3.05 (1.92-4.83), respectively. Furthermore, survival tree analysis revealed potential higher order gene-gene interactions and indicated different outcomes based on distinct genotype profiles. Genetic variations of RGS genes may modulate the susceptibility to SPT/recurrence in early-stage HNSCC patients individually and cumulatively. Our results stressed the importance of taking a polygenic approach to evaluate the cumulative and interaction effects of genetic variations in the prediction of cancer risk and prognosis.
Collapse
Affiliation(s)
- Jianming Wang
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Houtkooper RH, Cantó C, Wanders RJ, Auwerx J. The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr Rev 2010; 31:194-223. [PMID: 20007326 PMCID: PMC2852209 DOI: 10.1210/er.2009-0026] [Citation(s) in RCA: 660] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A century after the identification of a coenzymatic activity for NAD(+), NAD(+) metabolism has come into the spotlight again due to the potential therapeutic relevance of a set of enzymes whose activity is tightly regulated by the balance between the oxidized and reduced forms of this metabolite. In fact, the actions of NAD(+) have been extended from being an oxidoreductase cofactor for single enzymatic activities to acting as substrate for a wide range of proteins. These include NAD(+)-dependent protein deacetylases, poly(ADP-ribose) polymerases, and transcription factors that affect a large array of cellular functions. Through these effects, NAD(+) provides a direct link between the cellular redox status and the control of signaling and transcriptional events. Of particular interest within the metabolic/endocrine arena are the recent results, which indicate that the regulation of these NAD(+)-dependent pathways may have a major contribution to oxidative metabolism and life span extension. In this review, we will provide an integrated view on: 1) the pathways that control NAD(+) production and cycling, as well as its cellular compartmentalization; 2) the signaling and transcriptional pathways controlled by NAD(+); and 3) novel data that show how modulation of NAD(+)-producing and -consuming pathways have a major physiological impact and hold promise for the prevention and treatment of metabolic disease.
Collapse
Affiliation(s)
- Riekelt H Houtkooper
- Ecole Polytechnique Fédérale de Lausanne, Laboratory for Integrative and Systems Physiology, Building AI, Station 15, CH-1015 Lausanne, Switzerland
| | | | | | | |
Collapse
|
16
|
Hurst JH, Hooks SB. Regulator of G-protein signaling (RGS) proteins in cancer biology. Biochem Pharmacol 2009; 78:1289-97. [PMID: 19559677 DOI: 10.1016/j.bcp.2009.06.028] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 06/16/2009] [Accepted: 06/18/2009] [Indexed: 01/09/2023]
Abstract
The regulator of G-protein signaling (RGS) family is a diverse group of multifunctional proteins that regulate cellular signaling events downstream of G-protein coupled receptors (GPCRs). In recent years, GPCRs have been linked to the initiation and progression of multiple cancers; thus, regulators of GPCR signaling are also likely to be important to the pathophysiology of cancer. This review highlights recent studies detailing changes in RGS transcript expression during oncogenesis, single nucleotide polymorphisms in RGS proteins linked to lung and bladder cancers, and specific roles for RGS proteins in multiple cancer types.
Collapse
Affiliation(s)
- Jillian H Hurst
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
17
|
Suter SE, Gouthro TA, O'Malley T, Hartnett BJ, McSweeney PA, Moore PF, Felsburg PJ, Haskins ME, Henthorn PS. Marking of peripheral T-lymphocytes by retroviral transduction and transplantation of CD34+ cells in a canine X-linked severe combined immunodeficiency model. Vet Immunol Immunopathol 2007; 117:183-96. [PMID: 17442404 DOI: 10.1016/j.vetimm.2007.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Revised: 01/18/2007] [Accepted: 03/07/2007] [Indexed: 11/23/2022]
Abstract
A retrovirus vector containing an enhanced green fluorescent protein complimentary DNA (EGFP cDNA) was used to mark and dynamically follow vector-expressing cells in the peripheral blood of bone marrow transplanted X-linked severe combined immunodeficient dogs. CD34(+) cells isolated from young normal dogs were transduced, using a 2 day protocol, with an amphotropic retroviral vector that expressed enhanced green fluorescent protein (EGFP) and the canine common gamma chain (gammac) cDNAs. Following transplantation of the transduced cells, normal donor peripheral blood lymphocytes (PBL) appeared by 1 month post-bone marrow transplant (BMT) and rescued three of five treated dogs from their lethal immunodeficiency. PCR and flow cytometric analysis of post-BMT PBL documented the peripheral EGFP expressing cells as CD3(+) T cells, which varied from 0% to 28%. Sorting of EGFP(+) and EGFP(-) peripheral blood T cells from two dogs, followed by vector PCR analysis, showed no evidence of vector shutdown. EGFP expression in B cells or monocytes was not detected. These marking experiments demonstrate that the transduction protocol did not abolish the lymphoid engraftment capability of ex vivo transduced canine CD34(+) cells and supports the potential utility of the MSCV retroviral vector for gene transfer to XSCID affected canine hematopoietic progenitor cells (HPC).
Collapse
Affiliation(s)
- Steven E Suter
- Section of Medical Genetics, Department of Clinical Sciences, University of Pennsylvania School of Veterinary Medicine, 3900 Delancey Street, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Vauti F, Goller T, Beine R, Becker L, Klopstock T, Hölter SM, Wurst W, Fuchs H, Gailus-Durner V, de Angelis MH, Arnold HH. The mouse Trm1-like gene is expressed in neural tissues and plays a role in motor coordination and exploratory behaviour. Gene 2006; 389:174-85. [PMID: 17198746 DOI: 10.1016/j.gene.2006.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 10/13/2006] [Accepted: 11/06/2006] [Indexed: 10/23/2022]
Abstract
Using a gene trap approach in ES cells, the novel mouse gene Trm1-like with substantial sequence homology to human C1orf25 mRNA (GenBank accession no. ) was identified. Murine Trm1-like encodes a putative protein with limited similarity to N2,N2-dimethylguanosine tRNA methyltransferase (Trm1) from other organisms, however its function is not known. The potential role of Trm1-like was investigated in a mouse mutant lacking intact Trm1-like transcripts due to integration of the gene trap vector in the first intron. Trm1-like deficient mice are viable and show no apparent anatomical defects. Behavioural tests, however, revealed significantly altered motor coordination and aberrant exploratory behaviour. LacZ activity of the trapped mouse Trm1-like gene reflects expression in various neuronal structures during embryonic development, including spinal ganglia, trigeminal nerve and ganglion, olfactory and nasopharyngeal epithelium, and nuclei of the metencephalon, thalamus and medulla oblongata. The gene is also expressed in lung, oesophagus, epiglottis, ependyma, vertebral column, spinal cord, and brown adipose tissue. Trm1-like expression persists in the adult brain with dynamically changing patterns in cortex and cerebellum. Although Trm1-like is not essential for embryonic mouse development, it may have a role in modulating postnatal neuronal functions.
Collapse
Affiliation(s)
- Franz Vauti
- Department of Cell and Molecular Biology, Institute of Biochemistry and Biotechnology, Technical University of Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Dagan E, Laitman Y, Levanon N, Feuer A, Sidi AA, Baniel J, Korach Y, Ben Baruch G, Friedman E, Gershoni-Baruch R. The 471delAAAG mutation and C353T polymorphism in the RNASEL gene in sporadic and inherited cancer in Israel. Fam Cancer 2006; 5:389-95. [PMID: 16944274 DOI: 10.1007/s10689-006-0010-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Accepted: 05/28/2006] [Indexed: 10/24/2022]
Abstract
The rate of RNASEL 471delAAAG mutation was previously reported to be less than 7% in Ashkenazi prostate cancer patients. It seems plausible that the same mutation may also be involved in breast/ovarian cancer predisposition in Jewish individuals. To evaluate the role of this mutation in cancer predisposition, a total of 1011 individuals including 294 Jewish men with prostate cancer, 61 Ashkenazi women with ovarian cancer and 50 unaffected women, matched for age and ethnicity, were genotyped for sequence anomalies in a single RNASEL gene amplicon using DGGE and sequencing. Additionally, 209 Ashkenazi BRCA1/2 mutation carriers, 205 high-risk non-carriers matched for cancer type and age at diagnosis, and 192 healthy Ashkenazi women were screened, using DHPLC and restriction methods. The 471delAAAG mutation was detected in a single male with prostate cancer (1/294, 0.3%), in two ovarian cancer patients (2/141, 1.4%) and in one of 242 healthy controls (0.41%). An abnormal DHPLC profile identical to the one produced by the 471delAAAG mutation was noted in 23 additional women. The rate of this polymorphism was significantly elevated in high-risk non-carrier women (16/205; 7.8%) than in BRCA1/2 carriers (2/209; 1.0%) and controls (5/192; 2.6%) (chi = 11.670; P < 0.001). Sequence analysis disclosed a silent polymorphism in Valine at codon 118: c.353 C- > T.The 471delAAAG mutation occurs rarely in Israeli prostate and breast/ovarian cancer patients. A silent polymorphism in the RNASEL gene occurs more prevalently in high-risk Ashkenazi breast/ovarian cancer patients without a BRCA1/2 mutation.
Collapse
Affiliation(s)
- Efrat Dagan
- Rambam Medical Center, Institute of Human Genetics, Haifa, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Hirao K, Natsuka Y, Tamura T, Wada I, Morito D, Natsuka S, Romero P, Sleno B, Tremblay LO, Herscovics A, Nagata K, Hosokawa N. EDEM3, a soluble EDEM homolog, enhances glycoprotein endoplasmic reticulum-associated degradation and mannose trimming. J Biol Chem 2006; 281:9650-8. [PMID: 16431915 DOI: 10.1074/jbc.m512191200] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Quality control in the endoplasmic reticulum ensures that only properly folded proteins are retained in the cell through mechanisms that recognize and discard misfolded or unassembled proteins in a process called endoplasmic reticulum-associated degradation (ERAD). We previously cloned EDEM (ER degradation-enhancing alpha-mannosidase-like protein) and showed that it accelerates ERAD of misfolded glycoproteins. We now cloned mouse EDEM3, a soluble homolog of EDEM. EDEM3 consists of 931 amino acids and has all the signature motifs of Class I alpha-mannosidases (glycosyl hydrolase family 47) in its N-terminal domain and a protease-associated motif in its C-terminal region. EDEM3 accelerates glycoprotein ERAD in transfected HEK293 cells, as shown by increased degradation of misfolded alpha1-antitrypsin variant (null (Hong Kong)) and of TCRalpha. Overexpression of EDEM3 also greatly stimulates mannose trimming not only from misfolded alpha1-AT null (Hong Kong) but also from total glycoproteins, in contrast to EDEM, which has no apparent alpha1,2-mannosidase activity. Furthermore, overexpression of the E147Q EDEM3 mutant, which has the mutation in one of the conserved acidic residues essential for enzyme activity of alpha1,2-mannosidases, abolishes the stimulation of mannose trimming and greatly decreases the stimulation of ERAD by EDEM3. These results show that EDEM3 has alpha1,2-mannosidase activity in vivo, suggesting that the mechanism whereby EDEM3 accelerates glycoprotein ERAD is different from that of EDEM.
Collapse
Affiliation(s)
- Kazuyoshi Hirao
- Department of Molecular and Cellular Biology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8397, Japan, CREST, JST, Saitama 332-0012, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Lehman CW, Lee JDR, Komives CF. Ubiquitously expressed GPCR membrane-trafficking orthologs. Genomics 2005; 85:386-91. [PMID: 15718105 DOI: 10.1016/j.ygeno.2004.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2004] [Accepted: 11/16/2004] [Indexed: 11/29/2022]
Abstract
Olfactory receptors are a diverse set of G-protein-coupled receptors (GPCRs) that localize to cellular plasma membranes in the olfactory epithelium. Associated trafficking proteins often assist in targeting these GPCRs to the membrane, facilitating function. One such trafficking protein has been isolated as a mutant defective for both odorant response and proper receptor localization in Caenorhabditis elegans. This gene (ODR-4) allows for functional expression of olfactory receptors in heterologous cells that are otherwise incapable of targeting. We have isolated a full-length human cDNA that is homologous to the C. elegans gene at the protein level across nearly the entire gene by using a novel RecA-based gene enrichment procedure. This sequence is homologous to a family of orthologs that share predicted structural features, indicating a conserved function. The gene was expressed in 41 of 44 human, mouse, and rat tissues, suggesting an important role in trafficking olfactory and other GPCRs.
Collapse
Affiliation(s)
- Chris W Lehman
- Department of Chemical and Materials Engineering, San Jose State University, 1 Washington Square, San Jose, CA 95192-0082, USA
| | | | | |
Collapse
|
22
|
Tönjes A, Miedlich S, Holzapfel HP, Eszlinger M, Arkenau C, Paschke R. Expression of regulators of g protein signaling mRNA is differentially regulated in hot and cold thyroid nodules. Thyroid 2004; 14:896-901. [PMID: 15671767 DOI: 10.1089/thy.2004.14.896] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Because of their regulatory properties on cellular proliferation and differentiation, regulators of G protein signaling (RGS) have been suggested as potential tumor suppressors. The aim of this study was to describe the normal pattern of RGS transcripts in the thyroid gland systematically and to elucidate their potential role in common thyroid pathologies. Real-time polymerase chain reaction (PCR) was applied to quantify mRNA expression of RGS transcripts in 10 hot thyroid nodules (HTN), 10 cold thyroid nodules (CTN), and corresponding surrounding tissues (ST). We have found that 9 of 13 tested RGS transcripts were expressed in the human thyroid gland. Expression of several RGS transcripts was altered in thyroid nodules compared to corresponding normal tissue. In HTN and CTN, mRNA transcripts of RGS 2, 9, and 12 were significantly downregulated. In contrast, mRNA expression of RGS 3, 6, 10 was differentially regulated in HTN and CTN compared to corresponding normal tissue. RGS 3 transcripts were significantly upregulated in CTN. RGS 6 transcripts were significantly downregulated in CTN. RGS 10 mRNA was significantly reduced in HTN. We therefore propose that downregulation of several RGS transcripts in thyroid nodules might contribute to tumor growth within the thyroid gland.
Collapse
Affiliation(s)
- Anke Tönjes
- III. Medical Department, University of Leipzig, Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Cerutti JM, Delcelo R, Amadei MJ, Nakabashi C, Maciel RMB, Peterson B, Shoemaker J, Riggins GJ. A preoperative diagnostic test that distinguishes benign from malignant thyroid carcinoma based on gene expression. J Clin Invest 2004; 113:1234-42. [PMID: 15085203 PMCID: PMC385398 DOI: 10.1172/jci19617] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2003] [Accepted: 02/17/2004] [Indexed: 01/16/2023] Open
Abstract
Accurate diagnosis of thyroid tumors is challenging. A particular problem is distinguishing between follicular thyroid carcinoma (FTC) and benign follicular thyroid adenoma (FTA), where histology of fine-needle aspirates is not conclusive. It is often necessary to remove healthy thyroid to rule out carcinoma. In order to find markers to improve diagnosis, we quantified gene transcript expression from FTC, FTA, and normal thyroid, revealing 73 differentially expressed transcripts (P < or = 0.0001). Using an independent set of 23 FTCs, FTAs, and matched normal thyroids, 17 genes with large expression differences were tested by real-time RT-PCR. Four genes (DDIT3, ARG2, ITM1, and C1orf24) differed between the two classes FTC and FTA, and a linear combination of expression levels distinguished FTC from FTA with an estimated predictive accuracy of 0.83. Furthermore, immunohistochemistry for DDIT3 and ARG2 showed consistent staining for carcinoma in an independent set 59 follicular tumors (estimated concordance, 0.76; 95% confidence interval, [0.59, 0.93]). A simple test based on a combination of these markers might improve preoperative diagnosis of thyroid nodules, allowing better treatment decisions and reducing long-term health costs.
Collapse
Affiliation(s)
- Janete M Cerutti
- Laboratory of Molecular Endocrinology, Division of Endocrinology, Department of Medicine, Federal University of São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Larminie C, Murdock P, Walhin JP, Duckworth M, Blumer KJ, Scheideler MA, Garnier M. Selective expression of regulators of G-protein signaling (RGS) in the human central nervous system. ACTA ACUST UNITED AC 2004; 122:24-34. [PMID: 14992813 DOI: 10.1016/j.molbrainres.2003.11.014] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2003] [Indexed: 11/17/2022]
Abstract
The human tissue distribution of the nineteen known human regulators of G-protein signaling (RGS) is described. Measurement of RGS mRNA levels in human brain and in nine peripheral tissues revealed striking tissue preferences in gene expression. Five RGS members were identified with enriched expression in brain. RGS4, RGS7, RGS8, RGS11 and RGS17 were all significantly expressed in striatal regions including the nucleus accumbens and putamen. RGS4 had the highest measured levels of mRNA expression and was highly enriched in the gyrus of the cortex and in the parahippocampus. RGS7 and RGS17 had overlapping distribution profiles and were both noticeably enriched in the cerebellum. Several RGS family members showed high expression in peripheral tissues. RGS5 was preferentially expressed in heart, and RGS1, RGS13, RGS18 and GAIP were predominately expressed in lymphocytes. RGS1 was also highly enriched in the lung, as was RGS2 and RGS16. Five family members, RGS3, RGS9, RGS10, RGS 12 and RGS14 had a broad and overlapping mRNA distribution. These results suggest roles of the individual RGS members in a diversity of functions in humans and support a role of several RGS members in the regulation of central nervous system function via modulation of signaling by G-protein coupled receptors.
Collapse
Affiliation(s)
- Christopher Larminie
- Department of Bioinformatics, GlaxoSmithKline Pharmaceuticals, New Frontiers Science Park, Harlow, Essex, CM19 5AW, UK
| | | | | | | | | | | | | |
Collapse
|
25
|
Yalowitz JA, Xiao S, Biju MP, Antony AC, Cummings OW, Deeg MA, Jayaram HN. Characterization of human brain nicotinamide 5'-mononucleotide adenylyltransferase-2 and expression in human pancreas. Biochem J 2004; 377:317-26. [PMID: 14516279 PMCID: PMC1223862 DOI: 10.1042/bj20030518] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2003] [Revised: 09/17/2003] [Accepted: 09/29/2003] [Indexed: 11/17/2022]
Abstract
NMNAT (nicotinamide 5'-mononucleotide adenylyltransferase; EC 2.7.7.1) catalyses the transfer of the adenylyl group from ATP to NMN to form NAD. We have cloned a novel human NMNAT cDNA, designated hNMNAT-2, from human brain. The cDNA contains a 924 bp open reading frame that encodes a 307 amino acid peptide that was expressed as a histidine-patch-containing thioredoxin fusion protein. Expressed hNMNAT-2 shared only 35% amino acid sequence homology with the human NMNAT enzyme (hNMNAT-1), but possessed enzymic activity comparable with hNMNAT-1. Using human genomic databases, hNMNAT-2 was localized to chromosome 1q25 within a 171 kb gene, whereas hNMNAT-1 is on chromosome 1p32-35. Northern blot analysis revealed highly restricted expression of hNMNAT-2 to brain, heart and muscle tissues, which contrasts with the wide tissue expression of hNMNAT-1; different regions of the brain exhibited differential expression of hNMNAT-2. Substitution mutations of either of two invariant residues, His-24 or Trp-92, abolished enzyme activity. Anti-peptide antibody to a unique epitope within hNMNAT-2 was produced, and immunohistochemical analysis of sections of normal adult human pancreas revealed that hNMNAT-2 protein was markedly expressed in the islets of Langerhans. However, the pancreatic exocrine cells exhibited weak expression of hNMNAT-2 protein. Sections of pancreas from insulinoma patients showed strong expression of hNMNAT-2 protein in the insulin-producing tumour cells, whereas acinar cells exhibited relatively low expression of hNMNAT-2 protein. These data suggest that the unique tissue-expression patterns of hNMNAT-2 reflect distinct functions for the isoforms in the regulation of NAD metabolism.
Collapse
Affiliation(s)
- Joel A Yalowitz
- Department of Biochemistry and Molecular Biology, Richard L. Roudebush Veterans Affairs Medical Center - 151, 1481 West Tenth Street, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Downing SR, Hennessy KT, Abe M, Manola J, George DJ, Kantoff PW. Mutations in Ribonuclease L Gene Do NotOccur at a Greater Frequency in Patients with Familial Prostate Cancer Compared with Patients with Sporadic Prostate Cancer. ACTA ACUST UNITED AC 2003; 2:177-80. [PMID: 15040862 DOI: 10.3816/cgc.2003.n.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Several genetic loci are suspected to be involved in hereditary prostate cancer, including the hereditary prostate cancer 1 (HPC1) locus at chromosome 1q24-25. The ribonuclease L (RNase L) gene has been reported as the putative hereditary prostate cancer gene located at HPC1. If this is the case, mutations of RNase L should be found at a greater frequency in familial cancers than in sporadic prostate cancers. Examination of familial and sporadic cases of prostate cancer by polymerase chain reaction and DNA sequencing resulted in a mutational frequency rate that was not statistically different between the 2 forms of the disease. These results suggest that the mutations examined within this study are rare and may contribute to very few familial prostate cancers.
Collapse
Affiliation(s)
- Sean R Downing
- Lank Center for Genitourinary Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
27
|
Howell VM, Haven CJ, Kahnoski K, Khoo SK, Petillo D, Chen J, Fleuren GJ, Robinson BG, Delbridge LW, Philips J, Nelson AE, Krause U, Hammje K, Dralle H, Hoang-Vu C, Gimm O, Marsh DJ, Morreau H, Teh BT. HRPT2 mutations are associated with malignancy in sporadic parathyroid tumours. J Med Genet 2003; 40:657-63. [PMID: 12960210 PMCID: PMC1735580 DOI: 10.1136/jmg.40.9.657] [Citation(s) in RCA: 222] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Hyperparathyroidism is a common endocrinopathy characterised by the formation of parathyroid tumours. In this study, we determine the role of the recently identified gene, HRPT2, in parathyroid tumorigenesis. METHODS Mutation analysis of HRPT2 was undertaken in 60 parathyroid tumours: five HPT-JT, three FIHP, three MEN 1, one MEN 2A, 25 sporadic adenomas, 17 hyperplastic glands, two lithium associated tumours, and four sporadic carcinomas. Loss of heterozygosity at 1q24-32 was performed on a subset of these tumours. RESULTS HRPT2 somatic mutations were detected in four of four sporadic parathyroid carcinoma samples, and germline mutations were found in five of five HPT-JT parathyroid tumours (two families) and two parathyroid tumours from one FIHP family. One HPT-JT tumour with germline mutation also harboured a somatic mutation. In total, seven novel and one previously reported mutation were identified. "Two-hits" (double mutations or one mutation and loss of heterozygosity at 1q24-32) affecting HRPT2 were found in two sporadic carcinomas, two HPT-JT-related and two FIHP related tumours. CONCLUSIONS The results in this study support the role of HRPT2 as a tumour suppressor gene in sporadic parathyroid carcinoma, and provide further evidence for HRPT2 as the causative gene in HPT-JT, and a subset of FIHP. In light of the strong association between mutations of HRPT2 and sporadic parathyroid carcinoma demonstrated in this study, it is hypothesised that HRPT2 mutation is an early event that may lead to parathyroid malignancy and suggest intragenic mutation of HRPT2 as a marker of malignant potential in both familial and sporadic parathyroid tumours.
Collapse
Affiliation(s)
- V M Howell
- Laboratory of Cancer Genetics, Van Andel Research Institute, 333 Bostwick NE, Grand Rapids, Michigan 49503, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Strausberg RL, Simpson AJG, Wooster R. Sequence-based cancer genomics: progress, lessons and opportunities. Nat Rev Genet 2003; 4:409-18. [PMID: 12776211 DOI: 10.1038/nrg1085] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Technologies that provide a genome-wide view offer an unprecedented opportunity to scrutinize the molecular biology of the cancer cell. The information that is derived from these technologies is well suited to the development of public databases of alterations in the cancer genome and its expression. Here, we describe the synergistic efforts of research programmes in Brazil, the United Kingdom and the United States towards building integrated databases that are widely accessible to the research community, to enable basic and applied applications in cancer research.
Collapse
Affiliation(s)
- Robert L Strausberg
- National Cancer Institute, 31 Center Drive, Room 10A07, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
29
|
Silva APM, Salim ACM, Bulgarelli A, de Souza JES, Osório E, Caballero OL, Iseli C, Stevenson BJ, Jongeneel CV, de Souza SJ, Simpson AJG, Camargo AA. Identification of 9 novel transcripts and two RGSL genes within the hereditary prostate cancer region (HPC1) at 1q25. Gene 2003; 310:49-57. [PMID: 12801632 DOI: 10.1016/s0378-1119(03)00501-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We applied a systematic bioinformatics approach, followed by careful manual inspection and experimental validation to identify additional expressed sequences located at the Hereditary Prostate Cancer Region (HPC1) between D1S2818 and D1S1642 on chromosome 1q25. All transcripts already described for the 1q25 region were identified and we were able to define 11 additional expressed sequences within this region (three full-length cDNA clone sequences and eight ESTs), increasing the total number of gene count in this region by 38%. Five out of the 11 expressed sequences identified were shown to be expressed in prostate tissue and thus represent novel disease gene candidates for the HPC1 region. Here, we report a detailed characterization of these five novel disease gene candidates, their expression pattern in various tissues, their genomic organization and functional annotation. Two candidates (RGSL1 and RGSL2) correspond to novel members of the RGS family, which is involved in the regulation of G-protein signaling. RGSL1 and RGLS2 expression was detected by real-time polymerase chain reaction in normal prostate tissue, but could not be detected in prostate tumor cell lines, suggesting they might have a role in prostate cancer.
Collapse
Affiliation(s)
- Ana Paula M Silva
- Ludwig Institute for Cancer Research, Rua Antonio Prudente 109, 4th floor, 01509-010, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Carpten JD, Robbins CM, Villablanca A, Forsberg L, Presciuttini S, Bailey-Wilson J, Simonds WF, Gillanders EM, Kennedy AM, Chen JD, Agarwal SK, Sood R, Jones MP, Moses TY, Haven C, Petillo D, Leotlela PD, Harding B, Cameron D, Pannett AA, Höög A, Heath H, James-Newton LA, Robinson B, Zarbo RJ, Cavaco BM, Wassif W, Perrier ND, Rosen IB, Kristoffersson U, Turnpenny PD, Farnebo LO, Besser GM, Jackson CE, Morreau H, Trent JM, Thakker RV, Marx SJ, Teh BT, Larsson C, Hobbs MR. HRPT2, encoding parafibromin, is mutated in hyperparathyroidism-jaw tumor syndrome. Nat Genet 2002; 32:676-80. [PMID: 12434154 DOI: 10.1038/ng1048] [Citation(s) in RCA: 463] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2002] [Accepted: 10/24/2002] [Indexed: 11/09/2022]
Abstract
We report here the identification of a gene associated with the hyperparathyroidism-jaw tumor (HPT-JT) syndrome. A single locus associated with HPT-JT (HRPT2) was previously mapped to chromosomal region 1q25-q32. We refined this region to a critical interval of 12 cM by genotyping in 26 affected kindreds. Using a positional candidate approach, we identified thirteen different heterozygous, germline, inactivating mutations in a single gene in fourteen families with HPT-JT. The proposed role of HRPT2 as a tumor suppressor was supported by mutation screening in 48 parathyroid adenomas with cystic features, which identified three somatic inactivating mutations, all located in exon 1. None of these mutations were detected in normal controls, and all were predicted to cause deficient or impaired protein function. HRPT2 is a ubiquitously expressed, evolutionarily conserved gene encoding a predicted protein of 531 amino acids, for which we propose the name parafibromin. Our findings suggest that HRPT2 is a tumor-suppressor gene, the inactivation of which is directly involved in predisposition to HPT-JT and in development of some sporadic parathyroid tumors.
Collapse
Affiliation(s)
- J D Carpten
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Xu M, Korban SS. A cluster of four receptor-like genes resides in the Vf locus that confers resistance to apple scab disease. Genetics 2002; 162:1995-2006. [PMID: 12524365 PMCID: PMC1462389 DOI: 10.1093/genetics/162.4.1995] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The Vf locus, derived from the crabapple species Malus floribunda 821, confers resistance to five races of the fungal pathogen Venturia inaequalis, the causal agent of apple scab disease. In our previous research, the Vf locus was restricted to a BAC contig of approximately 290 kb covered by five overlapping BAC clones. Here, we report on cloning of the resistance gene(s) present in the Vf BAC contig using a highly reliable and straightforward approach. This approach relies on hybridization of labeled cDNAs to amplified inserts of subclones derived from BAC inserts, followed by recovery of full-size transcripts by rapid amplification of cDNA ends (RACE). A cluster of four resistance paralogs (Vfa1, Vfa2, Vfa3, and Vfa4) was identified in the Vf locus. Vfa1, Vfa2 and Vfa4 had no introns and are predicted to encode proteins characterized with extracellular leucine-rich repeats (LRRs) and transmembrane (TM) domains. However, Vfa3 contains an insertion of 780 bp at the end of the LRR motif, resulting in multiple truncated transcripts. Comparison of Vfa1, Vfa2, and Vfa4 paralogs revealed a high degree of overall homology in their deduced amino acid sequences, while divergences were mainly restricted within LRR domains, including variable LRR units, numerous amino acid substitutions, and several residue deletions/duplications. Differential expression profiles among the four paralogs were observed during leaf development. Vfa1, Vfa2, and Vfa3 were active in immature leaves, but slightly expressed in mature leaves, while Vfa4 was active in immature leaves and was highly expressed in mature leaves.
Collapse
Affiliation(s)
- Mingliang Xu
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, Illinois 61801, USA
| | | |
Collapse
|
32
|
Raffaelli N, Sorci L, Amici A, Emanuelli M, Mazzola F, Magni G. Identification of a novel human nicotinamide mononucleotide adenylyltransferase. Biochem Biophys Res Commun 2002; 297:835-40. [PMID: 12359228 DOI: 10.1016/s0006-291x(02)02285-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The enzyme nicotinamide mononucleotide adenylyltransferase is an ubiquitous enzyme catalyzing an essential step in NAD (NADP) biosynthetic pathway. In human cells, the nuclear enzyme, which we will now call NMNAT-1, has been the only known enzyme of this type for over 10 years. Here we describe the cloning and expression of a human cDNA encoding a novel 34.4kDa protein, that shares significant homology with the 31.9kDa NMNAT-1. We propose to call this enzyme NMNAT-2. Purified recombinant NMNAT-2 is endowed with NMN and nicotinic acid mononucleotide adenylyltransferase activities, but differs from NMNAT-1 with regard to chromosomal and cellular localization, tissue-specificity of expression, and molecular properties, supporting the idea that the two enzymes might play distinct physiological roles in NAD homeostasis.
Collapse
Affiliation(s)
- Nadia Raffaelli
- Dipartimento di Biotecnologie Agrarie ed Ambientali, Universitá di Ancona, 60131 Ancona, Italy
| | | | | | | | | | | |
Collapse
|
33
|
Affiliation(s)
- Barbara K Kinder
- Department of Surgery, Surgical Oncology, and Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
34
|
Makalowska I, Sood R, Faruque MU, Hu P, Robbins CM, Eddings EM, Mestre JD, Baxevanis AD, Carpten JD. Identification of six novel genes by experimental validation of GeneMachine predicted genes. Gene 2002; 284:203-13. [PMID: 11891061 DOI: 10.1016/s0378-1119(01)00897-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In silico gene identification from finished and unfinished human genome sequence has become critically important in many projects seeking to gain insights into the gene content of genomic regions implicated in diseases. To establish limitations and criteria for in silico gene identification, and to identify novel genes of potential relevance to human prostate cancer and melanoma, 3 Mb of chromosome 1 sequence have been analyzed using GeneMachine. This program is a software suite comprising of sequence similarity programs and four gene identification programs. A total of 49 potential transcripts were selected and 37 of them were selected for experimental validation. We verified 16 of the predicted genes by experimental analysis. The comparison of the predicted transcripts with their cloned forms helped to refine predicted gene models as well as to identify splice variants for several of them. Although sequences matching with ten of our verified genes have been recently deposited in the GenBank, six of them remain novel. Our studies support the feasibility of identifying novel genes from regions of interest using draft human genome sequence.
Collapse
Affiliation(s)
- Izabela Makalowska
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ciccarelli FD, Copley RR, Doerks T, Russell RB, Bork P. CASH--a beta-helix domain widespread among carbohydrate-binding proteins. Trends Biochem Sci 2002; 27:59-62. [PMID: 11852237 DOI: 10.1016/s0968-0004(01)02046-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In this article, we describe a novel, widespread domain (CASH) that is shared by many carbohydrate-binding proteins and sugar hydrolases. This domain occurs in more than 1000 proteins distributed among all three kingdoms of life. The CASH domain is characterized by internal repetitions of glycines and hydrophobic residues that correspond to the repetitive units of a predicted or observed right-handed beta-helix structure of the pectate lyase superfamily.
Collapse
|
36
|
Carpten J, Nupponen N, Isaacs S, Sood R, Robbins C, Xu J, Faruque M, Moses T, Ewing C, Gillanders E, Hu P, Bujnovszky P, Makalowska I, Baffoe-Bonnie A, Faith D, Smith J, Stephan D, Wiley K, Brownstein M, Gildea D, Kelly B, Jenkins R, Hostetter G, Matikainen M, Schleutker J, Klinger K, Connors T, Xiang Y, Wang Z, De Marzo A, Papadopoulos N, Kallioniemi OP, Burk R, Meyers D, Grönberg H, Meltzer P, Silverman R, Bailey-Wilson J, Walsh P, Isaacs W, Trent J. Germline mutations in the ribonuclease L gene in families showing linkage with HPC1. Nat Genet 2002; 30:181-4. [PMID: 11799394 DOI: 10.1038/ng823] [Citation(s) in RCA: 406] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Although prostate cancer is the most common non-cutaneous malignancy diagnosed in men in the United States, little is known about inherited factors that influence its genetic predisposition. Here we report that germline mutations in the gene encoding 2'-5'-oligoadenylate(2-5A)-dependent RNase L (RNASEL) segregate in prostate cancer families that show linkage to the HPC1 (hereditary prostate cancer 1) region at 1q24-25 (ref. 9). We identified RNASEL by a positional cloning/candidate gene method, and show that a nonsense mutation and a mutation in an initiation codon of RNASEL segregate independently in two HPC1-linked families. Inactive RNASEL alleles are present at a low frequency in the general population. RNASEL regulates cell proliferation and apoptosis through the interferon-regulated 2-5A pathway and has been suggested to be a candidate tumor suppressor gene. We found that microdissected tumors with a germline mutation showed loss of heterozygosity and loss of RNase L protein, and that RNASEL activity was reduced in lymphoblasts from heterozyogous individuals compared with family members who were homozygous with respect to the wildtype allele. Thus, germline mutations in RNASEL may be of diagnostic value, and the 2-5A pathway might provide opportunities for developing therapies for those with prostate cancer.
Collapse
Affiliation(s)
- J Carpten
- Cancer Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Traving C, Bruse P, Wächter A, Schauer R. The sialate-pyruvate lyase from pig kidney. Elucidation of the primary structure and expression of recombinant enzyme activity. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:6473-86. [PMID: 11737202 DOI: 10.1046/j.0014-2956.2001.02598.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The first complete primary structure of a mammalian sialate-pyruvate lyase, namely of the enzyme from porcine kidney, was elucidated by a combination of different PCR techniques followed by sequencing of the resulting fragments. The primers used were either deduced from four porcine lyase peptides or from an alignment of human and mouse expressed sequence tags (ESTs), which were found to be homologous to already known microbial lyase sequences, and cDNA alone or after ligation with a plasmid vector served as a template. The lyase primary structure consists of 319 amino acids with a calculated protein molecular mass of approximately 35 kDa, which fits well to the value determined for the native enzyme. The porcine lyase sequence made it possible to assemble several ESTs from mouse and man in order to obtain the complete putative lyase genes. The three mammalian sequences reveal a high degree of homology both on the nucleotide (83% of the nucleotides are identical between all three sequences) and on the amino-acid level (72% of the amino acids are identical between all three sequences), and thus form a tightly related group. In contrast, the identity between the lyase primary structures from pig kidney and the microbial enzyme from Clostridium perfringens is much less pronounced (25%). Thirty-one amino acids were found to be absolutely conserved in all lyase sequences. Among them are two amino acids (lysine 173 and tyrosine 143 in the porcine lyase) that are most important for the catalytic reaction. After expression cloning, recombinant enzyme activity was expressed in Escherichia coli BL21(DE3)pLysS, which confirms the identity of the cloned sequence and verifies one of the putative human and murine sequences. After SDS/PAGE of a cell extract of the expression clone, a band of 35kDa was stained on the gel.
Collapse
Affiliation(s)
- C Traving
- Biochemisches Institut, Christian-Albrechts-Universität, Olshausenstrasse, Kiel, Germany
| | | | | | | |
Collapse
|