1
|
Wang G, Zhang X, Chen B, Peng Y. Construction of an Efficient Agrobacterium tumefaciens-Based Transformation System in the Entomopathogenic fungus Metahizium rileyi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21711-21719. [PMID: 39287555 DOI: 10.1021/acs.jafc.4c05535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Metarhizium rileyi is a filamentous entomopathogenic fungus that is highly pathogenic to lepidopteran insects. In our study, we constructed an Agrobacterium tumefaciens-mediated transgene system using the hygromycin resistance gene (Hyg R) as a selection marker in M. rileyi through homologous recombination. Binary knockout vectors for two genes (NOR_03501, longevity assurance gene, and NOR_03153, ATP-binding domain protein domain gene) in the M. rileyi strain SZCY201010 were successfully developed. We compared the genetic transformation efficiency using five kinds of asexual spores. The initial genetic transformation rates using a competent blastospore for NOR_03501 and NOR_03153 were 54.35 and 47.19%, respectively. Subsequently, both genes were successfully knocked out, and the transformed fungi were verified by PCR, RT-qPCR, and green fluorescent protein labeling. The biological phenotypes of the two genes were analyzed. The NOR_03501 gene plays a crucial role in carbon source utilization, stress resistance, and cuticle infection of fungal mycelium growth, while the NOR_03153 gene is significant for conidial production, stress resistance, and body wall infection. This study provides a promising tool for gene manipulation in M. rileyi, enhancing research in functional genomics and the exploration of fungal gene resources.
Collapse
Affiliation(s)
- Guang Wang
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Xu Zhang
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Bin Chen
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Yuejin Peng
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
2
|
Hernandez-Corbacho M, Canals D. Drug Targeting of Acyltransferases in the Triacylglyceride and 1-O-AcylCeramide Biosynthetic Pathways. Mol Pharmacol 2024; 105:166-178. [PMID: 38164582 DOI: 10.1124/molpharm.123.000763] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Acyltransferase enzymes (EC 2.3.) are a large group of enzymes that transfer acyl groups to a variety of substrates. This review focuses on fatty acyltransferases involved in the biosynthetic pathways of glycerolipids and sphingolipids and how these enzymes have been pharmacologically targeted in their biologic context. Glycerolipids and sphingolipids, commonly treated independently in their regulation and biologic functions, are put together to emphasize the parallelism in their metabolism and bioactive roles. Furthermore, a newly considered signaling molecule, 1-O-acylceramide, resulting from the acylation of ceramide by DGAT2 enzyme, is discussed. Finally, the implications of DGAT2 as a putative ceramide acyltransferase (CAT) enzyme, with a putative dual role in TAG and 1-O-acylceramide generation, are explored. SIGNIFICANCE STATEMENT: This manuscript reviews the current status of drug development in lipid acyltransferases. These are current targets in metabolic syndrome and other diseases, including cancer. A novel function for a member in this group of lipids has been recently reported in cancer cells. The responsible enzyme and biological implications of this added member are discussed.
Collapse
Affiliation(s)
| | - Daniel Canals
- Department of Medicine, Stony Brook University, Stony Brook, New York
| |
Collapse
|
3
|
Garcia-Vallicrosa C, Falcon-Perez JM, Royo F. The Role of Longevity Assurance Homolog 2/Ceramide Synthase 2 in Bladder Cancer. Int J Mol Sci 2023; 24:15668. [PMID: 37958652 PMCID: PMC10650086 DOI: 10.3390/ijms242115668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
The human CERS2 gene encodes a ceramide synthase enzyme, known as CERS2 (ceramide synthase 2). This protein is also known as LASS2 (LAG1 longevity assurance homolog 2) and TMSG1 (tumor metastasis-suppressor gene 1). Although previously described as a tumor suppressor for different types of cancer, such as prostate or liver cancer, it has also been observed to promote tumor growth in adenocarcinoma. In this review, we focus on the influence of CERS2 in bladder cancer (BC), approaching the existing literature about its structure and activity, as well as the miRNAs regulating its expression. From a mechanistic point of view, different explanations for the role of CERS2 as an antitumor protein have been proposed, including the production of long-chain ceramides, interaction with vacuolar ATPase, and its function as inhibitor of mitochondrial fission. In addition, we reviewed the literature specifically studying the expression of this gene in both BC and biopsy-derived tumor cell lines, complementing this with an analysis of public gene expression data and its association with disease progression. We also discuss the importance of CERS2 as a biomarker and the presence of CERS2 mRNA in extracellular vesicles isolated from urine.
Collapse
Affiliation(s)
- Clara Garcia-Vallicrosa
- Exosomes Laboratory and Metabolomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain; (C.G.-V.); (J.M.F.-P.)
| | - Juan M. Falcon-Perez
- Exosomes Laboratory and Metabolomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain; (C.G.-V.); (J.M.F.-P.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas Y Digestivas (CIBERehd), 28029 Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Felix Royo
- Exosomes Laboratory and Metabolomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain; (C.G.-V.); (J.M.F.-P.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas Y Digestivas (CIBERehd), 28029 Madrid, Spain
| |
Collapse
|
4
|
Afrin F, Mateen S, Oman J, Lai JCK, Barrott JJ, Pashikanti S. Natural Products and Small Molecules Targeting Cellular Ceramide Metabolism to Enhance Apoptosis in Cancer Cells. Cancers (Basel) 2023; 15:4645. [PMID: 37760612 PMCID: PMC10527029 DOI: 10.3390/cancers15184645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Molecular targeting strategies have been used for years in order to control cancer progression and are often based on targeting various enzymes involved in metabolic pathways. Keeping this in mind, it is essential to determine the role of each enzyme in a particular metabolic pathway. In this review, we provide in-depth information on various enzymes such as ceramidase, sphingosine kinase, sphingomyelin synthase, dihydroceramide desaturase, and ceramide synthase which are associated with various types of cancers. We also discuss the physicochemical properties of well-studied inhibitors with natural product origins and their related structures in terms of these enzymes. Targeting ceramide metabolism exhibited promising mono- and combination therapies at preclinical stages in preventing cancer progression and cemented the significance of sphingolipid metabolism in cancer treatments. Targeting ceramide-metabolizing enzymes will help medicinal chemists design potent and selective small molecules for treating cancer progression at various levels.
Collapse
Affiliation(s)
- Farjana Afrin
- Biomedical and Pharmaceutical Sciences, Kasiska Division of Health Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (F.A.); (S.M.); (J.O.); (J.C.K.L.)
| | - Sameena Mateen
- Biomedical and Pharmaceutical Sciences, Kasiska Division of Health Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (F.A.); (S.M.); (J.O.); (J.C.K.L.)
| | - Jordan Oman
- Biomedical and Pharmaceutical Sciences, Kasiska Division of Health Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (F.A.); (S.M.); (J.O.); (J.C.K.L.)
| | - James C. K. Lai
- Biomedical and Pharmaceutical Sciences, Kasiska Division of Health Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (F.A.); (S.M.); (J.O.); (J.C.K.L.)
| | - Jared J. Barrott
- Cell Biology and Physiology, College of Life Sciences, Brigham Young University, Provo, UT 84602, USA;
| | - Srinath Pashikanti
- Biomedical and Pharmaceutical Sciences, Kasiska Division of Health Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (F.A.); (S.M.); (J.O.); (J.C.K.L.)
| |
Collapse
|
5
|
Zhang M, Li Z, Liu Y, Ding X, Wang Y, Fan S. The ceramide synthase (CERS/LASS) family: Functions involved in cancer progression. Cell Oncol (Dordr) 2023; 46:825-845. [PMID: 36947340 DOI: 10.1007/s13402-023-00798-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2023] [Indexed: 03/23/2023] Open
Abstract
INTRODUCTION Ceramide synthases (CERSes) are also known longevity assurance (LASS) genes. CERSes play important roles in the regulation of cancer progression. The CERS family is expressed in a variety of human tumours and is involved in tumorigenesis. They are closely associated with the progression of liver, breast, cervical, ovarian, colorectal, head and neck squamous cell, gastric, lung, prostate, oesophageal, pancreatic and blood cancers. CERSes play diverse and important roles in the regulation of cell survival, proliferation, apoptosis, migration, invasion, and drug resistance. The differential expression of CERSes in tumour and nontumour cells and survival analysis of cancer patients suggest that some CERSes could be used as potential prognostic markers. They are also important potential targets for cancer therapy. METHODS In this review, we summarize the available evidence on the inhibitory or promotive roles of CERSes in the progression of many cancers. Furthermore, we summarize the identified upstream and downstream molecular mechanisms that may regulate the function of CERSes in cancer settings.
Collapse
Affiliation(s)
- Mengmeng Zhang
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Zhangyun Li
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Yuwei Liu
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Xiao Ding
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Yanyan Wang
- Department of Ultrasonic Medicine, The First People's Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, 221000, China.
| | - Shaohua Fan
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| |
Collapse
|
6
|
Wang Y, Li S, Weng L, Du H, Wang J, Xu X. LASS2 overexpression enhances early apoptosis of lung cancer cells through the caspase‑dependent pathway. Oncol Rep 2022; 48:220. [PMID: 36300249 DOI: 10.3892/or.2022.8435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 06/27/2022] [Indexed: 11/06/2022] Open
Abstract
In a previous study by the authors, the longevity assurance homolog 2 (LASS2) gene was determined to inhibit activity of vacuolar H+‑ATPase (V‑ATPase) by combining with the C subunit (ATP6L) of V‑ATPase. However, the influence of LASS2 overexpression and silencing on apoptosis of human lung cancer cells 95D or 95C remains unclear. Thus, the effect of LASS2 on apoptosis and its potential mechanisms were investigated in 95D and 95C cells. Using the lentiviral transfection method, lentiviral vectors of LASS2 overexpression and silencing were transfected into 95D and 95C cells, respectively. The apoptotic ability of tumor cells was observed by flow cytometry. The expression levels of LASS2, Bcl‑2, Bax, cytochrome c, caspase‑9, and caspase‑3 were detected by western blotting. CCK‑8 assay was used to detect the growth ability of tumor cells in vitro. Flow cytometric analysis revealed that LASS2 overexpression could promote the early apoptosis of lung cancer cells 95D. CCK‑8 assay demonstrated that LASS2 overexpression inhibited the proliferation of 95D cells. Additionally, LASS2 overexpression decreased the expression of Bcl‑2, induced the release of cytochrome c from mitochondria, and promoted the activation of caspase‑9 and caspase‑3. There was a significant difference in the expression of Bcl‑2, cytochrome c, caspase‑9 and caspase‑3 in the LASS2‑overexpression group compared with the normal and negative control groups. Alternatively, the aforementioned experiments in lung cancer cells 95C following LASS2 silencing produced the opposite effects. LASS2 may induce early apoptosis of lung cancer cells by influencing the caspase‑dependent mitochondrial pathway.
Collapse
Affiliation(s)
- Yamei Wang
- Department of Pathology, College of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010059, P.R. China
| | - Shirong Li
- Department of Pathology, College of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010059, P.R. China
| | - Lixin Weng
- Department of Pathology, College of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010059, P.R. China
| | - Hua Du
- Department of Pathology, College of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010059, P.R. China
| | - Jingyuan Wang
- Department of Pathology, College of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010059, P.R. China
| | - Xiaoyan Xu
- Department of Pathology, College of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010059, P.R. China
| |
Collapse
|
7
|
Zhang K, Wu R, Mei F, Zhou Y, He L, Liu Y, Zhao X, You J, Liu B, Meng Q, Pei F. Phosphorylated LASS2 inhibits prostate carcinogenesis via negative regulation of Wnt/β-catenin signaling. J Cell Biochem 2021; 122:1048-1061. [PMID: 33852174 DOI: 10.1002/jcb.29926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/28/2021] [Accepted: 03/16/2021] [Indexed: 11/08/2022]
Abstract
LASS2 is a novel tumor-suppressor gene and has been characterized as a ceramide synthase, which synthesizes very-long acyl chain ceramides. However, LASS2 function and pathway-related activity in prostate carcinogenesis are still largely unexplored. Here, we firstly report that LASS2 promotes β-catenin degradation through physical interaction with STK38, SCYL2, and ATP6V0C via the ubiquitin-proteasome pathway, phosphorylation of LASS2 is essential for β-catenin degradation, and serine residue 248 of LASS2 is illustrated to be a key phosphorylation site. Furthermore, we find that dephosphorylation of LASS2 at serine residue 248 significantly enhances prostate cancer cell growth and metastasis in vivo, indicating that phosphorylated LASS2 inhibits prostate carcinogenesis through negative regulation of Wnt/β-catenin signaling. Thus, our findings implicate LASS2 as a potential biomarker and therapeutic target of prostate cancer.
Collapse
Affiliation(s)
- Kuangen Zhang
- Department of Pathology, Peking University Third Hospital, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Department of Pathology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Rui Wu
- Department of Pathology, Peking University Third Hospital, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Fang Mei
- Department of Pathology, Peking University Third Hospital, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yuhe Zhou
- Department of Pathology, Peking University Third Hospital, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Physiatry Department, Beijing Cancer Hospital, Beijing, China
| | - Lin He
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| | - Yanhua Liu
- Department of Pathology, Peking University Third Hospital, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xuyang Zhao
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jiangfeng You
- Department of Pathology, Peking University Third Hospital, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Beiying Liu
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, China
| | - Qingyang Meng
- Department of Pathology, Peking University Third Hospital, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Fei Pei
- Department of Pathology, Peking University Third Hospital, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
8
|
Zhang X, Sakamoto W, Canals D, Ishibashi M, Matsuda M, Nishida K, Toyoshima M, Shigeta S, Taniguchi M, Senkal CE, Okazaki T, Yaegashi N, Hannun YA, Nabe T, Kitatani K. Ceramide synthase 2-C 24:1 -ceramide axis limits the metastatic potential of ovarian cancer cells. FASEB J 2021; 35:e21287. [PMID: 33423335 PMCID: PMC8237407 DOI: 10.1096/fj.202001504rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/28/2020] [Accepted: 12/03/2020] [Indexed: 12/23/2022]
Abstract
Regulation of sphingolipid metabolism plays a role in cellular homeostasis, and dysregulation of these pathways is involved in cancer progression. Previously, our reports identified ceramide as an anti-metastatic lipid. In the present study, we investigated the biochemical alterations in ceramide-centered metabolism of sphingolipids that were associated with metastatic potential. We established metastasis-prone sublines of SKOV3 ovarian cancer cells using an in vivo selection method. These cells showed decreases in ceramide levels and ceramide synthase (CerS) 2 expression. Moreover, CerS2 downregulation in ovarian cancer cells promoted metastasis in vivo and potentiated cell motility and invasiveness. Moreover, CerS2 knock-in suppressed the formation of lamellipodia required for cell motility in this cell line. In order to define specific roles of ceramide species in cell motility controlled by CerS2, the effect of exogenous long- and very long-chain ceramide species on the formation of lamellipodia was evaluated. Treatment with distinct ceramides increased cellular ceramides and had inhibitory effects on the formation of lamellipodia. Interestingly, blocking the recycling pathway of ceramides by a CerS inhibitor was ineffective in the suppression of exogenous C24:1 -ceramide for the formation of lamellipodia. These results suggested that C24:1 -ceramide, a CerS2 metabolite, predominantly suppresses the formation of lamellipodia without the requirement for deacylation/reacylation. Moreover, knockdown of neutral ceramidase suppressed the formation of lamellipodia concomitant with upregulation of C24:1 -ceramide. Collectively, the CerS2-C24:1 -ceramide axis, which may be countered by neutral ceramidase, is suggested to limit cell motility and metastatic potential. These findings may provide insights that lead to further development of ceramide-based therapy and biomarkers for metastatic ovarian cancer.
Collapse
Affiliation(s)
- Xuewei Zhang
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Wataru Sakamoto
- Department of Medicine, Stony Brook Cancer Center, Stony Brook, NY, USA
| | - Daniel Canals
- Department of Medicine, Stony Brook Cancer Center, Stony Brook, NY, USA
| | - Masumi Ishibashi
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Masaya Matsuda
- Laboratory of Immunopharmacology, Faculty of Pharmaceutical Science, Setsunan University, Osaka, Japan
| | - Kentaro Nishida
- Department of Integrative Pharmaceutical Sciences, Faculty of Pharmaceutical Science, Setsunan University, Osaka, Japan
| | - Masafumi Toyoshima
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Shogo Shigeta
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Makoto Taniguchi
- Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Can E. Senkal
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, VA, USA
| | - Toshiro Okazaki
- Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
- Department of Hematology and Immunology, Kanazawa Medical University, Ishikawa, Japan
| | - Nobuo Yaegashi
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Yusuf A. Hannun
- Department of Medicine, Stony Brook Cancer Center, Stony Brook, NY, USA
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
- Department of Biochemistry, Stony Brook University, Stony Brook, NY, USA
| | - Takeshi Nabe
- Laboratory of Immunopharmacology, Faculty of Pharmaceutical Science, Setsunan University, Osaka, Japan
| | - Kazuyuki Kitatani
- Laboratory of Immunopharmacology, Faculty of Pharmaceutical Science, Setsunan University, Osaka, Japan
| |
Collapse
|
9
|
Amjad E, Asnaashari S, Sokouti B, Dastmalchi S. Systems biology comprehensive analysis on breast cancer for identification of key gene modules and genes associated with TNM-based clinical stages. Sci Rep 2020; 10:10816. [PMID: 32616754 PMCID: PMC7331704 DOI: 10.1038/s41598-020-67643-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 06/12/2020] [Indexed: 12/11/2022] Open
Abstract
Breast cancer (BC), as one of the leading causes of death among women, comprises several subtypes with controversial and poor prognosis. Considering the TNM (tumor, lymph node, metastasis) based classification for staging of breast cancer, it is essential to diagnose the disease at early stages. The present study aims to take advantage of the systems biology approach on genome wide gene expression profiling datasets to identify the potential biomarkers involved at stage I, stage II, stage III, and stage IV as well as in the integrated group. Three HER2-negative breast cancer microarray datasets were retrieved from the GEO database, including normal, stage I, stage II, stage III, and stage IV samples. Additionally, one dataset was also extracted to test the developed predictive models trained on the three datasets. The analysis of gene expression profiles to identify differentially expressed genes (DEGs) was performed after preprocessing and normalization of data. Then, statistically significant prioritized DEGs were used to construct protein-protein interaction networks for the stages for module analysis and biomarker identification. Furthermore, the prioritized DEGs were used to determine the involved GO enrichment and KEGG signaling pathways at various stages of the breast cancer. The recurrence survival rate analysis of the identified gene biomarkers was conducted based on Kaplan-Meier methodology. Furthermore, the identified genes were validated not only by using several classification models but also through screening the experimental literature reports on the target genes. Fourteen (21 genes), nine (17 genes), eight (10 genes), four (7 genes), and six (8 genes) gene modules (total of 53 unique genes out of 63 genes with involving those with the same connectivity degree) were identified for stage I, stage II, stage III, stage IV, and the integrated group. Moreover, SMC4, FN1, FOS, JUN, and KIF11 and RACGAP1 genes with the highest connectivity degrees were in module 1 for abovementioned stages, respectively. The biological processes, cellular components, and molecular functions were demonstrated for outcomes of GO analysis and KEGG pathway assessment. Additionally, the Kaplan-Meier analysis revealed that 33 genes were found to be significant while considering the recurrence-free survival rate as an alternative to overall survival rate. Furthermore, the machine learning calcification models show good performance on the determined biomarkers. Moreover, the literature reports have confirmed all of the identified gene biomarkers for breast cancer. According to the literature evidence, the identified hub genes are highly correlated with HER2-negative breast cancer. The 53-mRNA signature might be a potential gene set for TNM based stages as well as possible therapeutics with potentially good performance in predicting and managing recurrence-free survival rates at stages I, II, III, and IV as well as in the integrated group. Moreover, the identified genes for the TNM-based stages can also be used as mRNA profile signatures to determine the current stage of the breast cancer.
Collapse
Affiliation(s)
- Elham Amjad
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Asnaashari
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Babak Sokouti
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Brachtendorf S, El-Hindi K, Grösch S. WITHDRAWN: Ceramide synthases in cancer therapy and chemoresistance. Prog Lipid Res 2019:100992. [PMID: 31442523 DOI: 10.1016/j.plipres.2019.100992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 10/26/2022]
Affiliation(s)
- Sebastian Brachtendorf
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern Kai 7, Frankfurt 60590, Germany
| | - Khadija El-Hindi
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern Kai 7, Frankfurt 60590, Germany
| | - Sabine Grösch
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern Kai 7, Frankfurt 60590, Germany
| |
Collapse
|
11
|
Fu S, Luan T, Jiang C, Huang Y, Li N, Wang H, Wang J. miR-3622a promotes proliferation and invasion of bladder cancer cells by downregulating LASS2. Gene 2019; 701:23-31. [PMID: 30898713 DOI: 10.1016/j.gene.2019.02.083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 02/18/2019] [Accepted: 02/23/2019] [Indexed: 12/27/2022]
Abstract
As a tumor metastasis suppressor gene, LASS2 has been found to be negatively associated with the stage of bladder cancer and overall survival of patients. However, the mechanisms regulating LASS2 in bladder cancer remain poorly understood. Here, we aim to identify a miRNA that targets LASS2 from bladder cancer-associated miRNAs and to reveal its potential functions in bladder cancer cells. Through miRNA microarray and bioinformatics analyses, we identified miR-3622a as a negative regulator of LASS2. The expression levels of miR-3622a in bladder cancer tissues were negatively correlated with the overall survival of patients. Overexpression of miR-3622a significantly increased the proliferation and invasion abilities of bladder cancer cells. In conclusion, our results indicate that miR-3622a promotes the proliferation and invasion of bladder cancer cells by downregulating LASS2.
Collapse
Affiliation(s)
- Shi Fu
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming 650101, China
| | - Ting Luan
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming 650101, China
| | - Changyi Jiang
- Department of Urology, The First People's Hospital of Longquanyi District, Chendu 610000, China
| | - Yinglong Huang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming 650101, China
| | - Ning Li
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming 650101, China
| | - Haifeng Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming 650101, China.
| | - Jiansong Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming 650101, China.
| |
Collapse
|
12
|
Clinical and pathological significance of Homo sapiens ceramide synthase 2 (CerS-2) in diverse human cancers. Biosci Rep 2019; 39:BSR20181743. [PMID: 30988071 PMCID: PMC6504659 DOI: 10.1042/bsr20181743] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 02/22/2019] [Accepted: 04/12/2019] [Indexed: 01/10/2023] Open
Abstract
Homo sapiens ceramide synthase 2 (CerS-2) plays an important role in inhibiting invasion and metastasis of tumor cells and has been reported as a tumor metastasis suppressor gene in diverse cancers. Thus, low level of CerS-2 protein might suggest a bad prognosis and up-regulation of CerS-2 protein might act as a promising therapeutic strategy for malignant tumors. In this review, we discussed the expression, as well as the clinical and pathological significance of CerS-2 in diverse human cancers. The pathological processes and molecular pathways regulated by CerS-2 were also summarized.
Collapse
|
13
|
Brachtendorf S, El-Hindi K, Grösch S. Ceramide synthases in cancer therapy and chemoresistance. Prog Lipid Res 2019; 74:160-185. [DOI: 10.1016/j.plipres.2019.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 12/24/2022]
|
14
|
Sheng N, Wang Y, Xie Y, Chen S, Lu J, Zhang Z, Li M, Shan Q, Wu D, Zheng G, Zheng Y, Fan S. High expression of LASS2 is associated with unfavorable prognosis in patients with ovarian cancer. J Cell Physiol 2018; 234:13001-13013. [PMID: 30537159 DOI: 10.1002/jcp.27970] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 11/19/2018] [Indexed: 12/14/2022]
Abstract
Homo sapiens longevity assurance homolog 2 of yeast LAG1 (LASS2), is a gene isolated from a human liver complementary DNA library. In this study, we found that LASS2 protein level was positively related to International Federation of Gynecology and Obstetrics (FIGO) stage and LASS2-negative tumors showed significant association with longer disease-free survival (DFS) and overall survival (OS) in ovarian cancer patients. The heterogeneous expression of LASS2 had been exhibited in diverse ovarian cancer cells. A significantly lower messenger RNA (mRNA) and protein level of LASS2 was seen in 3AO cell compared with those in other types of ovarian cancer cells. Meanwhile, the mRNA and protein levels of LASS2 in ES-2 and NIH:OVCAR-3 cells were obviously higher. LASS2 overexpression in 3AO cell could promote migration, invasion, and metastasis abilities in vitro and in vivo, while LASS2 knockdown in ES-2 and NIH:OVCAR-3 cells had the opposite effects. The oncogenic capacity of LASS2 in ovarian cancer may be mediated by increased expression of YAP/TAZ. It is indicated that lowering the expression of LASS2 is likely to serve as an unprecedented approach for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Ning Sheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China.,College of Health Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Yanyan Wang
- Department of Ultrasonic Medicine, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ying Xie
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China.,College of Health Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Sihan Chen
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China.,College of Health Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China.,College of Health Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Zifeng Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China.,College of Health Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Mengqiu Li
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China.,College of Health Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Qun Shan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China.,College of Health Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Dongmei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China.,College of Health Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Guihong Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China.,College of Health Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Yuanlin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China.,College of Health Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Shaohua Fan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China.,College of Health Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| |
Collapse
|
15
|
Zeng F, Huang L, Cheng X, Yang X, Li T, Feng G, Tang Y, Yang Y. Overexpression of LASS2 inhibits proliferation and causes G0/G1 cell cycle arrest in papillary thyroid cancer. Cancer Cell Int 2018; 18:151. [PMID: 30302058 PMCID: PMC6167791 DOI: 10.1186/s12935-018-0649-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/26/2018] [Indexed: 12/11/2022] Open
Abstract
Background The aim of this study was to investigate the role of LAG1 longevity-assurance homologue 2 (LASS2) in papillary thyroid cancer (PTC). Methods Immunohistochemistry staining was conducted to explore the expression levels of LASS2 in PTC tissues and adjacent normal thyroid tissues and nodular goiter tissues. Western blotting and RT-qPCR were performed to explore the expression levels of LASS2 in three PTC cell lines (TPC-1, K1, BCPAP). An Adv-LASS2-GFP recombinant adenovirus vector was constructed and transduced into BCPAP cells. Then CCK-8 assay, colony formation assay, cell cycle distribution, and apoptosis were performed. Western blotting was used to examine the expression of p21, cyclin D1, cyclin-dependent kinase 4, p53 and p-p53. Results LASS2 was downregulated in PTC tissues compared with adjacent thyroid tissues or nodular goiter tissues. In addition, the expression of LASS2 was found to be associated with TNM stage and lymph node metastasis. BCPAP cells expressed the lowest LASS2 compared to TPC-1 cells or K1 cells. Overexpression of LASS2 significantly inhibited proliferation, promoted apoptosis and caused G0/G1 cell cycle arrest in BCPAP cells. Furthermore, overexpression of LASS2 significantly increased the expression of p21, inhibited the expression of cyclin D1 and cyclin-dependent kinase 4, and increased the expression of p-p53, but did not effect the expression of p53 in BCPAP cells. Conclusion Our findings indicate that overexpression of LASS2 inhibits PTC cell proliferation, promotes apoptosis and causes G0/G1 cell cycle arrest via a p53-dependent pathway. Thus, LASS2 may serve as a novel biomarker in PTC.
Collapse
Affiliation(s)
- Feng Zeng
- 1Medical Center of Breast and Thyroid Disease, Affiliated Hospital of ZunYi Medical College, Zunyi, 563003 Guizhou People's Republic of China
| | - Liangliang Huang
- 1Medical Center of Breast and Thyroid Disease, Affiliated Hospital of ZunYi Medical College, Zunyi, 563003 Guizhou People's Republic of China
| | - Xiaoming Cheng
- 1Medical Center of Breast and Thyroid Disease, Affiliated Hospital of ZunYi Medical College, Zunyi, 563003 Guizhou People's Republic of China
| | - Xiaoli Yang
- 2College of Laboratory Medicine, Affiliated Hospital of ZunYi Medical College, Zunyi, 563003 Guizhou People's Republic of China.,3Department of Clinical Laboratory, Affiliated Hospital of ZunYi Medical College, 149 Dalian Road, Zunyi, 563003 Guizhou People's Republic of China
| | - Taolang Li
- 1Medical Center of Breast and Thyroid Disease, Affiliated Hospital of ZunYi Medical College, Zunyi, 563003 Guizhou People's Republic of China
| | - Guoli Feng
- 1Medical Center of Breast and Thyroid Disease, Affiliated Hospital of ZunYi Medical College, Zunyi, 563003 Guizhou People's Republic of China
| | - Yingqi Tang
- 1Medical Center of Breast and Thyroid Disease, Affiliated Hospital of ZunYi Medical College, Zunyi, 563003 Guizhou People's Republic of China
| | - Yan Yang
- 2College of Laboratory Medicine, Affiliated Hospital of ZunYi Medical College, Zunyi, 563003 Guizhou People's Republic of China.,3Department of Clinical Laboratory, Affiliated Hospital of ZunYi Medical College, 149 Dalian Road, Zunyi, 563003 Guizhou People's Republic of China
| |
Collapse
|
16
|
Fan S, Wang Y, Wang C, Jin H, Wu Z, Lu J, Zhang Z, Sun C, Shan Q, Wu D, Zhuang J, Sheng N, Xie Y, Li M, Hu B, Fang J, Zheng Y, Qin W. Hepatocyte-specific deletion of LASS2 protects against diet-induced hepatic steatosis and insulin resistance. Free Radic Biol Med 2018; 120:330-341. [PMID: 29626628 DOI: 10.1016/j.freeradbiomed.2018.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 03/23/2018] [Accepted: 04/03/2018] [Indexed: 02/06/2023]
Abstract
Homo sapienslongevity assurance homolog 2 of yeast LAG1 (LASS2) is expressed mostly in human liver. Here, we explored roles of LASS2 in pathogenesis of hepatic steatosis. Hepatocyte-specific LASS2 knockout (LASS2-/-) mice were generated using Cre-LoxP system. LASS2-/- and wild-type (WT) mice were fed with chow or high-fat diet (HFD). We found LASS2-/- mice were resistant to HFD-induced hepatic steatosis and insulin resistance. In HFD-fed mice, LASS2 deficiency significantly inhibited p38 MAPK and ERK1/ERK2 signaling in mouse liver. This effect was mediated by a significant increase of V-ATPase activity and a decrease of ROS level. We also observed that elevated expression of LASS2 in mouse hepatocyte cell line AML12 obviously decreased V-ATPase activity and increased ROS level by activation of p38 MAPK and ERK1/ERK2 signaling. Our findings indicate that LASS2 plays an important role in the pathogenesis of diet-induced hepatic steatosis and is a potential novel target for prevention and intervention of liver diseases.
Collapse
Affiliation(s)
- Shaohua Fan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Xuzhou, Jiangsu 221116, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Yanyan Wang
- Department of Medical Ultrasonics, The Affiliated First People's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Cun Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Haojie Jin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Zheng Wu
- Department of Radiotherapy, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Xuzhou, Jiangsu 221116, China
| | - Zifeng Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Xuzhou, Jiangsu 221116, China
| | - Chunhui Sun
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Xuzhou, Jiangsu 221116, China
| | - Qun Shan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Xuzhou, Jiangsu 221116, China
| | - Dongmei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Xuzhou, Jiangsu 221116, China
| | - Juan Zhuang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Xuzhou, Jiangsu 221116, China
| | - Ning Sheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Xuzhou, Jiangsu 221116, China
| | - Ying Xie
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Xuzhou, Jiangsu 221116, China
| | - Mengqiu Li
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Xuzhou, Jiangsu 221116, China
| | - Bin Hu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Xuzhou, Jiangsu 221116, China
| | - Jingyuan Fang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Yuanlin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Xuzhou, Jiangsu 221116, China.
| | - Wenxin Qin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China.
| |
Collapse
|
17
|
Jin H, Wang C, Gu D, Zhang Y, Fan S, Xing S, Wang H, Ruan H, Yang C, Lv Y, Feng H, Yao M, Qin W. Liver-specific deletion of LASS2 delayed regeneration of mouse liver after partial hepatectomy. Biochem Biophys Res Commun 2017; 493:1176-1183. [PMID: 28958935 DOI: 10.1016/j.bbrc.2017.09.128] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 09/23/2017] [Indexed: 01/17/2023]
Abstract
The capacity of liver regeneration is critical for patients with liver diseases. However, cellular and molecular mechanisms of liver regeneration are still incompletely defined. Here, we assessed roles of LASS2 in liver regeneration following partial hepatectomy (PHx) in mice. Our results showed that protein level of LASS2 remarkably increased during liver regeneration after PHx in wildtype (WT) mice. Comparing to WT mice, liver regeneration index after PHx was significantly decreased from day 1 to day 5 in liver-specific LASS2 knockout (LASS2-LKO) mice. Interestingly, liver mass of LASS2-LKO mice could sufficiently recover at day 14 after PHx. Immunohistochemistry (IHC) and western blot analyses revealed that proliferation markers, such as PCNA and Ki67, were potently reduced during liver regeneration in LASS2-LKO mice. In addition, several cell cycle related molecules, such as cyclin A, CDK2 and p-Rb, were decreased in LASS2-LKO mice after PHx. Co-immunoprecipitation assay further revealed a decreased formation of CDK4/cyclin D1 complex after PHx in LASS2-LKO mice. However, phosphorylation of Akt was significantly activated from day 2 after PHx in LASS2-LKO mice when compared with that in WT mice, which may explain the recovery of liver mass at the late stage of liver regeneration in LASS2-LKO mice. Taken together, we conclude that LASS2 plays an important role in efficient liver regeneration in response to PHx.
Collapse
Affiliation(s)
- Haojie Jin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Cun Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Dishui Gu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China; Department of Pathophysiology, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, Guangdong, China
| | - Yurong Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Shaohua Fan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Shunpeng Xing
- Department of Critical Care Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Haoyu Ruan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Cheng Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China; Shanghai Medical College of Fudan University, Shanghai, China
| | - Yuanyuan Lv
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Hugang Feng
- Department of Life Science, Imperial College, London, UK
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Wenxin Qin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China.
| |
Collapse
|
18
|
Fucho R, Casals N, Serra D, Herrero L. Ceramides and mitochondrial fatty acid oxidation in obesity. FASEB J 2016; 31:1263-1272. [PMID: 28003342 DOI: 10.1096/fj.201601156r] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 12/06/2016] [Indexed: 12/12/2022]
Abstract
Obesity is an epidemic, complex disease that is characterized by increased glucose, lipids, and low-grade inflammation in the circulation, among other factors. It creates the perfect scenario for the production of ceramide, the building block of the sphingolipid family of lipids, which is involved in metabolic disorders such as obesity, diabetes, and cardiovascular disease. In addition, obesity causes a decrease in fatty acid oxidation (FAO), which contributes to lipid accumulation within the cells, conferring more susceptibility to cell dysfunction. C16:0 ceramide, a specific ceramide species, has been identified recently as the principal mediator of obesity-derived insulin resistance, impaired fatty acid oxidation, and hepatic steatosis. In this review, we have sought to cover the importance of the ceramide species and their metabolism, the main ceramide signaling pathways in obesity, and the link between C16:0 ceramide, FAO, and obesity.-Fucho, R., Casals, N., Serra, D., Herrero, L. Ceramides and mitochondrial fatty acid oxidation in obesity.
Collapse
Affiliation(s)
- Raquel Fucho
- Department of Biochemistry and Physiology, School of Pharmacy, Institut de Biomedicina, Universitat de Barcelona, Barcelona, Spain
| | - Núria Casals
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain; and.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Dolors Serra
- Department of Biochemistry and Physiology, School of Pharmacy, Institut de Biomedicina, Universitat de Barcelona, Barcelona, Spain; .,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy, Institut de Biomedicina, Universitat de Barcelona, Barcelona, Spain; .,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
19
|
Wang H, Zuo Y, Ding M, Ke C, Yan R, Zhan H, Liu J, Wang W, Li N, Wang J. LASS2 inhibits growth and invasion of bladder cancer by regulating ATPase activity. Oncol Lett 2016; 13:661-668. [PMID: 28356943 PMCID: PMC5351400 DOI: 10.3892/ol.2016.5514] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 11/10/2016] [Indexed: 01/06/2023] Open
Abstract
Homo sapiens longevity assurance homolog 2 of yeast LAG1 (LASS2) is a novel suppressor of human cancer metastasis, and downregulation of LASS2 has been associated with a poor prognosis in patients with bladder cancer (BC). However, the molecular mechanism underlying LASS2-mediated inhibition of tumor invasion and metastasis in BC remains unclear. LASS2 has been reported to directly bind to subunit C of vacuolar H+-ATPase (V-ATPase) in various types of cancer, suggesting that LASS2 may inhibit cancer invasion and metastasis by regulating the function of V-ATPase. The present study investigated the effect of LASS2-specific small interfering (si)RNA on the invasion and metastasis of the RT4 human BC cell line, which has a low metastatic potential, and its functional interaction with V-ATPase. Silencing of LASS2 in RT4 cells was able to increase V-ATPase activity, the extracellular hydrogen ion concentration and, in turn, the activation of secreted matrix metalloproteinase (MMP)-2 and MMP-9, which occurred simultaneously with enhanced cell proliferation, cell survival and cell invasion in vitro, as well as acceleration of BC growth in vivo. In this process, it was found that siRNA-LASS2 treatment was able to suppress cell apoptosis induced by doxorubicin. These findings suggest that silencing of LASS2 may enhance the growth, invasion and metastasis of BC by regulating ATPase activity.
Collapse
Affiliation(s)
- Haifeng Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, Yunnan 650101, P.R. China
| | - Yigang Zuo
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, Yunnan 650101, P.R. China
| | - Mingxia Ding
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, Yunnan 650101, P.R. China
| | - Changxing Ke
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, Yunnan 650101, P.R. China
| | - Ruping Yan
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, Yunnan 650101, P.R. China
| | - Hui Zhan
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, Yunnan 650101, P.R. China
| | - Jingyu Liu
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, Yunnan 650101, P.R. China
| | - Wei Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, Yunnan 650101, P.R. China
| | - Ning Li
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, Yunnan 650101, P.R. China
| | - Jiansong Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, Yunnan 650101, P.R. China
| |
Collapse
|
20
|
Co-expression of LASS2 and TGF-β1 predicts poor prognosis in hepatocellular carcinoma. Sci Rep 2016; 6:32421. [PMID: 27581744 PMCID: PMC5007525 DOI: 10.1038/srep32421] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 08/05/2016] [Indexed: 12/25/2022] Open
Abstract
Longevity assurance homolog 2 of yeast LAG1 (LASS2) has been reported to act as an important tumor suppressor in the development of human cancers. However, little is known about the prognostic value of LASS2 in hepatocellular carcinoma (HCC) . In the present study, we analyzed correlation between LASS2 and TGF-β1 levels, and evaluated their prognostic values in HCC patients. We first analyzed the expression of LASS2 and TGF-β1 in two independent cohorts (test cohort: 184 HCC patients; validation cohort: 118 HCC patients) using immunohistochemistry (IHC). Kaplan-Meier survival and Cox regression analyses were executed to evaluate the prognosis of HCC. The results of IHC analysis revealed a positive correlation between the expression of LASS2 and TGF-β1. HCC Patients with low expression of LASS2 and TGF-β1 had shorter overall survival (OS) and time to recurrence (TTR) than patients with high expression of LASS2 and TGF-β1. Furthermore, combination of LASS2 and TGF-β1 was an independent and significant risk factor for OS and TTR. In conclusion, low expression of LASS2 and TGF-β1 contributes to the aggressiveness and poor prognosis of HCC, and may represent a novel prognostic biomarker for HCC patients.
Collapse
|
21
|
The asialoglycoprotein receptor suppresses the metastasis of hepatocellular carcinoma via LASS2-mediated inhibition of V-ATPase activity. Cancer Lett 2016; 379:107-16. [PMID: 27241665 DOI: 10.1016/j.canlet.2016.05.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/25/2016] [Accepted: 05/25/2016] [Indexed: 12/28/2022]
Abstract
The asialoglycoprotein receptor (ASGR), which is expressed mainly in hepatocytes, is downregulated in poorly differentiated hepatocellular carcinoma (HCC). Here we investigated the role of ASGR1 in HCC metastasis as well as the possible underlying molecular mechanisms. We found that ASGR1 was downregulated in HCC tissue compared with adjacent non-tumorous liver tissue and that lower ASGR1 expression was associated with higher TNM stage and poorer prognosis in HCC patients. ASGR1 overexpression inhibited hepatoma cell migration and invasion in vitro and in vivo, while ASGR1 knockdown had the opposite effects. Furthermore, ASGR1 interacted directly with human longevity assurance homolog 2 of yeast LAG1 (LASS2). Knockdown of LASS2 attenuated the inhibitory effects of ASGR1 on hepatoma cell migration and invasion in vitro. ASGR1 decreased V-ATPase activity in hepatoma cells, and this was reversed by LASS2 knockdown. Finally, HCC patients with low LASS2 levels had poor prognosis, while those with high ASGR1 and LASS2 levels had better prognosis. Thus, ASGR1 may act as a potential metastasis suppressor in HCC, and the combination of ASGR1 and LASS2 may help predict the prognosis of HCC patients.
Collapse
|
22
|
Fan SH, Wang YY, Wu ZY, Zhang ZF, Lu J, Li MQ, Shan Q, Wu DM, Sun CH, Hu B, Zheng YL. AGPAT9 suppresses cell growth, invasion and metastasis by counteracting acidic tumor microenvironment through KLF4/LASS2/V-ATPase signaling pathway in breast cancer. Oncotarget 2016; 6:18406-17. [PMID: 26110566 PMCID: PMC4621899 DOI: 10.18632/oncotarget.4074] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/08/2015] [Indexed: 12/22/2022] Open
Abstract
Human 1-acylglycerol-3-phosphate O-acyltransferase 9 (AGPAT9) is the gene identified from adipose tissue in 2007. We found AGPAT9 expression was significantly higher in poorly invasive MCF7 human breast cancer cells than the highly invasive MDA-MB-231 cells. AGPAT9 significantly inhibited the proliferation of breast cancer cells in vitro and in vivo. Live-cell imaging and transwell assays showed that AGPAT9 could significantly inhibit the migration and invasive capacities of breast cancer cells. The inhibitory effect of AGPAT9 on metastasis was also observed in vivo in lung metastasis model. AGPAT9 inhibited breast cancer cell proliferation, migration and invasion through, at least in part, suppressing the V-ATPase activity. In addition, increased AGPAT9 expression in MCF-7/ADR cells could increase the chemosensitivity to doxorubicin (Dox). Our findings suggest that increasing AGPAT9 expression may be a new approach that can be used for breast cancer treatment.
Collapse
Affiliation(s)
- Shao-hua Fan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Yan-yan Wang
- Department of Function Examination, The First People's Hospital of Xuzhou, Jiangsu, China
| | - Zhi-yong Wu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Zi-feng Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Meng-qiu Li
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Qun Shan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Dong-mei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Chun-hui Sun
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Bin Hu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Yuan-lin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| |
Collapse
|
23
|
Wegner MS, Schiffmann S, Parnham MJ, Geisslinger G, Grösch S. The enigma of ceramide synthase regulation in mammalian cells. Prog Lipid Res 2016; 63:93-119. [PMID: 27180613 DOI: 10.1016/j.plipres.2016.03.006] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/17/2016] [Accepted: 03/27/2016] [Indexed: 12/20/2022]
Abstract
Ceramide synthases (CerS) are key enzymes in the lipid metabolism of eukaryotic cells. Their products, ceramides (Cer), are components of cellular membranes but also mediate signaling functions in physiological processes such as proliferation, skin barrier function and cerebellar development. In pathophysiological processes such as multiple sclerosis and tumor progression, ceramide levels are altered, which can be ascribed, partly, to dysregulation of CerS gene transcription. Most publications deal with the effects of altered ceramide levels on physiological and pathophysiological processes, but the regulation of the appropriate CerS is frequently not investigated. This is insufficient for the clarification of the role of ceramides, because most ceramide species are generated by at least two CerS. The mechanisms of CerS regulation are manifold and it seems that each CerS isoform is regulated individually. For this reason, we discuss the different CerS separately in this review. From transcriptional regulation to alteration of protein activity, the possibilities to influence CerS are diverse. Furthermore, CerS are influenced by a variety of molecules including hormones and lipids. Without claiming completeness, we provide a résumé of the regulatory mechanisms for each CerS in mammalian cells and how dysregulation of these mechanisms during physiological processes may lead to pathophysiological processes.
Collapse
Affiliation(s)
- Marthe-Susanna Wegner
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann- Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Susanne Schiffmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology (TMP), Frankfurt am Main, Germany
| | - Michael John Parnham
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology (TMP), Frankfurt am Main, Germany
| | - Gerd Geisslinger
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann- Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Sabine Grösch
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann- Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| |
Collapse
|
24
|
Fan SH, Wang YY, Lu J, Zheng YL, Wu DM, Zhang ZF, Shan Q, Hu B, Li MQ, Cheng W. CERS2 suppresses tumor cell invasion and is associated with decreased V-ATPase and MMP-2/MMP-9 activities in breast cancer. J Cell Biochem 2016; 116:502-13. [PMID: 25213553 DOI: 10.1002/jcb.24978] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 09/05/2014] [Indexed: 02/04/2023]
Abstract
Ceramide synthase 2 (CERS2) is the gene identified from a human liver cDNA library in 2001. Our previous studies have shown higher expression of CERS2 in the breast cancer patients was associated with fewer lymph node metastases. However, the molecular mechanism of CERS2 involved is unknown. Here, we found CERS2 was heterogeneously expressed in various breast cancer cells. The mRNA and protein expression levels of CERS2 in MCF7 cells, which are poorly invasive breast cancer cells, were obviously higher than that in the highly invasive cells MDA-MB-231. Results showed overexpression of CERS2 in MDA-MB-231 cells could significantly inhibit the migration and invasion ability, whereas CERS2 knockdown in MCF7 cells could significantly increase the migration and invasion ability. Overexpression of CERS2 in MDA-MB-231 cells significantly reduced the V-ATPase activity, increased the extracellular pH and decreased the pH-dependent activity of MMP-2 and MMP-9 matrix metalloproteinases (MMPs). CERS2 knockdown in MCF7 cells significantly increased the V-ATPase activity, decreased the extracellular pH and increased the activity of MMP-2 and MMP-9. Taken together, CERS2 can significantly inhibit breast cancer cell invasion and is associated with the decrease of the V-ATPase activity and extracellular hydrogen ion concentration, and in turn the activation of secreted MMP-2/MMP-9 and degradation of extracellular matrix (ECM), which ultimately suppressed tumor's invasion. Thus, CERS2 may represent a novel target for selectively disrupting V-ATPase activity and the invasive potential of cancer cells.
Collapse
Affiliation(s)
- Shao-hua Fan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Su J, Yu W, Gong M, You J, Liu J, Zheng J. Overexpression of a Novel Tumor Metastasis Suppressor Gene TMSG1/LASS2 Induces Apoptosis via a Caspase-dependent Mitochondrial Pathway. J Cell Biochem 2016; 116:1310-7. [PMID: 25735224 DOI: 10.1002/jcb.25086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 01/16/2015] [Indexed: 01/07/2023]
Abstract
The tumor metastasis suppressor gene 1 (TMSG1), also designated homo sapiens longevity assurance homologue 2 of yeast LAG1 (LASS2), is a novel tumor metastatic suppressor gene. Although its effects on metastasis have been reported, its biological functions remain unclear. The purpose of this study was to investigate the effects of TMSG1/LASS2 protein on apoptosis and proliferation in human embryonic kidney cell lines HEK293 and 293 T and explore the potential mechanisms. Cell growth, morphology, expressions of apoptotic-related proteins and cell cycle distribution were evaluated in HEK293 and 293 T cells transfected with TMSG1/LASS2 expression plasmids or vector controls. MTT assays showed that overexpression of TMSG1/LASS2 inhibited cell proliferation; and morphological observations and flow cytometric assays with Annexin V/propidium iodide showed TMSG1/LASS2 overexpression increased apoptosis in these cells. Western blot analysis demonstrated that overexpression of TMSG1/LASS2 resulted in the downregulation of Bcl-2, release of cytochrome c from mitochondria, activation of procaspase-9 and procaspase-3, and the cleavage of PARP. Subsequent cell cycle analysis showed that TMSG1/LASS2 overexpression inhibited cell proliferation by mediating the induction of G0/G1 cell cycle arrest. Together, these results confirmed that TMSG1/LASS2 is a potential metastasis suppressor gene, and suggested that the mechanism involved the induction of apoptosis and inhibition of cell proliferation via a caspase-dependent mitochondrial pathway.
Collapse
Affiliation(s)
- Jing Su
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Wenjuan Yu
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Miaozi Gong
- Department of Pathology, Peking University Shougang Hospital, Beijing, 100144, China
| | - Jiangfeng You
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Jianying Liu
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Jie Zheng
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| |
Collapse
|
26
|
Cingolani F, Futerman AH, Casas J. Ceramide synthases in biomedical research. Chem Phys Lipids 2015; 197:25-32. [PMID: 26248326 DOI: 10.1016/j.chemphyslip.2015.07.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 01/05/2023]
Abstract
Sphingolipid metabolism consists of multiple metabolic pathways that converge upon ceramide, one of the key molecules among sphingolipids (SLs). In mammals, ceramide synthesis occurs via N-acylation of sphingoid backbones, dihydrosphingosine (dhSo) or sphingosine (So). The reaction is catalyzed by ceramide synthases (CerS), a family of enzymes with six different isoforms, with each one showing specificity towards a restricted group of acyl-CoAs, thus producing ceramides (Cer) and dihydroceramides (dhCer) with different fatty acid chain lengths. A large body of evidence documents the role of both So and dhSo as bioactive molecules, as well as the involvement of dhCer and Cer in physiological and pathological processes. In particular, the fatty acid composition of Cer has different effects in cell biology and in the onset and progression of different diseases. Therefore, modulation of CerS activity represents an attractive target in biomedical research and in finding new treatment modalities. In this review, we discuss functional, structural and biochemical features of CerS and examine CerS inhibitors that are currently available.
Collapse
Affiliation(s)
- Francesca Cingolani
- Research Unit on BioActive Molecules (RUBAM), Department of Biomedicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| | - Anthony H Futerman
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Josefina Casas
- Research Unit on BioActive Molecules (RUBAM), Department of Biomedicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18, 08034 Barcelona, Spain.
| |
Collapse
|
27
|
Mei F, You J, Liu B, Zhang M, Liu J, Zhang B, Pei F. LASS2/TMSG1 inhibits growth and invasion of breast cancer cell in vitro through regulation of vacuolar ATPase activity. Tumour Biol 2014; 36:2831-44. [DOI: 10.1007/s13277-014-2910-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/27/2014] [Indexed: 12/17/2022] Open
|
28
|
Yang B, He XB. Tumor metastasis suppressor gene-1 and tumors. Shijie Huaren Xiaohua Zazhi 2014; 22:5291-5297. [DOI: 10.11569/wcjd.v22.i34.5291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tumor metastasis suppressor gene-1 (TMSG-1) is a newly discovered tumor metastasis suppressor gene that plays important roles in promoting apoptosis and inhibiting invasion and metastasis of tumor cells. The inhibitory function of TMSG-1 in tumor cells may be related to vacuolar H+-ATPase and ceramide, but the underlying mechanism remains unknown. This review discusses the discovery of TMSG-1, the structure of TMSG-1 protein, as well as its possible mechanisms of action, expression in tumors and applications.
Collapse
|
29
|
Xu X, Liu B, Zou P, Zhang Y, You J, Pei F. Silencing of LASS2/TMSG1 enhances invasion and metastasis capacity of prostate cancer cell. J Cell Biochem 2014; 115:731-43. [PMID: 24453046 DOI: 10.1002/jcb.24716] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 11/06/2013] [Indexed: 01/05/2023]
Abstract
Homo sapiens longevity assurance homolog 2 of yeast LAG1 (LASS2), also known as tumor metastasis suppressor gene 1 (TMSG1), was firstly cloned by our laboratory in 1999. However, its antitumor molecular mechanisms are still unclear. LASS2/TMSG-1 could directly interact with the C subunit of Vacuolar H(+) ATPase (V-ATPase), which suggested that LASS2/TMSG1 might inhibit the invasion and metastasis through regulating the function of V-ATPase. In this study, we explored the effect of small hairpin RNA (shRNA) targeting LASS2/TMSG1 on the invasion and metastasis of human prostate carcinoma cell line PC-3M-2B4 with low metastatic potential and its functional interaction with V-ATPase. Silencing of LASS2/TMSG1 gene in PC-3M-2B4 cells increased V-ATPase activity, extracellular hydrogen ion concentration and in turn the activation of secreted MMP-2 and MMP-9, which coincided with enhancing cell proliferation, cell survival, and cell invasion in vitro, as well as acceleration of prostate cancer (PCA) growth and lymph node metastases in vivo. Thus we concluded that silencing of LASS2/TMSG1 enhances invasion and metastasis of PCA cell through increase of V-ATPase activity. These results establish LASS2/TMSG1 as a promising therapeutic target for advanced PCA.
Collapse
Affiliation(s)
- Xiaoyan Xu
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, P.R. China; Department of Pathology, School of Basic Medical Sciences, Inner Monglia Medical College, Huhhot, 010059, P.R. China; Department of Pathology, The Affiliated Hospital of Inner Monglia Medical College, Huhhot, 010059, P.R. China
| | | | | | | | | | | |
Collapse
|
30
|
Ke RH, Wang Y, Mao Y, Zhang J, Xiong J. Decreased expression of LASS2 is associated with worse prognosis in meningiomas. J Neurooncol 2014; 118:369-376. [DOI: 10.1007/s11060-014-1441-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 04/05/2014] [Indexed: 12/31/2022]
|
31
|
Mfotie Njoya E, Weber C, Hernandez-Cuevas NA, Hon CC, Janin Y, Kamini MFG, Moundipa PF, Guillén N. Bioassay-guided fractionation of extracts from Codiaeum variegatum against Entamoeba histolytica discovers compounds that modify expression of ceramide biosynthesis related genes. PLoS Negl Trop Dis 2014; 8:e2607. [PMID: 24416462 PMCID: PMC3887121 DOI: 10.1371/journal.pntd.0002607] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 11/11/2013] [Indexed: 11/18/2022] Open
Abstract
Leaves of Codiaeum variegatum ("garden croton") are used against bloody diarrhoea by local populations in Cameroon. This study aims to search for the active components from C. variegatum against Entamoeba histolytica, and thereby initiate the study of their mechanism of action. A bioassay-guided screening of the aqueous extracts from C. variegatum leaves and various fractions was carried out against trophozoites of E. histolytica axenic culture. We found that the anti-amoebic activity of extracts changed with respect to the collection criteria of leaves. Thereby, optimal conditions were defined for leaves' collection to maximise the anti-amoebic activity of the extracts. A fractionation process was performed, and we identified several sub-fractions (or isolated compounds) with significantly higher anti-amoebic activity compared to the unfractionated aqueous extract. Anti-amoebic activity of the most potent fraction was confirmed with the morphological characteristics of induced death in trophozoites, including cell rounding and lysis. Differential gene expression analysis using high-throughput RNA sequencing implies the potential mechanism of its anti-amoebic activity by targeting ceramide, a bioactive lipid involved in disturbance of biochemical processes within the cell membrane including differentiation, proliferation, cell growth arrest and apoptosis. Regulation of ceramide biosynthesis pathway as a target for anti-amoebic compounds is a novel finding which could be an alternative for drug development against E. histolytica.
Collapse
Affiliation(s)
- Emmanuel Mfotie Njoya
- University of Yaoundé I, Faculty of Science, Department of Biochemistry, Laboratory of Pharmacology and Toxicology, Yaoundé, Cameroon
- Institut Pasteur, Cell Biology of Parasitism Unit, Paris, France
- INSERM U786, Paris, France
| | - Christian Weber
- Institut Pasteur, Cell Biology of Parasitism Unit, Paris, France
- INSERM U786, Paris, France
| | | | - Chung-Chau Hon
- Institut Pasteur, Cell Biology of Parasitism Unit, Paris, France
- INSERM U786, Paris, France
| | - Yves Janin
- Institut Pasteur, Unité de Chimie et Biocatalyse, Paris, France
| | - Melanie F. G. Kamini
- University of Yaoundé I, Faculty of Science, Department of Biochemistry, Laboratory of Pharmacology and Toxicology, Yaoundé, Cameroon
| | - Paul F. Moundipa
- University of Yaoundé I, Faculty of Science, Department of Biochemistry, Laboratory of Pharmacology and Toxicology, Yaoundé, Cameroon
- * E-mail: (PFM); (NG)
| | - Nancy Guillén
- Institut Pasteur, Cell Biology of Parasitism Unit, Paris, France
- INSERM U786, Paris, France
- * E-mail: (PFM); (NG)
| |
Collapse
|
32
|
Yu W, Wang L, Wang Y, Xu X, Zou P, Gong M, Zheng J, You J, Wang H, Mei F, Pei F. A novel tumor metastasis suppressor gene LASS2/TMSG1 interacts with vacuolar ATPase through its homeodomain. J Cell Biochem 2013; 114:570-83. [PMID: 22991218 DOI: 10.1002/jcb.24400] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 09/06/2012] [Indexed: 11/12/2022]
Abstract
LASS2/TMSG1 was a novel tumor metastasis suppressor gene, which was first cloned by our laboratory from non-metastatic and metastatic cancer cell variants of human prostate carcinoma PC-3M using mRNA differential display in 1999. LASS2/TMSG1 could interact with the C subunit of vacuolar ATPase (V-ATPase, ATP6V0C) and regulate V-ATPase activity. In an attempt to provide molecular mechanism of the interaction between LASS2/TMSG1 and V-ATPase, we constructed four variant transfectants containing different functional domain of LASS2/TMSG1 and stably transfected the variants to human prostate cancer cell line PC-3M-1E8 cell with high metastatic potential. Results showed that there were no obvious differences of V-ATPase expression among different transfected cells and the control. However, V-ATPase activity and intracellular pH was significantly higher in the variant transfectants with Homeodomain of LASS2/TMSG1 than that in the control using the pH-dependent fluorescence probe BECEF/AM. Immunoprecipitation, immunofluorescence and immuno-electron microscope alone or in combination demonstrated the direct interaction of Homeodomain of LASS2/TMSG1 and ATP6V0C. Loss of Homeodomain markedly enhanced the proliferation ability but weakened the apoptotic effect of LASS2/TMSG1 in PC-3M-1E8 cells. These lines of results for the first time contribute to the conclusion that LASS2/TMSG1 could regulate V-ATPase activity and intracellular pH through the direct interaction of its Homeodomain and the C subunit of V-ATPase. Their interaction could play important roles in the apoptosis of tumor cells.
Collapse
Affiliation(s)
- Wenjuan Yu
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Prestat E, de Morais SR, Vendrell JA, Thollet A, Gautier C, Cohen PA, Aussem A. Learning the local Bayesian network structure around the ZNF217 oncogene in breast tumours. Comput Biol Med 2013; 43:334-41. [PMID: 23375235 DOI: 10.1016/j.compbiomed.2012.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 07/23/2012] [Accepted: 12/07/2012] [Indexed: 01/18/2023]
Abstract
In this study, we discuss and apply a novel and efficient algorithm for learning a local Bayesian network model in the vicinity of the ZNF217 oncogene from breast cancer microarray data without having to decide in advance which genes have to be included in the learning process. ZNF217 is a candidate oncogene located at 20q13, a chromosomal region frequently amplified in breast and ovarian cancer, and correlated with shorter patient survival in these cancers. To properly address the difficulties in managing complex gene interactions given our limited sample, statistical significance of edge strengths was evaluated using bootstrapping and the less reliable edges were pruned to increase the network robustness. We found that 13 out of the 35 genes associated with deregulated ZNF217 expression in breast tumours have been previously associated with survival and/or prognosis in cancers. Identifying genes involved in lipid metabolism opens new fields of investigation to decipher the molecular mechanisms driven by the ZNF217 oncogene. Moreover, nine of the 13 genes have already been identified as putative ZNF217 targets by independent biological studies. We therefore suggest that the algorithms for inferring local BNs are valuable data mining tools for unraveling complex mechanisms of biological pathways from expression data. The source code is available at http://www710.univ-lyon1.fr/∼aaussem/Software.html.
Collapse
|
34
|
Yamashita-Sugahara Y, Tokuzawa Y, Nakachi Y, Kanesaki-Yatsuka Y, Matsumoto M, Mizuno Y, Okazaki Y. Fam57b (family with sequence similarity 57, member B), a novel peroxisome proliferator-activated receptor γ target gene that regulates adipogenesis through ceramide synthesis. J Biol Chem 2012; 288:4522-37. [PMID: 23275342 DOI: 10.1074/jbc.m112.440792] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
This report identifies a novel gene encoding Fam57b (family with sequence similarity 57, member B) as a novel peroxisome proliferator-activated receptor γ (PPARγ)-responsive transmembrane gene that is related to obesity. The gene was identified based on an integrated bioinformatics analysis of the following three expression profiling data sets: adipocyte differentiation of mouse stromal cells (ST2 cells), adipose tissues from obesity mice, and siRNA-mediated knockdown of Pparγ using ST2 cells. Fam57b consists of three variants expressed from different promoters and contains a Tram-Lag1-CLN8 domain that is related to ceramide synthase. Reporter and ChIP assays showed that Fam57b variant 2 is a bona fide PPARγ target gene in ST2 cells. Fam57b was up-regulated during adipocyte differentiation, suggesting that FAM57B is involved in this process. Surprisingly, FAM57B overexpression inhibited adipogenesis, and siRNA-mediated knockdown promoted adipocyte differentiation. Analysis of the ceramide content by lipid assay found that ceramides were in fact augmented in FAM57B-overexpressing ST2 cells. We also confirmed that ceramide inhibits adipogenesis. Therefore, the aforementioned results of FAM57B overexpression and siRNA experiments are reconciled by ceramide synthesis. In summary, we present in vitro evidence showing that PPARγ regulates Fam57b transcription during the adipogenesis of ST2 cells. In addition, our results suggest that PPARγ activation contributes to the regulation of ceramide metabolism during adipogenesis via FAM57B.
Collapse
Affiliation(s)
- Yzumi Yamashita-Sugahara
- Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka City, Saitama 350-1241, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Xu X, You J, Pei F. Silencing of a novel tumor metastasis suppressor gene LASS2/TMSG1 promotes invasion of prostate cancer cell in vitro through increase of vacuolar ATPase activity. J Cell Biochem 2012; 113:2356-63. [PMID: 22573553 DOI: 10.1002/jcb.24106] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Homo sapiens longevity assurance homologue 2 of yeast LAG1 (LASS2), also known as tumor metastasis suppressor gene 1 (TMSG1), is a newly found tumor metastasis suppressor gene in 1999. Preliminary studies showed that it not only suppressed tumor growth but also closely related to tumor metastasis, however, its molecular mechanisms is still unclear. There have been reported that protein encoded by LASS2/TMSG-1 could directly interact with the C subunit of Vacuolar ATPase (V-ATPase), which suggested that LASS2/TMSG1 might inhibit the invasion and metastasis through regulating the function of V-ATPase. Thus, in this study, we explored the effect of small interference RNA (siRNA) targeting LASS2/TMSG1 on the invasion of human prostate carcinoma cell line PC-3M-2B4 and its molecular mechanisms associated with the V-ATPase. Real-time fluorogentic quantitative PCR (RFQ-PCR) and Western blot revealed dramatic reduction of 84.5% and 60% in the levels of LASS2/TMSG1 mRNA and protein after transfection of siRNA in PC-3M-2B4 cells. The V-ATPase activity and extracellular hydrogen ion concentration were significantly increased in 2B4 cells transfected with the LASS2/TMSG1-siRNA compared with the controls. The activity of secreted MMP-2 was up-regulated in LASS2/TMSG1-siRNA treated cells compared with the controls; and the capacity for migration and invasion in LASS2/TMSG1-siRNA treated cells was significantly higher than the controls. Thus, we concluded that silencing of LASS2/TMSG1 may promote invasion of prostate cancer cell in vitro through increase of V-ATPase activity and extracellular hydrogen ion concentration and in turn the activation of secreted MMP-2.
Collapse
Affiliation(s)
- Xiaoyan Xu
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, PR China
| | | | | |
Collapse
|
36
|
Gong M, Yu W, Pei F, You J, Cui X, McNutt MA, Li G, Zheng J. KLF6/Sp1 initiates transcription of the tmsg-1 gene in human prostate carcinoma cells: an exon involved mechanism. J Cell Biochem 2012; 113:329-39. [PMID: 21928351 DOI: 10.1002/jcb.23359] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The tumor metastasis suppressor gene-1 (tmsg-1) was first cloned as a new tumor suppressor gene in our laboratory several years ago. Since then, however, despite the substantial progression that has been made in investigation of the biologic roles played by this gene, the manner in which it exerts its regulatory influence is still unknown. With transfection of various deletion or mutation constructs, we identified a potential enhancer and three potential silencers in the 5'-flanking region. However, it was particularly interesting to find that a region (+59 to +123 bp) of exon 1 exhibited a strong role in initiation of tmsg-1 gene transcription. Deletion of this region led to essentially complete loss of driving activity of exon-1 sequence on luciferase. Further analysis showed that transcription factors KLF6 and Sp1 are able to interact with each other and bind to their elements in this region. Co-transfection of pGL3-114/+123 with KLF6- and/or Sp1-expressing plasmids resulted in an elevation of luciferase activity and transcription level of tmsg-1, which was abolished by knockdown of KLF6 or Sp1. Analysis of metastatic capacity showed that cells with high metastatic capability exhibited a lower level of KLF6/TMSG-1 proteins with higher invasive capability and vice versa. Thus, we concluded that interaction of KLF6 and Sp1, together with their binding of elements in exon 1 are critical events in initiation of transcription of the tmsg-1 gene. These results reveal a hitherto unreported mechanism for initiation of transcription of the tmsg-1 gene.
Collapse
Affiliation(s)
- Miaozi Gong
- Department of Pathology, Peking University Health Science Center, Beijing 100191, China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
LASS2 enhances chemosensitivity of breast cancer by counteracting acidic tumor microenvironment through inhibiting activity of V-ATPase proton pump. Oncogene 2012; 32:1682-90. [PMID: 22580606 DOI: 10.1038/onc.2012.183] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A main obstacle to overcome during the treatment of tumors is drug resistance to chemotherapy; emerging studies indicate that a key factor contributing to this problem is the acidic tumor microenvironment. Here, we found that LASS2 expression was significantly lower in drug-resistant Michigan Cancer Foundation-7/adriamycin (MCF-7/ADR) human breast cancer cells than the drug-sensitive MCF-7 cells, and low expression of LASS2 was associated with poor prognosis in patients with breast cancer. Our results showed that the overexpression of LASS2 in MCF-7/ADR cells increased the chemosensitivity to multiple chemotherapeutic agents, including doxorubicin (Dox), whereas LASS2 knockdown in MCF-7 cells decreased the chemosensitivity. Cell-cycle analysis revealed a corresponding increase in apoptosis in the LASS2-overexpressing cells following Dox exposure, showing that the overexpression of LASS2 increased the susceptibility to Dox cytotoxicity. This effect was mediated by a significant increase in pHe (extracellular pH) and lysosomal pH, and more Dox entered the cells and stayed in the nuclei of cells. In nude mice, the combination of LASS2 overexpression and Dox significantly inhibited the growth of xenografts. Our findings suggest that LASS2 is involved in chemotherapeutic outcomes and low LASS2 expression may predict chemoresistance.
Collapse
|
38
|
Yu B, Zhou S, Wang Y, Qian T, Ding G, Ding F, Gu X. miR-221/222 promote Schwann cell proliferation and migration by targeting LASS2 following sciatic nerve injury. J Cell Sci 2012; 125:2675-83. [DOI: 10.1242/jcs.098996] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
microRNAs (miRNAs) are a novel class of small non-coding RNAs that regulate gene expression at the post-transcriptional level. But their roles in regulating responses of Schwann cells (SCs) to injury stimuli remain unexplored. Here we report dynamic alteration of miRNA expression following rat sciatic nerve injury using microarray analysis. We harvested the proximal nerve stumps and identified 77 miRNAs that showed significant changes at four time points after nerve transection. Subsequently, we analyzed the expression pattern of miRNA, selected one significant profile, and then integrated putative miRNA targets with differentially expressed mRNA yielding 274 potential targets. The 274 targets were mainly involved in cell proliferation, cell locomotion and cellular homeostasis that were known to play important roles in modulating cell phenotype. The up-regulation of miR-221/222 was found to correlate with the injury-induced SC phenotypic modulation. Enhanced expression of miR-221/222 could promote SC proliferation and migration in vitro, while silencing its expression resulted in a reduced proliferation and migration. Further studies revealed that longevity assurance homologue 2 (LASS2) was a direct target of miR-221/222 in SCs as miR-221/222 bound directly to the 3′-untranslated region of LASS2, thus reducing both mRNA and protein levels of LASS2. Silencing of LASS2 recapitulated the effects of miR-221/222 mimics, whereas enforced knockdown of LASS2 reversed the suppressive effects of miR-221/222 inhibitors. Our findings indicate that injury promote SC proliferation and migration through the regulation of miR-221/222 by targeting LASS2, and provide new insights into the role of miRNAs in nerve regeneration.
Collapse
|
39
|
Abstract
Ceramides are a class of sphingolipids that are abundant in cell membranes. They are important structural components of the membrane but can also act as second messengers in various signaling pathways. Until recently, ceramides and dihydroceramides were considered as a single functional class of lipids and no distinction was made between molecules with different chain lengths. However, based on the development of high-throughput, structure-specific and quantitative analytical methods to measure ceramides, it has now become clear that in cellular systems the amounts of ceramides differ with respect to their chain length. Further studies have indicated that some functions of ceramides are chain-length dependent. In this review, we discuss the chain length-specific differences of ceramides including their pathological impact on Alzheimer's disease, inflammation, autophagy, apoptosis and cancer.
Collapse
Affiliation(s)
- Sabine Grösch
- pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany.
| | | | | |
Collapse
|
40
|
Voelzmann A, Bauer R. Ceramide synthases in mammalians, worms, and insects: emerging schemes. Biomol Concepts 2010; 1:411-22. [DOI: 10.1515/bmc.2010.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
AbstractThe ceramide synthase (CerS) gene family comprises a group of highly conserved transmembrane proteins, which are found in all studied eukaryotes. The key feature of the CerS proteins is their role in ceramide synthase activity. Therefore, their original name ‘longevity assurance gene (Lass) homologs’, after the founding member, the yeast longevity assurance gene lag1, was altered to ‘CerS’. All CerS have high sequence similarity in a domain called LAG1 motif and a subset of CerS proteins is predicted to contain a Homeobox (Hox) domain. These domains could be the key to the multiple roles CerS have. CerS proteins play a role in diverse biological processes such as proliferation, differentiation, apoptosis, stress response, cancer, and neurodegeneration. In this review, we focus on CerS structure and biological function with emphasis of biological functions in the widely used model systems Caenorhabditis elegans and Drosophila melanogaster. Also, we focus on the accumulating data suggesting a role for CerS in lipid homeostasis.
Collapse
Affiliation(s)
- André Voelzmann
- 1LIMES Institute, Program Unit Development and Genetics, Laboratory for Molecular Developmental Biology, University of Bonn, Carl-Troll-Str. 31, D-53115 Bonn, Germany
| | - Reinhard Bauer
- 1LIMES Institute, Program Unit Development and Genetics, Laboratory for Molecular Developmental Biology, University of Bonn, Carl-Troll-Str. 31, D-53115 Bonn, Germany
| |
Collapse
|
41
|
Abstract
In mammals, ceramide, a key intermediate in sphingolipid metabolism and an important signaling molecule, is synthesized by a family of six ceramide synthases (CerS), each of which synthesizes ceramides with distinct acyl chain lengths. There are a number of common biochemical features between the CerS, such as their catalytic mechanism, and their structure and intracellular localization. Different CerS also display remarkable differences in their biological properties, with each of them playing distinct roles in processes as diverse as cancer and tumor suppression, in the response to chemotherapeutic drugs, in apoptosis, and in neurodegenerative diseases.
Collapse
Affiliation(s)
- Michal Levy
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
42
|
Köttgen A, Pattaro C, Böger CA, Fuchsberger C, Olden M, Glazer NL, Parsa A, Gao X, Yang Q, Smith AV, O'Connell JR, Li M, Schmidt H, Tanaka T, Isaacs A, Ketkar S, Hwang SJ, Johnson AD, Dehghan A, Teumer A, Paré G, Atkinson EJ, Zeller T, Lohman K, Cornelis MC, Probst-Hensch NM, Kronenberg F, Tönjes A, Hayward C, Aspelund T, Eiriksdottir G, Launer LJ, Harris TB, Rampersaud E, Mitchell BD, Arking DE, Boerwinkle E, Struchalin M, Cavalieri M, Singleton A, Giallauria F, Metter J, de Boer IH, Haritunians T, Lumley T, Siscovick D, Psaty BM, Zillikens MC, Oostra BA, Feitosa M, Province M, de Andrade M, Turner ST, Schillert A, Ziegler A, Wild PS, Schnabel RB, Wilde S, Munzel TF, Leak TS, Illig T, Klopp N, Meisinger C, Wichmann HE, Koenig W, Zgaga L, Zemunik T, Kolcic I, Minelli C, Hu FB, Johansson A, Igl W, Zaboli G, Wild SH, Wright AF, Campbell H, Ellinghaus D, Schreiber S, Aulchenko YS, Felix JF, Rivadeneira F, Uitterlinden AG, Hofman A, Imboden M, Nitsch D, Brandstätter A, Kollerits B, Kedenko L, Mägi R, Stumvoll M, Kovacs P, Boban M, Campbell S, Endlich K, Völzke H, Kroemer HK, Nauck M, Völker U, Polasek O, Vitart V, et alKöttgen A, Pattaro C, Böger CA, Fuchsberger C, Olden M, Glazer NL, Parsa A, Gao X, Yang Q, Smith AV, O'Connell JR, Li M, Schmidt H, Tanaka T, Isaacs A, Ketkar S, Hwang SJ, Johnson AD, Dehghan A, Teumer A, Paré G, Atkinson EJ, Zeller T, Lohman K, Cornelis MC, Probst-Hensch NM, Kronenberg F, Tönjes A, Hayward C, Aspelund T, Eiriksdottir G, Launer LJ, Harris TB, Rampersaud E, Mitchell BD, Arking DE, Boerwinkle E, Struchalin M, Cavalieri M, Singleton A, Giallauria F, Metter J, de Boer IH, Haritunians T, Lumley T, Siscovick D, Psaty BM, Zillikens MC, Oostra BA, Feitosa M, Province M, de Andrade M, Turner ST, Schillert A, Ziegler A, Wild PS, Schnabel RB, Wilde S, Munzel TF, Leak TS, Illig T, Klopp N, Meisinger C, Wichmann HE, Koenig W, Zgaga L, Zemunik T, Kolcic I, Minelli C, Hu FB, Johansson A, Igl W, Zaboli G, Wild SH, Wright AF, Campbell H, Ellinghaus D, Schreiber S, Aulchenko YS, Felix JF, Rivadeneira F, Uitterlinden AG, Hofman A, Imboden M, Nitsch D, Brandstätter A, Kollerits B, Kedenko L, Mägi R, Stumvoll M, Kovacs P, Boban M, Campbell S, Endlich K, Völzke H, Kroemer HK, Nauck M, Völker U, Polasek O, Vitart V, Badola S, Parker AN, Ridker PM, Kardia SLR, Blankenberg S, Liu Y, Curhan GC, Franke A, Rochat T, Paulweber B, Prokopenko I, Wang W, Gudnason V, Shuldiner AR, Coresh J, Schmidt R, Ferrucci L, Shlipak MG, van Duijn CM, Borecki I, Krämer BK, Rudan I, Gyllensten U, Wilson JF, Witteman JC, Pramstaller PP, Rettig R, Hastie N, Chasman DI, Kao WH, Heid IM, Fox CS. New loci associated with kidney function and chronic kidney disease. Nat Genet 2010; 42:376-84. [PMID: 20383146 DOI: 10.1038/ng.568] [Show More Authors] [Citation(s) in RCA: 656] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 03/01/2010] [Indexed: 11/09/2022]
Abstract
Chronic kidney disease (CKD) is a significant public health problem, and recent genetic studies have identified common CKD susceptibility variants. The CKDGen consortium performed a meta-analysis of genome-wide association data in 67,093 individuals of European ancestry from 20 predominantly population-based studies in order to identify new susceptibility loci for reduced renal function as estimated by serum creatinine (eGFRcrea), serum cystatin c (eGFRcys) and CKD (eGFRcrea < 60 ml/min/1.73 m(2); n = 5,807 individuals with CKD (cases)). Follow-up of the 23 new genome-wide-significant loci (P < 5 x 10(-8)) in 22,982 replication samples identified 13 new loci affecting renal function and CKD (in or near LASS2, GCKR, ALMS1, TFDP2, DAB2, SLC34A1, VEGFA, PRKAG2, PIP5K1B, ATXN2, DACH1, UBE2Q2 and SLC7A9) and 7 loci suspected to affect creatinine production and secretion (CPS1, SLC22A2, TMEM60, WDR37, SLC6A13, WDR72 and BCAS3). These results further our understanding of the biologic mechanisms of kidney function by identifying loci that potentially influence nephrogenesis, podocyte function, angiogenesis, solute transport and metabolic functions of the kidney.
Collapse
Affiliation(s)
- Anna Köttgen
- Department of Epidemiology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Takakuwa N, Ohnishi M, Oda Y. Significance of the KlLAC1 gene in glucosylceramide production by Kluyveromyces lactis. FEMS Yeast Res 2008; 8:839-45. [PMID: 18631186 DOI: 10.1111/j.1567-1364.2008.00407.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Each of the 12 genes involved in the synthesis of glucosylceramide was overexpressed in cells of Kluyveromyces lactis to construct a strain accumulating a high quantity of glucosylceramide. Glucosylceramide was doubled by the KlLAC1 gene, which encodes ceramide synthase, and not by 11 other genes, including the KlLAG1 gene, a homologue of KlLAC1. Disruption of the KlLAC1 gene reduced the content below the detection level. Heterologous expression of the KlLAC1 gene in the cells of Saccharomyces cerevisiae caused the accumulation of ceramide, composed of C(18) fatty acid. The KlLAC1 protein preferred long-chain (C(18)) fatty acids to very-long-chain (C(26)) fatty acids for condensation with sphingoid bases and seemed to supply a ceramide moiety as the substrate for the formation of glucosylceramide. When the amino acid sequences of ceramide synthase derived from eight yeast species were compared, LAC1 proteins from five species producing glucosylceramide were clearly discriminated from those of the other three species and all LAG1 proteins. The LAC1 protein of K. lactis is the enzyme that plays a crucial role in the synthesis of glucosylceramide.
Collapse
Affiliation(s)
- Naoya Takakuwa
- Memuro Research Station, National Agricultural Research Center for Hokkaido Region, NARO, Hokkaido, Japan
| | | | | |
Collapse
|
44
|
Cao W, Liu N, Tang S, Bao L, Shen L, Yuan H, Zhao X, Lu H. Acetyl-Coenzyme A acyltransferase 2 attenuates the apoptotic effects of BNIP3 in two human cell lines. Biochim Biophys Acta Gen Subj 2008; 1780:873-80. [PMID: 18371312 DOI: 10.1016/j.bbagen.2008.02.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2007] [Revised: 02/12/2008] [Accepted: 02/21/2008] [Indexed: 10/22/2022]
Abstract
BNIP3 is a unique pro-apoptotic protein which belongs to the BH3-only subset of the Bcl-2 family and localizes on mitochondrial membrane. Despite the inherent difficulty of identifying binding partners for membrane proteins, several binding partners for BNIP3 have been identified. In this study, a modified split-ubiquitin membrane yeast two-hybrid system was constructed and used to identify acetyl-Coenzyme A acyltransferase 2 (ACAA2) as a new BNIP3 binding partner. The interaction between BNIP3 and ACAA2 was confirmed by pull-down and co-immunoprecipitation assays. ACAA2 was also found to co-localize with BNIP3 in mitochondria. Furthermore, the apoptosis induced by over-expressed BNIP3 via transfection or hypoxia treatment was abolished by ACAA2 in human hepatocellular carcinoma HepG2 cells and osteosarcoma U-2 OS cells. These results strongly suggest that ACAA2 be a functional BNIP3 binding partner and provide a possible linkage between fatty acid metabolism and apoptosis of cells.
Collapse
Affiliation(s)
- Wei Cao
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Becker I, Wang-Eckhardt L, Yaghootfam A, Gieselmann V, Eckhardt M. Differential expression of (dihydro)ceramide synthases in mouse brain: oligodendrocyte-specific expression of CerS2/Lass2. Histochem Cell Biol 2007; 129:233-41. [PMID: 17901973 DOI: 10.1007/s00418-007-0344-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2007] [Indexed: 12/16/2022]
Abstract
Synthesis of dihydroceramide is catalyzed by a family of (dihydro)ceramide synthases (CerS), first identified in yeast as longevity-assurance genes. Six members (CerS1-6; Lass1-6) of this gene family have been identified in mammals. We examined expression of CerS genes during postnatal development in mouse brain by means of Northern blot analysis, real-time RT-PCR, and in situ-hybridization. In situ-hybridization experiments showed that CerS1 was the predominant CerS in neurons throughout the brain. This observation is in line with the high levels of C18:0-ceramide in neurons and the substrate specificity of CerS1. A similar distribution, but lower expression levels, were found for CerS4 and CerS6. Only low or undetectable amounts of CerS1, CerS4 and CerS6 were, however, present in white matter. In contrast, CerS5 mRNA was detected in most cells within gray and white matter of all brain regions, suggesting ubiquitous expression of this palmitoyl-CoA specific CerS. Expression of CerS2 was transiently increased during the period of active myelination. Furthermore, expression of CerS2 was specifically localized to white matter tracts of the brain. Furthermore, CerS2 was the predominant CerS in Schwann cells of sciatic nerves. These data suggest that CerS2 is important for the synthesis of dihydroceramide used for synthesis of myelin sphingolipids.
Collapse
Affiliation(s)
- Ivonne Becker
- Institute of Physiological Chemistry, University of Bonn, 53115 Bonn, Germany
| | | | | | | | | |
Collapse
|
46
|
Wang X, Carré W, Saxton AM, Cogburn LA. Manipulation of thyroid status and/or GH injection alters hepatic gene expression in the juvenile chicken. Cytogenet Genome Res 2007; 117:174-88. [PMID: 17675858 DOI: 10.1159/000103178] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Accepted: 01/19/2007] [Indexed: 11/19/2022] Open
Abstract
Both thyroid hormone (T3) and growth hormone (GH) are important regulators of somatic growth in birds and mammals. Although T3-mediated gene transcription is well known, the molecular basis of T3 interaction with GH on growth and development of birds remains unknown. In earlier studies, we discovered that exogenous GH alone increased accumulation of visceral fat in young chickens, while the combination of GH injections and dietary T3 worked synergistically to deplete body fat. In the present study, cDNA microarray and quantitative RT-PCR analyses enabled us to examine hepatic gene expression in young chickens after chronic manipulation of thyroid status and GH injection alone or in combination with T3. Thyroid status modulates expression of common and unique sets of genes involved in a wide range of molecular functions (i.e., energy metabolism, storage and transport, signal transduction, protein turnover and drug detoxification). Hepatic expression of 35 genes was altered by hypothyroidism (e.g., ADFP, ANGPTL3, GSTalpha, CAT, PPARG, HMGCL, GHR, IGF1, STAT3, THRSPalpha), whereas hyperthyroidism affected expression of another cluster of 13 genes (e.g., IGFBP1, KHK, LDHB, BAIA2L1, SULT1B, TRIAD3). Several genes were identified which have not been previously ascribed as T3 responsive (e.g., DEFB9, EPS8L2, ARHGAP1, LASS2, INHBC). Exogenous GH altered expression of 17 genes (e.g., CCAR1, CYP2C45, GYS2, ENOB, HK1, FABP1, SQLE, SOCS2, UPG2). The T3+GH treatment depleted the greatest amount of body fat, where 34 differentially expressed genes were unique to this group (e.g., C/EBP, CDC42EP1, SYDE2, PCK2, PIK4CA, TH1L, GPT2, BHMT). The marked reduction in body fat brought about by the T3+GH synergism could involve modulation of hormone signaling via altered activity of the Ras superfamily of molecular switches, which control diverse biological processes. In conclusion, this study provides the first global analysis of endocrine (T3 and GH) regulation of hepatic gene transcription in the chicken.
Collapse
Affiliation(s)
- X Wang
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19717, USA
| | | | | | | |
Collapse
|
47
|
Wang B, Shi G, Fu Y, Xu X. Cloning and characterization of a LASS1-GDF1 transcript in rat cerebral cortex: conservation of a bicistronic structure. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 2007; 18:92-103. [PMID: 17364820 DOI: 10.1080/10425170601060947] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
LASS1 is the mammalian homologue of yeast longevity-assurance gene 1 (LAG1) which is differentially expressed during the yeast replicative life span and was shown to play a role in determining yeast longevity. Growth/differentiation factor 1 (GDF1) is a transforming growth factor-beta family member that was originally isolated from an mouse embryo cDNA library. GDF1 is expressed specifically in the nervous system and functions in left-right patterning of the mouse embryo. To explore the potential role of LASS1 in rat neuron aging, northern blot analysis for LASS1 mRNA was performed and detected a 2.7 kb transcript in adult rat cerebral cortex. Cloning and sequence analysis revealed that this transcript contains two nonoverlapping open reading frames (ORFs), LASS1 and GDF1, which are quite different to the predicted sequences in GenBank (accession number XM_224734 and XM_224733). The alignment with the rat genome database revealed this transcript matches the sequence of rat chromosome 16 genomic contig (GenBank accession number NW_047470) between nucleotide positions 1935060th and 1919439th, which contains eight exons and seven introns. Multiple sequence analysis revealed high conservation of the two ORFs. The phylogenetic analysis showed very close evolutionary relationship among rat, mouse and human. It raises the possibility that this mRNA may give rise to two different proteins and the conserved bicistronic structure might be of unknown significance.
Collapse
Affiliation(s)
- Baoheng Wang
- Laboratory of Cell Senescence, Shantou University Medical College, Shantou, Guangdong Province, 515041, People's Republic of China
| | | | | | | |
Collapse
|
48
|
Park EC, Hayata T, Cho KWY, Han JK. Xenopus cDNA microarray identification of genes with endodermal organ expression. Dev Dyn 2007; 236:1633-49. [PMID: 17474120 DOI: 10.1002/dvdy.21167] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The endoderm is classically defined as the innermost layer of three Metazoan germ layers. During organogenesis, the endoderm gives rise to the digestive and respiratory tracts as well as associated organs such as the liver, pancreas, and lung. At present, however, how the endoderm forms the variety of cell types of digestive and respiratory tracts as well as the budding organs is not well understood. In order to investigate the molecular basis and mechanism of organogenesis and to identify the endodermal organ-related marker genes, we carried out microarray analysis using Xenopus cDNA chips. To achieve this goal, we isolated the Xenopus gut endoderm from three different stages of Xenopus organogenesis, and separated each stage of gut endoderm into anterior and posterior regions. Competitive hybridization of cDNA between the anterior and posterior endoderm regions, to screen genes that specifically expressed in the major organs, revealed 915 candidates. We then selected 104 clones for in situ hybridization analysis. Here, we report the identification and expression patterns of the 104 Xenopus endodermal genes, which would serve as useful markers for studying endodermal organ development.
Collapse
Affiliation(s)
- Edmond Changkyun Park
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Kyungbuk, Republic of Korea
| | | | | | | |
Collapse
|
49
|
Spassieva S, Seo JG, Jiang JC, Bielawski J, Alvarez-Vasquez F, Jazwinski SM, Hannun YA, Obeid LM. Necessary role for the Lag1p motif in (dihydro)ceramide synthase activity. J Biol Chem 2006; 281:33931-8. [PMID: 16951403 DOI: 10.1074/jbc.m608092200] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lag1 (longevity assurance gene 1) homologues, a family of transmembrane proteins found in all eukaryotes, have been shown to be necessary for (dihydro)ceramide synthesis. All Lag1 homologues contain a highly conserved stretch of 52 amino acids known as the Lag1p motif. However, the functional significance of the conserved Lag1p motif for (dihydro)ceramide synthesis is currently unknown. In this work, we have investigated the function of the motif by introducing eight point mutations in the Lag1p motif of the mouse LASS1 (longevity assurance homologue 1 of yeast Lag1). The (dihydro)ceramide synthase activity of the mutants was tested using microsomes in HeLa cells and in vitro. Six of the mutations resulted in loss of activity in cells and in vitro. In addition, our results showed that C18:0 fatty acid CoA (but not cis-C18:1 fatty acid CoAs) are substrates for LASS1 and that LASS1 in HeLa cells is sensitive to fumonisin B1, an in vitro inhibitor of (dihydro)ceramide synthase. Moreover, we mutated the Lag1p motif of another Lag homologue, human LASS5. The amino acid substitutions in the human LASS5 were the same as in mouse LASS1, and had the same effect on the in vitro activity of LASS5, suggesting the Lag1p motif appears to be essential for the enzyme activity of all Lag1 homologues.
Collapse
Affiliation(s)
- Stefka Spassieva
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Yu Y, Lu H, Pan H, Ma JH, Ding ZJ, Li YY. Expression of LASS2 controlled by LAG1 or ADH1 promoters cannot functionally complement Lag1p. Microbiol Res 2006; 161:203-11. [PMID: 16765836 DOI: 10.1016/j.micres.2005.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2005] [Indexed: 11/29/2022]
Abstract
LAG1 contributes to the substrate specificity and catalytic activity of ceramide synthases in Saccharomyces cerevisiae. Double deletion of LAG1 and its yeast homologue LAC1 results in the slow growth defect of the cell under certain genetic backgrounds. LASS2, containing the conserved TLC domain and the specific HOX domain, is a human homologue of Lag1p. In this study, shuffling tests and tetrad analyses were carried out to examine the complementation between Lag1p and LASS2 or its fragment containing the TLC domain but lacking the HOX domain (LASS2DeltaHOX). Controlled by either the natural weak LAG1 promoter or the strong yeast ADH1 promoter, LASS2 and LASS2DeltaHOX could not rescue the slow growth defect of double mutant. The results indicated that LASS2 or LASS2DeltaHOX could not functionally complement Lag1p.
Collapse
Affiliation(s)
- Yao Yu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | | | | | | | | | | |
Collapse
|